
WEBER’S CLASS NUMBER PROBLEM AND p–RATIONALITY

IN THE CYCLOTOMIC Ẑ–EXTENSION OF Q

GEORGES GRAS

Abstract. Let K := Q(ℓn), n ≥ 0, be the nth layer in the cyclotomic Zℓ-
extension of Q. It is conjectured that, for all ℓ and n, K is principal (especially
for ℓ = 2, a conjecture due to Weber). Many studies (Ichimura–Morisawa–
Nakajima–Okazaki . . .) go in this direction, as the Miller use of the Cohen–
Lenstra–Martinet heuristics. Nevertheless, we examine in what circumstances
a counterexample may be possible. For this, computations show that the p-
torsion group TK of the Galois group of the maximal abelian p-ramified pro-
p-extension of K is not always trivial. This questions the relevance of the
conjecture since #TK = #CK · #RK · #WK , where CK is the p-class group of K,
RK its normalized p-adic regulator, #WK = 1 for p > 2, #WK = 2

#{v, v|2}−1

for p = 2; nevertheless, no counterexample has been found so far, even using
the reflection theorem giving p-ranks equalities between CK and a suitable
component of TK(µp). When n increases, some relative components T ∗

K may
appear for large p. We give a method (Theorem 4.6), for testing #TK 6= 1,
allowing larger values of ℓn than those of the literature. Finally, we consider the

subfields K of the composite Q̂ of the Zℓ-extension and give programs finding
again some rare cases of non-trivial class groups (Fukuda–Komatsu–Horie) due
to genus theory in connection with a deep link involving RK (Theorem 6.2) in
relation with Greenberg’s conjecture as initiated, via p-adic zeta-functions, by

Taya. In all attempts, Jaulent’s logarithmic class group C̃K , K ⊂ Q̂, governing
Greenberg’s conjecture for K and p, was trivial.
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1. Introduction

Let ℓ ≥ 2 be a prime number and let Q(ℓn), n ≥ 0, be the nth layer in the
cyclotomic Zℓ-extension Q(ℓ∞) of Q (with [Q(ℓn) : Q] = ℓn). We draw attention
on the fact that we use ℓ (instead of p in the literature) since we need to apply
the p-ramification theory to the fields Q(ℓn), p 6= ℓ, which is more usual.

The purpose of our study is to see in what circumstances the p-class group ofQ(ℓn)
is likely to be non-trivial for some prime p. Of course, the direct computation (or
some deep analytic studies) of the class number has been done by many authors
without complete success because of limitation of the order of magnitude of the
degree ℓn; for instance, the results given in [43, 44, Tables 1, 2] only concerns ℓn =
27, 34, 52, 11, 13, 17, 19, 23, 29, 31 (27, 34, 29, 31 under GRH). Using PARI/GP
[53] programs, any “serious” computation needs the instruction K = bnfinit(P, 1)
(giving all the basic invariants of the field K defined via the polynomial P, whence
the whole class group, a system of units, etc.), few values of ℓ, n, may be carried
out. Some approaches, by means of geometry of numbers, prove that some of
these fields are euclidian (see, e.g., [5] about Q(22) Q(23)); but this more difficult
and broad aspect needs other techniques and we are in a class field theory context.
For these reasons, we will use the following trick.

Let K be a number field and let TK be the torsion group of G
pr
K := Gal(Hpr

K /K),
where Hpr

K is the maximal abelian p-ramified (i.e., unramified outside p and ∞)
pro-p-extension of K; for K = Q(ℓn), we have the identity:

#TK = #CK · #RK · #WK ,

where CK is the p-class group, RK the normalized p-adic regulator and WK an
obvious factor (see Lemma 2.1 about WK , in general trivial). Since Leopoldt’s
conjecture holds in K, we have, for any prime p, G

pr
K = ΓK ⊕TK , with ΓK ≃ Zp.

So, as soon as TK = 1, we are certain that #CK = 1; otherwise, we may suspect
a possible counterexample.

Of course, the good new is that the test on TK does not need K = bnfinit(P, 1); it
will be explained Section 3 and yields Theorem 4.6. Before we shall compute, in
Subsection 2.3, some TK by means of a classical program (using K = bnfinit(P, 1))
to show that this p-torsion group is non-trivial in some cases of small degrees ℓn.

Now we recall some classical properties of these invariants.
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1.1. p-class groups in Q(ℓ∞). We denote by p a prime number and by A ≃
A⊗ Zp the p-Sylow subgroup of any finite abelian group A (e.g., the class group
CQ(ℓn) of Q(ℓn) giving the p-class group CQ(ℓn)).

Chevalley’s formula [6, p. 406] (1933) for class groups Cres
K and Cres

k (restricted
sense), in any cyclic extension K/k of Galois group G, is in whole generality:

#(Cres
K )G =

#Cres
k ·

∏
l el

[K : k] · (Epos
k : Epos

k ∩NK/k(K×))
,

where el is the ramification index in K/k of the prime ideal l of k and Epos
k is the

group of totally positive units of k. When K/k is totally ramified at some prime
ideal l0, the formula becomes the product of two integers:

#(Cres
K )G = #Cres

k ·
∏

l 6=l0
el

(Epos
k : Epos

k ∩ NK/k(K×))
.

Applied to Q(ℓn)/Q the formula gives (Cres
Q(ℓn))

G = 1 since ℓ is the unique (totally)

ramified prime and since Epos
Q = 1. So C res

Q(ℓn) = 1, a classical result often attrib-

uted to Iwasawa instead of Chevalley (or more precisely Herbrand–Chevalley, the
Herbrand quotient of the group of units of K being the key for the proof). In the
sequel, we implicitly assume p 6= ℓ.

1.2. p-torsion group of abelian p-ramification in Q(ℓ∞). The analogous
“fixed points formula” for the ℓ-torsion group TQ(ℓn), in Q(ℓn)/Q (i.e., p = ℓ),
gives also TQ(ℓn) = 1 for all n [27, Appendix A.4.2]; which justifies once again the
assumption p 6= ℓ and that the notation T always refers to a p-torsion group.

The invariants CQ(ℓn) and TQ(ℓn), for all p 6= ℓ, are the fundamental invariants of
Q(ℓn) and one may ask if the arithmetic of Q(ℓn) is as smooth as it is conjectured
(for CQ(ℓn)) by many authors after many verifications and partial proofs [4, 10,
11, 12, 13, 32, 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 48, 49]. The triviality of the
CQ(ℓn) has no counterexamples as ℓ, n, p vary, but that of the TQ(ℓn) is, on the
contrary, not true as we shall see with various numerical experiments.

These invariants of p-torsion were less (numerically) computed than class groups,
which is unfortunate because they are of basic use in Galois cohomology since, for
all number field K, TK is the dual of H2(GK,p,Zp) [52], where GK,p is the Galois
group of the maximal p-ramified pro-p-extension of K (ordinary sense); then we
have the local-global approach defining the first and second Shafarevich–Tate
groups in the simplest framework of p-ramification (see [42, Theorem 3.74]):

I⊥IiK,p := Ker
[
Hi(GK,p,Fp) −→

⊕
v|p

H1(GKv
,Fp)

]
, i = 1, 2,

which essentially depend on VK,p/K
×p where:

VK,p := {α ∈ K×, (α) = ap, α ∈ K×
v , ∀v ∈ S},

giving the Shafarevich formula (see some generalizations with ramification and de-
composition in [15, II.5.4.1] as well as in [38], after pioneering works of Haberland–
Koch–Neumann–Schmidt); this depends on the p-rank of the S-class group CS

K :=
CK/cℓK(S), where S is the set of p-places of K. Then the reflection theorem ob-
tained by “Kummer duality” gives a precise relation with the p-rank of TK ([19]
and [15, II.5.4.5 and Theorem III.4.2]).

More generally, if one replaces the notion of p-ramification (in pro-p-extensions)
by that of S-ramification (in pro-extensions), for any set of places S, the cor-
responding Shafarevich–Tate groups have some relation with the corresponding
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torsion groups TK,S, but with many open questions when no assumption is done
on S (see [31] for an up to date story about them and for numerical examples).

When TK = 1 under Leopoldt’s conjecture, one speaks of p-rational field; in this
case, the Shafarevich–Tate groups are trivial, which has deep consequences as
shown for instance in [2] in relation with our conjectures in [20]. For more informa-
tion on the story of abelian p-ramification and p-rationality, see [27, Appendix A]
and its bibliography about the pioneering contributions: K-theory approach [18],
p-infinitesimal approach [38], cohomological/pro-p-group approach [50, 51]. All
basic material about p-rationality is overviewed in [15, III.2, IV.3, IV.4.8 ].

Finally, the orders and annihilations of the TQ(ℓn) are given by p-adic L-functions,
the two theories (arithmetic and analytic) being equivalent (this will give the
testing of TQ(ℓn) 6= 1 from Theorem 4.6 using a suitable algorithm).

All these principles on Shafarevich–Tate groups exist for elliptic curves and this
is at the origin of a question of Coates [8, Section 3] about the possible triviality
of the CQ(ℓn) and more generally the behavior of the class groups in the composite
of the Zℓ-extensions of Q.1

2. Abelian p-ramification theory for totally real fields

Recall the context of abelian p-ramification theory when K is any totally real
number field (under Leopoldt’s conjecture for p in K).

2.1. Main definitions and notations – The p-invariants of K.

(a) Let E1
K be the group of p-principal global units ε ≡ 1 (mod

∏
p|p p) of K.

Let U1
K := ⊕p|pU

1
Kp

be the Zp-module of p-principal local units, where

U1
Kp

is the group of p-principal units of the p-completion Kp of K. De-
note by µκ the group of pth roots of unity of any field κ and put WK :=
torZp

(U1
K)/µK =

[
⊕p|p µKp

]/
µK .

(b) Let ι : {x ∈ K× ⊗ Zp, x prime to p} → U1
K be the diagonal embedding.

Let E1
K be the closure of ιE1

K in U1
K and let Hnr

K be the p-Hilbert class field

of K; then we have Gal(Hpr
K /H

nr
K ) ≃ U1

K/E
1
K . The Leopoldt conjecture

leads to the (not so trivial) exact sequence:

1 −→ WK −→ torZp

(
U1
K

/
E1
K

) log−−−→ torZp

(
log

(
U1
K

)/
log(E1

K)
)
→ 0.

(c) Let CK be the p-class group of K, isomorphic to Gal(Hnr
K /K).

(d) Let RK := torZp
(log(U1

K)/log(E
1
K)) be the normalized p-adic regulator [23,

§ 5]; recall that for p 6= 2, #RK = RK

pd−1 and #RK = 1
2s2−1

RK

2d−1 for p = 2,

where RK is the classical p-adic regulator, d = [K : Q] and s2 is the number
of 2-places in K (see [7, Appendix] giving the link with the residue of the
p-adic zeta function of K).

(e) Let K(p∞) be the cyclotomic Zp-extension of K and let Hbp
K (called the

Bertrandias–Payan field) fixed by the subgroup WK of TK ; the field Hbp
K

is the composite of all p-cyclic extensions of K embeddable in p-cyclic
extensions of arbitrary large degree.

1We warmly thank John Coates for sending me his conference paper (loc.cit.), not so easy to
find for me, but which contains useful numerical and bibliographical information.
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2.2. The case of the fields K = Q(ℓn). In that case, some simplifications arise.

Lemma 2.1. One has WK = 1 for all K = Q(ℓn), except for the case p = 2 in
which case, WK ≃ FδK−1

2 where δK is the number of primes p | 2 in K.

Proof. For p 6= 2, the p-completions Kp of K (unramified of ℓth power degree) do
not contain µp since Qp(µp)/Qp, of degree p− 1 > 1, is totally ramified at p; thus
WK = 1.

For p = 2, Kp does not contain µ4 but µ2 and WK ≃ FδK2 , thus WK ≃ FδK−1
2 . �

For p = 2, the case δK > 1 is very rare and occurs only when 2ℓ−1 ≡ 1 (mod ℓn+1),
e.g., ℓ = 2093, 3511, for n = 1, but these values of ℓ are out of range of practical
computations. Thus WK is in general trivial.

Since K(p∞) ∩Hnr
K = K for K = Q(ℓn), we have the following diagram:

TK

RK

≃ CK
Hbp
K WK

K(p∞)Hnr
KK(p∞) Hpr

K

Remarks 2.2. (i) If WK = CK = 1, we have TK = RK, the normalized p-
adic regulator, which is not always trivial as we shall see, even if we have
conjectured in [20] that, for any number field K, TK = 1 for p≫ 0.

(ii) One may think that interesting examples occur only for larger values of
ℓn and probably more easily when p totally splits in Q(µℓn) (i.e., p ≡ 1
(mod ℓn)); see § 2.4.
This explains the result of [36] and [37] clamming that #CQ(ℓn) is odd in
Q(ℓ∞) for all ℓ < 500 and that of [35, 48, 49]; indeed, for p = 2 or any
very small p, the residue degree ρn of p in Q(µℓn) fulfills the condition

pρn ≡ 1 (mod ℓn), giving ρn >
n log(ℓ)
log(p)

, unbounded as n→∞, which means

that if the order of the relative class group C ∗
Q(ℓn) = Ker(NQ(ℓn)/Q(ℓn−1))

is non-trivial for n large enough, then it is divisible by pρn due to the
Galois action on a non-trivial p-class of C∗

Q(ℓn), which becomes oversized

(see § 2.4 for more details showing that C ∗
Q(ℓn) = 1 for n≫ 0 does exist for

any prime p ≥ 2 from a non-trivial result of Washington [56]) and explicit
deep analytic computations by [4, 9, 10, 13, 34, 35, 36, 37, 45, 46, 48, 49]
(e.g., [13, Corollary 1]).

2.3. General computation of #TQ(ℓn). We shall use the following PARI/GP
programs giving the structure, of abelian group, of TQ(ℓn), for small values of n,
from the given polynomial P = polsubcyclo(eln+1, eln) (or P = polsubcyclo(2n+2, 2n))
defining the real field Q(ℓn) (they are simplified forms of the general program writ-
ten in [25, Programme I, § 3.2]). The parameter N must be such that pN is larger
than the exponent of TQ(ℓn); taking N = 2 for p > 2 (resp. N = 3 for p = 2)
gives the p-rank of the group. Program I is specific of the case ℓ = 2 (the Weber
context), Program II works for any odd prime ℓ:
PROGRAM I. STRUCTURE OF T FOR el=2, p>2

{el=2;N=12;for(n=1,3,print("el=",el," n=",n);P=x;for(j=1,n,P=P^2-2);

K=bnfinit(P,1);forprime(p=3,2*10^5,KpN=bnrinit(K,p^N);HpN=KpN.cyc;

L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("p=",p," rk(T)=",R," T=",L))))}
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el=2 n=1 p=13 rk(T)=1 T=[13] el=2 n=1 p=31 rk(T)=1 T=[31]

el=2 n=2 p=13 rk(T)=2 T=[169,13] el=2 n=2 p=31 rk(T)=1 T=[31]

el=2 n=2 p=29 rk(T)=1 T=[29] el=2 n=2 p=37 rk(T)=1 T=[37]

el=2 n=3 p=3 rk(T)=2 T=[3,3] el=2 n=3 p=31 rk(T)=1 T=[31]

el=2 n=3 p=13 rk(T)=2 T=[169,13] el=2 n=3 p=37 rk(T)=1 T=[37]

el=2 n=3 p=29 rk(T)=1 T=[29] el=2 n=3 p=521 rk(T)=1 T=[521]

FASTER PROGRAM, FOR el=2, ONLY COMPUTING #T

{el=2;n=3;P=x;for(k=1,n,P=P^2-2);K=bnfinit(P,1);

forprime(p=3,2*10^5,HpN=bnrclassno(K,p^2);w=valuation(HpN,p)-1;

if(w>0,print("el=",el," n=",n," p=",p," #T=", p^w)))}

el=2 n=3 p=3 #T=9 el=2 n=3 p=31 #T=31

el=2 n=3 p=13 #T=169 el=2 n=3 p=37 #T=37

el=2 n=3 p=29 #T=29 el=2 n=3 p=521 #T=521

PROGRAM II. STRUCTURE OF T FOR el>2

{el=3;N=8;for(n=1,2,print("el=",el," n=",n);P=polsubcyclo(el^(n+1),el^n);

K=bnfinit(P,1);forprime(p=2,200,KpN=bnrinit(K,p^N);HpN=KpN.cyc;

L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("p=",p," rk(T)=",R," T=",L))))}

el=3 n=1 p=7 rk(T)=1 T=[7] el=3 n=1 p=73 rk(T)=1 T=[73]

el=3 n=2 p=7 rk(T)=1 T=[7] el=3 n=2 p=73 rk(T)=1 T=[73]

el=5 n=1 p=11 rk(T)=2 T=[11,11]

el=5 n=2 p=11 rk(T)=2 T=[11,11] el=5 n=2 p=101 rk(T)=1 T= [101]

FASTER PROGRAM FOR el>2 ONLY COMPUTING #T

{el=3;n=1;P=polsubcyclo(el^(n+1),el^n);K=bnfinit(P,1);

forprime(p=5,2*10^5,HpN=bnrclassno(K,p^2);w=valuation(HpN,p)-1;

if(w>0,print("el=",el," n=",n," p=",p," #T=", p^w)))}

el=3 n=1 p=7 #T=7 el=5 n=1 p=11 #T=121 el=3 n=1 p=73 #T=73

These partial results show that the p-ramification aspects are more complex since,
for instance, for the case ℓ = 2, the divisibility by p = 29 only appears for n = 2
and, for p = 13, the 13-rank and the exponent increase from n = 1 to n = 2 (see
the next Subsection 2.4 for more explanations).

Unfortunately, it is not possible in practice to compute easily beyond ℓ = 17 for
various p. So, as we have explained in the Introduction, we shall give Section 3
another method to test TQ(ℓn) 6= 1 for larger ℓ and p.

2.4. Algebraic and analytic aspects. When ℓ and p 6= ℓ are fixed, the transfer
maps TQ(ℓn−1)→ TQ(ℓn), RQ(ℓn−1)→ RQ(ℓn), CQ(ℓn−1)→ CQ(ℓn), are injective and
the arithmetic norms TQ(ℓn) → TQ(ℓn−1), RQ(ℓn) → RQ(ℓn−1), CQ(ℓn) → CQ(ℓn−1),
are surjective since p 6= ℓ; so #TQ(ℓn), #RQ(ℓn), #CQ(ℓn) increase as soon as appear
relative submodules in Q(ℓn)/Q(ℓn−1).

Let T ∗
Q(ℓn), R∗

Q(ℓn), C ∗
Q(ℓn), be the corresponding kernels of the arithmetic norm

NQ(ℓn)/Q(ℓn−1) (or of the algebraic norm νQ(ℓn)/Q(ℓn−1) :=
∑

σ∈Gal(Q(ℓn)/Q(ℓn−1)) σ);

then #T ∗
Q(ℓn) = #R∗

Q(ℓn) · #C ∗
Q(ℓn), since #W ∗

Q(ℓn) = 1, except in the case p = 2 when

2 splits beyond Q(ℓn−1), giving #W ∗
Q(ℓn) = 2 (Lemma 2.1).

2.4.1. Galois action – Relative modules. Let (MQ(ℓn))n≥0 be a family of finite
Zp[Gn]-modules, where Gn = Gal(Q(ℓn)/Q), provided with natural transfer and
norm maps having the above properties (this will apply to the modules T , R,
C , W ), and let M ∗

Q(ℓn) be the kernel of the algebraic norm νQ(ℓn)/Q(ℓn−1) so that

MQ(ℓn) ≃MQ(ℓn−1)

⊕
M

∗
Q(ℓn).
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Put K = Q(ℓn), n ≥ 1, and ki := Q(ℓi), 0 ≤ i ≤ n; since Gn = Gal(K/Q) is cyclic
of order ℓn, the rational characters χi of K are in one-to-one correspondence with
the ki; we shall denote by θi | χi the irreducible p-adic characters; each θi is above
a character ψi of degree 1 and order ℓi. We have the decomposition:

MK =
n⊕
i=1

M
χi

K =
n⊕
i=1

M
∗
ki
=

n⊕
i=1

[ ⊕
θi|χi

M
θi
ki

]
.

Then M ∗
K (or any of its component M

θn
K ) is a module over Z[µℓn], hence isomor-

phic to a product of Z[µℓn ]-modules of the form:

Z[µℓn]/p
e
n, pn | p in Q(µℓn), e ≥ 1,

whose p-rank is a multiple of the residue degree ρn of p in the extension Q(µℓn)/Q
(i.e., ρn ≥ 1 minimal such that pρn ≡ 1 (mod ℓn)) and whose order is pe ρn ; thus
ρn → ∞ as n → ∞, which is considered as incredible for classical arithmetic
invariants that we shall investigate below, and leads to analytic proofs of the
triviality of C ∗

K for some p if ℓn ≫ 0 (Remark 2.2).

2.4.2. p-class groups in Q(ℓ∞). Washington’s theorem [56] gives a limitation of
the increasing of CK , as n → ∞; it claims (with our notations) that for ℓ and p
fixed, #CK is constant for all n large enough, whence C ∗

K = 1 for all n≫ 0. This
only applies to the p-class groups, but in all the tower. Other analytical studies,
as we have mentioned, give some principalities (or p-principalities) under some
limitations of the parameters. In [4], a conjecture (from “speculative extensions
of the Cohen–Lenstra–Martinet heuristics”) implies C ∗

K 6= 1 for finitely many
layers K (possibly none).

These theorems may be easily understandable from the previous observation on
the p-ranks. Thus it is natural (but non-trivial) that C ∗

K = 1 (hence CK constant)
for all n ≫ 0. But this does not give an heuristic for Prob(#C ∗

K = 1) when n
varies.

2.4.3. Torsion groups in Q(ℓ∞). Concerning the case of the torsion groups TK ,
we observe that in general the solutions p for #T ∗

K ≡ 0 (mod p) fulfill the relation
p ≡ 1 (mod ℓn), which is in some sense a strong form of Washington’s result
because the reflection theorem that we shall recall later in Section 5, in the layers
Ln := K(µp), the p-rank of T ∗

K is bounded by that of C ∗
Ln

(in fact of the ω-
component where ω is the Teichmüller character). Thus Washington’s theorem
may be fulfilled by the torsion groups in the Zℓ-cyclotomic tower of Q.

2.4.4. Regulators in Q(ℓ∞). One can wonder what happens for the regulators RK

and the relative components R∗
K , due to the specific nature of a regulator as a

Frobenius determinant and regarding the previous observations. So, recall some
algebraic facts about the R∗

K that we can explain from heuristics and probabilistic
studies given in [20, § 4.2.2].
Indeed, for any real Galois extension K/Q, of Galois group G, the normalized
p-adic regulator RK may be defined via the conjugates of the p-adic logarithm of
a suitable Minkowski unit η and can be written, regarding G, as Frobenius deter-
minant RG

p (η) =
∏
θ
Rθ
p(η), where θ runs trough the irreducible p-adic characters,

and Rθ
p(η) =

∏
ψ|θ

Rψ
p (η) with absolutely irreducible characters ψ. Then (loc. cit.):

Prob
(
R
θ
K ≡ 0 (mod p)

)
=

O(1)

p ρ δ2
,
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where ρ is still the residue degree of p in the field of values of ψ and δ ≥ 1 is
a suitable multiplicity of the absolutely irreducible θ-representation (in our case,
ρ = ρn and δ = 1).

Contrary to the class group of K := Q(ℓn) (for n fixed) which is finite, the
primes p such that RK ≡ 0 (mod p) may be, a priori, infinite in number (we
have conjectured that it is not the case, but this is an out of reach conjecture).
Nevertheless, some very large primes p may divide #R

θn
K , which indicates other

probabilities conjectured in [20, Théorème 1.1]. Thus, this analysis also confirms
that, for ℓ and p fixed, TK may be constant for all n large enough.

So, we have forced some programs to search only primes p ≡ 1 (mod ℓn) hoping
more examples of non-trivial TK .

2.5. Logarithmic class group. We may also consider another p-adic invariant,

the Jaulent’s logarithmic class group C̃K [39] which is linked to Greenberg’s con-
jecture [29] for totally real number fields K (i.e., λ = µ = 0 for the cyclotomic
Zp-extension of K), the result being that Greenberg’s conjecture holds if and

only C̃K capitulates in K(p∞) [40]. Of course Greenberg’s conjecture holds for
p = ℓ in Q(ℓ∞) for trivial reasons, but we have few information for the cyclotomic
Zp-extensions of K = Q(ℓn) for p 6= ℓ.

We have computed (for ℓn ∈ {26, 33, 53, 7, 11, 13, 17, 19, 23, 29}) the order of C̃Q(ℓn)

for all p ∈ [2, 2 ∗ 105] (from [3]), and we have no non-trivial example; this means
that the logarithmic class group behaves as the ordinary p-class group in Q(ℓ∞),
but not as the TK , as we have seen. So it is possible to state the conjecture that,

for all p, the logarithmic class groups C̃K are all trivial. This is not too surprising

since if CK = 1 and if p is totally inert in K, then C̃K = 1 for obvious reasons
(see [40, Schéma § 2.3] or [28, Diagram 4.2]); and this is almost the case in our
computations.

We refer to [41, Théorème 4] giving the property of annihilation of C̃K by means
of the Stickelberger pseudo measure and its image by the Spiegel involution that
we shall recall and use for the annihilation of TK .

3. Definition of p-adic measures

We recall the main classical principles and apply them in the particular case of
the fields Q(ℓn), ℓ ≥ 2 prime, n ≥ 1, with p ≥ 2 prime distinct from ℓ.

3.1. General definition of the Stickelberger elements. Let f > 1 be any
conductor and let Q(µf) be the corresponding cyclotomic field. We define (where
the integers a are prime to f and where Artin symbols are taken over Q):

SQ(µf ) := −
f∑
a=1

(
a

f
− 1

2

)
·
(
Q(µf)

a

)−1

.

The properties of annihilation need to multiply SQ(µf ) by an element of the an-

nihilator of µf , which contains f and the multipliers 1 − c ·
( Q(µf )

c

)−1
, for c odd

prime to f . This shall give integral elements in the group algebra.

Definition 3.1. Since
f − a

f
− 1

2
= −

( a
f
− 1

2

)
, SQ(µf ) = S ′

Q(µf )
· (1− s∞), where

s∞ :=
(Q(µf )

−1

)
is the complex conjugation and:

S
′
Q(µf )

:= −
f/2∑
a=1

(
a

f
− 1

2

)
·
(
Q(µf)

a

)−1

.
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Put q = p (resp. 4) if p 6= 2 (resp. p = 2). For any real abelian number field
K, let L = K(µq); we consider K(pm) := KQ(pm) then put L(pm) := K(pm)L =
K(µqpm) for all m ≥ 0; so K(p∞) = ∪mK(pm) is the cyclotomic Zp-extension of
K and L(p∞) = ∪mL(pm) the cyclotomic Zp-extension of L.

Note, once for all, that the indexm is relative to layers in cyclotomic Zp-extensions
contrary to the index n used for the cyclotomic Zℓ-extension, ℓ 6= p; indeed, in
the particular case K = Q(ℓn), K(pm) = Q(ℓn)Q(pm).

When K = Q(ℓn), all this is summarized by the following diagram where Gm :=
Gal(L(pm)/Q) ≃ Z/ℓnZ× Z/pmZ× Z/φ(q)Z, φ being the Euler function:

Gm

G

L(p∞)=K(p∞)LK(p∞)

K(pm)Q(pm) L(pm)=K(pm)L

L=K(µq)K=Q(ℓn)Q
ℓn

pm

φ(q)=p−1 or 2

3.2. Multipliers of Stickelberger elements. For K = Q(ℓn), put for short
Lm := L(pm) = KQ(pm); the conductor of Lm is fLm

= ℓn+1 · qpm for ℓ 6= 2 and
2n+2 · pm+1 for ℓ = 2. To simplify, put fmn := fLm

. Let c be an integer, prime to

fmn , and let S c
Lm

:=
(
1− c

(
Lm

c

)−1)
·SLm

. Then S c
Lm
∈ Z[Gm]; indeed, we have:

S
c
Lm

=
−1
fm
n

∑
a

[
a
(
Lm

a

)−1

− ac
(
Lm

a

)−1(Lm

c

)−1]
+

1− c

2

∑
a

(
Lm

a

)−1

;

let a′c ∈ [1, fmn ] be the unique integer such that a′c · c ≡ a (mod fmn ) and put
a′c ·c = a+λma (c)f

m
n , λma (c) ∈ Z; then, using the bijection a 7→ a′c in the summation

of the second term in [ ] and the fact that
(
Lm

a′c

)(
Lm

c

)
=

(
Lm

a

)
, this yields:

S
c
Lm

=
−1
fm
n

[∑
a
a
(
Lm

a

)−1

−
∑
a
a′c · c

(
Lm

a′c

)−1(Lm

c

)−1]
+

1− c

2

∑
a

(
Lm

a

)−1

=
−1
fm
n

∑
a

[
a− a′c · c

](
Lm

a

)−1

+
1− c

2

∑
a

(
Lm

a

)−1

=
∑
a

[
λma (c) +

1− c

2

](
Lm

a

)−1

∈ Z[Gm].

Lemma 3.2. We have the relations λmfmn −a(c) +
1−c
2

= −
(
λma (c) +

1−c
2

)
for all

a ∈ [1, fmn ] prime to fmn . Then:

S
′c
Lm

:=
fmn /2∑
a=1

[
λma (c) +

1− c

2

](
Lm

a

)−1

∈ Z[Gm] (1)

is such that S c
Lm

= S ′c
Lm
· (1− s∞).

Proof. By definition, the integer (fmn − a)′c is in [1, fmn ] and congruent modulo fmn
to (fmn − a) c−1 ≡ −ac−1 ≡ −a′c (mod fmn ); thus (fmn − a)′c = fmn − a′c and

λmfmn −a(c) =
(fm

n − a)′c c− (fm
n − a)

fm
n

=
(fm

n − a′c) c− (fm
n − a)

fm
n

= c− 1− λma (c),

whence λmfmn −a(c) +
1−c
2

= −
(
λma (c) +

1−c
2

)
and the result. �
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3.3. Spiegel involution. Let κm : Gm → (Z/qpmZ)× ≃ Gal(Q(µqpm)/Q) be the
cyclotomic character of level m, of kernel Gal(Lm/Q(µqpm)), defined by:

ζs = ζκm(s), for all s ∈ Gm and all ζ ∈ µqpm.

The Spiegel involution is the involution of (Z/qpmZ)[Gm] defined by:

x :=
∑
s∈Gm

as · s 7−→ x∗ :=
∑
s∈Gm

as · κm(s) · s−1.

Thus, if s is the Artin symbol
(
Lm

a

)
, then

(
Lm

a

)∗
≡ a ·

(
Lm

a

)−1

(mod qpm).

We shall use the case m = 0 for which we have the congruence κm(s) ≡ ω(s)
(mod q), where ω is the usual Teichmüller character ω : G0 = Gal(L/Q)→ Z×

p .

Thus, from Lemma 3.2, we have obtained S c ∗
Lm

= S ′c ∗
Lm
·(1+s∞) in (Z/qpmZ)[Gm].

4. Annihilation theorem of TK

Recall that Km := K(pm) and Lm := L(pm) = LK(pm). For the most precise
and straightforward method, the principle, which was given in the 60’s and 70’s,
is to consider the annihilation, by means of the above Stickelberger element, of
the kummer radical in L×

m defining the maximal sub-extension of Hpr
Km

whose
Galois group is of exponent pm, then to use the mirror involution giving a p-adic
measure annihilating, for m → ∞, the finite Galois group TK (see [17, 22] for
more history). The case p = 2 is particularly tricky; to overcome this difficulty,
we shall refer to [16, 30].

In fact, this process is equivalent to get elementarily an explicit formula of the
p-adic L-functions “at s = 1”, avoiding the ugly computation of Gauss sums and
p-adic logarithms of cyclotomic units [56, Theorem 5.18].

We have the following result with a detailed proof in [22, Theorems 5.3, 5.5]:

Proposition 4.1. For p ≥ 2, let pe be the exponent of TK for K = Q(ℓn). For
all m ≥ e, the (Z/qpmZ)[Gm]-module TK is annihilated by S ′c ∗

Lm
.

From the expression (1) of S ′c
Lm

, the image by the Spiegel involution yields:

S
′c ∗
Lm
≡

fmn /2∑
a=1

[
λma (c) +

1− c

2

]
a−1

(
Lm

a

)
(mod qpm),

defining a coherent family (S ′c ∗
Lm

)m ∈ lim←−
m≥e

(Z/qpmZ)[Gm] of annihilators of TK .

One obtains, by restriction of S ′c ∗
Lm

to K, a coherent family of annihilators of TK ,
in lim←−

m≥e

(Z/qpmZ)[Gal(K/Q)], whose p-adic limit:

A c
K := lim

m→∞

fmn /2∑
a=1

[
λma (c) +

1− c

2

]
a−1

(
K

a

)
∈ Zp[Gal(K/Q)]

is a canonical annihilator of TK .

Remark 4.2. Let α∗
Lm

:=
[ fmn∑
a=1

(
Lm

a

)−1]∗
≡

fmn∑
a=1

a−1
(
Lm

a

)
(mod qpm); then:

α∗
Lm

:=
fmn /2∑
a=1

a−1
(
Lm

a

)
+ (fmn − a)−1

(
Lm

fm
n − a

)
≡

fmn /2∑
a=1

a−1
(
Lm

a

)
(1− s∞) (mod fmn ),
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which annihilates TK and is such that, by restriction to K, α∗
Lm
7→ 0 (mod qpm)

since K is real. We shall neglect in A c
K the term 1−c

2
· α∗

Lm
and we still denote:

A
c
K = lim

m→∞

[ fmn /2∑
a=1

λma (c) a
−1
(
K

a

)]
.

Lemma 4.3. For K = Q(ℓn), ψn of order ℓn and conductor ℓn+1 (or 2n+2),

ψn(A
c
K) = (1− ψn(c)) · 12Lp(1, ψn).

Proof. This comes from the classical construction of p-adic L-functions (e.g., [17,
Propositions II.2, II.3, Définition II.3, II.4, Remarques II.3, II.4], [14, page 292],
[56, Chapters 5, 7]). For more details, see [22, § 7.1]. �

Proposition 4.4. Let K := Q(ℓn) of Galois group G ≃ Z/ℓnZ and conductor
ℓn+1 (or 2n+2), n ≥ 1. Then, for the p-adic character θn above a character ψn, of
order ℓn of K, the component T

θn
K is annihilated by (1− ψn(c)) · 12Lp(1, ψn).

Moreover, from the principal theorem of Ribet–Mazur–Wiles–Kolyvagin–Greither
on abelian fields, 1

2
Lp(1, ψn) gives its order.

Since in the practice, taking c = 2 in the programs, we obtain the annihilation
by (1 − ψn(2)) · 12Lp(1, ψn), where ψn(2) is a root of unity of order dividing ℓn,
(1 − ψn(2)) is in general invertible modulo p, except for ψ1(2) = 1 and ℓ = 1093,
3511, . . . In these cases, one must choose another c. If p = 2 an odd c must be
chosen.

Lemma 4.5. We have A c
K ≡

f0n/2∑
a=1

λ0a(c) a
−1
(
K

a

)
(mod p) [22, Corollary 7.3 (iii)],

where f 0
n = ℓn+1 · q for ℓ 6= 2 and 2n+2 · p for ℓ = 2.

Thus, we have obtained, putting f 0
n =: fn, a computable characterization of non-

triviality of TK :

Theorem 4.6. For p ≥ 2, ℓ 6= p, n ≥ 1 fixed, let K = Q(ℓn), L = K(µq), q = p
or 4. The conductor of L is fn := ℓn+1 q for ℓ 6= 2 (resp. 2n+2 p for ℓ = 2).
Let c be an integer prime to fn. For all a ∈ [1, fn], prime to fn, let a′c be the
unique integer in [1, fn] such that a′c · c ≡ a (mod fn) and put a′c · c−a = λa(c) fn,
λa(c) ∈ Z.

Let A c
K :=

fn/2∑
a=1

λa(c) a
−1
(
K

a

)
; let ψn be a character of K of order ℓn and let

θn be the p-adic character above ψn. If ψn(A
c
K) is not a p-adic unit, then the

θn-component of the Zp[G]-module TK is non-trivial.

4.1. Numerical test T ∗
Q(ℓn) 6= 1 for ℓ > 2, p > 2. We have, from § 2.4, by

induction, TQ(ℓn) = T ∗
Q(ℓn)

⊕
TQ(ℓn−1). For a character ψn of order ℓn of K, the

condition ψn(A
c
Q(ℓn)) ≡ 0 (mod pn), for some pn | p, is equivalent to the non-

triviality of T ∗
Q(ℓn), due to the p-adic character θn above ψn. We compute ψn(A

c
Q(ℓn))

(mod p) and test if the norm of this element is divisible by p; this characterize
the condition T ∗

Q(ℓn) 6= 1:

PROGRAM III. TEST OF #T*>1 WITH NORM COMPUTATIONS FOR el>2, p>2

{forprime(el=3,120,for(n=1,4,Q=polcyclo(el^n);

h=znprimroot(el^(n+1));H=lift(h);C=2;forprime(p=3,2000,if(p==el,next);

f=p*el^(n+1);cm=Mod(C,f)^-1;g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-1),p));H=H+e*el^(n+1);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+1)));G=G+e*p;g=Mod(G,f);
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S=0;hh=1;gg=1;ggm=1;for(u=1,el^n*(el-1)/2,hh=hh*h;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=Mod(S,Q);vp=valuation(norm(s),p);

if(vp>0,print("el=",el," n=",n," p=",p)))))}

el=3 n=1 p=7 el=5 n=2 p=1151 el=47 n=1 p=283

el=3 n=1 p=73 el=5 n=2 p=2251 el=67 n=1 p=269

el=3 n=3 p=109 el=5 n=3 p=2251 el=83 n=1 p=499

el=3 n=4 p=487 el=17 n=1 p=239 el=101 n=1 p=607

el=3 n=4 p=1621 el=23 n=1 p=47 el=107 n=1 p=857

el=5 n=1 p=11 el=29 n=1 p=59 el=109 n=1 p=50359

el=5 n=2 p=101 el=43 n=1 p=173

We find again the cases (ℓ = 3, p = 7), (ℓ = 3, p = 73), (ℓ = 5, p = 11) and
(ℓ = 5, n = 2, p = 101), of Table 2.3.

An interesting case is ℓ = 5 and n = 2, 3 giving TQ(52) ≃ Z/2251Z and T ∗
Q(53) ≃

Z/2251Z; which implies that TQ(53) contains Z/2251Z× Z/2251Z.

We have computed the structure of TQ(ℓn) for ℓ = 3, n = 3, p = 109, which is
much longer and needs an huge computer memory; we get as expected:

el=3 n=3 p=109 rk(T)=1 T=[109]

Whence, we can propose the following program, only considering primes p ≡ 1
(mod ℓn), so that p splits completely in Q(µℓn) which allows to characterize, once
for all, a prime pn | p by means of a congruence z ≡ r (mod pn), where z denotes in
the program a generator of µℓn and r a rational integer, then avoiding the previous
computation of N = norm(s) in Programs III-IV which takes too much time. We
then find supplementary examples, taking n = 1 for ℓ > 11:

PROGRAM IV. TEST OF #T*>1 MODULO (zeta-r) WHEN p=1 (mod el^n) FOR el>2, p>2

{forprime(el=3,250,for(n=1,6,Q=polcyclo(el^n);h=znprimroot(el^(n+1));

H=lift(h);C=2;forprime(p=3,5000,if(Mod(p,el^n)!=1,next);Qp=Mod(1,p)*Q;

m=(p-1)/el^n;r=znprimroot(p)^m;f=p*el^(n+1);cm=Mod(C,f)^-1;

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-1),p));H=H+e*el^(n+1);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+1)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n*(el-1)/2,hh=hh*h;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=lift(Mod(S,Qp));

R=1;for(k=1,el^n,R=R*r;if(Mod(k,el)==0,next);t=Mod(s,x-R);

if(t==0,print("el=",el," n=",n," p=",p))))))}

el=3 n=1 p=7 el=5 n=2 p=2251 el=47 n=1 p=283

el=3 n=1 p=73 el=5 n=2 p=6701 el=61 n=1 p=1709

el=3 n=3 p=109 el=5 n=3 p=2251 el=67 n=1 p=269

el=3 n=3 p=17713 el=5 n=3 p=27751 el=83 n=1 p=499

el=3 n=4 p=487 el=5 n=4 p=11251 el=101 n=1 p=607

el=3 n=4 p=1621 el=17 n=1 p=239 el=107 n=1 p=857

el=3 n=7 p=17497 el=23 n=1 p=47 el=137 n=1 p=1097

el=5 n=1 p=11 el=29 n=1 p=59 el=151 n=1 p=907

el=5 n=2 p=101 el=37 n=1 p=4441 el=191 n=1 p=383

el=5 n=2 p=1151 el=43 n=1 p=173

VARIANT FOR ANY NUMBER d OF p-PLACES USING THE FACTORIZATION OF Q mod p

d (a power of el) may be optionally specified (e.g. d=1,el,...):

{el=3;for(n=1,10,Q=polcyclo(el^n);h=znprimroot(el^(n+1));H=lift(h);C=2;

forprime(p=5,2*10^4,f=p*el^(n+1);cm=Mod(C,f)^-1;Qp=Mod(1,p)*Q;

F=factor(Q+O(p));R=lift(component(F,1));d=matsize(F)[1];
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g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-2),p));H=H+e*el^(n+2);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+2)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n*(el-1)/2,hh=hh*h;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=lift(Mod(S,Qp));

for(k=1,d,t=Mod(s,R[k]);if(t==0,print("el=",el," n=",n," p=",p)))))}

4.2. Numerical test TQ(ℓn) 6= 1 for ℓ > 2, p = 2. In the case p = 2, taking
c = 3, we have the exceptional prime ℓ = 11 for which 3 splits in Q(11), whence
1 − ψ1(c) = 0 giving a wrong solution with the following program. Moreover,
the character ψ1 cannot be of degree 1 in practice since 2 is inert in Q(ℓ) except
for the two known cases of non-trivial Fermat quotients of 2 modulo ℓ; so we are
obliged to test with the computation of a norm in Q(µℓ) but in the inert case, one
finds ψ1(A

c
K) ∈ 2 · Z[µℓ].

PROGRAM V. TEST OF #T>1 WITH NORM COMPUTATIONS FOR p=2, el>2

{p=2;q=4;n=1;C=3;forprime(el=5,10^4,Q=polcyclo(el^n);

h=znprimroot(el^(n+1));H=lift(h);f=q*el^(n+1);cm=Mod(C,f)^-1;

g=Mod(-1,q);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-1),q));H=H+e*el^(n+1);h=Mod(H,f);

e=lift(Mod((1-G)*q^-1,el^(n+1)));G=G+e*q;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n*(el-1)/2,hh=hh*h;

t=0;for(v=1,2,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=Mod(S,Q);

vp=valuation(norm(s),p);if(vp>0,print("el=",el," n=",n," p=",p)))}

As expected, the program writes:

el=11 n=1 p=2 el=1093 n=1 p=2 el=3511 n=1 p=2

For the case of ℓ = 1093, see complementary calculations in Remarks 5.2 (i).

4.3. Numerical test TQ(2n) 6= 1 for ℓ = 2, p > 2. We have only to modify
the conductor fn = p 2n+2 of L = K(µp) where K = Q(ℓn), then note that
we must choose another multiplier for the Stickelberger element and the gen-
erator h = Mod(5, el(n+2)) (for p = 3 one must take C = 5 giving the solution
el = 2 n = 3 p = 3); to obtain a half-system for a ∈ [1, fn] we can neglect the
subgroup generated by complex conjugation −1 in Gal(Q(µ2n+2 p)/Q):

PROGRAM VI. TEST OF #T>1 WITH NORM COMPUTATIONS FOR el=2, p>3

{el=2;for(n=1,8,Q=polcyclo(el^n);h=Mod(5,el^(n+2));H=lift(h);C=3;

forprime(p=5,2*10^4,f=p*el^(n+2);cm=Mod(C,f)^-1;

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-2),p));H=H+e*el^(n+2);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+2)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n,hh=hh*h;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=Mod(S,Q);

vp=valuation(norm(s),p);if(vp>0,print("el=",el," n=",n," p=",p))))}

el=2 n=1 p=13 el=2 n=2 p=29 el=2 n=5 p=3617 el=2 n=7 p=257

el=2 n=1 p=31 el=2 n=2 p=37 el=2 n=5 p=4513 el=2 n=7 p=641

el=2 n=2 p=13 el=2 n=3 p=521 el=2 n=6 p=193

Since we use characters ψn of order 2n, the program finds the relative p-group at
each new layer. For instance the results el = 2 n = 1 p = 13, el = 2 n = 2 p = 13

correspond to the following cases of Table 2.3:

el=2 n=1 p=13 rk(T)=1 T=[13] el=2 n=2 p=13 rk(T)=2 T=[169,13]
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As for ℓ > 2, we have a faster program using only primes p ≡ 1 (mod 2n), which
gives new solutions (e.g., ℓn = 210, p = 114689):

PROGRAM VII. TEST OF #T*>1 MODULO (zeta-r) WHEN p=1 (mod el^n) FOR el=2, p>3

el=2 n=3 p=3 el=2 n=5 p=3617 el=2 n=5 p=4513

el=2 n=8 p=18433 el=2 n=10 p=114689

VARIANT FOR ANY NUMBER d OF p-PLACES USING THE FACTORIZATION OF Q (mod p)

d (a power of 2) may be optionally specified (e.g. d=1,2):

{el=2;for(n=1,12,Q=polcyclo(el^n);h=Mod(5,el^(n+2));H=lift(h);C=3;

forprime(p=5,2*10^4,f=p*el^(n+2);cm=Mod(C,f)^-1;Qp=Mod(1,p)*Q;

F=factor(Q+O(p));R=lift(component(F,1));d=matsize(F)[1];

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-2),p));H=H+e*el^(n+2);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+2)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n,hh=hh*h;

T=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

T=T+(A*C-a)/f*ggm);S=S+lift(T)*x^u);s=lift(Mod(S,Qp));

for(k=1,d,t=Mod(s,R[k]);if(t==0,print("el=",el," n=",n," p=",p)))))}

Same results as above. No examples with d>1.

4.4. Test on the normalized p-adic regulator. A sufficient condition to get
the divisibility of #CK by p, when we have obtained TK 6= 1, is to establish that
the normalized p-adic regulator RK is a p-adic unit; if it is not the case, this
only gives that very probably #CK = 1. Since with PARI/GP the computation of
units implies that of the class number (because of K = bnfinit(P, 1)), there is no
interest to test the p-divisibility of the regulator instead of looking at K.no (the
class number), except to verify that the computation of TK (with Programs I, II
2.3 computing suitable ray-class groups) is exact.

The following programs compute (for ℓ > 2, n = 1, then ℓ = 2, n ≥ 1 and p given)
the p-rank of the matrix M obtained by approximation (modulo p) of the p-adic
expressions 1

p
logp(εi), written on the Q-base {1, x, . . . , xℓn−1} of K, for a system

of fundamental units εi given by PARI/GP; then RK is a p-adic unit if and only
if rank(M) = ℓn − 1:

PROGRAM VIII. TEST ON THE REGULATOR R FOR el>2, n=1

{el=17;p=239;dr=el;if(Mod(p^(el-1),el^2)==1,dr=1);P=polsubcyclo(el^2,el);

Pp=P*Mod(1,p^2);K=bnfinit(P,1);E=K.fu;L=List;for(k=1,el-1,e=E[k];nu=norm(e);

e0=Mod(lift(e),Pp);e=e0;for(u=1,dr-1,e=e0*e^p);le=lift(e-nu);LogE=0;

for(i=0,el-1,c=lift(polcoeff(le,i))/p;LogE=LogE+c*x^i);listinsert(L,LogE,1));

M=matrix(el-1,el,i,j,Mod(polcoeff(L[i],j),p));R=matrank(M);

print("el=",el," p=",p," rk(M)=",R);if(R<el-1,print("R_K non-trivial"))}

el=3 p=7 rk(M)=1 R_K non-trivial el=17 p=239 rk(M)=15 R_K non-trivial

el=3 p=73 rk(M)=1 R_K non-trivial el=23 p=47 rk(M)=21 R_K non-trivial

el=5 p=11 rk(M)=2 R_K non-trivial el=29 p=59 rk(M)=27 R_K non-trivial

PROGRAM IX. TEST ON THE REGULATOR R FOR el=2, n>=1

{el=2;n=3;p=521;dr=el^n;P=x;for(j=1,n,P=P^2-2);

Pp=P*Mod(1,p^2);K=bnfinit(P,1);E=K.fu;L=List;for(k=1,2^n-1,e0=E[k];

e=Mod(lift(e0),Pp);for(u=1,dr,e=e^p);le=lift(e*e0^-1-1);LogE=0;

for(i=0,el^n-1,c=lift(polcoeff(le,i))/p;LogE=LogE+c*x^i);listinsert(L,LogE,1));

M=matrix(el^n-1,el^n,i,j,Mod(polcoeff(L[i],j),p));R=matrank(M);

print("el^n=",el^n," p=",p," rk(M)=",R);if(R<el^n-1,print("R_K non-trivial"))}

el^n=2 p=13 rk(M)=0 R_K non-trivial el^n=4 p=29 rk(M)=2 R_K non-trivial

el^n=2 p=31 rk(M)=0 R_K non-trivial el^n=4 p=37 rk(M)=2 R_K non-trivial

el^n=4 p=13 rk(M)=1 R_K non-trivial el^n=8 p=521 rk(M)=6 R_K non-trivial

In each case, one verifies that K.no = 1 (trivial class group).
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4.5. Conjecture about the p-torsion groups T . The annihilation Theorem
4.6 allows us to test the non-triviality of TK , for the fields K := Q(ℓn), when
direct computation of the structure of this group is out of reach, giving possible
non-trivial class groups, because of the identity:

#TK = #CK · #RK · #WK

(see Lemma 2.1, Remark 2.2 (i), about WK , in general trivial). More precisely,
all computations or experiments depend on the relative components T ∗

K whose
orders are given by 1

2
Lp(1, ψn), for ψn of order ℓn and conductor ℓn+1 (or 2n+2).

Indeed, we do not see why #CK should be always trivial for an“algebraic reason”,
even if it is known that RK may be, a priori, non-trivial whatever the order of
magnitude of p. Moreover, an observation made in other contexts shows that,
when #C ∗

K · #R∗
K is non-trivial, the probability of #R∗

K 6= 1 is, roughly, p times
that of #C ∗

K 6= 1. Moreover, the Cohen–Lenstra–Martinet heuristics (see [4, 43, 44]
for large developments of this aspect) give low probabilities for non-trivial p-class
groups, even in the case of residue degree 1 of p in Q(µℓn)/Q.

As for the question of p-rationality of number fields, when K is fixed, the number
of p such that #T ∗

K ≡ 0 (mod p) may be finite as we have conjectured; whence the
rarity of these cases. Nevertheless, we propose the following conjecture claiming
the infiniteness of non-trivial relative groups T ∗

Q(ℓn) when all parameters vary.

Conjecture 4.7. There exist infinitely many triples (ℓ, n, p), with ℓ, p primes,
ℓ 6= p, n ≥ 1, such that 1

2
Lp(1, ψn) ≡ 0 (mod pn), for some pn | p in Q(µℓn),

where ψn is a character of K of order ℓn (whence T ∗
Q(ℓn) 6= 1).

We have seen that, in general, the solutions p are of the form p = 1+ λ ℓn giving,
possibly, a class group of K roughly of order O(ℓn), which is very reasonable
since the discriminant of K is such that

√
DK = ℓN , where N = O(n ℓn), whence√

DK = (ℓn)O(ℓn), whereas the class number fulfills the following general property
#CK ≤ cℓn,ǫ ·

√
DK

1+ǫ
[1] and (conjecturally) the ǫ-conjecture #CK ≤ c′ℓn,ǫ ·

√
DK

ǫ
.

Finally, if we assume that the p-class group CK and the regulator RK are random
and independent, the Weber class number conjecture is possibly false for some
ℓ0, n0, p0, ℓ = 2 being not specific. But one may easily conjecture that the
counterexamples (if any) are of zero density.

5. Reflection theorem

The reflection theorem can be used to compare directly the p-class group CK of
K = Q(ℓn) with a suitable component of the p-torsion group TL of L := K(µp);
these equalities of p-ranks show that, roughly speaking, all these invariants have
analogous p-adic properties. But, as p increases, the computations take place in
a too large field to get significant examples (if any).

Denote by rkp(A) the Fp-dimension of A/Ap for an abelian group A of finite type.

5.1. Case p = 2 for class groups and 2-torsion groups. Consider, once for
all, the case p = 2 with ℓ > 2. The reflection theorem works in K, with the trivial
character; applied with the set SK,2 of prime ideals of K above 2, it is given by

[15, Proposition III.4.2.2, § II.5.4.9.2], where m∗ = (4) and where C
(4)
K denotes a

ray class group modulo (4):
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Theorem 5.1. We have, in K = Q(ℓn), for any ℓ > 2, n ≥ 1 and p = 2:

rk2(T
ord
K ) = rk2

[
C

res
K /cℓresK (SK,2)

]
+ #SK,2 − 1, (2)

rk2(T
ord
K ) = rk2

[
C

ord
K /cℓordK (SK,2)

]
+ #SK,2 − 1, (3)

rk2(C
(4) ord
K ) = rk2(C

res
K ), (4)

rk2(C
(4) res
K ) = rk2(C

ord
K ) + ℓn. (5)

Thus, T ord
K = 1 (i.e., C ord

K = Rord
K = W ord

K = 1) if and only if 2 is inert in K/Q

and C ord
K = 1 (or 2 is inert and C res

K = 1, or 2 is inert and C
(4)ord
K = 1).

Proof. If T ord
K = 1, then #SK,2 = 1 and 2 is inert in K/Q; since in that case

WK = 1 and since Hord
K ∩K(2∞) = K, we get C ord

K = Rord
K = 1 (in other words,

the ordinary 2-class group of K is odd and the normalized regulator is trivial,

which can be written E1
K = U1∗

K := {u ∈ U1
K , NK/Q(u) = ±1}). The reciprocal is

obvious. Whence the other claims. �

Remarks 5.2. Let K = Q(ℓn), for any ℓ > 2 and n ≥ 1.

(i) If p = 2 is inert in K, rk2(T
ord
K ) = rk2(C

res
K ) = rk2(C

ord
K ) (from (2), (3)).

This does not apply for ℓ = 1093, 3511 and (unknown) primes ℓ such that
the Fermat quotient of 2 modulo ℓ is non-trivial. For ℓ = 1093 and from:

rk2(T
ord
K ) = rk2(C

res
K /cℓresK (SK,2))+1092 = rk2(C

ord
K /cℓordK (SK,2))+1092,

we have verified that the norm of (1 − ψ1(3)) · 12Lp(1, ψ1) is exactly 21092;

this means that 2 annihilates T ord
K , whence that C

SK,2 res
K = C

SK,2 ord
K = 1

and that T ord
K ≃ (Z/2Z)1092. This only proves that CK is generated by the

classes of the 1093 prime ideals above 2 in K.

(ii) We have used, in reflection theorems, the relation T res
K ≃ T ord

K

⊕
Fℓ

n

2 [15,
Theorem III.4.1.5], valid under Leopoldt’s conjecture for p = 2.

5.2. Case p 6= 2 for class groups and p-torsion groups. The application of
the reflection theorem needs to consider L = KQ(µp) for K = Q(ℓn) with the
group Gal(L/K).

Let ωp =: ω be the Teichmüller character defined by ζs = ζω(s) for all ζ ∈ µp and
all s ∈ Gal(L/K); then any Qp-irreducible character χ of Gal(L/K) is of degree
1 of the form ωk, 1 ≤ k ≤ p − 1. We denote by rkχ(A) the Fp-dimension of the
χ-component of A/Ap; whence rk1(A) = rkp(A).

Let SK,p and SL,p be the sets of p-places in K and L, respectively. Since p is
totally ramified in L/K one has #SL,p = #SK,p. In Q(ℓ∞) this number is given by
ℓgp, where pℓ−1 = 1 + λ ℓgp+1, ℓ ∤ λ, in the case ℓ 6= 2, then ±p = 1 + λ 2gp+2, λ
odd for ℓ = 2 (see § 2.4), whence #SK,p if n < gp.

Let cℓK(SK,p) ⊆ CK and cℓL(SL,p) ⊆ CL generated by the classes of the prime
ideals dividing p in K and L, respectively; we have cℓL(SL,p) ≃ cℓK(SK,p).

Theorem 5.3. Let p > 2 be a prime distinct from ℓ. Consider, for n ≥ 1, the
layer K := Q(ℓn) and put L := K(µp). We have the following equalities:

rkp(TK) = rkω(CL) (6)

rkp
[
CK/cℓK(SK,p)

]
= rkω(TL) + 1− #SK,p (7)

rkp(CK) = rkω(C
P∗

L ) + 1− ℓn (8)

rkp
[
NL/K(C

P∗

L )
]
= rkω(CL) + 1 (9)
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where P∗ =
(∏

P|pP
)p

= (p) · (1 − ζp) in L, and C
P∗

L is the ray class group of
modulus P∗.

Proof. It suffices to consider the general formula of [15, § II.5.4.2 and Theorem
II.5.4.5] in L/K, with the character χ = ω, hence χ∗ = 1 giving p-ranks. The
formulas are obtained, varying the parameters of ramification or splitting and
exchanging the characters χ and χ∗. �

The computation of the ω-component T ω
L of TL is not easy from the direct com-

putation of TL, except for p = 3 since, in this case TL ≃ TK ⊕ T ω
L ; thus this

reduces to the computation of the 3-ranks of TL and TK . The following program
illustrates the formula (7) of the theorem and computes:

rkω(TL) + 1− #SK,3 = rk3(TL)− rk3(TK)− #SK,3;

note that 3 splits in Q(ℓ) if and only if 3ℓ−1 ≡ 1 (mod ℓ2) (the only known primes
are ℓ = 11 and ℓ = 1006003); whence a particular line for ℓ = 11 and in general
3 is inert and cℓK(SK,3) = 1 which yields rk3(CK) = rkω(TL). Of course, the
program does not consider the cases where TL = 1 (LL = List([ ])); but we have
no counterexamples (Delta = 0 for ℓ = 11 means rkω(TL) = 0):

PROGRAM X. OMEGA COMPONENT OF T_L FOR p=3

{p=3;forprime(el=2,100,P=polsubcyclo(el^2,el);N=2;if(el==2,P=x^2-2;N=3);

Q=polcompositum(P,x^2+x+1)[1];L=bnfinit(Q,1);LN=bnrinit(L,p^N);

HpNL=LN.cyc;LL=List;e=matsize(HpNL)[2];R=0;for(k=1,e-(el+1),c=HpNL[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(LL,p^w,1)));RL=R+el+1;

print("el=",el," LL=",LL);if(R>0,K=bnfinit(P,1);KpN=bnrinit(K,p^N);

HpN=KpN.cyc;LK=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(LK,p^w,1)));RK=R+1;

S=1;if(Mod(p^(el-1)-1,el^2)==0,S=el);Delta=1-S+RL-RK-el;

print("el=",el," Delta=",Delta," LK=",LK," LL=",LL)))}

el=2 LL=[] el=3 LL=[] el=5 LL=[] el=7 LL=[]

el=11 LL=[3,3,3,3,3,3,3,3,3,3] Delta=0 LK=[]

el=13 LL=[] el=17 LL=[]

Unfortunately, for p > 3, the computations in L = K(µp) of any TL, for an
imaginary field needs the determination (with PARI/GP) of bnfinit(Q, 1) for a
field of degree ℓn (p − 1) (conductor ℓn+1 p for ℓ 6= 2, 2n+2 p for ℓ = 2). Which
gives a serious limitation of the parameters ℓ, n, p.

5.3. Illustration of formula (8) of Theorem 5.3. We can compute, for p 6= 2,
the structure of the whole group:

C
P∗

L =
p−1⊕
i=1

C
P∗, ωi

L .

The parameter #zp gives the number ℓn (p−1)/2+1 of Zp-extensions of L, but the
cyclotomic extension of Q does not intervene because its conductor is p2 larger
that P∗; thus, #zp− 1− rk(Hp), where Hp is the ray class group, measures the
p-rank of the torsion part (e.g., ℓ = 2, p = 11, 13, 19).

But the character of this torsion part is unknown; for each odd ω2i+1, i =
0, . . . , p−1

2
− 1, the p-rank of the ω2i+1-part of the composite of the Zp-extensions

is ℓn, whence the formula (8) for ω. This suggests that these ω2i+1-ranks may be
nontrivial for any i since these odd characters play, a priori, the same role (except
that ω is “not any character” in many circumstances).
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PROGRAM XI. ILLUSTRATION OF FORMULA (8) FOR el=2

{el=2;for(n=1,3,print("el=",el," n=",n);P=x;for(j=1,n,P=P^2-2);

forprime(p=3,23,Q=polcompositum(P,polcyclo(p))[1];L=bnfinit(Q,1);

r=el^n*(p-1)/2+1;A=idealfactor(L,p);d=matsize(A)[1];a=1;

for(k=1,d,a=idealmul(L,a,component(A,1)[k]));ap=idealpow(L,a,p);

Lp=bnrinit(L,ap);Hp=Lp.cyc;LT=List;e=matsize(Hp)[2];

R=0;for(k=1,e,c=Hp[e-k+1];w=valuation(c,p);if(w>0,R=R+1;

listinsert(LT,p^w,1)));print("p=",p," rk(Hp)=",R," #zp=",r," Hp=",LT)))}

el=2 n=1

p=3 rk(Hp)=2 #zp=3 Hp=[3,3]

p=5 rk(Hp)=4 #zp=5 Hp=[5,5,5,5]

p=7 rk(Hp)=6 #zp=7 Hp=[7,7,7,7,7,7]

p=11 rk(Hp)=11 #zp=11 Hp=[121,11,11,11,11,11,11,11,11,11,11]

p=13 rk(Hp)=13 #zp=13 Hp=[169,13,13,13,13,13,13,13,13,13,13,13,13]

p=17 rk(Hp)=16 #zp=17 Hp=[17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17]

p=19 rk(Hp)=19 #zp=19 Hp=[361,19,19,19,19,19,19,19,19,19,19,19,19,19,19,

19,19,19,19]

p=23 rk(Hp)=22 #zp=23 Hp=[23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,

23,23,23,23,23,23,23]

el=2 n=2

p=3 rk(Hp)=4 #zp=5 Hp=[3,3,3,3]

p=5 rk(Hp)=9 #zp=9 Hp=[25,5,5,5,5,5,5,5,5]

p=7 rk(Hp)=12 #zp=13 Hp=[7,7,7,7,7,7,7,7,7,7,7,7]

p=11 rk(Hp)=21 #zp=21 Hp=[121,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,

11,11,11,11,11]

p=13 rk(Hp)=26 #zp=25 Hp=[169,169,13,13,13,13,13,13,13,13,13,13,13,13,13,13,

13,13,13,13,13,13,13,13,13,13]

PROGRAM XII. ILLUSTRATION OF FORMULA (8) FOR el>2

{el=3;for(n=1,2,print("el=",el," n=",n);P=polsubcyclo(el^(n+1),el^n);

forprime(p=5,19,Q=polcompositum(P,polcyclo(p))[1];L=bnfinit(Q,1);

r=el^n*(p-1)/2+1;A=idealfactor(L,p);d=matsize(A)[1];a=1;

for(k=1,d,a=idealmul(L,a,component(A,1)[k]));ap=idealpow(L,a,p);

Lp=bnrinit(L,ap);Hp=Lp.cyc;LT=List;e=matsize(Hp)[2];

R=0;for(k=1,e,c=Hp[e-k+1];w=valuation(c,p);if(w>0,R=R+1;

listinsert(LT,p^w,1)));print("p=",p," rk(Hp)=",R," #zp=",r," Hp=",LT)))}

el=3 n=1

p=5 rk(Hp)=6 #zp=7 Hp=[5,5,5,5,5,5]

p=7 rk(Hp)=10 #zp=10 Hp=[49,7,7,7,7,7,7,7,7,7]

p=11 rk(Hp)=15 #zp=16 Hp=[11,11,11,11,11,11,11,11,11,11,11,11,11,11,11]

p=13 rk(Hp)=18 #zp=19 Hp=[13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,

13,13,13]

p=17 rk(Hp)=24 #zp=25 Hp=[17,17,17,17,17,17,17,17,17,17,17,17,

17,17,17,17,17,17,17,17,17,17,17,17]

p=19 rk(Hp)=27 #zp=28 Hp=[19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,

19,19,19,19,19,19,19,19,19,19,19,19]

el=3 n=2

p=5 rk(Hp)=18 #zp=19 Hp=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]

p=7 rk(Hp)=28 #zp=28 Hp=[49,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

7,7,7,7,7,7]

el=3 n=1

p=5 rk(Hp)=6 #zp=7 Hp=[5,5,5,5,5,5]

p=7 rk(Hp)=10 #zp=10 Hp=[49,7,7,7,7,7,7,7,7,7]

p=11 rk(Hp)=15 #zp=16 Hp=[11,11,11,11,11,11,11,11,11,11,11,11,11,11,11]

p=13 rk(Hp)=18 #zp=19 Hp=[13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,

13,13,13]
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5.4. Probabilistic analysis from the reflection theorem. Consider the re-
flection theorem in the following form [15, II.5.4.9.2, formula (4)]:

Proposition 5.4. For K = Q(ℓn), ℓ ≥ 2, n ≥ 1, and L = K(µp), p > 2, we have
rkp(CK) = rkp(Y

ω
L,prim), where Y

ω
L,prim ⊆ Y ω

L :=
(
{α ∈ L×, (α) = Ap}·L×p/L×p

)ω
is the ω-component of the subset of YL of p-primary elements α (i.e., such that
L( p
√
α)/L is unramified and decomposed over K into a cyclic subfield of Hnr

K ).
Thus rkp(CK) = rkp(C

ω
L ) or rkp(C

ω
L )− 1.

Proof. We have, from the general formula (loc. cit.):

rkp(CK) = rkp(C
ω
L ) + 1− rkp(Y

ω
L ) + rkp(Y

ω
L,prim).

Put Y ω
L = {α1, . . . , αr}∪{ζp}modulo L×p, the αi being non-units and independent

modulo L×p, and where r is the p-rank of C ω
L . Since ζp is not p-primary, one gets

rkp(CK) = rkp(Y
ω
L,prim) = rkp(〈α1, . . . , αr〉prim). Due to the p-adic action of ω on

the αi, it is immediate to deduce the last claim. �

The condition rkp(CK) ≥ 1 is then equivalent to the existence of a p-primary
α ∈ Y ω

L such that (α) = Ap, with a non-principal A. The Program IV gives cases
where necessarily rkp(CL) = r ≥ 1 (probably r = 1, otherwise we should have
rkp(CK) = r or r − 1 6= 0); one computes easily that the probability to have α
p-primary is (in a standard point of view) 1

p
.

The computation of the class group of L is out of reach and we have only been
able to compute CL for ℓn = 3 with p = 7 giving CL ≃ Z/7Z; we do not know α
so that we cannot verify that it is not 7-primary (which is indeed the case since
we know, from § 4.4, that the regulator of K is not a 7-adic unit).

6. Generalizations and open problems

A natural generalization of the previous study is to consider the composite of N
fields Q(ℓni

i ), ni ≥ 1, ℓi distinct prime numbers, and to fix a prime p (see [47] for
analytic results of non-divisibility). Such a composite can be written:

Q(L N ) , L = {ℓ1, . . . , ℓN}, N = {n1, . . . , nN}, (10)

with an obvious meaning; this field has by nature a cyclic Galois group and lives in

the cyclotomic Ẑ-extension Q̂ of Q, composite of all the Zℓ-extension Q(ℓ∞). The

pro-cyclic extension Q̂ is the direct composite over Q of Q(p∞) and the composite

Q̂∗ of all the Q(ℓ∞), for ℓ 6= p.

Two cases then arise: the question of the p-class groups of Q(L N ) when p /∈ L

and the opposite case that we shall write as composite Q(L N ) ·Q(pm), m ≥ 1.

In the first case, we are in the strict generalization of classical conjectures related
to Weber’s problem and we may think that the result is analogous.

In the second one the problem is in some sense related to Greenberg’s conjecture
[29] for which one very strongly admits that, for n fixed, #CQ(ℓn)Q(pm) is constant
for all m ≫ 0 (i.e., the invariants λ, µ of Q(ℓn) for the prime p are zero); see for
instance [9, 28, 40] for some developments.

6.1. Decomposition groups in Q̂/Q. Let p be a fixed prime number. It is clear

that p is totally ramified in Q̂/Q̂∗; thus the Frobenius of p in Q̂∗/Q fixes a field
Dp such that p totally splits in Dp/Q. An out of reach question is the finiteness
(or not) of this extension Dp which is necessarily of the form Q(L N ). Since the
number ℓgp of prime ideals above p in a single Zℓ-extension Q(ℓ∞) is finite and
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given by pℓ−1 =: 1+ λ ℓ1+gp for ℓ 6= 2, p =: ±1 + λ 22+gp for ℓ = 2, λ 6≡ 0 (mod ℓ),
the integers n ∈ N are finite numbers but not necessarily the set L .

For example, if p = 2, the only known primes ℓ such that 2 splits in part in Q(ℓ∞)

are 1093 and 3511; so if there is no other case, the decomposition field of 2 in Q̂/Q
should be D2 = Q(1093)Q(3511). Of course, if p varies for ℓ fixed, the integers
gp are unbounded (e.g., p = 1 + λ ℓ1+r, with arbitrary r ≫ 0).

6.2. The p-torsion group of Q(L N ). Since there exist many fields Q(ℓn) with
non-trivial groups TQ(ℓn), these p-torsion groups remain subgroups of TK for the
composite K = Q(L N ) and give larger groups. We give some computations
of the structure of TK for composite fields K = Q(q1)Q(q2), for which one gets
always CK = 1; then we give the case of the sole computation of T ∗

K . The general
programs are the following, with suitable polynomials of definition; after each
program the reader may verify the result (for not to large degrees), using the
basic PROGRAMS I, II, § 2.3.
PROGRAM XIII. COMPUTATION OF T IN COMPOSITE FIELDS F - SOME EXAMPLES

{P1=polsubcyclo(3^2,3);P2=polsubcyclo(5^2,5);P=polcompositum(P1,P2)[1];

K=bnfinit(P,1);print("h=",K.no);N=8;forprime(p=2,1000,KpN=bnrinit(K,p^N);

HpN=KpN.cyc;L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("p=",p," rk(T)=",R," T=",L)))}

{P1=x^2-2;P2=polsubcyclo(7^2,7);P=polcompositum(P1,P2)[1];K=bnfinit(P,1);

print("h=",K.no);N=8;forprime(p=2,1000,KpN=bnrinit(K,p^N);HpN=KpN.cyc;

L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("p=",p," rk(T)=",R," T=",L)))}

F=Q(2)Q(7) C=1

p=13 rk(T)=1 T=[13] p=113 rk(T)=1 T=[113]

p=31 rk(T)=1 T=[31]

F=Q(2)Q(3) C=1

p=7 rk(T)=2 T=[7,7] p=43 rk(T)=1 T=[43]

p=13 rk(T)=2 T=[13,13] p=73 rk(T)=1 T=[73]

p=31 rk(T)=1 T=[31]

F=Q(2)Q(3)Q(5) C=1

p=7 rk(T)=2 T=[7,7] p=31 rk(T)=3 T=[31,31,31]

p=11 rk(T)=2 T=[11,11] p=43 rk(T)=1 T=[43]

p=13 rk(T)=2 T=[13,13] p=73 rk(T)=1 T=[73]

F=Q(2)Q(3)Q(7) C=1

p=7 rk(T)=4 T=[49,49,7,7] p=13 rk(T)=2 T=[13,13]

F=Q(3)Q(7) C=1

p=7 rk(T)=2 T=[49,7]

F=Q(2)Q(3) C=1

p=3 rk(T)=2 T=[9,9] p=31 rk(T)=1 T=[31]

p=7 rk(T)=2 T=[7,7] p=37 rk(T)=1 T=[37]

p=13 rk(T)=4 T=[169,169,13,13] p=43 rk(T)=1 T=[43]

p=29 rk(T)=1 T=[29] p=73 rk(T)=1 T=[73]

F=Q(3)Q(5) C=1

p=7 rk(T)=1 T=[7] p=31 rk(T)=2 T=[31,31]

p=11 rk(T)=2 T=[11,11] p=73 rk(T)=1 T=[73]
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Remark 6.1. The composite F of K = Q(2)Q(3) with Q(7) for p = 7 has
some interest since TK ≃ (Z/7Z)2 (from the second example above); so we know

that T
Gal(F/K)
F ≃ TK , but with TF ≃ (Z/7Z)2 × (Z/72Z)2, showing that for p-

ramification aspects, genus theory gives often increasing p-torsion groups contrary
to p-class groups as we shall see in the next Subsection.

Since NF/K(TF ) = TK, we have T ∗
F ≃ (Z/72Z)2. The groups TK and TF ,

annihilated by NF/Q(2)Q(7), are modules over Z[µ3] in which p = 7 is inert; whence
the residue degree 2 and the structures obtained.

TEST OF #T*>1 FOR ANY NUMBER d OF p-PLACES USING THE FACTORIZATION OF Q mod p

{q1=3;q2=19;h1=znprimroot(q1^2);H1=lift(h1);h2=znprimroot(q2^2);H2=lift(h2);

Q=polcyclo(q1*q2);forprime(p=3,2*10^5,if(p==q1 || p==q2,next);f=p*q1^2*q2^2;

Cc=2;while(gcd(Cc,f)!=1,Cc=Cc+1);C=Cc;cm=Mod(C,f)^-1;Qp=Q*Mod(1,p);

F=factor(Q+O(p));R=lift(component(F,1));d=matsize(F)[1];

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H1)*q1^-2,p*q2^2));H1=H1+e*q1^2;h1=Mod(H1,f);

e=lift(Mod((1-H2)*q2^-2,p*q1^2));H2=H2+e*q2^2;h2=Mod(H2,f);

e=lift(Mod((1-G)*p^-1,q1^2*q2^2));G=G+e*p;g=Mod(G,f);

S=0;hh1=1;hh2=1;gg=1;ggm=1;

for(u1=1,q1*(q1-1),hh1=hh1*h1;for(u2=1,q2*(q2-1),hh2=hh2*h2;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*hh2*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*q2+u2*q1,q1*q2));

S=S+lift(t)*x^e));s=lift(Mod(S,Qp));

for(k=1,d,t=Mod(s,R[k]);if(t==0,print("q1=",q1," q2=",q2," p=",p))))}

{q1=3;q2=5;p=1291;P1=polsubcyclo(q1^2,q1);P2=polsubcyclo(q2^2,q2);

P=polcompositum(P1,P2)[1];K=bnfinit(P,1);KpN=bnrinit(K,p^2);

HpN=KpN.cyc;L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("h=",K.no," q1=",q1," q2=",q2," p=",p," rk(T)=",R," T=",L))}

q1=3 q2=5 p=31 h=1 rk(T*)=2 T*=[31,31]

q1=3 q2=5 p=241 h=1 rk(T*)=1 T*=[241]

q1=3 q2=5 p=1291 h=1 rk(T*)=1 T*=[1291]

q1=3 q2=11 p=397 h=1 rk(T*)=1 T*=[241]

q1=3 q2=11 p=397 h=1 rk(T*)=1 T*=[397]

q1=3 q2=13 p=157

q1=7 q2=17 p=953

{q1=2;q2=3;h1=Mod(5,8);H1=lift(h1);h2=znprimroot(q2^2);H2=lift(h2);

Q=polcyclo(q1*q2);forprime(p=7,2*10^5,if(p==q1 || p==q2,next);f=p*q1^3*q2^2;

Cc=2;while(gcd(Cc,f)!=1,Cc=Cc+1);C=Cc;cm=Mod(C,f)^-1;Qp=Q*Mod(1,p);

F=factor(Q+O(p));R=lift(component(F,1));d=matsize(F)[1];

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H1)*q1^-3,p*q2^2));H1=H1+e*q1^3;h1=Mod(H1,f);

e=lift(Mod((1-H2)*q2^-2,p*q1^3));H2=H2+e*q2^2;h2=Mod(H2,f);

e=lift(Mod((1-G)*p^-1,q1^3*q2^2));G=G+e*p;g=Mod(G,f);

S=0;hh1=1;hh2=1;gg=1;ggm=1;

for(u1=1,q1,hh1=hh1*h1;for(u2=1,q2*(q2-1),hh2=hh2*h2;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*hh2*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*q2+u2*q1,q1*q2));

S=S+lift(t)*x^e));s=lift(Mod(S,Qp));

for(k=1,d,t=Mod(s,R[k]);if(t==0,print("q1=",q1," q2=",q2," p=",p))))}

{q1=2;q2=11;p=2729;P1=x^2-2;P2=polsubcyclo(q2^2,q2);

P=polcompositum(P1,P2)[1];K=bnfinit(P,1);

KpN=bnrinit(K,p^3);HpN=KpN.cyc;

L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("h=",K.no," q1=",q1," q2=",q2," p=",p," rk(T)=",R," T=",L))}
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q1=2 q2=3 p=7 h=1 rk(T*)=2 T*=[7, 7] q1=2 q2=11 p=397

q1=2 q2=3 p=13 h=1 rk(T*)=2 T*=[13,13] q1=2 q2=11 p=2729

q1=2 q2=3 p=43 h=1 rk(T*)=1 T*=[43] q1=2 q2=11 p=5479

q1=2 q2=7 p=113 h=1 rk(T*)=1 T*=[113] q1=2 q2=19 p=2357

6.3. The p-class group of Q(L N )Q(pm). In this part, the set L can contain
p (subject to having m large enough); but, in practice, we shall only consider the
case p /∈ L and m = 1.

6.3.1. Use of genus theory. The analog of Weber’s problem in Q̂ is very doubtful
in that case because of the Chevalley formula (or genus theory in the cyclic case)

in the extension F/K with K := Q(L N ) fixed in Q̂ and F := KQ(pm), in which
p is totally ramified (m ≥ m0 + 1 if K ∩Q(p∞) = Q(pm0)):

#(Cres
F )Gal(F/K) = #Cres

K ·
p(m−m0) (tp−1)

(Epos
K : Epos

K ∩NF/K(F×))
,

where tp is the number of prime ideals p | p in K.

So C res
F = 1 as soon as C res

K = 1 and p does not split in K/Q; if tp > 1 the right
factor of the formula may be a power of p.

Consider the general diagram [28, Diagram 3] in which GK is the union of the genus
fields HK(pm)/K (maximal abelian p-extensions of K, unramified over K(pm)):

TK

torZp
(U1

K/E1
K)

RK

Rnr
K Rram

K

CK

⋃
m(HK(pm)/K) Hbp

K
WK

K(p∞)HKK(p∞) Hpr
K

GK

We have the following result about
p(m−m0) (tp−1)

(Epos
K : Epos

K ∩ NF/K(F×))
, in relation with Green-

berg’s conjecture (see [21, Theorem 4.7], [26, Section 3] or [28, Proposition 3.3]
for more information after the pioneering work of Taya [55, Theorem 1.1]).

Theorem 6.2. Let K = Q(L N ) fixed in Q̂ with p 6∈ L and let F := KQ(pm).

Then the factor
pm (tp−1)

(Epos
K : Epos

K ∩ NF/K(F×))
divides #Rnr

K . If p totally split in K, then

for all m large enough there is equality ([28, Theorem 1]).

Corollary 6.3. If p 6= ℓ totally splits in K = Q(ℓn) (i.e., pℓ−1 ≡ 1 (mod ℓn+1)
or ±p ≡ 1 (mod 2n+2)), there exists m ≥ 0 such that the p-class group of the
composite KQ(pm) is non-trivial, if and only if Rnr

K 6= 1.

Remarks 6.4. (i) When p totally splits in K, the subgroup Rram
K is generated

by the inertia groups U1
Kp
/E1

K∩U1
Kp
, p | p; the test Rnr

K 6= 1 is equivalent to
the computation of the rank of a Fp-matrix with PROGRAMS XV-XVIII.

(ii) Under the assumption C res
K = 1, the condition C res

F 6= 1 is equivalent to
pm (tp−1)

(Epos
K : Epos

K ∩NF/K(F×))
6= 1; in the simplest case where p totally splits in

K and m = 1, then Epos
K ∩ NF/K(F

×) ⊆ Up
K.
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(iii) We observe that most of the case TK 6= 1 are such that p ≡ 1 (mod ℓn),
which may give smallest p-ranks, but p 6≡ 1 (mod ℓn+1) (or (mod 2n+2)),
which implies the non-total splitting of p in K, whence a less probability
of non-trivial CF , F ⊂ KQ(pm). The exceptional case where (ℓn, p) =
(28, 18433), (210, 114689), (3, 73), (34, 487), (52, 2251).

Any composite gives huge conductors limiting computations of class numbers. We
have done the following ones (in the restricted sense when 2 intervenes):

PROGRAM XIV. COMPUTATION OF C IN COMPOSITE FIELDS F

{PK=x^2-2;P=polsubcyclo(7^2,7);Q=polcompositum(PK,P)[1];

F=bnfinit(Q,1);print("CF=",F.no," CF’=",bnfnarrow(F))}

F=Q(2)Q(7) CF=1 CF’=[1,[],[]] F=Q(2)Q(3)Q(7) CF=1 CF’=[1,[],[]]

F=Q(2)Q(3)Q(5) CF=1 CF’=[1,[],[]]

{PK=polsubcyclo(11^2,11);P=polsubcyclo(3^2,3);Q=polcompositum(PK,P)[1];

F=bnfinit(Q,1);print(F.no)}

F=Q(11)Q(3) CF=1 F=Q(5)Q(7) CF=1

(i) K = Q(2), F = KQ(7), p = 7, is the minimal case with splitting since 7

splits in K/Q, but
7

(EK : EK ∩ NF/K(F×))
= 1. Same results replacing p = 7

by p = 17 (with more computing time). In that cases, TK = TF = 1.

(ii) K = Q(2), F = KQ(3)Q(5), all the decomposition groups are equal to
Gal(F/Q) and the p-torsion groups of F are trivial for p = 2, 3, 5.

(iii) K = Q(2), F = KQ(3)Q(7), 7 totally splits in Q(2)Q(3) and #TQ(3) = 7.

(iv) K = Q(11), F = Q(11)Q(3), p = 3 splits in K,
310

(EK : EK ∩ NF/K(F×))
= 1.

Note that as Z[µ11]-module, EK/EK ∩ NF/K(F
×) is, a priori, isomorphic

to (F35)
h, 0 ≤ h ≤ 2 since the residue degree of 3 in Q[µ11] is 5.

(v) K = Q(5), F = Q(5)Q(7), p = 7 splits in K/Q,
74

(EK : EK ∩NF/K(F×))
= 1;

a priori, EK/EK ∩NF/K(F
×) ≃ (F74)

h, 0 ≤ h ≤ 1.

A this step we did not find counterexamples because of the use of F = bnfinit(Q, 1)
limiting degrees and conductors. But in fact the literature does contain few coun-
terexamples (see Coates [8, Section 3], from Fukuda–Komatsu, Horie [32, 33], also
using genus theory). We shall examine these cases by computing Hasse’s normic
symbols in F/K in the Chevalley formula.

6.3.2. Numerical counterexamples. Let K = Q(ℓ), ℓ ≥ 2, and let p 6= ℓ totally
split in K/Q; let F := KQ(p). The computation of the index (EK : EK ∩ NF/K)
is easy and only needs to compute K = bnfinit(P, 1) instead of F = bnfinit(Q, 1) to
get the units of K. The Remark 6.4 gives a mean to compute this index, but the
test of local pth power may be replaced by that of local normic Hasse’s symbols.
Then, following the practical method described in [15, II.4.4.3], the normic symbol
(ε, F/K)p for a unit ε ∈ EK and a ramified p-place p, requires to find, for each
p | p, α such that (the conductor being p2):

α ≡ ε (mod p2),

α ≡ 1 (mod (p2p−2).
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Then (α) is an ideal, prime to p, whose Artin symbol in Gal(F/K) characterizes
the normic symbol; the image of this symbol in Gal(Q(p)/Q) is given by the Artin
symbol of NF/Q(p)(α), seen in (Z/p2Z)×.

Finally, taking into account the “product formula”, the Fp-rank of the matrix of
this symbols gives the result ((EK : EK ∩ NF/K(F

×)) = pℓ−1 if and only if this
rank is ℓ− 1).

Various programs are given; the variables M1,M2 denote the modulus p2 and
(p2p−2, the variable m = M1+M2 allows the above congruence (6.3.2) satisfied
by α (in Z). The last programs assume that CQ(ℓ) = 1, which allows comput-
ing with cyclotomic units (as given in [56, Lemma 8.1 (a)]) without the function
bnfinit(P, 1), unfeasible for ℓ > 17; thus we can compute the Fp-rank of the matrix
M for larger primes p.

PROGRAM XV. RANK OF THE MATRIX OF NORMIC SYMBOLS FOR el=2, n=1

{el=2;P=x^2-2;K=bnfinit(P,1);E=K.fu[1];

forprime(p=1,2*10^9,if(kronecker(p,2)!=1,next);g=znprimroot(p^2);

F=bnfisintnorm(K,p);m1=Mod(F[1],P);m2=Mod(F[2],P);

M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;N=Mod(norm(Z),p^2);

Ln=znlog(N,g);if(Mod(Ln,p)==0,print("p=",p," rankM=0")))}

or

{el=2;P=x^2-2;K=bnfinit(P,1);E=K.fu[1];

forprime(p=3,10^9,if(kronecker(p,2)!=1,next);F=bnfisintnorm(K,p);

m1=Mod(F[1],P);m2=Mod(F[2],P);M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;

N=Mod(norm(Z),p^2);Ln=Mod(N,p^2)^(p-1);if(Ln==1,print("p=",p," rankM=0")))}

el=2 p=31 rankM=0 el=2 p=1546463 rankM=0

PROGRAM XVI. RANK OF THE MATRIX OF NORMIC SYMBOLS FOR el>2, n=1

{el=3;P=polsubcyclo(el^2,el);K=bnfinit(P,1);e=K.fu;

forprime(p=1,2*10^5,if(Mod(p^(el-1),el^2)!=1,next);g=znprimroot(p^2);

A=bnfisintnorm(K,p);W=List;for(k=1,el-1,E=Mod(e[k],P);V=List;

for(j=1,el-1,m1=Mod(A[j],P);m2=p/m1;

M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;

N=Mod(norm(Z),p^2);F=Mod(znlog(N,g),p);listput(V,F));

listput(W,V));M=matrix(el-1,el-1,u,v,W[u][v]);r=matrank(M);

if(r<el-1,print("el=",el," p=",p," rankM=",r)))}

el=3 p=73 rankM=1

We note that for these three counterexamples, #TK = p, which indicates that
#RK = p since CK = 1 (see Section 4.4). The case ℓ = 3, n = 1, p = 73 may be
elucidate in more details; indeed, with the defining polynomial P = x3 − 3 x+ 1,
the units are (ε1 = x2 + x− 1, ε2 = x− 1) and fulfill the relation:

(ε331 · ε52)72 ≡ 1 + 732 · (2 x2 + 59 x+ 69) (mod 733)

with 2 x2 + 59 x + 69 ∈ p | 73. Thus the inertia groups torZ73
(Upi/EK ∩ Upi),

i = 1, 2, 3, are trivial as expected.

In the case ℓ = 5, n = 2, p = 2251 of total splitting, some partial computations in
EK/E

2251
K (of order 225124) indicate, as expected from the previous matrix rank

computation, that the (εi)
2250 are of the form 1+ 2251 ·αi, with non-independent

αi modulo 2251, which implies that the inertia groups torZ2251
(Upi/EK ∩ Upi), for

1 ≤ i ≤ 24, generate TK = RK of order p.

This shows that a direct computation on the units is hopeless contrary to the use
of local norm symbols.
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PROGRAM XVII. RANK OF THE MATRIX OF NORMIC SYMBOLS FOR LARGE el>2

(computations with cyclotomic units)

{el=17;hh=znprimroot(el^2);h=hh^el;H=hh^(el-1);z=exp(2*I*Pi/el^2);P=1;

for(k=1,el,c=H^k;u=1;for(j=1,(el-1)/2,u=u*(z^(lift(c*h^j))+z^-(lift(c*h^j))));

P=P*(x-u));P=round(P);e=nfgaloisconj(P);

forprime(p=1,2*10^5,if(Mod(p^(el-1),el^2)!=1,next);g=znprimroot(p^2);

for(aa=1,p-1,T=norm(Mod(x-aa,P));v=valuation(T,p);if(v==1,a=aa;break));

A=List;for(k=1,el,listput(A,e[k]-a,k));W=List;for(j=1,el,E=Mod(e[j],P);

V=List;for(k=1,el,m1=Mod(A[k],P);m2=Mod(1,P);

for(i=1,k-1,m2=m2*Mod(A[i],P));for(i=k+1,el,m2=m2*Mod(A[i],P));

M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;

N=Mod(norm(Z),p^2);Ln=Mod(znlog(N,g),p);listput(V,Ln));

listput(W,V));M=matrix(el,el,u,v,W[u][v]);r=matrank(M);

if(r<el-1,print("el=",el," p=",p," rank(M)=",r));

print("control: ","p=",p," valuation=",v," root=",a," rank(M)=",r))}

PROGRAM XVIII. RANK OF THE MATRIX OF NORMIC SYMBOLS FOR POWERS OF el=2

(computations with cyclotomic units)

{el=2;n=4;H=Mod(5,el^(n+2));z=exp(2*I*Pi/(el^(n+2)));P=1;

for(j=1,el^n,c=lift(H^j);u=z^(-2*c)*(1-z^(5*c))/(1-z^c);P=P*(x-u));

P=round(P);e=nfgaloisconj(P);forprime(p=3,2*10^5,

w=n+3-valuation(p+1,2)-valuation(p-1,2);if(w>0,next);g=znprimroot(p^2);

for(aa=1,p-1,T=norm(Mod(x-aa,P));v=valuation(T,p);if(v==1,a=aa;break));

A=List;for(k=1,el^n,listput(A,e[k]-a,k));W=List;for(j=1,el^n,E=Mod(e[j],P);

V=List;for(k=1,el^n,m1=Mod(A[k],P);m2=Mod(1,P);

for(i=1,k-1,m2=m2*Mod(A[i],P));for(i=k+1,el^n,m2=m2*Mod(A[i],P));

M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;

N=Mod(norm(Z),p^2);Ln=Mod(znlog(N,g),p);listput(V,Ln));

listput(W,V) );M=matrix(el^n,el^n,u,v,W[u][v] );r=matrank(M);

if(r<el^n-1,print("el^n=",el^n," p=",p," rank(M)=",r));

print("control: ","p=",p," valuation=",v," root=",a," rank(M)=",r))}

el^n=8 p=31 rank(M)=6

For n > 3, the case p = 31 no longer appears since 31 ≡ −1 (mod 25 = 23+2).

We have performed such computations (for ℓ = 2, 3, 5, 7, 11 up to p ≤ 109,
ℓ = 13, 17, 19, 23, up to p ≤ 2 · 105, 41 up to p ≤ 7211, and some other in
smaller intervals, for instance for some powers of 2, when p splits in K) without

finding new solutions. This enforces [8, Conjecture D] in Q̂. More precisely, if one
considers heuristics in the Borell–Cantelli style, using standard probabilities 1

p
,

we have, possibly, infinitely many examples, but this does not seem realistic; in
[20, Conjecture 8.4.] we have given extensive calculations and justifications of an
opposite situation giving, as for the well-known Fermat quotients of small inte-
gers 2, 3,... some other probabilities suggesting solutions in finite number with
the particularity of giving very few solutions, including sometimes a huge one !

6.3.3. On the conjectural triviality of the logarithmic class groups in Q̂. The fol-
lowing result of Jaulent [39, Theorem 4.5, Remarques] (that we restrict to our

context) is perhaps a key to understand some phenomena in the composite Q̂ of
all the Zℓ-extensions of Q, regarding Greenberg’s conjecture.

Theorem 6.5. Let K = Q(L N ) ⊂ Q̂, L = {ℓ1, . . . , ℓN}, N = {n1, . . . , nN} and
let Km := KQ(pm) be a layer in the cyclotomic Zp-extension of K (ℓ, p ≥ 2, p 6= ℓ;
under the Leopoldt and Gross–Kuz’min conjectures for p). Since the extension

is unramified, in the logarithmic sense, we have C̃
Gal(Km/K)

Km
≃ C̃K . Whence

C̃Km
= 1, for all m, if and only if C̃K = 1.
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This gives many cases of triviality; moreover, we know that C̃K = 1 implies that
Greenberg’s conjecture holds true in K(p∞) for the p-class groups (λ = µ = 0).

For the base fields K = Q(2) and K = Q(3), the logarithmic class groups C̃K are
trivial for p = 31 and 73, respectively:

{el=2;p=31;P=x^2-2;K=bnfinit(P,1);cl=K.no;clog=bnflog(K,p);

print("el=",el," p=",p," cl=",cl," clog=",clog)}

el=2 p=31 cl=1 clog=[[],[],[]]

{el=3;p=73;P=polsubcyclo(3^2,3);K=bnfinit(P,1);cl=K.no;clog=bnflog(K,p);

print("el=",el," p=",p," cl=",cl," clog=",clog)}

el=3 p=73 cl=1 clog=[[],[],[]]

So, even if in our computations, for K1 = Q(2)Q(31) and K1 = Q(3)Q(73), the
ordinary class groups CK1

are non-trivial for p = 31 and 73, respectively, it follows

that the C̃K1
are trivial for all the tested primes p, including 31, 73.

6.4. Conclusion and questions. The use of genus theory has succeeded to

give few non-trivial class groups in composite subfields of Q̂, but there are not
enough computations to give more precise heuristics since it is not possible to use
PARI/GP with higher degrees. This invites to ask for some questions about the

arithmetic properties of Q̂; for fixed p, we shall consider the composite Q̂∗ of the

Zℓ-extensions for ℓ 6= p and study Q̂/Q̂∗ = Q̂∗Q(p∞)/Q̂∗:

(i) Let p fixed; is the decomposition group of p in Q̂/Q of finite index in

Gal(Q̂/Q) ? We have conjectured this property in (loc. cit.). Of course,
this seems linked to the order of magnitude of p since, taking a prime
p = 1 + λ qa11 · · · qass , with primes qi, ai > 1, this gives unbounded indices;
but for p = 2, only two primes ℓ are known such that 2 splits in Q(ℓ).

(ii) Let K ⊂ Q̂∗ of finite degree and let F := K Q(pm), m ≥ 1; is the set of
primes p such that (Epos

K : Epos
K ∩ NF/K(F

×)) < pm (tp−1) finite in number,
where tp is the number of p-places of K ?

If so, this gives new heuristic/conjecture about the behavior of the units in

Q̂ and is related to Greenberg’s conjecture [29] for the subfields K ⊂ Q̂∗.

(iii) In the context of (ii), we have obtained in previous sections that in the
following cases, where TK is non-trivial with a trivial p-class group (see
Subsections 4.1 4.3:

ℓ = 3, n = 4, p = 487 ≡ 1 (mod 35),

ℓ = 2, n = 8, p = 18433 ≡ 1 (mod 211),

ℓ = 2, n = 10, p = 114689 ≡ 1 (mod 214),

p splits totally in K := Q(ℓn) and the p-class group of K1 := Q(ℓn)Q(p) is

divisible by
pℓ

n−1

(EK : EK ∩NK/K1
(K×

1 ))
, only depending of the p-adic properties

of EK (or of the group of cyclotomic units), but our PARI/GP programs
do not succeed in proving if p divides or not #CK1

.

What is for instance the order of the logarithmic class group C̃K for the
above three fields of too large degrees ?

(iv) Let K ⊂ Q̂ of finite degree and consider KQ(pm); what are the Iwasawa
invariants of lim←−

m

TKQ(pm) ?
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(v) In [54], Silverman proves, after some other contributions (Cusick, Pohst,
Remak), an inequality between RK (regulator) and DK (discriminant) of
the form (in the context K = Q(ℓn)): RK > cK(log(γK|DK |))ℓn−1(ℓ−1).
A p-adic equivalent would give a solution of many questions in number
theory, as a proof of Leopoldt’s conjecture ! However, we have proposed,
in [24, Conjecture 8.2] a “folk conjecture” about #RK , by means of TK

equal to RK for all p large enough, and justified by extensive computations:

Conjecture 6.6. Let K be the set of number fields; for K ∈ K , let DK

be its discriminant and RK := torZp
(log(U1

K)/log(E
1
K)) be its normalized

p-adic regulator (see § 2.1). There exists a constant Cp > 0 such that:

log∞(#RK) ≤ log∞(#TK) ≤ Cp · log∞(
√
|DK |), for all K ∈ K ,

where log∞ is the complex logarithm. Possibly, Cp is independent of p.
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