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Abstract:  

This paper on multi-level assembly systems with several components at each level and deals 

with the problem of calculating planned lead-times when the real lead-times for all 

components are assumed to be stochastic. A general probabilistic model is developed to 

calculate the expected total cost (ETC), composed of the inventory holding cost for 

components and the backlogging and inventory holding costs for the finished product. A 

hybrid genetic algorithm (HGA) is introduced to determine the planned order release dates for 

components at the last level of the bill of materials (BOM) that minimize ETC. Experimental 

results show that the proposed optimization algorithm efficiently finds good-quality 

approximate solutions regardless of the type of assembly system, the number of components 

at the last level and the variability of the finished product –related costs. 

Keywords: Assembly systems, Assemble-to-order, Stochastic lead-times, Planned lead-time 

optimization, Genetic algorithms. 

1 Introduction 

 

In an assemble-to-order (ATO) environment, the manufacturer requires several components to 

assemble a finished product that is custom-tailored to customer requirements. In other words, 

the demand is not known in advance and there is no stock of finished products planned to 

anticipate it. The MRP system needs a set of input data (demand and its due date, assembly 

times, delivery times, etc.) to define the assembly order release dates for components. On one 

hand, the customer asks, for a given due date, a tailored product composed of a given set of 

standard or personalized components. On the other hand, the planner needs information on the 

lead-times of the components (to order them from suppliers or to make and assemble them) 

and the assembly process to set the delivery time to the customer (d’Avino et al. 2013). This 

delivery time is often used as the due date (Hammami et al. 2017). 

Firms are increasingly implementing ATO strategies. However, uncertainty can disrupt the 

ATO process it and thus weaken the MRP system (Milne et al. 2015). The assembly process 

can be interrupted by supply uncertainty (Flynn et al. 2016, Simangungsong et al. 2012, 

Wazed 2009) and supply disruptions (Snyder et al. 2016, Speier et al. 2011, Kleindorfer and 

Saad 2005). In practice, machine breakdowns can interrupt the assembly process and extend 



the time-to-make. Component customization and replenishment lead-times may also be 

uncertain and significantly longer or shorter than those planned. The net result is that delays 

in component delivery are always possible. One component delay will halt of the assembly 

process and increases the inventory cost for other components already delivered. 

Consequently, the holding cost of components increases the initial planned cost of production 

and may delay the delivery of finished products.  

MRP logic with deterministic assumptions often proves too limited in ATO environments. In 

this case, planned lead-times are assumed to be equal to the contractual ones multiplied by a 

safety coefficient based on the statistical reliability of suppliers (Dolgui and Prodhon 2007). 

However, the random variability of lead-times drastically decreases the system’s performance 

and thus needs to estimate far more precisely (Bandaly et al. 2016). The majority of the 

existing academic literature over the past 30 years has argued that MRP logic with 

deterministic assumptions about time is too restrictive. Several survey papers (Dolgui et al. 

2013, Dolgui and Prodhon 2007, Damand et al. 2013, Koh et al. 2002 and Guide and Srivasta 

2000) have investigating how MRP systems address lead-time uncertainties find a vast 

amount of literature highlighting the use safety stocks to handle them, and that the safety lead-

times have long been neglected (Van Kampen Tim et al. 2010). Furthermore, there have been 

very few studies focusing on how to minimize the additional costs caused by the lead-time 

uncertainty (Dolgui and Prodhon, 2007) or how to anticipate them (Jansen and de Kok (2011). 

For more details on replenishment planning models under uncertainty, interested readers can 

refer to Aloulou et al. (2014), Díaz-Madroñero et al. (2014), Dolgui et al. (2013), Dolgui and 

Proth (2010), Ko et al. (2010), Peidro et al. (2009), Mula et al. (2006b) and Koh et al. (2002). 

Despite this interest, no one as far as we know has studied multi-level assembly systems in an 

ATO environment with non-deterministic lead-time behavior. Here we address this gap by 

investigating an ATO supply network to assemble a given tailored finished product. The 

customer’s request defines this finished product and the set of customizable components 

needed to customize it. In our case, there are no product or component stocks available to 

anticipate this demand and we need to set a due date for client delivery. To do this, the 

planners use information about the tailored product, customizable components, supplier 

availabilities and assembly process in order to design the whole supply network, define the 

list of partners (local assembly units or external suppliers) and estimate the planned lead-

times. As highlighted by Golini and Kalchschmidt (2011), Chandra and Grabis (2008), Berlec 

et al. (2008) and Arda and Hennet (2006), this information is essential in the negotiation step 

to design the supply network, estimates lead-times and release the orders. 

There is usually little information available on the capacity and state of resources and how 

production is managed at supply chain partner enterprises (suppliers). The only information 

available to help assess the lead-time of each partner is its probability distribution based on 

past statistics which includes not only processing times but also additional times related to 

workload, capacity constraints, local planning decisions, variations, etc. Due to the 

complexity and often impossibility (e.g. confidentiality) of considering all details on the state 



of supply chain partners, this approach has escaped criticism and has been strongly 

recommended in the literature on contracting and planning under uncertainty (Chen et al, 

2019; Jabbarzadeh et al., 2018; Giri and Sarker, 2017; Carvalho et al, 2012; Berlec et al. 

2008, Fiala 2005, Song et al. 2000). 

In this paper, we are interested in multi-level assembly systems with a fixed finished product 

demand and stochastic component lead-times, i.e. we want to calculate planned component 

lead-times for the case of random variability of actual component lead-times for a given order 

for the finished product and for a given due date. The remainder of the paper is organized as 

follows: Section 2 reviews the relevant literature, Section 3 describes the problem. Section 4 

proposes a model, Section 5 describes an optimization approach with performance tests, and 

Section 6 rounds of with a conclusion and perspectives for future research. 

2 Related publications 

The literature features various probabilistic approaches for dealing with lead-time uncertainty 

in the case of an MRP environment (readers can refer to Díaz-Madroñero et al. 2014, Dolgui 

et al. 2013, Dolgui and Prodhon 2007, and Mula et al. 2006).  

Analytical probabilistic approaches often model the simplest structures (e.g. for one-level 

systems) and give way to simulation methodology for more complex structures (multi-level 

systems, multi-period planning, etc.). Several studies have modeled one- or two-level 

assembly systems under a probabilistic distribution of lead-times (see Table 1). The proposed 

models consider continuous or discrete random lead-times but remain limited: 

 To one-level in the BOM, with constant demand for all periods 

 Or to two-levels in the BOM, with mono-period planning (including one customer 

demand) 

For the case of multi-level BOMs, we were the first to propose an analytical approach to 

model a one customer demand (Ben-Ammar et al., 2014, 2018). 

There are also studies based on fuzzy logic. In the area of fuzzy reasoning, statistical data are 

assumed to be either too unreliable or under-available to obtain reliable probability 

distributions. Mula et al. (2006b) presented an excellent review of supply and production 

planning under uncertainty, in which they noted that most studies have focused on handling 

the uncertainty of demand (Guillaume 2013, Peidro et al. 2009, Grabot et al. 2005, Mula et al. 

2006a). This under-focus on the supply side is explained by the difficulty of modeling lead-

time variability. Most studies have considered lead-times as null or fixed. 

Without attempting an exhaustive review of the literature, we focus here specifically on 

probabilistic approaches. Dolgui et al. (2013) presented a literature review classifying the 

techniques and approaches in the field of supply planning and inventory control systems 



under stochastic lead-times. As mentioned earlier and described in Table 1, most models have 

assumed (i) one-level assembly systems and mono- or multi-period planning or (ii) two-level 

assembly systems and mono-period planning.  

Yano et al. (1987a, b) were among the first to note the effects of the variability of lead-times. 

They proposed the case of serial production systems and mono-period planning, which was 

later generalized by Elhafsi (2002). In third study (Yano 1987c) studied a two-level assembly 

system and one-period planning. One component is assembled from two components and 

lead-times follow stochastic Poisson and negative binomial distributions. The objective 

function is the expected total cost (ETC), which is composed of tardiness and inventory 

holding costs. An algorithm based on an exploration of the properties of the objective function 

determines the optimal planned lead-times. Kumar (1989) studied the case of one-period 

planning and one-level assembly systems. Like Yano (1987c), he minimized the total 

expected cost and proposed optimal order release dates. An exact analysis was proposed with 

assumptions of special types of distribution (normal, uniform and exponential). A few years 

later, Chu et al. (1993) looked at the case of a one-level assembly system: they proved the 

convexity of the mathematical expectation of total cost, and proposed an iterative algorithm to 

minimize it. To solve this issue for the case of a two-stage model production model, Hegedus 

and Hopp (2001a, b) proposed an approach based on a Newsboy-like analytical formulation. 

The main weakness in these studies is that they are limited to one- or two-level assembly 

systems. 

Next, Axsäter (2005) considered a three-level assembly network with independent stochastic 

operation times. The objective was to choose starting times for different operations in order to 

minimize the ETC, composed of the inventory holding costs of components and the tardiness 

cost of end items. An approximate decomposition technique, based on the repeat application 

of the solution of a single-stage problem, was suggested. In the numerical result for the first 

example of a two-stage problem, there was only 1% error, i.e. the relative cost increase due to 

approximation. However, for the second three-stage example, the error was about 10%, which 

cannot be disregarded. 

Earlier, Dolgui et al. (1995) and Dolgui (2002) had developed an approach to multi-period 

planning based on coupling simulation with integer linear programming to model one-level 

assembly systems. Several types of finished product were produced and assembled from 

several types of components. An inventory holding cost for each component and a 

backlogging cost for the finished products were introduced. For each period, the authors 

optimized the quantity of finished products to be assembled and the quantity of components to 

be ordered. Proth et al. (1997) studied the same problem and added a heuristic to select which 

products were to be assembled and which components were to be ordered. 

For the case of multi-period models and one-level assembly systems, Ould-Louly and Dolgui 

(2002a, 2002b, 2004, 2009, 2011, 2013), Ould-Louly et al. (2008a, =2008b) and Shojae 

(2015) presented mathematical models with random lead-times, a known finished product 



demand (the same for all periods) and unlimited assembly capacity. Hnaien and Afsar (2017) 

recently considered the min-max robust lot-sizing problem with discrete lead-time scenarios 

and provided a complexity analysis proving that robust lot-sizing problems are NP-hard even 

when there are two scenarios. They showed that several optimality conditions for the 

deterministic cases provided in Wagner and Whitin (1958), as well as a classic facility 

location-based model, were no longer valid. To analyze the effect of lead-time uncertainty, 

they measured different indicators (backlogging costs, inventory-holding costs, service level 

and set-up cost), modeled some policies (periodic order quantity (POQ), lot for lot (L4L), 

economic order quantity (EOQ)) and used several optimization approaches to find optimal 

release dates for components. 

In the cases of one-period planning and two-level assembly systems, Tang and Grubbström 

(2003) modeled both process times and lead-times for components. They considered a fixed 

demand, unlimited capacity, and a known due date. A Laplace procedure was used to 

calculate the optimal safety lead-times to minimize backlogging and inventory holding costs. 

Later, Hnaien et al. (2009) and Fallah-Jamshidi et al. (2011) treated the same problem using 

genetic algorithms (GAs) to minimize the expected value of the same total cost. Hnaien et al. 

(2009) supposed that components at level 1 of the BOM were stored and that the finished 

product was only assembled after the given due date. Fallah-Jamshidi et al. (2011) explored 

the same problem but in a multi-objective context, and reinforced the GA by a reliable 

technique called the electromagnetism-like mechanism. 

Hnaien et al. (2016) studied the case of a one-period inventory model for a one-level 

assembly system under stochastic demand and lead-times. An analytical model and a branch-–

bound (B&B) approach were found to optimize the component quantities and planned lead-

times. Although the authors limited their model to one period, it can be extended to multi-

period planning to account for possible trade-offs between stocks from different periods. 

Building on this work, Borodin et al. (2016) proposed a new approach based on chance-

constrained programming and a linear model to solve the same problem. However, they 

limited themselves to one-level assembly systems because of the dependency between levels. 

This obstacle can easily be overcome, as in this paper, using separate lead-time uncertainties 

models at each level. 

Atan et al. (2016) recently considered a final assembly process fed by a multi-stage parallel 

process. Each stage had a stochastic throughput time and the system was controlled by 

planned lead-times at each stage. The authors developed an iterative heuristic to optimize the 

planned lead-times for different stages and to minimize the expected cost of a customer order. 

The problem studied contained a one-assembly process which, if modeled differently by 

adding planned assembly dates at intermediate levels, could be considered a special case of 

our study in this paper, and thus be modeled as here and resolved using our optimization 

approach. More recent papers (Jansen et al. 2018, 2019) feature an interesting investigation on 

the combination of planned lead-time and commitment lead-time decisions. 



In Ben-Ammar et al. (2018), we provided a general probabilistic model and a B&B algorithm 

to optimize multi-level assembly systems for the case of one customer demand. The objective 

function is composed of inventory holding costs for components at all levels, and holding and 

backlogging costs for the finished product. This total cost is expressed as a recursive 

procedure taking into account inter-level dependency. However, the limitation of this earlier 

study was that each lead-time varies between 1 and a known upper limit, whereas we 

observed that the recursive function requires a recursively enumerable domain and depends 

on the lead-time distribution functions. The major drawback of this recursive procedure is its 

influence on computation time. 
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Kumar (1989) 

Hc, Tc 

     Generic study of inventor control 

Chu et al. (1993)      Iterative algorithm 

Dolgui et al. (1995) 

Dolgui (2002) 
     

ILP models, simulation, heuristics, optimal 

reorder point, optimal assembly lot size. 

Proth et al. (1997)      
Stochastic optimization, heuristic 

algorithm 

Dolgui & Ould-Louly (2002)      

Markov, Newsboy, L4L policy, the lead-

times of the different types of components 

follow the same probability distribution 

Ould-Louly & Dolgui (2002a)      
Markov, Newsboy, all components share 

identical properties 

Ould-Louly & Dolgui (2004)      

Markov, Newsboy, POQ policy, 

components follow the same probability 

distribution, the same Hc 

Ould-Louly and Dolgui 

(2009) 
     EOQ policy, B&B 

Ould-Louly et al. (2008a) 

Hc, Sl 

     B&B 

Ould-Louly et al. (2008b)      
Generalization of Ould-Louly and Dolgui 

(2002a) 

Chauhan et al. (2009) 
Hc, Tc 

     
Simulated annealing, exacting solutions, 

continuous model 

Ould-Louly & Dolgui (2011)      POQ policy, a new generalization of the 

Newsboy model Ould-Louly & Dolgui (2013) Sc, Hc, Sl       

Shojae et al. (2015) Hc, Sl      POQ policy, optimization 

Borodin et al. (2016) Hc, Tc      Chance-constrained programming 

Hnaien & Afsar (2017) 
Sc, Hc, 

Sl 
     MIP models 

Yano (1987 c) Hc, Tc      Nonlinear programming 

Hegedus & Hopp (2001) Hc, Sl      Combinatorial optimization method 

Tang & Grubbström (2003) 
Hc, Tc 

     Laplace transform procedure 

Hnaien et al. (2009)      GA, B&B 

Hnaien et al. (2010) Hc, Sl      GA, multi-objective, elitist selection 

Fallah-Jamshidi et al. (2011) Hc, Tc      Hybrid approach, GA of 



electromagnetism-like mechanism 

Sakiani et al. (2012) Hc, Sl      GA, multi-objective, tournament selection 

Guiras et al. (2016) 
Mc, Hc, 

Tc,  
     GA, maintenance cost 

Ben-Ammar & Dolgui (2018) Hc, Tc      B&B & GA 

Axsäter (2005) Hc, Tc  *    Approximate decomposition technique, 

continuous distributions 

Ben-Ammar et al. (2018) Hc, Tc      A recursive formula, B&B 

Current paper Hc, Tc 
 

    A generic model, an iterative process, a 

hybrid GA 

(Tc: Tardiness cost, Hc: Holding cost, Sl: Service level, Sc: Set-up cost, Mc: Maintenance cost, 

*: Three-level) 

The purpose of this paper, based on the modeling approach presented in Ben-Ammar et al. 

(2018), is (i) to develop a more general approach than in the models introduced by Yano 

(1987a), Chu et al. (1993), Tang and Grubbström (2003), Hnaien et al. (2009), Fallah-

Jamshidi et al. (2011), Ben-Ammar et al. (2018) and Ben-Ammar and Dolgui (2018), (ii) to 

propose a more efficient mathematical model, and (iii) to develop efficient algorithms to 

resolve large problems. 

Moreover, this paper extends and complements preliminary work. In Ben-Ammar and Dolgui 

(2018), the proposed mathematical model only serves to study two-level assembly systems. In 

Ben-Ammar et al. (2018), the mathematical model based on recursive formulae serves to 

study multi-level assembly systems but only with lead-times varying between one and a fixed 

upper limit. Here, to eliminate this assumption but reduce the initial search space as in Ben-

Ammar et al. (2018), we introduce an original technique based on the Newsboy model (see 

Section 4). Several preliminary works (Ben-Ammar et al. 2014) have indicated that 

integrating several techniques such as a local search and perturbation is crucial to quickly 

converge to solution values, but little attention has been given to the theoretical basis of 

algorithm parameter setting and to the computation time required to solve large problems with 

more than 6 levels in the BOM. Here, we address this gap by giving these analyses. 

3 Problem description 

To be closer to the real-world industrial planning methods, we consider a discrete temporal 

environment and integer decision variables. Figure 1 shows that the finished product is 

produced from components that are themselves obtained from the next level’s components 

and so on. 



 

Figure 1. A multi-level assemble-to-order system 

To satisfy the customer’s request on a tailored finished product, the planner configures the 

whole supply network according to the desired delivery date and so has to know when the 

overall processes should be released. Note that our approach is focused on the case of 

contracting with our customer in an ATO environment. We suppose that all supply chain 

partners are independent enterprises and that the supply chain will be managed in a 

decentralized manner. As in Ben-Ammar et al. (2018), we determine only order release dates 

for components at the last level of the BOM and we assume that there is no decision variable 

for internal levels (no possibility to account for future local decisions by supply chain 

partners, and we only know the lead-time probability distributions of our partners). The 

production cycle thus extends from order release dates of components at the last level to 

finished-product delivery date.  

The assembly system is composed of   levels. At each level, we consider         ,    

components. In this way,    
 
    components are needed to assemble the finished product. 

Let us assume that: (i) only components      (          at the last level   are ordered 

from external suppliers and their order release dates      (          have to be defined; 

(ii) in local assembly units, components      (          at intermediate levels (  

       ) are assembled without any decision possible on their start dates; (iii) suppliers 

and local assembly units are independent. 

As in Ben Ammar et al. (2018), without loss of generality, we introduce the following 

assumptions: the finished product demand   is known and equal to 1, and to assemble it, only 

one unit of each component is required. The unit backlogging cost   and the unit inventory 

holding cost   for the finished product, and the unit inventory holding cost      for the 

component     , are known. 

The following notations are used in this paper: 
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Level in a bill of material (BOM),         

 

     
 

Component   of level   of the BOM 
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     The longest time between the release date for component      and  . Equal to the 

maximum value of       
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     The shortest time between the release date for component      and  . Equal to the 

minimum value of       
 
    ;            and                  

 

     

 

Unit holding cost for component      per period 

 

  
 

Unit backlogging cost of the finished product per period 

 

  Unit inventory holding cost for the finished product per period 

 

Variables 

     Decision variable: release date for component      (this type of variable is defined 

only for components at level  ),                      

Functions 

     Expected value 

      Cumulative distribution function 

 

We use the following notations to simplify several expressions: 

  Assembly date for       :           
           

            

  Assembly date for                 :           
           
         

            



  Assembly date for the finished product:        
        

            

  Maximum between     and due date  :    
             

  Minimum between     and due date  :    
             

    

  

   

               

           

 

  

   

 

        

  

   

   

          

  

   

 

4 Mathematical model 

The total cost        is the sum of the inventory holding or backlogging cost for the finished 

product and the inventory holding cost for components. Figure 2 gives an example of when 

the finished product is assembled after the due date. Because of the lead-times uncertainties: 

 There is a backlog for the finished product if at least one type of component at level 1 

is delivered after the due date  . Then the corresponding backlogging cost is equal to 

      
    . 

 If all components                 at level one are available before  , the finished 

product may be assembled and stored. The corresponding inventory holding cost is 

equal to         
  . 

 The components       at the last level   are ordered at date      and delivered at date 

         . Assembly of component         begins when all the necessary 

components             are available, i.e. at the date       . The holding cost of 

components      at the last level   is equal to: 

                           

           

 

    

   

 

 There are inventories for components               ,             during the time 

period between their arrival at           and         which is the assembly date for 

component       . The corresponding holding cost is equal to: 



                             

           

 

    

   

 

   

   

 

 There are inventories for components     ,           during the time period 

between their arrival at           and       which is the assembly date for 

the finished product. The corresponding inventory holding cost is equal to: 

                       

  

   

 

 

Figure 2. Composition of total cost (in the case of a backlog) 

The total cost        is a random discrete variable (because the lead-times     ,           

and         , and assembly dates      are random variables). Its explicit form is 

demonstrated in Ben-Ammar et al. (2018) and it reads as follows: 

               

  

   

     

  

   

   

   

               

  

   

 

   

          

  

   

 

       
             

   

(1) 

with                                                

and                        . 

An explicit form of the mathematical expectation of total cost           was proposed in 

Ben-Ammar et al. (2018). Here was develop a new explicit form that avoids using a recursive 
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Planned lead time 

 

Real lead time 

 

Planned assembly date 

 

Real assembly date 
  

Planned order release date 

  

  



function and allows to model actual lead-times      whose variations are between any two 

limits      and     . Note that integrating these two limits, which are time intervals in which 

assembly dates      vary, is calculated to substantially reduce computation times. 

Let   be a positive random discrete variable with a finite number of possible values and       

be its cumulative distribution function. Its expected value is equal to: 

                 

   

           

   

 
(2) 

In Hnaien et al. (2009), Hnaien et al. (2010), Fallah-Jamshidi et al. (2011), Sakiani et al. 

(2012), Hnaien et al. (2016), Borodin et al. (2016), Guiras et al. (2016) and Ben-Ammar and 

Dolgui (2018), this expression (2) is used to calculate        ,       ,      
   and 

     
   for two-level assembly systems. In our previous work, we were the first to propose 

a recursive function that expresses the dependence among levels and enabled us to study 

assembly systems with more than two levels. 

Definition 1 (Ben-Ammar et al., 2008) 

Let    be the recursive function that servers to express the dependence among levels. All 

assembly dates     ,    
  and    

  are positive random discrete variables with a finite 

number of possible values. Their expected values are as follows: 

                          

   

 (3) 

      
                    

       

 (4) 

      
                      

   

 (5) 

Nevertheless, as mentioned in Appendix in Ben-Ammar et al. (2008), calculating the expected 

value for an assembly date of a given item (component or finished product) requires using the 

probability distributions of all the components that compose it. Here we propose an iterative 

approach to calculate the cumulative distribution function of each assembly date. 

Proposition 1 

The cumulative distribution function of each assembly date is defined as below: 



            

 
 
 

 
               

           

   

                          
       

       
               

         
  (6) 

where         is the cumulative distribution function of the finished-product assembly date. 

Proof 

Components      at the last level   are ordered from several suppliers and used to assemble 

components        at level    . Then, at the first step, the iterative process starts by 

calculating           the cumulative distribution functions of       , i.e. the assembly dates 

for components at level    . These assembly dates        are positive random discrete 

variables with a finite number of possible values. Knowing that          , for      

      , are independent, and that: 

                   
           

                               

           

 

Then: 

                        

           

 (7) 

Then, at the second step, the iterative process starts by calculating          , the cumulative 

distribution function of       , i.e. the assembly dates for components at level    . These 

assembly dates        are positive random discrete variables with a finite number of possible 

values. Knowing that: 

                   
             

                   

and              the random variables                , are independent, then: 

                              

             

                                
       
       

             

                             
       
       

             

 



Using expression (7), we obtain the cumulative distribution function of       : 

                                          

           

 
       
       

             

 
(8) 

At the third step, the iterative process starts by calculating          , the cumulative 

distribution function of        the assembly dates for components at level    . These 

assembly dates        are positive random discrete variables with a finite number of possible 

values. In the same way and using expression (8), we can deduce this cumulative distribution 

function: 

                                      
       

       
             

 

Using the same iterative process, the cumulative distribution function of     , for   

           are calculated in the same way.  

In Hnaien et al. (2009), Hnaien et al. (2010), Fallah-Jamshidi et al. (2011), Sakiani et al. 

(2012), Hnaien et al. (2016), Borodin et al. (2016), Guiras et al. (2016) and Ben-Ammar and 

Dolgui (2018), the authors assumed that all lead-times     ,          and            , 

vary between 1 and a fixed upper limit. These studies have considered assembly dates as 

random discrete variables   varying between   and       with             and 

               the maximum value of                                          . In 

Ben-Ammar et al. (2018) and our previous work, we generalized these limits and defined   as 

a natural number such as              . Here we suppose that each lead-time     , 

           and             varies between      and     . The mathematical 

expectation of the total cost, introduced in Ben-Ammar et al. (2018) and previous work, can 

be simplified by using (6). 

Proposition 2 

The mathematical expectation of the total cost, noted          , can be simplified and 

written as follows: 



                     

   

      

      

  

   

               

      

      

 

   

   

  

               

      

   

                   

  

   

 

   

             

  

   

 

(9) 

Proof 

In Ben-Ammar et al. (2018), the general expression of the total expected cost, which is noted 

           was given and written as follows: 

                     

  

   

      

  

   

         

   

   

               

  

   

 

 

   

             

  

   

         
                

    

(10) 

Based on expression (2), in our previous work we gave the expressions of 

       ,       ,     
   and      

   (see Definition 1). They were calculated 

independently using the recursive function             . Here, the cumulative distribution 

functions       of assembly dates (found by an iterative process; see Proposition 1) and the 

limits      and      of lead-times      are used to simplify the calculations. 

For        , each      varies in            . Let                    
                with 

          and                    
                with          . Thus,      varies 

between      and      (see Figure 3), and expression (3) can be simplified as follows: 

                     

      

      

 (11) 



 

Figure 3. Time interval in which the assembly date      varies 

By using the cumulative distribution function defined in expression (6), and knowing that 

   
  varies between   and                 

           ,      
  , given in 

expression (5), can be written as follows: 

     
                 

   

              

      

   

 (12) 

 

Note that      
   is calculated in the same way and is equal to: 

     
             

   

      

 (13) 

where                 
           . 

The expression of        is calculated using expressions (12) and (13) and is equal to: 

            
        

                  

      

   

         

   

      

 (14) 

Then, using expressions (11, 12, 13 and 14), the mathematical expectation of the total cost in 

can be found directly.  

The intervals                 are the initial search space which depends on 

maximum and minimum lead-times and on the number of levels. To reduce their upper limits, 
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the multi-level assembly system is decomposed to    (the number of components at level  ) 

multi-level linear supply chains. A finished product is delivered by each linear chain      

           on a specified delivery date   . Two costs are taken into account: (i) if a given 

finished product is delivered after the due date  , a backlogging cost is considered, and (ii) if 

it arrives before  , an inventory holding cost is assumed. The optimal order release date, 

noted   
  , for one linear chain is used to reduce the initial search space for the corresponding 

component release date at the last level in the BOM. 

Definition 2 (Ben-Ammar et al., 2008) 

              
   

where the optimal order release date   
   satisfies the optimality condition for the discrete 

Newsboy model:  

      
       

 

   
        

     (15) 

and where      Is the cumulative distribution function of the total lead-time   associated with 

linear chain  . 

In our previous work in Ben-Ammar et al. (2018), in order to solve this non-linear 

probabilistic problem, we developed bounds and proposed a B&B procedure. Its efficiency 

depends on the number of levels and the ratio between   (the unit backlogging cost of the 

finished product per period) and   (the unit inventory holding cost for the finished product per 

period). In this work, we observed that optimal solutions are computed exactly for small and 

medium-sized problems with at most 40 components and 3 levels in the BOM. Nevertheless, 

this branch-and-bound-based approach may not be practical for assembly systems with more 

than 3 levels in the BOM, as it carries the key limitation that it depends on (i) both 

backlogging and inventory holding costs and (ii) the number of levels in the structure. 

In preliminary work, we tried to develop metaheuristics to determine good quality 

approximate solutions for larger problems. To achieve a more effective search, our first 

optimization approach was based on the integration of the classic genetic algorithm (CGA). 

The structure of this algorithm and preliminary results are presented in Ben-Ammar et al. 

(2013). However, we observed major drawbacks of this approach: (i) CPU time depends 

heavily on the number of levels in the assembly system and (ii) a CGA 

is not guaranteed to converge to a global minimum even though the stopping criterion is fixed 

to 1000 iterations and the number of components at the last level   (size of each individual). 

In Ben-Ammar et al. (2014), we proposed several techniques to reinforce the CGA, such as a 

reduction in the initial space of research (RSR), a local search (LS), and an integration of 

perturbation (P). These techniques seem to be efficient enough for optimizing only two-level 

assembly systems with less than 100 components at the last level of the BOM, even though 

we did not determine the set of parameter values that yields the best performance of the 

hybrid genetic algorithm (HGA). 



Even though our preliminary work improved the efficiency of the HGA, most of the 

improvements were scattered across several studies that are not reasonably comparable in 

terms of methodology and results. Nonetheless, it is possible to further improve the efficiency 

of the approach and group the results. With this goal, the next section describes the techniques 

used to reinforce the CGA and explains the experiments carried out in order to study the 

behavior of the HGA. 

5 Optimization approach 

The problem considered in this paper has a nonlinear objective function with integer variables 

(see expression 9). We searched the optimal order release dates for the components at level   

to minimize the total expected cost           under: 

              
                  

This study made partial use of the optimization approach introduced by Ben-Ammar et al. 

(2014). In our new approach, the CGA presented by Hnaien et al. (2009) is reinforced by 

several techniques such as a reduced space of research (RSR), a local search (LS), and the 

integration of perturbation (P).  

Let us use the following set of parameters: 

    Maximum iteration number 

    Population size 

    Crossing-over probability 

    Mutation probability 

    Number of individuals from the initial population that can be a local minimum 

     Number of iterations that have passed without the best solution being improved 

(only needed to apply the perturbation approach) 

    Number of iterations that have passed without the best solution being improved  

The various operations of the proposed HGA are described in Algorithm 1. The stop criterion 

is that the maximum iteration number, noted  , is reached. The initial population is formed by 

   individuals. Note that the chromosome representation, the mutation, the crossover and the 

neighborhood search are done in the same manner as in Hnaien et al. (2009). However, the 

only differences concerning these operations are that (i) the length of a given chromosome is 

  , (ii) a given chromosome contains a sequence of order release dates      (integer decision 

variables), (iii) the crossover and mutation probabilities, noted    and   , will be recalibrated. 

As shown in Algorithm 1, the proposed HGA includes several steps. The following 

subsections discuss some of these steps in detail. 



Algorithm 1: Proposed genetic algorithm 
Function Best_Subset(A,n) 

return    ,     and    ,        , Fitness(  )   Fitness( ) 

End Function 

              

                                

For     to    do 

// Reproduction Selection // 

                                  

// Evolutionary Operations // 

                                

                             

// Perturbation //  

If                     iterations   then 

                                                               

End if 

// Local Search //  

If                     iterations   then 

                                                          

If                       then 

                                           

End if 

If                        and                        then 

                        

Else 

                           

End if 

End if 

// Replacement Selection // 

                                                    

End for 

5.1 Generation of initial population and local search 

Choosing the right population at the right size is crucial because it can affect the performance 

of the algorithm. We use the RSR (see definition 2) exploring the property related to the 

distribution function of lead-times, and the initial population is generated randomly with 

uniform distribution as follows: 

                  
                   



where              
    is a discrete random value between        and   

  . 

In this suggested algorithm, we assume that    individuals can be a local minimum. The 

procedure, introduced in Hnaien et al. (2009) and applied one time to obtain the best neighbor 

solution (                    ), is considered. Starting out from an individual, all 

neighbor solutions are explored and the best one is selected to undergo the same operation 

again. This procedure is applied several times until a local minimum is met. Note that this 

procedure (                     ) is applied on the best solution at a given iteration if 

and only if (i) the best solution is not a local minimum and (ii)    iterations have passed 

without the best solution being improved. 

5.2 Perturbation approach 

The perturbation consists of replacing the solutions which have the same cost by solutions 

undergoing a special mutation (using block mutation). Each duplication 

                        undergoes a modification. To do so, an item (finished product 

or component) is selected randomly. The order release dates for components             at 

the last level   that are needed to assemble this item undergo a block mutation. Note that this 

approach is applied on duplications at a given iteration if and only if    iterations have passed 

without the best solution being improved. 

6 Computational experiments 

In this section, we first present the data generation process, then we illustrate the main 

contribution of this paper and go on to describe the experiments carried out in order to study 

the effect of multiple factors on HGA performance. We finish by analysing the performance 

of the HGA. 

6.1 Random test instances 

We compared our HGA against a heuristic on 140 randomly generated test instances, defined 

as follows. First, we consider 14 different BOM, and randomly generated 10 instances for 

each BOM. For different BOMs, the total number of components             at all levels is 

equal to 39. We distinguish two types of BOM:    and   . In the intermediate levels 

             of   , the number of components at each level    is equal to 2, for   , 

    . Table 2 reports the BOM of each assembly system. 

Each component lead-time                             varies between two limits      

and      with a discrete uniform probability distribution. These limits are generated randomly 

between 1 and 10 with          . The unit inventory holding costs                    

         for components      and the unit inventory holding and backlogging costs for the 

finished product are generated as follows: (i) for components at the last level  ,      are 

random between 1 and 40, (ii) for components at level                    is random 

between                 
 and     , (iii) for the finished product, the unit inventory holding 



cost   is random between                
 and     , and (iv) the backlogging cost   is made 

to vary in                       

Table 2. The BOM of each assembly system 

                                           

   2 4 2 2 2 4 2 2 2 2 2 2 2 2 

   37 35 2 4 2 7 2 4 2 4 2 3 2 3 

     35 33 2 9 2 8 2 8 2 4 2 3 

       33 19 2 9 2 8 2 5 2 4 

         31 16 2 8 2 7 2 5 

           29 9 2 8 2 5 

             27 10 2 6 

               25 11 

          39 39 39 39 39 39 39 39 39 39 39 39 39 39 

6.2 Comparison between fitness functions 

Before we go on to explain the theoretical basis of our HGA parameter setting, we first 

present the main contribution of this paper. In order to evaluate the efficiency of the proposed 

model, we carried out several experiments based on the test instances described above. 

In this paper, the fitness function, which is an important part of the GA, is the expected total 

cost          . A first explicit form of this expected value, noted     , was proposed in 

Ben-Ammar et al. (2018). Here we propose a new explicit form, noted       (see Propositions 

1 and 2), that avoids using a recursive function and can model real-world lead-times      

whose variations are logically between any two limits      and     . 

We designed a CGA to compute each instance 5 times using      or       as fitness function. 

Without preliminary testing or parameter calibration, the following parameters are fixed: 

maximum iteration number, noted   , is equal to 1000, population size    is equal to 60 

chromosomes, crossing-over probability    is fixed to 0.95, and mutation probability    is 

equal to 0.05. The CGA and the mathematical models, which calculate the fitness functions 

     and      , are coded in C++. The experiments were carried out on a computer with a 

1.66 GHz Intel Core 2 Duo CPU and 4 GB of RAM. 

Figure 4 illustrates the average CGA execution time after 1000 iterations.      and       

use the first type of BOM (  ) and      and       use the second type (  ). Figure 4 

shows that the CGA using our new explicit form of           as fitness function is less 

sensitive to the increase in number of levels   than CGA which uses the earlier form given in 

our last work. Thus,       will be used as fitness function in the HGA. 

 



 

Figure 4. Comparison between fitness functions 

6.3 Calibration of parameters and performance measures 

In order to find the set of HGA parameters that guarantees optimal performance for our 

algorithm, we decided to use a ‘design of experiments’ approach based on a standard central 

composite design (CDD). Based on a reduced number of experiments (see below for details), 

this kind of 3 level experimental design allows to efficiently fit a quadratic multivariate 

regression model for which the optimum can be searched for. The set of parameters being 

investigated is           , which are spelled out Section 5. 

The min, middle and max levels for these studied parameters are given in Table 3: 

Table 3. Parameters and levels tested 

Parameter 
Levels 

Min Middle Max 

   50 100 150 

   40 60 80 

   0.85 0.9 0.95 

   0.005 0.010 0.015 

   0 1 2 

   0 10 20 

   0 10 20 

Note that the backlogging cost   is equal to   and a single set of instances was considered. 

There are 42 instances in each set (                            ). Using each 

combination of parameter values, the algorithm was applied as follows. The set of instances 

was executed 5 times, and for each execution, we determined the same single performance 

indicator, i.e. the average expected total cost E(TC) of the best solution found. In order to 

obtain the     optimal parameters       
    

    
    

    
    

    
   of HGA for E(TC), we 

used a standard CCD with      experiments and     replicates, i.e. 395 observations. 

The CCD structure thus generated allows to estimate the following quadratic model with 36 

coefficients              : 
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where   is an error term. Once this model is obtained, we searched for the solution    

minimizing this quadratic model in the hypercube defined by the min and max levels listed in 

Table 3. For E(TC), Table 4 (column headed “coeff”) gives the coefficients              . 

All the rows in Table 4 marked with a “=0” correspond to the regression coefficients (coeff) 

            for which the p-value (p-val) is larger than the standard threshold value 

           . As these coefficients are considered statistically equal to 0, their 

corresponding parameters or parameter combinations are therefore considered as having no 

influence on response  . For example, concerning E(TC), parameters   ,    and    seem to be 

not influential. The estimated model appears to fit the experiments well as the coefficient of 

determination            is very close to 1. Thus, the vector of optimal parameters is 

                                          . Knowing that   ,    and    must be 

integer values, they are then rounded to the nearest whole the number. Finally,    

                              . 

6.4 Performance analysis of HGA  

For each instance, 100 tests were carried out. The B&B method proposed in Ben-Ammar et 

al. (2018) requires more than 10 hours to find exact solutions. The CPU times depend not 

only on (i) number of components in the last level  , (ii) number of levels   and (iii) 

different costs, but also heavily on (iv)      and     , the lower and upper limits of the actual 

lead-times     . 

Note that the HGA is reinforced by several techniques, such as a reduced space of research 

(RSR), a local search (LS) and the integration of perturbation (P). We analyzed the influence 

of several parameters: (i) type of BOM, (ii) number of levels, and (iii) ratio of backlogging-to-

inventory costs (   ) for the finished product. To analyze the performance of the optimization 

approach, several notions were introduced: 

 Average number of iterations in which the best solution is found; 

 Average     between the best solution in the initial population and the best solution 

           found by the algorithm after 150 iterations:     
                   

          

    ; 

 Average      between            and the best-known solution         found among the 

100 tests:      
                   

       
    ; 

 Average CPU time of the HGA when the best solution is found. 

 

Table 4. Standard CCD results for E(TC) 



Parameters 

(individual or 

combinations) 

coeff 95% confidence interval p-val 

 

1            809.436 9046.81 0.01916  

               -3.88487 -1.15343 0.00033  

               -11.9796 -3.07973 0.00097  

               -15201.8 3266.11 0.20455 = 0 

               -26378.4 936.033 0.06781 = 0 

               -690.446 -586.364 0.00000  

               -7.205 3.20325 0.45008 = 0 

               -12.2051 -1.79685 0.00851  

                   0.0062748 0.0111583 0.00000  

                  -1.17888 0.774504 0.68417 = 0 

                  -16.6738 2.86004 0.16517 = 0 

                  0.843205 0.940874 0.00000  

                    -0.0107466 -0.00097973 0.01875  

                    -0.0117279 -0.00196098 0.00614  

                  -2.07501 2.80845 0.76789 = 0 

                  -48.6376 0.196984 0.05187 = 0 

                 1.88759 2.13176 0.00000  

                   0.0049012 0.0293185 0.00615  

                    -0.0045413 0.019876 0.21761 = 0 

                 -6314.54 13219.3 0.48741 = 0 

                 16.806 114.475 0.00857  

                  -7.15927 2.60765 0.36003 = 0 

                 0.228728 9.99565 0.04024  

                 1908.69 2885.38 0.00000  

                 -2.54022 95.129 0.06310 = 0 

                 -11.6852 85.984 0.13553 = 0 

                  0.393355 0.881701 0.00000  

                  -0.0190573 0.469289 0.07065 = 0 

                   0.00261239 0.051447 0.03013  

  
                -0.002081 0.0081758 0.24336 = 0 

  
                -0.012542 0.0515638 0.23206 = 0 

  
              -1919.91 8337 0.21936 = 0 

  
             -203751 821940 0.23669 = 0 

  
              86.9832 112.626 0.00000  

  
                -0.0500278 0.206395 0.23123 = 0 

  
                -0.0519078 0.204515 0.24262 = 0 

Table 5 shows that the number of iterations needed to find the best known solution (BKS) is 

unaffected by type of BOM and the number of levels. The efficiency of RSR translates 

through the fact that a big backlogging-to-inventory costs ratio (   ) slightly reduces the 

average number of iterations needed to find the BKS. Note too that regardless of the variation 

of parameters, fewer than 60 iterations are required. 



Table 5. Average number of iterations in which the best solution is found 

    

  b/r 2 3 4 5 6 7 8 

B 

0.1 37.10 49.09 58.56 45.95 36.88 45.09 17.42 

0.5 50.31 21.24 18.42 31.21 14.97 5.75 7.37 

1 2.22 1.61 10.54 16.43 11.88 16.43 4.27 

5 16.92 4.26 17.14 18.67 28.47 15.76 7.66 

10 9.22 9.48 3.63 1.00 1.00 3.37 14.42 

25 17.23 10.76 16.55 5.07 6.04 1.00 4.11 

50 1.33 6.40 7.66 15.37 33.84 14.33 12.38 

100 1.00 7.23 9.81 2.26 2.81 8.29 5.33 

200 1.00 1.00 1.00 11.72 1.00 1.00 1.10 

500 1.00 1.00 1.93 5.22 12.98 1.00 9.67 

C 

0.1 24.16 31.45 29.89 3.64 10.40 12.22 7.98 

0.5 42.57 50.21 43.51 25.47 24.93 9.20 9.29 

1 18.65 23.52 18.19 6.63 5.49 6.46 12.58 

5 7.79 1.00 9.09 2.95 1.00 2.23 2.81 

10 6.14 4.62 9.58 8.24 7.93 1.06 3.56 

25 2.87 7.99 6.81 1.32 2.59 5.48 5.73 

50 1.00 3.38 3.30 2.48 1.00 1.76 6.08 

100 1.00 9.13 12.61 5.00 4.39 1.18 1.88 

200 1.00 1.00 3.31 1.00 1.61 2.80 8.69 

500 1.00 1.00 4.88 2.67 1.00 2.04 3.60 

 

Table 6 shows the evolution of the average gap as a function of all parameters. This evolution 

becomes substantial in the case of (i) a small ratio     and/or (ii) small number of levels in 

the BOM. This is explained by the fact that: (i) the search space is biggest for a small     and 

(ii) the number of components at the last level   is big of a small  . 

Table 7 shows that, for assembly systems composed from 40 items, the HGA seems to be 

efficient and is not parameter-dependent. Nevertheless, its performance needs to be further 

evaluated for more complex systems involving more than 40 items and for a small 

backlogging cost for the finished product. 

Table 8 presents the execution times. Note that the best solutions are always found in less than 

a second and that the convergence to a good solution does not depend on number of levels, 

type of the BOM backlogging-to-inventory holding costs ratio. 

 

 

 

 

Table 6. Average     (%) 

    



      2 3 4 5 6 7 8 

B 

0.1 5.77 4.96 5.36 3.44 2.96 3.39 0.45 

0.5 12.76 1.50 2.19 1.33 1.97 0.03 0.30 

1 0.00 0.16 0.51 0.09 1.61 0.09 0.08 

5 2.12 1.99 0.21 1.23 0.52 0.92 0.00 

10 1.40 0.70 0.05 0.00 0.00 0.01 0.11 

25 3.52 0.41 0.19 0.00 0.02 0.00 0.00 

50 0.64 0.12 0.43 0.87 0.46 0.16 0.08 

100 0.00 0.17 0.12 0.00 0.33 0.11 0.17 

200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

500 0.00 0.00 0.19 0.36 0.09 0.00 0.00 

C 

0.1 3.61 4.10 0.78 0.00 0.14 0.20 0.42 

0.5 9.25 3.81 1.78 2.48 6.83 0.09 0.01 

1 3.15 0.57 0.94 0.16 0.19 0.74 1.16 

5 0.95 0.00 0.17 0.00 0.00 0.00 0.00 

10 2.94 0.86 0.64 0.18 1.54 0.00 0.21 

25 1.04 0.00 0.01 0.00 0.00 0.29 0.37 

50 0.00 0.00 0.02 0.03 0.00 0.02 0.06 

100 0.00 0.25 0.45 0.26 0.37 0.00 0.01 

200 0.00 0.00 0.08 0.00 0.00 0.16 0.41 

500 0.00 0.00 0.02 0.00 0.00 0.17 0.21 

Table 7. Average      (%) 

    

      2 3 4 5 6 7 8 

B 

0.1 1.21 0.00 0.14 1.73 0.86 0.89 0.16 

0.5 0.66 1.26 0.12 0.00 0.33 0.00 0.00 

1 0.00 0.16 0.00 0.01 1.61 0.07 0.03 

5 0.00 0.00 0.00 0.09 0.45 0.00 0.00 

10 0.00 0.05 0.02 0.00 0.00 0.00 0.00 

25 0.00 0.00 0.00 0.00 0.02 0.00 0.00 

50 0.00 0.00 0.15 0.00 0.00 0.00 0.00 

100 0.00 0.00 0.02 0.00 0.15 0.00 0.06 

200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C 

0.1 3.60 1.26 0.14 0.00 0.02 0.00 0.33 

0.5 2.51 0.00 0.24 0.00 0.00 0.00 0.00 

1 0.00 0.00 0.07 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.05 0.00 0.00 0.00 0.00 

25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

100 0.00 0.00 0.18 0.00 0.00 0.00 0.00 

200 0.00 0.00 0.03 0.00 0.00 0.00 0.02 

500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 



Table 8. CPU time (s) 

    

      2 3 4 5 6 7 8 

B 

0.1 0.07 0.14 0.29 0.34 0.34 0.66 0.42 

0.5 0.07 0.07 0.12 0.24 0.21 0.17 0.24 

1 0.01 0.02 0.08 0.15 0.19 0.28 0.20 

5 0.03 0.02 0.10 0.15 0.32 0.26 0.23 

10 0.02 0.03 0.04 0.04 0.08 0.11 0.35 

25 0.02 0.03 0.09 0.06 0.11 0.08 0.16 

50 0.01 0.02 0.05 0.11 0.34 0.22 0.27 

100 0.02 0.04 0.06 0.04 0.08 0.15 0.16 

200 0.02 0.03 0.02 0.09 0.06 0.07 0.10 

500 0.03 0.03 0.02 0.05 0.17 0.06 0.22 

C 

0.1 0.08 0.13 0.29 0.13 0.44 0.43 0.35 

0.5 0.08 0.19 0.41 0.43 0.66 0.32 0.39 

1 0.04 0.10 0.18 0.17 0.24 0.24 0.44 

5 0.02 0.02 0.11 0.11 0.09 0.15 0.18 

10 0.01 0.03 0.10 0.16 0.25 0.11 0.19 

25 0.01 0.03 0.08 0.07 0.11 0.22 0.23 

50 0.02 0.02 0.05 0.08 0.08 0.11 0.23 

100 0.07 0.04 0.12 0.11 0.13 0.10 0.14 

200 0.07 0.01 0.05 0.06 0.08 0.14 0.38 

500 0.07 0.04 0.07 0.10 0.08 0.12 0.19 

 

For this problem, we used a heuristic and compared its performance against the HGA. It is the 

upper bound introduced in Ben-Ammar et al. (2018). The solution proposed by this heuristic 

is equal to the minimum between two variables    and   . As mentioned in Definition 2, we 

decompose the multi-level assembly system to    (the number of components at level  ) 

multi-level linear supply chains. The different       are ranked                       in 

descending order according to the costs of the linear chains. So, the first       has the largest 

cost                                  . Let us consider two vectors   

            
                               and               

  

    
     

        

   . We start by delaying the order release date    (by advancing   ), and 

the same operation is executed until the           no longer decreases further. Moreover, 

we then repeat the same operations for order release date    of the next component. 

To analyze the performance of the optimization approaches, we introduce the following 

notions: 

      , average value of all     ; 



       , average gap between the solution proposed by the heuristic (     ) and the best-

known solution         found among the 100 tests:        
             

       
    ; 

 ACPU times (s), the average execution time of all CPU times (s) with the HGA when the 

best solution is found; 

 ACPUH times (s), the average execution time of the proposed heuristic. 

Algorithm 2: Proposed heuristic 

                   ; 

             

For   from 1 to    do 

While           is decreasing and       

  , do 

             

        

Done 

While           is decreasing and           , do 

             

        

Done 

Done 

               

 

In Table 9, looking at the performances of HGA and the proposed heuristic, the     ratio 

seems to influence the quality of the best solutions and the CPU times. Nevertheless, the 

solutions proposed by the HGA are the best, they are still less than 1% from the best-known 

solutions found among the 100 tests and less than 6% for the heuristic (see Figure 5). For 

executions times, both approaches require less than a second (on average) to propose the best 

solution. 

 

 

 

 

 

 

 

 



Table 9. Performances of HGA and the proposed heuristic 

    0.1 0.5 1 5 10 25 50 100 200 500 

      (%) 0.74 0.37 0.14 0.04 0.01 0.00 0.01 0.03 0.00 0.00 

       (%) 5.19 3.73 2.95 2.87 2.27 1.45 1.17 0.83 0.84 0.64 

ACPU times (s) 0.29 0.26 0.17 0.13 0.11 0.09 0.12 0.09 0.08 0.09 

ACPUH times (s) 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 

 

Figure 5. Comparison between the performances of HGA and the proposed heuristic 

7 Managerial insights 

This paper offers techniques on how to plan replenishments with random lead-times in 

dynamic ATO environments. To our knowledge, only one other study (Ben-Ammar et al. 

2018) has come up with a probabilistic model to study the case of one-period planning for 

multi-level assembly systems. Here we clearly showed that the newly-developed model and 

optimization algorithm can, in just a few seconds, compute optimal replenishment release 

dates for ATO supply networks with more than seven levels. All previous results have been 

limited to three levels. Even though the emphasis in this work is on the techniques and 

analytical procedures rather than examples of real-world applications, the proposed model can 

be used to reduce the impact of lead-time uncertainty in small and medium-sized structures, 

especially by selecting appropriate planned lead-time parameters in their MRP systems. This 

dimension of the models is especially true for several industrial examples of manual assembly 

systems with few levels and few components in the assembly process (typically automotive 

submodules or electrical appliances, for example). For more complex systems, planners are 

not necessarily looking for the optimal solutions, and our approach proposed here can 

generate good-quality solutions within reasonable computation times.  

From the practitioner’s standpoint, the proposed approach can be successfully used for a 

number of applications. For example, we have been working with ZF Friedrichshafen AG, a 
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German car parts maker, at its plant located in Saint-Étienne, France. Based on statistical data, 

the company allocated, for all suppliers, safety coefficients greater than 1 and used them in 

calculation of planned lead-times. A coefficient is calculated for each supplier according to its 

previous delivery performances. To set its planned lead-time in the MRP system, its 

contractual lead-time is multiplied by the corresponding coefficient. This strategy is applied to 

anticipate delays and to better assess supplier reliability. Simply put, the loser the coefficient, 

the more reliable the supplier. The main limitation of this strategy is its inability to provide 

guarantees since (i) suppliers are considered independently, (ii) the coefficients are assumed 

empirical and (iii) inventory synchronization aspects and costs are neglected. 

We anticipate our findings to offer an excellent initial step towards better estimating these 

coefficients by taking into account inventory and backlogging costs, the independence 

(synchronization) of suppliers via the assembly operations, and probability distributions 

supplier lead-times. 

8 Conclusion and future research 

In this work, we proposed a model and algorithms to optimize the planned lead-times for 

multi-level ATO systems working in an MRP environment under uncertainty of actual lead-

times. Planned lead-times were determined for the case of multi-level assembly systems with 

a one-period approach, i.e. for a given customer demand. We assumed an infinite assembly 

capacity at all levels, a known and fixed demand for the finished product, and independent 

and identically distributed discrete component procurement times. In this sense, the proposed 

analytical model calculates the mathematical expectation of the total cost. Our model is a 

generalization of those proposed in Yano (1987a), Chu et al. (1993), Tang and Grubbström 

(2003), Hnaien et al. (2008a) and Fallah-Jamshidi et al. (2011).  

The same problem was treated in Ben-Ammar et al. (2018), where a recursive procedure was 

introduced to account for the dependence among levels, and a B&B algorithm was introduced 

to determine optimum solutions. However, the limitation of that study was that each lead-time 

varies between one and a known upper limit, and it was observed that the recursive function 

requires a recursively enumerable domain and depends on the distribution functions. The 

major drawback of this recursive procedure is its influence on computation time, which 

becomes far too time-intensive. Here, an iterative approach ensures a significant reduction in 

the time required to calculate the cumulative distribution function of each assembly date. 

Here, to optimize the studied problem, we also used and improved various additional 

techniques introduced in our preliminary work (Ben-Ammar et al. 2014) based on hybrid GAs 

(HGAs) to find good planned order release dates. The results show that the HGA obtained can 

very efficiently find good-quality approximate solutions, regardless of the type of assembly 

system, the number of components at the last levels, and the variability of finished product-

related costs related. 



Our approach, for a given demand and due date, determines the optimal order release dates for 

the components, and is therefore readily adaptable to similar ATO environments. 

Furthermore, our analytical approach can be employed to generalize the models proposed in 

Ould-Louly et al. (2008a, b), Ould-Louly and Dolgui (2002, 2013), Dolgui et al. (2008) and 

Shojaie et al. (2015), and can also be applied in disassembly systems under uncertainties 

(Bentaha et al. 2014). 

The current study was not designed to model multi-period planning for multi-level assembly 

systems. It also carries several limitations. First, it only considers an ATO environment with 

one demand. Second, we only consider release dates of the entire supply chain from the final 

assembly point of view, as we assume it is impossible to interact with supply chain partners to 

globally optimize all release decisions at all intermediate levels. Third, we do not explicitly 

treat the choice of suppliers. Fourth, we do not integrate supplier-related costs such as 

purchasing cost and ordering cost. Research is underway to overcome these limitations. We 

intend to focus on developing mathematical formulations for dynamic supplier selection 

strategies in multi-period supply planning for assembly systems under stochastic lead-times. 

Furthermore, our future work will extend this model and the various techniques, in particular 

to treat some new case studies calculating the planned lead-times when a company has to deal 

with production and replenishment time uncertainties.  
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