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Abstract: For the first time, the lower bound shakedown theorem is integrated into a level set based topol-
ogy optimization framework to identify lightweight elastoplastic designs. Shakedown is a cyclic elastoplastic
behavior in which, upon cycling beyond the elastic limit, the accumulation of plastic strain arrests and purely
elastic behavior is recovered. In contrast to most elastoplastic toplogy optimization, the use of a lower bound
shakedown limit allows elastoplastic shakedown limits to be rigorously estimated using only the elastic solu-
tion. Under small deformations assumptions, this amounts to solving one simple partial differential equation,
avoiding the non-linearity associated with plasticity, and thus simplifying the resolution process. Numerical
results are provided for several benchmark examples. The results highlight the design performance enhance-
ments attributed to allowing elastoplastic shakedown to occur instead of designing to first yield. In particular,
up to 10% reduction in weight is found for the simple structures considered.
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1 Introduction
Nearly every load-bearing mechanical assembly is loaded more than once in the system lifetime. In many
industries, structural materials are designed to withstand repeated variable uni-or-multi-axial proportional or
non-proportional loading conditions. The conventional design of these types of structures, that are not limited
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by high-cycle fatigue, employs first-yield criteria in order to avoid failure due to cyclic plasticity. Often, these
elastic (yield-limited) designs fail to capitalize on the material’s load-bearing reserve, leading to inefficiencies
related to structural weight and durability. In contrast, designs to shakedown, a safe elastoplastic behavior,
may exploit greater component lifetimes enabled by the arrest of plastic accumulation. Within the context
of plastic design under variable amplitude loading, shakedown concepts have been utilized in applications
as broad as vessels for demilitarization of munitions [92, 91], tribology [85, 63, 106], multilayer systems [9,
109], pavement design [110, 107, 90, 38], shape memory alloy components [77, 108, 93], and nuclear pressure
vessels [42, 15, 16, 17, 97, 103, 8, 19, 82]. These and many other applications that are not limited by high
cycle fatigue must be designed to avoid cyclic plasticity, i.e. fall in the shakedown regime. Shakedown is
a cyclic elastoplastic behavior in which, upon cycling beyond the elastic limit, the accumulation of plastic
strain arrests (due to the formation of residual stresses) and purely elastic behavior is recovered (Fig. 1).
In this way, shakedown designs can replace traditional yield-limited assessments of structural integrity and
shakedown analyses can be used to evaluate structural response to unanticipated loads. While shakedown
concepts, powerful limit theorems, and numerical methods have been developed since the 1920s and 1930s
[37, 12, 64, 65, 103], they are severely underutilized, especially in modern structural optimization.

This article presents, for the first time, the integration of the lower bound shakedown theorem into a level
set based topology optimization framework to identify lightweight elastoplastic designs. In contrast to most
elastoplastic topology optimization, the use of constraints based on a lower bound shakedown theorem in the
present work allows elastoplastic shakedown limits to be rigorously estimated using only the elastic solution.
The framework is applied to metallic structures subject to repeated loads and elastoplastic shakedown designs
are compared against designs to first-yield. Under conditions in which loading levels are known, designing
to shakedown should provide greater lightweighting benefits than designing to first-yield. Under conditions
in which loading levels are uncertain (within a prescribed envelope), designing to shakedown should provide
greater durability at more extreme loading levels than designs to first yield. The term shakedown was first
used by W. Prager [87, 95], referring to the established shakedown limit theorems from Bleich and Melan
[12, 64, 65] that determines whether a structure can safely carry a set of external loads whose maximum and
minimum values only are known. One of the major advantages of these bounding shakedown theorems as
“Direct Methods” is that information about the loading path in an arbitrarily complex loading space is not
needed [103, 98]. In contrast, the “classical load history approach” follows the incremental or step-by-step
evolution of a system and finds the actual state variable fields that would result from the actual loading history
that is deterministically known. “Classical incremental or load history approaches” and “Direct Methods” are
complementary methods – each providing different information for often separate domains of applicability.

Many authors have considered elastoplastic stress-based shape or topology optimization in the past, but
a vast majority of these have tackled the more computationally demanding classical incremental load-history
based approaches. Some notable examples of including material non-linearity effects through plasticity in
shape and topology optimization include [62, 40, 31, 44, 89, 88, 75, 67, 57, 7, 49, 61]. To the best of
the authors’ knowledge, only [104, 105, 48, 47, 96, 35, 34, 11, 72] have specifically addressed the shape
and topology optimization of structures under shakedown behavior. None of these have leveraged the level
set method for topology optimization as will be shown here. Moreover, one of the main contributions of
the present work is in reimagining the way in which Melan’s theorem can be adapted to modern topology
optimization formulations. The only other studies in which elastoplastic shakedown constraints have been
imposed have pursued more literal adaptations that fail to capitalize on the mathematical freedom granted by
Melan’s powerful theorem.

Considering shakedown constraints in shape optimization is of high interest. Indeed, optimizations that
seek to avoid plastic response can be considered special cases of optimization for shakedown behavior. Op-
timizing under shakedown constraints thus gives more freedom in the design process. Besides proposing a
level set formulation including shakedown in shape optimization problems, this work is mainly aimed at illus-
trating the benefits of shakedown and motivating its application with numerical examples and comparison of
shape optimization under shakedown, first-yield and other related constraints. There are many challenges that
have been documented as associated with stress-based (the “singularity phenomena” for SIMP-based stress-
constrained problems [25, 28, 29, 79, 18, 74, 53], the local nature of stress constraints [4, 30, 53, 27, 73, 45],
highly non-linear dependencies of stress constraints on the design [100, 39, 99, 10, 53], etc.). However, the
focus here is not to optimize algorithm performance with respect to these challenges. Instead, the numerical
choices, detailed below, are kept simple to clearly present the influence of shakedown constraints through
algorithm adaptations and the corresponding results.

The article is organized in the following way. First, in Section 2, the background and use of shakedown
theorems is developed. These theorems and especially Melan’s lower bound theorem, allows one to identify
asymptotic structural behavior without following the entire loading history [64, 50]. This simpler formulation
involves only one linear elastic partial differential equation instead of a full elastoplastic history resolution,
facilitating the theorem’s incorporation into the optimization protocol. Section 3 gives a first straightforward
formulation of the optimization problem and highlights two difficulties associated with this initial formulation.
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First, the Von Mises constraints are pointwise, creating large computational demand, depending on the mesh
definition. This pointwise issue, which is well-known in shape optimization under elastoplastic constraints,
has been faced by many authors [7, 53, 55, 79, 81]. We have chosen here to follow mitigation suggestions
made by Amstutz and Novotny [7] – detailed in Section 3.1. Secondly, the shakedown theorem requires the
existence of a self-equilibrated stress. To deal with the existence issue for this self-equilibrated stress, the
stress is considered as an optimization variable. To deal with the necessity of satisfying the self-equilibrating
constraint, the orthogonal projection from the stress space to self-equilibrated stress spaces will be introduced.
These modifications lead to a final optimization problem, the solution algorithm, and numerical applications.
Section 4 introduces the shape optimization theory required for the numerical applications [6, 43] and provides
an overview of the level set method [5]. Section 5 compares three potential test-cases applied to two benchmark
problems (the classic cantilever and L-bracket) in 2D under plane stress conditions. These test-cases are used
to highlight the influence of the shakedown constraint. Some assume a perfectly elastic material, and in
others a constraint on designing to first-yield for an elastic-perfectly plastic material is assumed. Finally, an
elastic-perfectly plastic material is used while including a shakedown constraint. In comparing the results, the
impact of the different constraints is elucidated. It should be noted that the restriction to 2D is without loss of
generality and the methods developed herein could easily be extended to 3D.

2 Elastoplastic Shakedown Theorems
We will focus on materials and conditions that admit time-independent classical plasticity formulations and
an elastic-perfectly plastic material model. There are numerous plasticity textbooks and monographs that
outline shakedown behavior and the bounding shakedown theorems (lower and upper bound theorems) and
their proofs formalized by W.T. Koiter [50] and others [56, 23, 60, 51]. In the present work, focus will be on
one of the most common “Direct Methods” for shakedown determination – Melan’s Lower Bound Theorem.

Figure 1: Schematic representation of cyclic elastoplastic behaviors.

2.1 Melan’s Quasi-Static Lower Bound Theorem for Shakedown Limit Loads
In its original form, Melan’s assumptions include small deformation theory, elastic perfectly plastic constitu-
tive laws for associated plastic flow and convex yield surfaces, quasi-static structural response, body forces
and surface tractions that can vary arbitrarily and independently, material properties that are temperature-
independent, and negligible time-dependent effects such as creep and rate-sensitivity [50, 52, 64, 65]. It
should be noted that this theorem has since been extended to relax and address all of these initial restrictions
— i.e. to analyze temperature-dependent properties, hardening, creep, damage, nonlinear geometry effects,
and others [78, 76, 24, 13, 1, 54, 102, 101, 80, 103]. The original theorem [50, 14] states that:

If any time-independent distribution of residual stresses, ρ̄i j, can be found such that the sum of
these residual stresses and the “elastic” stresses, σ e

i j, is a safe state of stress σ e
i j + ρ̄i j = σ s

i j,
i.e. a state of stress inside the yield limit, at every point of the body and for all possible load
combinations within the prescribed bounds, then the structure will shake down to some time-
independent distribution of residual stresses (usually depending on the actual loading program),
and the response to subsequent load variations within the prescribed limits will be elastic. On
the other hand, shakedown is impossible if no time-independent distribution of residual stresses
can be found with the property that the sum of the residual stresses and “elastic” stresses is an
allowable state of stress at every point of the body and for all possible load combinations.

Thus, to ensure that a structure will shakedown, a residual stress field, ρ , must be found that satisfies the
following three conditions: (i) it has to be self-equilibrating, (ii) it has to be time-independent, and (iii) it
has to remain within the yield stress limit when combined with any fictitious “elastic” stress caused by a
load combination from the loading domain. This powerful theorem gives a necessary and sufficient condition
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to determine if a structure will shakedown or not. The proof for Melan’s lower bound theorem relies on
consideration of strain energies, the principle of virtual work, and the postulate of maximum plastic dissipation
[14, 94, 50, 51].

The use of constraints based on the lower bound shakedown theorem in the present work allows elastoplas-
tic shakedown limits to be rigorously estimated using only the elastic solution. As a result, the computational
complexity is significantly reduced compared to classical elastoplastic topology optimization approaches. For
typical elastoplastic topology optimization, the actual stresses corresponding to the choice of loading, bound-
ary conditions and material model must be found. In the case of cyclic loading, in addition, the actual residual
stress field must also be determined. Even if this residual stress field can be found from the solution of a partial
differential equation [78], the associated computational costs are high, let alone incorporating this calculation
within an optimization process. Moreover, changing the loading history (even staying within the same pre-
scribed loading domain) would completely change the actual residual stress field and the optimization process
would have to start all over again. While the use of the lower-bound theorem in the present work avoids these
issues, the drawback is that we don’t have any information about the actual residual stress field developing in
the solid. Indeed, this theorem only requires the existence of a residual stress field and doesn’t state anything
about its uniqueness. Nevertheless, topology optimization can be performed with constraints on the cyclic
elastoplastic behavior (ensuring shakedown) based on much simpler computations for elastic solutions.

In the following, all of the assumptions for Melan’s Lower bound theorem outlined above are applied. Most
importantly, an isotropic linearly elastic perfectly plastic material model that is relevant for many structural
steels is assumed and the von Mises equivalent stress is used to define the yield function. For convenience,
only surface loadings and no volumetric or thermal loads are considered.

2.2 Problem Description

Consider a design domain D ⊂R2 and a space of admissible shapes UΩ. Let the shape, which is an element
of the admissible shapes Ω ∈UΩ, be an open bounded set such that Ω ⊂ D. Its boundary, ∂ Ω, characterized
by its normal, n, is composed of three disjoints parts (Fig. 2): ΓD on which displacement is imposed (Dirichlet
boundary condition), ΓN on which any load could be applied, and Γ which is traction-free. Only the boundary
Γ is optimizable and the boundary ΓD is assumed not to be reduced to the empty set (ΓD 6= /0).

Figure 2: Open set Ω

The solid (and corresponding shape Ω) is comprised of an isotropic linear elastic and perfectly plastic
material with a generalized Hooke’s tensor A relating the elastic stress and strain. Recall that for any symmetric
matrix ξ , A is defined by:

Aξ =
E

1−ν2 ((1−ν)ξ +νTr(ξ )) I2, (1)

where E is the Young’s modulus, ν is Poisson’s ratio and I2 is the identity tensor in two dimensions. In
particular, with linearized elasticity, the elastic stress σ e, elastic strain e, and the elastic displacement u are
defined such that:

e(u) =
1
2
(∇u+t

∇u) , σ
e = Ae(u). (2)

where t denotes the transpose operation.
A von Mises yield criterion is chosen to represent the onset of plastic yielding and is characterized by a

function σV M , given by eq. (3) [7, 61]:

σV M(σ) = σD : σD, σD = σ − Tr(σ)

2
I2. (3)
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The domain of elasticity is given by eq. (4), where S2×2
(
L2(D)

)
represents the space of symmetric two-

dimensional tensors whose components are in L2(D):

E (Ω) = {σ ∈S2×2
(
L2(D)

)
, such that ∀x ∈Ω,

√
σV M(σ)−σY ≤ 0}. (4)

where σY is the yield stress. The surface loading applied to the Neumann boundary, ΓN , is denoted g and
belongs to the loading domain G , defined by eq. (5):

G = {τGmin +(1− τ)Gmax, τ ∈ [0,1]}, (5)

where Gmin, Gmax ∈R are extremal loadings (Gmin ≤ Gmax).
Two different stresses are to be distinguished: (i) the “actual” stress σa resulting from the elastoplastic

behavior of the solid Ω under the prescribed loads and (ii) the “fictitious” elastic stress σ e which would result
in Ω under the same loading conditions if the solid was comprised of a purely elastic material. The elastic
displacement u ∈H1(Ω) corresponding to this fictitious elastic stress σ e (see (2)) is the solution of the partial
differential equation given by eq. (6): 

−div (Ae(u)) = 0 inΩ
Ae(u).n = g onΓN
Ae(u).n = 0 onΓ
u = 0 onΓD.

(6)

Setting H1
D(Ω) = {v ∈H1(Ω), such that v = 0 on ΓD} the space of the function in H1(Ω) cancelling on ΓD,

the elastic variational problem states that, ∀ϕ ∈ H1
D(Ω),∫

Ω
Ae(u) : e(ϕ)dx−

∫
ΓN

gϕds = 0. (7)

It is well known that the elastic problem, eq. (6), is well-posed if ΓD 6= /0, and that the equation will admit a
unique weak solution u ∈ H1(Ω) [32].

2.3 Adaptation of Melan’s Lower Bound Shakedown Theorem

In this context, the von Mises yield function σ 7→
√

σV M(σ) is convex and the loading domain G is also a
convex hull with two corners, Gmin and Gmax. Following [98], Melan’s theorem can be restated for adaptation
in a topology optimization framework:

A structure, Ω, (see Fig.2) subjected to any cyclic traction g in the loading domain G applied on the
Neumann boundary, ΓN , will shakedown under this loading domain if one can find a stress field ρ , satisfying :

• a self-equilibrating condition: the divergence of this stress field ρ over the solid, Ω is zero and no
traction is applied on the solid’s boundary Γ∪ΓN ([14]):{

div(ρ) = 0 inΩ
ρ ·n = 0 onΓ∪ΓN

(8)

• a pointwise safe-state condition: at each point x in the solid, the superposition of the stress ρ(x) with
the fictitious elastic stress, σ e(x), corresponding to any loading corner (Gmin or Gmax) in the loading
domain, G , is a safe state of stress. Relating these fictitious stresses to the elastic displacements, umin
and umax, these pointwise conditions are given by eq. (9):

∀x ∈Ω,
{

σV M (ρ(x)+Ae(umin)(x)) ≤ σ2
Y ,

σV M (ρ(x)+Ae(umax)(x)) ≤ σ2
Y .

(9)

where umin and umax are the solution of eq. (6), with a traction loading of Gmin and Gmax, respectively.

For convenience and to simplify notation, we consider in the following that Gmin = 0 and Gmax = g. Thus,
umin = 0 and we will write umax = u.
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3 Optimization Problem
Based on Section 2.3, a first straightforward formulation of the optimization problem is given by eq. (10):

min
Ω∈UΩ

J(Ω)

such that


∃ρ ∈ K =

{
S2×2

(
L2(D)

)
such that

{
divρ = 0 inΩ
ρ ·n = 0 onΓ∪ΓN

}
∀x ∈Ω,

{
σV M (ρ(x)) ≤ σ2

Y ,
σV M (ρ(x)+A (e (u(x))))≤ σ2

Y ,

(10)

with J ∈C 1(UΩ,R) representing the objective function. Note that considering S2×2(L2(D)) or S2×2(L2(Ω))
amounts to the same: we are only interested in the residual stress within the domain Ω and this stress can eas-
ily be extended by 0 in D\ Ω̄. In the following, we consider Uρ̃ the space of admissible stresses defined on Ω
(or equivalently defined on D extending the stress by 0 on D\Ω),

Uρ̃ = S2×2(L2(Ω)) = {ρ̃ ∈S2×2(L2(D)) such that ρ̃ = 0inD\ Ω̄}. (11)

It would be possible to add other equality and inequality constraints but, for the sake of simplicity, none are
added at this time.

Two difficulties arise from this formulation (eq. (10)). First, the safe-state constraints are pointwise (eq.
(9)) and their number is related to the mesh definition. This creates a large computational demand and a
strategy for mitigating computation costs related to the pointwise constraints is needed to maintain a tractable
optimization formulation. Second, and perhaps more troublesome, the shakedown constraint is based on
the existence of a stress satisfying both self-equilibrating (eq. (8)) and safe-state properties (eq. (9)). This
“existence problem” must be transformed to be included in the optimization process. Both of these issues are
addressed below.

3.1 Dealing with pointwise constraints
The pointwise issue is quite common in shape optimization under von Mises constraints [7, 53, 55, 79, 81]. In
this work, we follow the strategy of Amstutz and Novotny [7] and a functional Φp is introduced (p ∈N):

Φp :
{

R+→R+

t 7→ (1+ t p)1/p−1.
(12)

This functional is non-negative, non-decreasing and C 2(R). Moreover, it admits sharp variations around 1.
The pointwise constraints are thus reduced to:

C0(Ω,ρ) =
∫

Ω Φp

(
σV M(ρ(x))

σ2
Y

)
dx = 0,

CM(Ω,ρ) =
∫

Ω Φp

(
σV M(ρ(x)+Ae(u(x)))

σ2
Y

)
dx = 0.

(13)

Figure 3 presents the graph of Φp for different values of p, reproduced from Amstutz and Novotny [7]. We
notice that small von Mises stress variations result in huge variations in the function Φp where the von Mises
stresses are greater than the yield stress. As long as the von Mises stresses are less than the yield stress, the
function Φp remains close to 0; the accuracy depends on the power p (p = 8 or p = 16 is used in the numerical
examples below). For further detail, the reader is referred to Amstutz and Novotny [7]. Finally, to simplify
the notation, the dependence of the stresses on x within the safe-state constraint integrals are, from now on,
omitted.

3.2 Dealing with the self-equilibrating constraints
To address the “existence problem” outlined above, the residual stress ρ is added to the optimization variables.
The resulting problem is to find the couple (Ω,ρ) ∈ UΩ×K that minimizes the objective function J while
satisfying the constraint C0(Ω,ρ) = 0, CM(Ω,0) = 0, with K the space of self-equilibrated stresses:

K =
{

ρ ∈Uρ̃ , such that div(ρ) = 0 in Ω, and ρ ·n = 0 on Γ∪ΓN
}

. (14)

This is one of the main contributions of the present work: in reimagining the way in which Melan’s theorem
can be adapted to modern topology optimization formulations. The only other studies in which elastoplastic
shakedown constraints have been imposed have pursued more literal adaptations that fail to capitalize on the
mathematical freedom granted by Melan’s powerful theorem.
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Figure 3: Function Φp for p = 1, 2, 4, 8, 16, 32, from [7].

To deal with the constraint ρ ∈ K, we consider the Hilbert space Uρ̃ to which we assign the scalar product
aρ such that:

∀ρ̃ , ρ̃ ′ ∈Uρ̃ , aρ̃ (ρ̃ , ρ̃ ′) =
∫

D
ρ̃ : ρ̃

′dx. (15)

Then, we define K̃ ⊂Uρ̃ as a space of strains such that:

K̃ = {e(η), η|Ω ∈ H1(Ω), η = 0 on ∂ Ω, such that η = 0 in D\ Ω̄}. (16)

Lemma 3.1. Let Ω be a bounded and Lipschitz open set. Then

Uρ̃ = K⊕ K̃. (17)

Proof. Set ρ ∈ K ⊂Uρ̃ and ε ∈ K̃ ⊂Uρ̃ . Then, there exists η ∈ H1
D(Ω) such that ε = e(η). Then,

aρ̃ (ρ ,ε) =
∫

D ρ : e(η)dx
= −

∫
Ω divρ ·ηdx−

∫
Γ∪ΓN

ρ ·nηds−
∫

ΓD
ρ ·nηds

= 0.

Thus, these two spaces are orthogonal with respect to the scalar product aρ̃ .

Set ρ̃ ∈Uρ̃ and η ∈ H1(Ω) solution of: div(e(η)) = div(ρ̃) inΩ
e(η) ·n = ρ̃ ·n onΓ∪ΓN
η = 0 onΓD

(18)

The strain η can be extended by 0 to H1(D). Then, ρ = ρ̃ − e(η) ∈ K and e(η) ∈ K̃ and thus, ρ̃ =
ρ + e(η), which concludes the proof.

This lemma leads to the definition of the unique orthogonal projection PK on the vector space K:

PK :
{

Uρ̃ → K
ρ̃ 7→ ρ = ρ̃− e(ηρ̃ )

(19)

with ηρ ∈ H1(Ω) as the solution of: div (e(ηρ̃ )) = divρ̃ inΩ
e(ηρ̃ ) ·n = ρ̃ ·n onΓ∪ΓN
ηρ̃ = 0 onΓD,

(20)

extended to 0 in D \ Ω̄. Optimizing the shape under the existence of a self-equilibrated constraint has thus
been transformed into optimizing both the shape and the stress ρ̃ , by projecting it on the self-equilibrated
stress space (see Figure 4).
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Figure 4: Schematic of projected gradient process: the optimization variables are first modified with respect
to the gradient (orthogonal to its level sets) and then projected onto the set K.

3.3 Final optimization problem formulation
From the simplifications above in Sections 3.2 and 3.1, a final formulation of the optimization problem is:

min
Ω∈UΩρ̃∈Uρ̃

J(Ω)

such that
ρ = ρ̃− e(η)

C0(Ω,ρ) =
∫

Ω Φp

(
σV M(ρ)

σ2
Y

)
dx = 0,

CM(Ω,ρ) =
∫

Ω Φp

(
σV M(ρ+Ae(u))

σ2
Y

)
dx = 0.

(21)

or equivalently:
min

Ω∈UΩρ̃∈Uρ̃

J(Ω)

such that C0(Ω, ρ̃) =
∫

Ω Φp

(
σV M(ρ̃−e(η))

σ2
Y

)
dx = 0,

CM(Ω, ρ̃) =
∫

Ω Φp

(
σV M(ρ̃−e(η)+Ae(u))

σ2
Y

)
dx = 0.

(22)

with u ∈ H1(Ω) the solution of: 
−div (Ae(u)) = 0 inΩ
Ae(u) ·n = g onΓN
Ae(u) ·n = 0 onΓ
u = 0 onΓD.

(23)

and η ∈ H1(Ω) the solution of:  div (e(η)) = divρ̃ inΩ
e(η) ·n = ρ̃ ·n onΓ∪ΓN
η = 0 onΓD.

(24)

In the following, the objective function is to minimize mass (here the volume) penalized by the compliance
(chosen to avoid Ω = /0):

J(Ω) =
∫

Ω
dx+ lC

∫
Ω

Ae(u) : e(u)dx. (25)

In the numerical applications, this lC will be arbitrarily chosen depending on the test case and kept fixed during
the optimization.

Remark 3.1. Note that, to avoid the empty set, it would also have been possible to replace the volume mini-
mization function by a function penalizing volumes different from a target value. With the goal of emphasizing
the role of shakedown constraints in light-weighting, the compliance approach is preferred.
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4 Shape Optimization
To solve the optimization problem (eq. (22)), a gradient-based algorithm is adopted. Consequently, the above
functions must be differentiated with respect to the shape Ω and to the stress ρ̃ . While performing the deriva-
tives involving Uρ̃ are quite intuitive, shape optimization theory must be introduced to compute the shape
derivatives with respect to Ω. This is done in the following Section 4.1. In addition, a representation of the
shape must be chosen for numerical purposes. The level-set method, adopted in this work, is detailed in the
subsequent Section 4.2.

4.1 Shape differentiation
First introduced by Hadamard, shape differentiation theory has been widely developed. We shall use the
analysis of Murat and Simon [3, 43, 68]. Consider a smooth reference set Ω0. Any admissible shape Ω is
assumed to be related to the reference shape through a perturbation θ such that:

Ω = {x+θ (x) such that x ∈Ω0}. (26)

To limit the shape’s deformation, the vector field must be taken in W k,∞
(
Rd ,Rd

)
, with k being fixed. In the

shakedown problem, the solution u to the elasticity equation (23) must exist and be in H1(Ω). Since the
loading, a traction g located on the boundary ΓN , is taken in L2

(
∂ Ω,R2

)
, one can conclude that the domain’s

boundary ∂ Ω is required to be Lipschitz (from the regularity of elliptic equations results [32]). Lemma 4.1
outlines the admissible perturbations within Θad =W 1,∞

(
R2,R2

)
:

Lemma 4.1. Let Ω0 be a Lipschitz bounded open set and θ ∈W 1,∞
(
R2,R2

)
. Then, if ‖θ‖W 1,∞ ≤ 1, I2 + θ

is a diffeomorphism, (I2 +θ ) (Ω0) is a bounded open set with a Lipschitz boundary and (I2 +θ ) (∂ Ω0) =
∂ ((I2 +θ ) (Ω0)).

Note that Lemma 4.1 also requires a condition on the norm of the perturbation, θ . This restriction is not
considered in the admissible perturbation domain. Indeed, in this work, the numerical algorithm is based on a
gradient descent and thus, on small variations. In this way, a perturbation θ , chosen to be a descent direction,
is multiplied by a step ζ to ensure small variations and thus also bound the perturbation. A definition of shape
differentiability can now be stated in two dimensions [6, 43, 66].

Definition 4.1. A functional J : Ω → R is said to be shape differentiable at Ω0 if the application θ →
J ((I2 +θ ) (Ω0)) is Fréchet-differentiable at 0 in the Banach space W 1,∞

(
R2,R2

)
, i.e.

J ((Id +θ ) (Ω0)) = J(Ω0)+DJ(Ω0)(θ )+ o(θ ) with

lim
θ→0

|o(θ )|
‖θ‖

= 0,
(27)

where DJ(Ω0) is a continuous linear form on W 1,∞
(
R2,R2

)
.

Below, the shape derivatives of two general functions, defined by the integral respectively on the domain
Ω and on the domain boundary ∂ Ω, are given.

Proposition 4.1. Let Ω0 be a smooth bounded open set of R2. If f ∈W 1,1(R2) and J : UΩ → R is defined
by:

J(Ω) =
∫

Ω
f (x)dx,

then J is differentiable at Ω0 and, ∀θ ∈Θad ,

DJ(Ω)(θ ) =
∫

∂ Ω
f (s)θ (s) ·n(s)ds. (28)

Proposition 4.2. Let Ω0 be a smooth bounded open set of R2. If g ∈W 2,1(R2) and J : UΩ→R is defined by:

J(Ω) =
∫

∂ Ω
g(s)ds,

then J is differentiable at Ω0 and, ∀θ ∈Θad ,

DJ(Ω)(θ ) =
∫

∂ Ω

(
∂ f
∂n

+κ f
)

ds, (29)

where κ = div(n) is the curvature of Ω. This result holds true if ∂ Ω is replaced by Γ, a smooth open subset of
∂ Ω and assumes that g = 0 on the surface boundary ∂ Γ.
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The proof of these theorems is given in [69, 66, 3]. A last result, stemming from Hadamard’s structure theorem
and stated by Simon [69], gives that, if two perturbations θ1,θ2 ∈ Θad with enough regularity have the same
normal trace on the boundary ∂ Ω, then, the shape derivatives of a function applied to these perturbations will
be the same:

Proposition 4.3. Let J ∈ C k(D,R), with k ≥ 1 and Ω0 ⊂ D such that J is differentiable at Ω0. Set θ1, θ2 ∈
W k,∞

(
R2,R2

)
. If Ω0 is an open bounded set, with ∂ Ω0 ∈ C 1, and if:{

θ1−θ2 ∈ C k
(
R2,R2

)
,

θ1 ·n = θ2 ·non∂ Ω0,
(30)

then,
DJ(Ω0)(θ1) = DJ(Ω0)(θ2). (31)

A consequence of this theorem is that the derivative of a function applied to a perturbation θ only depends
on the normal trace θ · n at the boundary ∂ Ω and, under some regularity assumption on J, there exists V ∈
L1(∂ Ω) [33] such that:

∀θ ∈Θad , DJ(Ω)(θ ) =
∫

∂ Ω
V θ ·nds. (32)

To run a descent gradient algorithm, this derivative must be translated into a gradient ∇J(Ω). Since the
normal component only impacts the shape’s variations, we consider J′(Γ) = ∇J(Γ) · n and we then would
have:

J(Ω(θ )) = J(Ω)+∇J(Ω) ·θ + o(θ ) = J(Ω)+ J′(Ω)θ ·n+ o(θ ). (33)

It would then be sufficient to choose ∂θ =−J′(Ω) ·n to make the objective function decrease. From the shape
derivative’s structure (see eq. (32)), a first choice would be:

J′(Ω) =

{
V n on∂ Ω
0 elsewhere, (34)

corresponding to a L2-scalar product (W 1,∞(D) ⊂ L2(D)).
As a result, based on eq. (27), the objective function would decrease. However, V (and thus θ ) could

lack smoothness. Indeed, in our problem, the only guarantee we have about the solution to eq. (23), is that
u∈H1(Ω). Due to the possible presence of the gradient of u in the shape derivative, V ∈ L2(Ω) may no longer
be regular enough and θ may be out of the admissible set W 1,∞. To address this problem, one should choose the
scalar product related to Hk(D), fixing k such that Hk(D) ⊂W 1,∞(D). From the Sobolev embedding theorem
[32], this requires that, with d the space dimension (2 in this case):

k >
d
2
= 1, (35)

and one should choose k ≥ 2. Considering k = 2, we would take θ = −J′(Ω)n, with J′(Ω) ∈ H2(D) the
solution of:

∀W ∈ H2(D),
∫

D
∇(∇J′(Ω)) : ∇(∇W )+∇Q ·∇W + J′(Ω)Wdx (36)

=
∫

∂ Ω
V Wds. (37)

Solving this equation guarantees the correct regularity for θ . However, the computational cost would also
increase drastically. To balance these issues, an alternative intermediate scalar product could be employed [5,
36, 21]. We use here one of the most common, the H1− scalar product, and θ = −J′(Ω)n such that J′(Ω) is
the solution of:

∀W ∈ H1(D),
∫

D
α

2
∇J′(Ω) ·∇W + J′(Ω)Wdx =

∫
∂ Ω

V Wds. (38)

Note that the coefficient α is proportional to the characteristic meshsize, ∆x [5]. We finally get the following
relation between the derivative DJ(Ω) and the scalar J′(Ω), the projection of the gradient on the normal to
the shape:

∀W ∈ H1(Ω), DJ(Ω)(W ) =
∫

D
α

2
∇J′(Ω) ·∇W + J′(Ω)Wdx =

∫
∂ Ω

V Wds, (39)

with the final descent direction chosen to be θ = −J′(Ω)n.
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4.2 Level Set Method
Based on the shape differentiation theory outlined above (Section 4.1), different methods to modify the bound-
aries have been developed, such as homogenization [2, 10] and level-set methods [5]. The latter is selected
here. Introduced by Sethian and Osher [71], it has since been widely applied and further developed for shape
optimization problems. Let a shape Ω be in UΩ. A level set function ψ is then defined such that: ψ(x) < 0 if x ∈Ω

ψ(x) = 0 ifx ∈ ∂ Ω∩D
ψ(x) > 0 otherwise

(40)

The normal n to the shape Ω is given by ∇ψ

|∇ψ| , whereas the curvature κ equals div
(

∇ψ

|∇ψ|

)
. During iterations,

the shape Ω is updated. Recall however that, in this work, only the normal trace of the perturbation matters
and an advection velocity v, applied in the normal direction n, is defined such that v = θ ·n. Assuming that the
shape is evolving in time t ∈R+, the level-set function satisfies, ∀x(t) ∈ ∂ Ω(t),

ψ (t,x(t)) = 0. (41)

Differentiating eq. (41) with respect to time and together with the relation between the normal n and the
level-set function, one gets the following Hamilton-Jacobi equation that governs the shape evolution:

∂tψ + vn|∇ψ|= 0. (42)

A consequence of applying a Hamilton-Jacobi equation is that the level-set function may become too flat
or too steep during iteration. To avoid this problem, after each iteration, the function is regularized by solving
the following equation: {

∂tψ + sign(ψ0) (|∇ψ|−1) = 0 in D×R+

ψ(t = 0,x) = ψ0(x) inD (43)

where ψ0 is the result of the advection iteration and the solution ψ corresponds to the result of the complete
iteration. The optimization algorithms have been implemented in FreeFem++, a numerical computation soft-
ware [41]. The resolution of the advection equation is based on [20, 46] where the “distance” function of
FreeFem++ has been used for the redistancing operation.

5 Numerical results
To highlight the features of shape optimization under a shakedown constraint, a comparison of results for
a select number of test-case problems is presented. In Section 5.1, two different optimization problems are
investigated as base-line test-cases. The first one consists in minimizing the mass and compliance without any
constraint on stress or shakedown, assuming a perfectly elastic material. This problem is referred to as the
“Elastic Problem”. The second one differs only by removing the perfect elasticity assumption and adding the
constraint that the solid must not go beyond first-yield. Since a von Mises formulation is used to define the
elastic limit (for an elastic-perfectly plastic material), this problem is referred to as “von Mises Problem”. In
both test-cases, the residual (ρ) plays no role in the objective function and does not impact the results. It is
thus not considered and the only optimization variable is the shape (Ω). In contrast, in Section 5.2, the residual
stress is the only optimization variable. The shape Ω being fixed, the objective is to optimize the residual stress
to reduce the effective stress (ρ +Ae(u)) as much as possible and return the effective stress state as close as
possible to the elasticity domain. This is done using a projected gradient algorithm on the stress variable (ρ̃ ,
which becomes the residual stress after the projection on the residual stress space). This problem is referred to
as “Stress-only Problem”. Finally, Section 5.3 considers the optimization of both variables (shape and residual
stress variables) to minimize the mass and compliance under shakedown constraints. This last test-case is
referred to as “Shakedown Problem”.

5.1 Shape optimization of the “Elastic Problem” and the “von Mises Problem”

5.1.1 Problem Statement

We consider the residual stress fixed to 0 (ρ̃ = 0 and η = 0). Thus, the constraint C0 is deactivated because it
is fixed to C0 = 0. The new problem (44) thus amounts to optimizing the shape Ω to minimize the objective
function J while satisfying the constraint CM = 0. This corresponds to the “von Mises Problem”.

11



min
Ω

JΩ(Ω) =
∫

Ω
dx+ lC

∫
Ω

Ae(u) : e(u)dx,[
s.t.(Von Mises Problem) CM(Ω) =CM(Ω, ρ̃ = 0) =

∫
Ω

Φp

(
σV M(Ae(u))

σ2
Y

)
dx = 0.

] (44)

with u ∈ H1(Ω) solution of (23). Note that removing the constraint CM leads to the “Elastic Problem”.
As a result, in the following, not considering the constraint CM = 0 amounts to solving the “Elastic Problem”
whereas taking it into account leads to the “von Mises Problem”.

To deal with the constraints, an effective unconstrained problem is given [70]:

min
Ω

JΩ(Ω) =
∫

Ω
dx+ lC

∫
Ω

Ae(u) : e(u)dx+λlagC+
µlag

2
C2. (45)

The Lagrange multiplier λlag is updated at each iteration such that:

λ
k+1
lag = λ

k
lag +Ck

µlag. (46)

Note that choosing λlag = 0 and µlag = 0 leads to, ∀k ∈N, λ
k+1
lag = 0 and thus, the constraint CM = 0 is not

taken into account. This case corresponds to the “Elastic Problem”. Any other choice leads to the “von Mises
Problem”.

Remark 5.1. The augmented Lagrangian method is one approach to deal with the constraints, in which their
satisfaction is ensured at convergence only. This final convergence may not be reached in a finite (reason-
able) number of iterations. In the numerical results, the algorithm has been stopped after a finite number of
iterations and the constraints’ final values are thus not exactly zero but reach an accepted tolerance.

5.1.2 Differentiation

Proposition 5.1. The above optimization problem (eq. 45) has the following shape derivative:

DΩJΩ(Ω)(θ ) =
∫

Γ

[
1+ lCAe(u) : e(u)

+ (λlag + µlagC)Φp

(
σV M(Ae(u))

σ2
Y

)
+Ae(u) : e(p)

]
θ ·nds.

(47)

where p = p1 + p2 with p1 = −2lCu, and p2 ∈ H1(Ω) is the solution of:

−div(Ae(p2)) =
λlag+µlagC

σ2
Y

div
(

Φ′p
(

σV M(Ae(u))
σ2

Y

)
Aσ ′V M (Ae(u))

)
inΩ

Ae(p2) ·n = − (λlag+µlagC)
σ2

Y
Φ′p
(

σV M(Ae(u))
σ2

Y

)
Aσ ′V M (Ae(u)) ·n onΓ∪ΓN

p2 = 0 onΓD.

(48)

Proof. From Cea’s method [22], we introduce a Lagrangian function:

LΩ (Ω,u, p) = JΩ(Ω)+
∫

Ω
Ae(u) : e(p)dx−

∫
ΓN

gpds. (49)

Differentiating with respect to the variable u gives, ∀ϕ ∈ H1
D(Ω):

∂uL (Ω,u, p) (ϕ) = 2lC
∫

Ω
Ae(u) : e(ϕ)dx

+
λlag + µlagC

σ2
Y

∫
Ω

Φ′p

(
σV M(Ae(u))

σ2
Y

)
σ
′
V M(Ae(u)) : Ae(ϕ)dx

+
∫

Ω
Ae(p) : e(ϕ)dx.

(50)

Setting this derivative to 0 gives the adjoint problem. If u is the solution of eq. (23), then ∀p,

LΩ (Ω,u, p) = JΩ(Ω). (51)
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As a result the derivative to the objective function JΩ corresponds to the derivative of the Lagrangian function
LΩ:

dJΩ
dΩ (Ω)(θ ) = dLΩ

dΩ

(
Ω,u, p

)
(θ )

= ∂ΩLΩ (Ω,u, p) (θ )+ < ∂uLΩ (Ω,u, p) ,∂Ωu(θ ) > .
(52)

From its definition, the adjoint function p chosen will cancel ∂uLΩ (Ω,u, p), which simplifies the problem
and thus:

DΩJΩ (Ω) (θ ) = ∂ΩL (Ω,u, p) (θ ). (53)

The derivative with respect to the shape follows from the application of Proposition 4.1.

5.1.3 Algorithm

The shape is represented by a level set and the normal advection velocity, vΩ corresponds to the solution of
the regularization problem, eq. (38), where the shape derivative is given by eq. (47). To make sure that the
velocity vΩ (or equivalently the perturbation θ ) is small enough, it is modulated by a step that is updated at each
iteration. Algorithm 1 summarizes the process. Recall that to consider the “Elastic Problem”, the multiplier
λlag and the penalization µlag are set to 0 and remain unchanged throughout the optimization process, whereas
in the “von Mises Problem” optimization, λlag and µlag are not equal to 0 and the multiplier λlag is updated
after each iteration following eq.46. Note that the tolerance tol is updated with respect to the iterations and
will be determined for each numerical application (see section 5). The initial step ζ 0

Ω is set to 5.

1 Initialize the shape Ω;
2 Compute the elastic stress, the volume, the compliance, the constraint CM and thus the objective

function JΩ;
3 Compute the next advection velocity vΩ (shape derivative DΩJΩ(Ω) and regularization);
4 for each iteration do
5 Shape variation (level set advection and redistancing): Ωn+1 = Ωn + ζ n

Ωvn
Ωnn;

6 Compute the elastic stress, volume, compliance, constraint C and objective function;
7 if improvement: J n+1

Ω ≤J n
Ω ∗ toln then

8 Iteration accepted;
9 Update the variable Ω;

10 Update the Lagrange multiplier λlag;
11 Compute the effective objective function;
12 Compute the next advection velocity vΩ (shape derivative DΩJΩ(Ω) and regularization);
13 Update the step: ζ

n+1
Ω = max(1.2ζ n

Ω,ζ 0
Ω)

14 end
15 else
16 Iteration rejected;
17 Update of step: ζ

n+1
Ω = 0.6ζ n

Ω
18 end
19 end
Algorithm 1: Algorithm to optimize the shape in the “Elastic Problem” and the “von Mises Problem”

5.2 Optimization of the residual stress (with a fixed shape): “Stress-only Problem”
The optimization with respect to this second variable, the residual stress, is the novelty in elastoplastic stress-
based topology optimization that is introduced by incorporating shakedown theorems. Indeed, not only the
shape can be modified but also a residual stress in order to satisfy a von Mises yield criterion. In this test-
case, the shape is now fixed and the objective is to optimize the residual stress to minimize the Von Mises
functions σV M(ρ) and σV M(ρ + Ae(u)). In this optimization problem, the mass minimization is not the
objective function any longer, the objective is now a weighted sum of what were previously the problem
constraints: C0 and CM (see Eq. 54). The minimum of this new objective function may not always be equal
to 0. When the objective function reaches zero, this would mean that the current structure under consideration
allows for the existence of a residual stress satisfying Melan’s theorem and thus that the structure would
shakedown. However, the shape chosen may not shakedown (i.e. satisfy Melan’s theorem), thus preventing a
null convergence value of the objective function.
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5.2.1 Problem Statement

For this “Stress-Only” test-case, the new optimization problem is the following:

min
ρ̃∈Uρ̃

Jρ (ρ̃) = l0C0(ρ̃)+ lMCM(ρ̃), (54)

where

C0(ρ̃) =
∫

Ω
Φp

(
σV M(ρ̃− e(η))

σ2
Y

)
dx, CM(ρ̃) =

∫
Ω

Φp

(
σV M(ρ̃− e(η)+Ae(u))

σ2
Y

)
dx (55)

with u ∈ H1(Ω) the solution of eq. (23) and η ∈ H1(Ω) the solution of eq. (24). The coefficients l0 and lM
are kept constant during the optimization process.

5.2.2 Differentiation

Proposition 5.2. Differentiating the optimization problem given by eq. (55) results in, ∀σ ∈Uρ̃ :

Dρ̃ Jρ (ρ̃)(σ) =

∫
Ω

[
l0
σ2

Y
Φ′p
(

σV M(ρ̃−e(η))
σ2

Y

)
σ ′V M(ρ̃− e(η))+

lM
σ2

Y
Φ′p
(

σV M(ρ̃−e(η)+Ae(u))
σ2

Y

)
σ ′V M(ρ̃− e(η)+Ae(u))

+e(q)
]

: σds.

(56)

with q ∈ H1(Ω) the solution of:

div(e(q)) = − l0
σ2

Y
div
(

Φ′p
(

σV M(ρ̃−e(η))
σ2

Y

)
σ ′V M(ρ̃− e(η))

)
inΩ

− lM
σ2

Y
div
(

Φ′p
(

σV M(ρ̃−e(η)+Ae(u))
σ2

Y

)
σ ′V M(ρ̃− e(η)+Ae(u))

)
e(q) ·n = − l0

σ2
Y

Φ′p
(

σV M(ρ̃−e(η))
σ2

Y

)
σ ′V M(ρ̃− e(η)) ·n onΓ∪ΓN

− lM
σ2

Y
Φ′p
(

σV M(ρ̃−e(η)+Ae(u))
σ2

Y

)
σ ′V M(ρ̃− e(η)+Ae(u)) ·n

q = 0 onΓD

(57)

Proof. The Lagrangian of the problem is, ∀ρ̃ ∈Uρ̃ , ∀η ,q,u, p ∈ H1
D(Ω),

Lρ (ρ̃ ,η ,q,u, p) = l0C0 + lMCM−
∫

Ω
e(η) : e(q)− ρ̃ : e(q)dx

+
∫

Ω
Ae(u) : e(p)dx−

∫
ΓN

gpds.
(58)

Differentiating with respect to η and setting this derivative to 0 gives the adjoint equation related to q. As in
the case for Section5.1, we notice that, if η is the solution of eq. (24), then ∀q ∈ H1(Ω),

Lρ (ρ̃ ,η ,q) = Jρ (ρ̃). (59)

This gives that, ∀σ ∈Uρ̃ :

dLρ

dρ̃

(
ρ̃ ,η ,q

)
(σ) = ∂ΩLρ (ρ̃ ,η ,q) (σ)+ < ∂ηLρ (ρ̃ ,η ,q) ,∂ρ̃ η(σ) > . (60)

From its definition, the adjoint function q chosen will cancel ∂ηLρ (ρ̃ ,η ,q), simplifying the problem:

Dρ̃ Jρ (ρ̃) (σ) = ∂ρ̃Lρ (ρ̃ ,η ,q) (σ). (61)
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5.2.3 Algorithm

The optimization variable is in this case a stress and a descent direction must be found in the stress domain
Uρ̃ . Still considering the scalar product given by eq. (15), one could take, ∀ρ̃ ,σ ∈Uρ̃ ,

Dρ̃ Jρ (ρ̃)(σ) =
∫

Ω
J′ρ (ρ̃) : σdx =

∫
D

J′ρ (ρ̃) : σdx. (62)

Then, a descent direction, vρ , in this case could be:

vρ = −J′ρ (ρ̃) = − l0
σ2

Y
Φ′p
(

σV M(ρ̃−e(η))
σ2

Y

)
σ ′V M(ρ̃− e(η))

− lM
σ2

Y
Φ′p
(

σV M(ρ̃−e(η)+Ae(u))
σ2

Y

)
σ ′V M(ρ̃− e(η)+Ae(u))

−e(q).

(63)

By definition of the operator e(.) (see eq. (2)), vρ ∈ Uρ̃ is the space of stresses defined on Ω. Algorithm 2
summarizes the optimization process for this test-case. Note that in this test-case, the tolerance is fixed to 1
and the step ζ 0

ρ is initialized to 1.

1 Compute the elastic stress related to the fixed shape Ω;
2 Initialize ρ̃;
3 Project ρ̃ in the space of self-equilibrated stresses (compute η);
4 Compute C0, CM and the objective function Jρ ;
5 Compute the descent direction in the space Uρ̃ ;
6 for each iteration do
7 Stress variation: ρ̃n+1 = ρ̃n + ζ n

ρ vn
ρ ;

8 Project ρ̃ in the space of self-equilibrated stresses (compute η);
9 Compute C0, CM and the objective function Jρ ;

10 if improvement: Jn+1
ρ ≤ Jn

ρ then
11 Iteration accepted;
12 Update the variable ρ̃ , the displacement η and the functions C0, CM and Jrho;
13 Compute the descent direction in the space Uρ̃ ;
14 Update the step: ζ n+1

ρ = 1.3ζ n
ρ

15 end
16 else
17 Iteration rejected;
18 Update the step: ζ n+1

ρ = 0.4ζ n
ρ

19 end
20 end
Algorithm 2: Algorithm to optimize the residual stress only; the shape remains fixed: “Stress-Only”
Problem.

5.3 Optimization of both the shape and the residual stress under shakedown con-
straint: “Shakedown Problem”

The objective is now to optimize both the shape and the residual stress. The approach taken consists in
optimizing each of them in an alternating fashion to yield the best combination. The scheme for alternating
the variable optimizations chosen here is: doing 1 iteration for the shape, followed by 50 iterations for the
stress. Thus, for each intermediary shape, the residual stress obtained is quite close to the optimal one. The
step for the shape, ζsh is initialized to 5. The step related to the stress ζρ is initialized to 1 each time the stress
optimization is performed.

5.3.1 Iteration related to the shape

With ρ̃ being fixed, the problem is the following:

minΩ Jsh(Ω, ρ̃) =
∫

Ω dx+ lC
∫

Ω Ae(u) : e(u)dx
+λlag,0C0(Ω, ρ̃)+ µlag,0

2 C0(Ω, ρ̃)2

+λlag,MCM(Ω, ρ̃)+ µlag,M
2 CM(Ω, ρ̃)2.

(64)

with C0 and CM defined by eq. (21), and u,η ∈ H1
D(Ω) the solutions of eq. (23) and eq. (24), respectively.

The coefficient λlag,0 and λlag,M are updated at each iteration: λ
k+1
lag,0 = λ k

lag,0 +Ck
0µlag,0 and λ

k+1
lag,M = λ k

lag,M +

Ck
Mµlag,M .
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Proposition 5.3. The differentiation of the optimization problem, eq. (64), gives:

DΩJsh(Ω, ρ̃)(θ ) =

∫
Γ

[
1+ lCAe(u) : e(u)+Ae(u) : e(p)− e(ν) : e(Q)+ ρ̃ : e(Q)

+(λlag,0 + µlag,0C0)Φp

(
σV M(ρ̃−e(η))

σ2
Y

)
+(λlag,M + µlag,MCM)Φp

(
σV M(ρ̃−e(η)+Ae(u))

σ2
Y

)]
θ ·nds.

(65)

with p = p1 + p2 and p1 = −2lCu and p2 ∈ H1(Ω) being the solution of:


−div(Ae(p2)) = div

[
(λlag,M + µlag,MCM)

σ2
Y

Φ′p

(
σV M(ρ̃− e(η)+Ae(u))

σ2
Y

)
Aσ
′
V M(ρ̃− e(η)+Ae(u))

]
in Ω

Ae(p2) ·n = −
(λlag,M + µlag,MCM)

σ2
Y

Φ′p

(
σV M(ρ̃− e(η)+Ae(u))

σ2
Y

)
Aσ
′
V M(ρ̃− e(η)+Ae(u)) ·n on Γ∪ΓN

p2 = 0 on ΓD.
(66)

and Q ∈ H1(Ω) the solution of:



−div(e(Q)) = div
[
(λlag,0 + µlag,0C0)

σ2
Y

Φ′p

(
σV M(ρ̃− e(ν))

σ2
Y

)
σ
′
V M (ρ̃− e(ν))

]
in Ω

+ div
[
(λlag,M + µlag,MCM)

σ2
Y

Φ′p

(
σV M(ρ̃− e(ν)+Ae(u))

σ2
Y

)
σ
′
V M (ρ̃− e(ν)+Ae(u))

]
e(Q) ·n = −

(λlag,0 + µlag,0C0)

σ2
Y

Φ′p

(
σV M(ρ̃− e(ν))

σ2
Y

)
σ
′
V M (ρ̃− e(ν)) ·n on Γ∪ΓN

−
(λlag,M + µlag,MCM)

σ2
Y

Φ′p

(
σV M(ρ̃− e(ν)+Ae(u))

σ2
Y

)
σ
′
V M (ρ̃− e(ν)+Ae(u)) ·n

Q = 0 onΓD.
(67)

5.3.2 Iteration related to the residual stress

For each iteration, once the shape update has been done, the residual stress is optimized. Fifty iterations of a
gradient algorithm are performed, corresponding to the optimization problem presented in Section 5.2.

5.3.3 Algorithm

These strategies are summarized by Figure 5. The expected results are the following. First, the relatively
unconstrained “Elastic Problem” should result in a smaller volume (mass) than in the “von Mises” constrained
case. Indeed, the mass of in the “Elastic Problem” should be the smallest amongst all test-cases considered.
As for the “Shakedown Problem” result, it should result in an intermediate volume (mass): larger than the
relatively unconstrained elastic test-case and smaller than the traditional von Mises constrained case. Indeed,
if properly constrained, the introduction of the stress as an optimization variable gives more freedom to the
system.

Second, as the von Mises constraints are being dealt with using an Augmented Lagrangian Method, they
should decrease to 0 during the optimization process. It is expected that, at convergence, these constraints are
satisfied both in the “von Mises” and in the “Shakedown” problems. In contrast, in the “Elastic Problem”, von
Mises constraints are not considered in the optimization. Finally, in the case of the “Stress-only Problem”,
they should decrease during the optimization problem but their minimum could be different from 0. Indeed, as
already explained, the shape is fixed in this optimization problem, and may not admit a shakedown solution.
If the minimum of the constraints were 0, this would amount to the existence of a residual stress satisfying the
assumptions of Melan’s theorem, meaning that the structure would shakedown.

Lastly, recall that each result presented below is a local minimum that depends on the optimization process;
since these problems are not convex, the unicity of an optimum is not guaranteed. As stated in the introduc-
tion, the objective of this work is not to find the best optimization parameters nor to identify the most accurate
techniques to deal with elasto-plasticity. Our goal is to reveal, using simple test-cases and established opti-
mization processes, the main differences introduced by employing shakedown theorems and to motivate their
further investigation in structural topology optimization. The comparison of the different test-case problems
and results is detailed below.
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1 Initialize the shape Ω;
2 Compute the elastic stress, the volume and the compliance;
3 Initialize the residual stress ρ̃ at 0 and compute η ;
4 Optimize the objective function Jρ = l0C0 + lMCM by varying the residual stress, while the shape

remains fixed;
5 Using the optimized residual stress ρ̃ , compute C0, CM , and Jsh, the objective function corresponding

to eq. (64);
6 Compute the shape derivative DΩJsh(Ω) and, after regularization, of the advection velocity vsh;
7 for each iteration do
8 Perform shape variation (level set advection and redistancing): Ωn+1 = Ωn + ζ n

shvn
shnn;

9 Compute the elastic stress, the volume and the compliance;
10 Starting from ρ̃n, optimize the objective function Jρ = l0C0 + lMCM , while the shape remains

fixed;
11 Using the optimized residual stress ρ̃ , compute C0, CM , and Jsh, the objective function

corresponding to eq. (64);
12 if improvement: Jn+1

sh ≤ Jn
sh ∗ toln then

13 Iteration accepted;
14 Update the variables Ω and ρ̃;
15 Update the Lagrange multipliers λlag,0 and λlag,M;
16 Compute the effective objective function;
17 Compute the next advection velocity vsh (shape derivative DΩJΩ(Ω) and regularization);
18 Update the step: ζ

n+1
sh = max(1.2ζ n

sh,ζ 0
sh)

19 end
20 else
21 Iteration rejected;
22 Update the step: ζ

n+1
sh = 0.6ζ n

sh
23 end
24 end

Algorithm 3: Iterative algorithm to optimize the “Shakedown Problem”.

Figure 5: Resolution strategy for test-cases explored.
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(a) Cantilever test-case (b) Initial shape (Case IC)

Figure 6: Cantilever test-case

5.4 Results

5.4.1 Cantilever

We consider the classic cantilever problem. The working domain is a square with a characteristic length of
size 2, discretized into 25.600 triangular elements (see Figure 6). The loading is applied on the middle of the
right side (centered about a segment of size 0.2). The left side constitutes the Dirichlet boundary, ΓD. The
relevant material properties and design parameters (non-dimensional) are the following: Young’s modulus
E = 1960, Poisson’s ratio ν = 0.30, yield stress σY = 0.95, and loading g = (0,−1.1). Due to symmetry, the
computations are done on only one-half of the working domain. The coefficient chosen for the norm is p = 8
(see eq. (13)) and the regularization coefficient α = ∆x (see eq. (38)).
In each of the following cases, the compliance multiplier lC is arbitrarily fixed to 2000. For the “Elastic
Problem”, the optimization process is initialized as shown in Figure 6 (black is solid and white is void). Then,
the optimization is run with a tolerance initialized to 2 and multiplied by 0.9 every 100 iterations. The test-case
is stopped after 300 iterations (chosen with respect to the evolution of the objective function, see Figure 7). In
the following, the result of the “Elastic Problem” is referred to as “EC”.

(a) Mass evolution (b) Compliance evolution

Figure 7: Evolution of the mass and compliance with respect to iterations for the “Elastic Problem” in the
cantilever application.

Each of the other test-cases is initialized by the result of the “Elastic Problem” (with a regularization first
applied, eq.43). In the “von Mises Problem”, the Augmented Lagrangian coefficients are initialized to λlag = 0
and µlag = 100. The tolerance is in this case also initialized to 2 and multiplied by 0.9 every 100 iterations.
The test is stopped after 300 iterations (see Figure 8 for the convergence). In the following figures, the result
of the “von Mises Problem” is referred to as “ PC”.

The “Stress-only Problem” is initialized by the result of the “Elastic Problem” and the stress field ρ = 0.
The coefficients l0 and lM are both set to 1. The tolerance is set to 1 (descent only is accepted) and the test is
stopped after 300 iterations (see Figure 9 for the convergence). In the following, the result of the “Stress-only
Problem” is referred to as “RC”.

Finally, the “Shakedown Problem” is also initialized by the result of the “Elastic Problem” and the stress
field ρ = 0. The coefficients l0 and lM are both set to 1 and the tolerance of the inner loop, focusing on the
stress optimization, is set to 1 and stopped after 50 iterations. The Augmented Lagrangian multipliers are
initialized to λlag,0 = λlag,M = 10000 and µlag,0 = µlag,M = 0. The optimization is stopped after 99 iterations
and the results are referred to as “SHC”. Convergence is not reached at this iteration but the final volume and
the constraints CM are smaller than in the “von Mises Problem”. The constraint C0 remains very small, thus
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(a) Mass evolution (b) Compliance evolution (c) Constraint CM evolution

Figure 8: Evolution of the mass, compliance and constraint CM with respect to iterations for the “von Mises
Problem” in the cantilever application.

(a) Function C0 evolution (vertical log
scale)

(b) Function CM evolution (vertical log
scale)

Figure 9: Evolution of the functions C0 and CM with respect to iterations for the “Stress-only Problem” in the
cantilever application.

motivating the use of shakedown constraints that allow for a mass reduction from the “von Mises Problem” re-
sult while avoiding low-cycle fatigue and other related behaviors (alternating plasticity, ratchetting, collapse).
The evolution of the mass, compliance, C0 and CM with respect to the optimization is shown in Figure 10.

(a) Mass evolution (b) Compliance evolution

(c) Function C0 evolution (d) Function CM evolution

Figure 10: Evolution of the functions mass, compliance, C0 and CM with respect to iterations for the
“Shakedown Problem” in the cantilever application.

The results are summarized in Figure 11 and Table 1. All results are given for the upper half of the
cantilever. In Figure 11, each row represents one optimization case (Elastic Problem EC, Von Mises Problem
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PC, Stress-only Problem RC or Shakedown Problem SHC). In the first column, the shape Ω resulting from
each optimization is displayed (note that the shape is the same for EC and RC since the optimization of the
stress only was performed and the RC problem was initialized by the result of the Elastic Problem and did not
involve any changes to the shape). In the second column, the von Mises function for the residual stress ρ is
shown (note that since this was not an optimization variable for the Elastic and von Mises Problems, there are
no pictures for the first two rows and the residual stress field is kept at 0 during those optimizations). In the
third column, the von Mises function for the stress ρ +Ae(u) is displayed (equal to Ae(u) for the first two
rows, EC and PC). In each of the von Mises figures, the color scale bar below indicates the value of the von
Mises function at each point. The color is red if the value is greater than, or equal to, the yield stress σY . Table
1 gives the final values of the volume, the compliance and the constraints C0 and CM for each case.

(a) Case EC , shape (b) Case EC , σV M(ρ̃− e(ν))/σ2
Y (c) Case EC ,

σV M(ρ̃− e(ν)+Ae(u))/σ2
Y

(d) Case PC , shape (e) Case PC , σV M(ρ̃− e(ν))/σ2
Y (f) Case PC , σV M(ρ̃−e(ν)+Ae(u))/σ2

Y

(g) Case RC , shape (h) Case RC , σV M(ρ̃− e(ν))/σ2
Y (i) Case RC , σV M(ρ̃−e(ν)+Ae(u))/σ2

Y

(j) Case SHC , shape (k) Case SHC , σV M(ρ̃− e(ν))/σ2
Y (l) Case SHC ,

σV M(ρ̃− e(ν)+Ae(u))/σ2
Y

(m) Scale bar for σV M(.)/σ2
Y

Figure 11: Summary of the cantilever results.

Case Description Volume Compliance C0 CM
EC Elastic Problem 0.582 2.67e-04 0 1.10e-02
RC Stress-only Problem 0.582 2.67e-04 2.86e-05 4.82e-03

SHC Shakedown Problem 0.646 2.42e-04 7.71e-06 2.93e-03
PC von Mises Problem 0.718 2.23e-04 0 3.28e-03

Table 1: Comparison of the final results for all the Cantilever test-case variations.

Based on these results, Table 1 highlights the following:
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• The Elastic Problem gives the best result (EC) with respect to the mass (volume). However, since no
constraints were set on the stress, the von Mises function σV M(Ae(u) exceeds the yield stress (with σV M
locally reaching 5.36σ2

Y , see Figure 11) and the function CM is far above 0. This corresponds with the
expectations since the optimization algorithm did not consider any constraint on the effective von Mises
stresses.

• The von Mises Problem (PC) results in a higher mass than in the Elastic Problem (+23.4%). Actually,
this mass is the highest of all of the results. However, the von Mises function remains mostly under
the yield stress (red part in the von Mises graphs in Figure 11) and the function CM is very close to
0. Note that this value is not exactly 0. Indeed, the constraints are dealt with using an Augmented
Lagrangian Method which has the particularity that the constraints will only be satisfied at convergence.
However, the code has to be stopped after a finite number of iterations which explains the non zero
values. Changing the mode of constraints integration is a topic for future work (see Section 7).

• Without any shape modification, the Stress-only optimization (RC) has the same final mass (volume) as
in the Elastic Problem (EC). However, the introduction of the stress variable allows for a decrease of the
von Mises function and the red area in Figure 11k is smaller. Note that the residual stress is different
from zero on the top left and the bottom right corners, where the von Mises function in Figure11(i)
slightly exceeded the yield stress.

• The Shakedown Problem (SHC) results in a mass greater than the Elastic Problem (+11.0%) but smaller
than in the von Mises Problem (-10%). Indeed, the introduction of the stress variable allowed for more
freedom to make the von Mises function remain below the yield stress. Note that in this case again, the
final residual stress is different from zero in the top left and bottom right corners (Figure 11l).

5.4.2 L-Bracket

We also consider the L-Bracket problem that is often used as a test-case in stress-based topology optimiza-
tion. The working domain is a L-shape defined by a square domain of size 2.5 from which a square of size
1.5 has been removed from the top right upper corner. It is meshed with 28,800 triangular elements (see
Figure 12). The upper side constitutes the Dirichlet boundary ΓD. The loading is applied on the middle of
the right side (centered about a segment of size 0.1). The relevant material properties and design parameters
(non-dimensional) are the following: Young’s modulus E = 1, Poisson’s ratio ν = 0.30, yield stress σY = 20,
and loading g = (0,−10). The coefficient chosen for the norm is p = 16 (see eq. (9)) and the regularization
coefficient is α = 5∆x (see eq. (38)).

(a) L-Bracket test-case (b) Initial shape (Case ILB)

Figure 12

In each of the following cases, the compliance multiplier lC is arbitrarily fixed to 0.01. For the Elastic problem,
the optimization process is initialized as shown in Figure 12 (black is solid and white is void). Then, the
optimization is run with a tolerance initialized to 2 and multiplied by 0.9 every 100 iterations. The test-case is
stopped after 499 iterations (chosen with respect to the evolution of the objective function, see Figure 13). In
the following, the result of the “Elastic Problem” for the L-Bracket is referred to as “ELB”.

Each of the remaining cases is initialized by the result of the Elastic Problem (after a regularization has
been applied, eq.43). In the von Mises optimization, the Augmented Lagrangian coefficients are initialized to
λlag = 10000 and µlag = 0. The tolerance is in this case also initialized to 1.2 and multiplied by 0.9 every 100
iterations. The test-case is stopped after 300 iterations (see Figure 14 for the convergence) and the results are
referred to as “PLB”.
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(a) Mass evolution (b) Compliance evolution

Figure 13: Evolution of the mass and compliance with respect to iterations for the Elastic Problem in the
L-Bracket case

(a) Mass evolution (b) Compliance evolution (c) Constraint CM evolution

Figure 14: Evolution of the mass, compliance and constraint CM with respect to iterations for the Von Mises
Problem in the L-Bracket case.

The “Stress-only Problem” is initialized by the result of the Elastic Problem and the stress field ρ = 0. The
coefficients l0 and lM are both set to 1. The tolerance is set to 1 (descent only is accepted) and the test-case is
stopped after 300 iterations (see Figure 15 for the convergence). In the following, the result of the “Stress-only
Problem” for the L-Bracket is referred to as “RLB”.

(a) Function C0 evolution (vertical log
scale)

(b) Function CM evolution (vertical log
scale)

Figure 15: Evolution of the functions C0 and CM with respect to iterations for the Stress-Only Problem in the
L-Bracket case

Finally, the Shakedown Problem is initialized by the result of the Elastic Problem and the stress field
ρ = 0. The coefficients l0 and lM are both set to 1 and the tolerance of the inner loop, focusing on the stress
optimization, is set to 1 and stopped after 50 iterations. The Augmented Lagrangian multipliers are initialized
to λlag,0 = λlag,M = 10000 and µlag,0 = µlag,M = 0. The optimization is stopped after 88 iterations and the
results are referred to as “SHLB”. In this case again, the convergence is not reached at this iteration (88) but the
final volume and the constraints CM are smaller than in the von Mises Problem and the constraint C0 remains
very small. The evolution of the mass, compliance, C0 and CM with respect to the optimization is shown in
Figure 16.

The results are summarized in Figure 17 and Table 2. In Figure 17, each row represents one optimization
case (ELB, PLB, RLB and SHLB). On the first column, the shape Ω resulting of each optimization is displayed
(note that the shape is the same for ELB and RLB since the optimization of the Stress-only Problem was initial-
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(a) Mass evolution (b) Compliance evolution

(c) Function C0 evolution (d) Function CM evolution

Figure 16: Evolution of the functions mass, compliance, C0 and CM with respect to iterations for the
Shakedown Problem in the L-Bracket case

ized by the result of the Elastic Problem and did not involve the shape). On the second column, the von Mises
function of the residual stress ρ is shown (note that since this was not an optimization variable for the Elastic
and von Mises problems, there are no pictures for the two first rows and the residual stress field is kept at 0
during the optimization). On the third column, the von Mises function of the stress ρ +Ae(u) is displayed
(equal to Ae(u) for the two first columns). In each of the von Mises figures, the color scale gives the value
of the von Mises function at each point. The color is red if the value is greater than, or equal to, the yield
stress σY . Table 2 gives the final values of the volume, the compliance and the constraints C0 and CM for each
test-case.

Case Description Volume Compliance C0 CM
ELB Elastic Problem 1.64 192 0 9.91e-04
RLB Stress only Problem 1.64 192 6.19e-06 8.89e-06

SHLB Shakedown Problem 1.65 191 8.46e-08 8.56e-08
PLB von Mises Problem 1.67 201 0 6.41e-06

Table 2: Comparison of the final results for all the L-Bracket test-case variations.

Based on these results, Table 2 highlights the following:

• Here again, the Elastic Problem gives the best result (ELB) with respect to the mass (volume). Note
that the von Mises function is extremely high in the internal corner of the L-bracket (with σV M reaching
2.54σ2

Y see Figure 17, which is actually the only point at which the von Mises function is above the yield
stress).

• The von Mises Problem (PLB) results in a higher mass (volume) than in the Elastic Problem (+1.8%). In
this case again, this mass is the worst. However, the difference is a lot smaller than in the cantilever case
which is mainly due to the stress accumulation at the internal corner which complicates the optimization
(see [81] for further details). Note that, in order to reduce the stress in this corner, the algorithm has
actually removed some material from this corner to smooth the shape.

• In the Stress-only optimization (RLB), the introduction of the stress variable allows for a decrease of the
von Mises function and the red area in Figure 17i is smaller. Note that this residual stress is not zero at
the internal corner, which is expected.

• The Shakedown Problem (SHC) results in a mass (volume) greater than the Elastic Problem (+0.61%)
but smaller than in the von Mises Problem (-1.20%). The difference is again very small. Note that in
this case too, the final residual stress is non-zero in the top left and bottom right corners (Figure 17l) .
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6 Discussion
The performance benefits of designing to shakedown have been demonstrated for cases with prescribed load-
ing levels in Section 5 and Figures 11 and 17. The results follow the expectations outlined at the end of
Section 5.3.3. Indeed, ordering the various test-cases in terms of largest to smallest volume (mass) as is done
in Table 1 and Table 2, one can see that the shakedown result is always between the relatively unconstrained
elastic result and the von Mises constrained ones. Note that since no shape modification is allowed in the
Stress-Only optimization, it is not relevant to compare its mass. In addition, the constraint on plastic behav-
ior
(

σV M

(
ρ+Ae(u)

σ2
Y

))
for shakedown (ρ 6= 0) are quite similar to those in the von Mises constrained cases

(ρ = 0), and lower than for the Elastic Problem and for the Stress-Only Problem. The results presented here
are based on a relatively straightforward optimization process and it would be of interest to improve the opti-
mization set-up. Indeed, elasto-plastic shape optimization is still being developed and, using better techniques,
it could be possible to get closer to the global minima. This would lead to improved final designs and quantifi-
cation of the mass reduction provided by the use of shakedown. Moreover, the loading and test cases chosen
here are quite academic: this work could be expanded, for example, to identify durability benefits from shake-
down for structures subject to uncertain loading levels (within a given envelope). Nevertheless, even with these
simple test-cases, it is quite clear that the inclusion of shakedown constraints for lightweighting and durability
has further potential to be explored.

Another design consideration that should be taken into account in future work is the allowable levels of
deformation. Allowing shakedown of the material better leverages a material’s load-bearing reserve, however
the limited plastic accumulation experienced may, in some cases, lead to unacceptable permanent structural
deformations. As the lower bound shakedown limit theorem applied in this study does not include informa-
tion about the load-history and path-dependent effects that classical incremental approaches provide, additional
constraints on allowable deformations may not be directly applied. Instead future research efforts could exploit
several bounding techniques from above for shakedown deformations that have been developed and surveyed
[26, 54, 60, 83, 84, 86, 59, 17, 58]. Finally, while the work presented here is subject to the same assumptions
made for use of Melan’s Lower Bound Theorem (see Section 2.1), it is also of interest to incorporate exten-
sions of Melan’s theorem or alternative shakedown analysis techniques in shape and topology optimization
frameworks for temperature-dependent properties, hardening, creep, damage, nonlinear geometry effects, and
others [78, 76, 24, 13, 1, 54, 102, 101, 80, 103].

7 Conclusions
A new approach for incorporating classic plastic design theorems (Melan’s lower bound for shakedown) in
modern topology opmitimzation is presented. The approach uses level set based topology optimization to
capitolize on the mathematical freedom granted by Melan’s theorem, in which only the existence of certain
residual stress fields based on elastic solutions are required to guarantee asymptotic elastoplastic behavior
(shakedown). Cantilever and L-Bracket test-cases are used to demonstrate the utility of designing to shake-
down instead of first-yield (using a traditional von Mises constraint). In both problems under prescribed
loading conditions, reductions in weight (volume) are identified (−10% for the Cantilever and −1% for the
L-Bracket), motivating the further development of such design frameworks.
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[65] E Melan. “Zur Plastizität des räumlicken Kontinuums”. In: Ing. Arch. 8 (1938), pp. 116–126.

[66] G Michailidis. “Manufacturing Constraints and Multi-Phase Shape and Topology Optimization via a
Level-Set Method”. PhD. Ecole Polytechnique, 2014, pp. 1–277.

[67] P Michaleris, DA Tortorelli, and CA Vidal. “Tangent operators and design sensitivity formulations for
transient non-linear coupled problems with applications to elastoplasticity”. In: International Journal
for Numerical Methods in Engineering 37.14 (1994), pp. 2471–2499.

[68] F Murat and J Simon. “Etude de Problemes d’optimal Design”. In: Optimization Techniques Mod-
eling and Optimization in the Service of Man Part 2. Ed. by G Goos et al. Vol. 41. Springer Berlin
Heidelberg, 1976, pp. 54–62.

[69] F Murat and J Simon. “Sur le contrôle par un domaine géométrique”. In: Publication du Laboratoire
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Figure 17: Summary of the L-Bracket results.
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