
HAL Id: hal-02935501
https://hal.science/hal-02935501

Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Maximum Stable Set Can Be Solved in FPT Time
Edouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, Rémi Watrigant

To cite this version:
Edouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, Rémi Watrigant. When Maximum Stable
Set Can Be Solved in FPT Time. 30th International Symposium on Algorithms and Computation
(ISAAC 2019), Dec 2019, Shanghai, China. �10.4230/LIPIcs.ISAAC.2019.49�. �hal-02935501�

https://hal.science/hal-02935501
https://hal.archives-ouvertes.fr


When Maximum Stable Set Can Be Solved in
FPT Time
Édouard Bonnet
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
edouard.bonnet@ens-lyon.fr

Nicolas Bousquet
CNRS, G-SCOP laboratory, Grenoble-INP, France
nicolas.bousquet@grenoble-inp.fr

Stéphan Thomassé
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
Institut Universitaire de France
stephan.thomasse@ens-lyon.fr

Rémi Watrigant
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
remi.watrigant@ens-lyon.fr

Abstract
Maximum Independent Set (MIS for short) is in general graphs the paradigmatic W [1]-hard
problem. In stark contrast, polynomial-time algorithms are known when the inputs are restricted to
structured graph classes such as, for instance, perfect graphs (which includes bipartite graphs, chordal
graphs, co-graphs, etc.) or claw-free graphs. In this paper, we introduce some variants of co-graphs
with parameterized noise, that is, graphs that can be made into disjoint unions or complete sums by
the removal of a certain number of vertices and the addition/deletion of a certain number of edges
per incident vertex, both controlled by the parameter. We give a series of FPT Turing-reductions
on these classes and use them to make some progress on the parameterized complexity of MIS in
H-free graphs. We show that for every fixed t > 1, MIS is FPT in P (1, t, t, t)-free graphs, where
P (1, t, t, t) is the graph obtained by substituting all the vertices of a four-vertex path but one end of
the path by cliques of size t. We also provide randomized FPT algorithms in dart-free graphs and in
cricket-free graphs. This settles the FPT/W[1]-hard dichotomy for five-vertex graphs H.
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1 Introduction

A stable set or independent set in a graph is a subset of vertices which are pairwise non-adjacent.
Finding an independent set of maximum cardinality, called Maximum Independent Set
(or MIS for short), is not only NP-hard to solve [19] but also to approximate within ratio
n1−ε [24, 39]. One can then wonder if efficient algorithms exist with the additional guarantee
that k, the size of the maximum stable set, is fairly small compared to n, the number of
vertices of the input (think, for instance, k 6 logn). It turns out that, for any computable
function h = ω(1) (but whose growth can be arbitrarily slow), MIS is unlikely to admit
a polynomial-time algorithm even when k 6 h(n). In parameterized complexity terms,
MIS is W [1]-hard [17]. More quantitatively, MIS cannot be solved in time f(k)no(k) for
any computable function f , unless the Exponential Time Hypothesis fails. This is quite
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49:2 When Maximum Stable Set Can Be Solved in FPT Time

a statement when a trivial algorithm for MIS runs in time nk+2, and a simple reduction
to triangle detection yields a nωk

3 +O(1)-algorithm, where ω is the best exponent known for
matrix multiplication.

It thus appears that MIS on general graphs is totally impenetrable. This explains why
efforts have been made on solving MIS in subclasses of graphs. The most emblematic result
in that line of works is a polynomial-time algorithm in perfect graphs [21]. Indeed, perfect
graphs generalize many graph classes for which MIS is in P: bipartite graphs, chordal graphs,
co-graphs, etc. In this paper, we put the focus on classes of graphs for which MIS can be
solved in FPT time (rather than in polynomial-time). For graphs with bounded degree ∆,
the simple branching algorithm has FPT running time (∆ + 1)knO(1). The same observation
also works more generally for graphs with bounded average degree, or even d-degenerate
graphs. A non-trivial result is that MIS remains FPT in arguably the most general class
of sparse graphs, nowhere dense graphs. Actually, deciding first-order formulas of size k
can be done in time f(k)n1+ε on any nowhere dense class of graphs [20]. Since MIS and
the complement problem, Maximum Clique, are both expressible by a first-order formula
of length O(k2), ∃v1, . . . , vk

∧
i,j(¬)E(vi, vj), there is an FPT algorithm on nowhere dense

graphs and also on complements of nowhere dense graphs. A starting point of the present
paper is to design FPT Turing-reductions in classes containing both very dense and very
sparse graphs.

Co-graphs with parameterized noise. If G and H are two graphs, we can define two new
graphs: G ∪H, their disjoint union, and G ⊕H their (complete) sum, obtained from the
disjoint union by adding all the edges from a vertex of G to a vertex of H. Then, the
hereditary class of co-graphs can be inductively defined by: K1 (an isolated vertex) is a
co-graph, and G∪H and G⊕H are co-graphs, if G and H are themselves co-graphs. So the
construction of a co-graph can be seen as a binary tree whose internal nodes are labeled by ∪
or ⊕, and leaves are K1. Finding the tree of operations building a given co-graph, sometimes
called co-tree, can be done in linear time [11]. This gives a simple algorithm to solve MIS on
co-graphs: α(K1) = 1, α(G ∪H) = α(G) + α(H), and α(G⊕H) = max(α(G), α(H)).

We add a parameterized noise to the notion of co-graphs. More precisely, we consider
graphs that can be made disjoint unions or complete sums by the deletion of g(k) vertices
and the edition (i.e., addition or deletion) of d(k) edges per incident vertex. We design
a series of FPT Turing-reductions on several variants of these classes using the so-called
iterative expansion technique [10, 4], Cauchy-Schwarz-like inequalities, and Kővári-Sós-Turán’s
theorem. This serves as a crucial foundation for the next part of the paper, where we explore
the parameterized complexity of MIS in H-free graphs (i.e., graphs not containing H as an
induced subgraph). However, we think that the FPT routines developed on co-graphs with
parameterized noise may also turn out to be useful outside the realm of H-free graphs.

Classical and parameterized dichotomies in H-free graphs. The question of whether MIS
is in P or NP-complete in H-free graphs, for each connected graph H, goes back to the early
eighties. However, a full dichotomy is neither known nor does it seem within reach in the
near future. For three positive integers i, j, k, let Si,j,k be the tree with exactly one vertex of
degree three, from which start three paths with i, j, and k edges, respectively. The claw is
the graph S1,1,1, thus {Si,j,k}i6j6k is the set of all the subdivided claws. We denote by P`
the path on ` vertices.

If G′ is the graph obtained by subdividing each edge of a graph G exactly 2t times,
Alekseev observed that α(G′) = α(G) + t|E(G)| [1]. This shows that MIS remains NP-
hard on graphs which locally look like paths or subdivided claws (one can perform the
subdivision on sub-cubic graphs G, on which MIS remains NP-complete). In other words,
if a connected graph H is not a path nor a subdivided claw then MIS is NP-complete
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on H-free graphs [1]. The MIS problem is easy on P4-free graphs, which are exactly the
co-graphs. Already on P5-free graphs, a polynomial algorithm is much more difficult to
obtain. This was done by Lokshtanov et al. [28] using the framework of potential maximal
cliques. A quasi-polynomial algorithm was proposed for P6-free graphs [27], and recently, a
polynomial-time algorithm was found by Grzesik et al. [22]. Brandstädt and Mosca showed
how to solve MIS in polynomial-time on (P7, triangle)-free graphs [8]. This result was then
generalized by the same authors on (S1,2,4, triangle)-free graphs [9], and by Maffray and
Pastor on (P7, bull1)-free graphs (as well as (S1,2,3, bull)-free graphs) [33]. Bacsó et al. [3]
presented a subexponential-time 2O(

√
tn logn)-algorithm in Pt-free graphs, for every integer t.

Nevertheless, the classical complexity of MIS remains wide open on Pt-free graphs, for t > 7.
On claw-free graphs MIS is known to be polynomial-time solvable [36, 37]. Recently, this

result was generalized to `claw-free graphs [7] (where `claw is the disjoint union of ` claws).
On fork-free graphs (the fork is S1,1,2) MIS admits a polynomial-time algorithm [2], and
so does its weighted variant [31]. The complexity of MIS is open for S1,1,3-free graphs and
S1,2,2-free graphs, and there is no triple i 6 j 6 k, for which we know that MIS is NP-hard
on Si,j,k-free graphs. Some subclasses of Si,j,k-free graphs are known to admit polynomial
algorithms for MIS: for instance (S1,1,3,Kt,t)-free graphs [15], subcubic S2,t,t-free graphs
[23] (building upon [32], and generalizing results presented in [34, 35] for subcubic planar
graphs), bounded-degree tS1,t,t-free graphs [30], for any fixed positive integer t. This leads
to the following conjecture:

I Classical MIS Dichotomy Conjecture(H). For every connected graph H,
Maximum Independent Set in H-free graphs is in P iff H ∈ {P`}` ∪ {Si,j,k}i6j6k.

An even stronger conjecture is postulated by Lozin (see Conjecture 1 in [29]). Dabrowski
et al. initiated a systematic study of the parameterized complexity of MIS on H-free graphs
[13, 14]. In a nutshell, parameterized complexity aims to design f(k)nO(1)-algorithms (FPT
algorithm, for Fixed-Parameter Tractable), where n is the size of the input, and k is the
size of the solution (or another well-chosen parameter), for most often NP-hard problems.
The so-called W -hierarchy (and in particular, W [1]-hardness) and the Exponential Time
Hypothesis (ETH) both provide a framework to rule out such a running time. We refer
the interested reader to two recent textbooks [17, 12] and to a survey on the ETH and its
consequences [26]. In the language of parameterized complexity, the dichotomy problem is
the following:

I Parameterized MIS Dichotomy(H). Is MIS (randomized) FPT or W [1]-hard in H-free
graphs?

This question may be even more challenging than its classical counterpart. Indeed, there
is no FPT algorithm known for the classical open cases: P7-, S1,1,3-, and S1,2,2-free graphs.
Besides, the reduction of Alekseev [1] that we mentioned above does not show W [1]-hardness.
Thus, there are a priori more candidates H for which the parameterized status of MIS is
open. For instance, by Ramsey’s theorem, MIS is FPT on Kt-free graphs, for any fixed t.
Observe that a randomized FPT algorithm for a W[1]-hard problem is highly unlikely, as it
would imply a randomized algorithm solving 3-SAT in subexponential time.

Dabrowski et al. showed that MIS is FPT2 in H-free graphs, for all H on four vertices,
except H = C4 (the cycle on four vertices). Thomassé et al. presented an FPT algorithm on
bull-free graphs [38], whose running time was later improved by Perret du Cray and Sau [18].

1 The bull is obtained by adding a pendant neighbor to two distinct vertices of the triangle (K3).
2 Here and in what follows, the parameter is the size of the solution.
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Bonnet et al. provided three variants of a parameterized counterpart of Alekseev’s reduction
[4, 5]. Although the description of the open cases (see Figure 1) is not nearly as nice and
compact as for the classical dichotomy, it is noteworthy that they almost correspond to paths
and subdivided claws where vertices are blown-up into cliques.

And Or
And

Figure 1 The dotted edge represents a path with at least one edge. The filled vertices emphasize
two vertices with degree at least three in a tree. The rounded boxes are cliques. A red edge
corresponds to a complete bipartite minus at most one edge. A blue edge correspond to a 2K2-free
bipartite graph. The FPT connected candidates H have to be chordal, without induced K1,4 or
trees with two branching vertices (i.e., vertices of degree at least 3), and have to fit on a path with
at most one blue edge (and the rest of red edges) or both in a subdivided claw and a line-graph of a
subdivided claw with red edges only. A further restriction in the line-graph of subdivided claw is
that three vertices each in a different clique of the triangle of red edges cannot induce a K1 ∪K2

(see [4]).

Let us make that idea more formal. Substituting a graph H at a vertex v of a graph G
gives a new graph with vertex set (V (G) \ {v}) ∪ V (H), and the same edges as in G and H,
plus all the edges xy where x ∈ V (H), y ∈ V (G), and vy ∈ E(G). For a sequence of positive
integers a1, a2, . . . , a`, we denote by P (a1, a2, . . . , a`) the graph obtained by substituting a
clique Kai at the i-th vertex of a path P`, for every i ∈ [`]. We also denote by T (a, b, c) the
graph obtained by substituting a clique Ka, Kb, and Kc to the first, second, and third leaves,
respectively, of a claw. Thus, T (1, 1, 1) is the claw and T (1, 1, 2) is called the cricket (see
Figure 3d).

We show in this paper that MIS is (randomized) FPT in T (1, 1, 2)-free graphs (or cricket-
free graphs). This is in sharp contrast with the W [1]-hardness for T (1, 2, 2)-free graphs [5]
(see Figure 2e). It disproves a seemingly reasonable conjecture that FPTness is preserved
by adding a true twin to a vertex of H. We thus have a fairly good understanding of the
parameterized complexity of MIS when H is obtained by substituting cliques on a claw.
We therefore turn towards the graphs H obtained by substituting cliques on a path. MIS
was shown FPT on P (t, t, t)-free graphs [4]. A natural next step is to attack the following
conjecture.

I Conjecture 1. For any integer t, MIS can be solved in FPT time in P (t, t, t, t)-free graphs.

We denote by P`(t) the graph P (t, t, . . . , t) where the sequence t, t, . . . , t is of length `.
We further conjecture the following, which is a far more distant milestone.

I Conjecture 2. For any integers t and `, MIS is FPT in P`(t)-free graphs.

Let us recall though that the parameterized complexity of MIS is open in P7-free graphs,
and no easy FPT algorithm is known on P5-free graphs. In general, we believe that there
will be very few connected candidates (as described by Figure 1) which will not end up in
(randomized) FPT. As a first empirical evidence, we show that the four candidates remaining
among the 34 graphs on five vertices indeed all lead to (randomized) FPT algorithms.
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(a) The net. (b) The chain of four triangles with or
without the dash-dotted edge.

(c) The triforce.

(d) Gem ∪K1 . (e) T1,2,2 = W4 ∪K1.

Figure 2 Some connected chordal K1,4-free graphs H for which H-free MIS is W [1]-hard (see [4]).
These graphs do not fit the candidate forms of Figure 1 for subtle reasons and illustrate how delicate
the parameterized dichotomy promises to be. In particular, observe that MIS is W [1]-hard on
T (1, 2, 2)-graphs, whereas we will show in this paper that it is FPT in T (1, 1, 2)-graphs (a.k.a.
cricket-free graphs).

(a) P̄ . (b) Kite. (c) Dart. (d) Cricket.

Figure 3 The four (out of 34) remaining cases on five vertices for the FPT/W [1]-hard dichotomy
(see [5]). In this paper, we come up with new tools and solve all of them in (randomized) FPT.

Organization of our results. The rest of the paper is organized as follows. In Section 2,
we introduce FPT Turing-reductions relevant to the subsequent section. In Section 3, we
give a series of FPT algorithms in far-reaching generalizations of co-graphs: graphs where
the deletion of g(k) vertices leads to a separation which is either very sparse or very dense,
in a way that is controlled by the parameter. In this section the proofs of two lemmas
and one theorem, marked with a ? symbol, are deferred to the appendix. In Section 4, we
use these results to obtain an FPT algorithm on P (1, t, t, t)-free graphs for any positive
integer t, taking a stab at Conjecture 1. Observe that this result settles at the same time P
(=P (1, 1, 1, 2)) and the kite (=P (1, 1, 2, 1)). The pseudo-code of the algorithm can be found
in the appendix. In Section 5, we finish the FPT/W [1]-hard classification for five-vertex
graphs by designing randomized FPT algorithms on dart-free graphs and cricket-free graphs.
These results are marked with a ♠ symbol, which means that their proof can only be found
in the long version of the paper [6].

We believe that the results of Section 3 as well as the techniques developed in Sections 4
and 5 may help in settling Conjecture 1. For P (t, t, t, t, t)-free graphs, it is possible that one
will have to combine the framework of potential maximal cliques with our techniques. To
solve Conjecture 2, let alone the full parameterized dichotomy, some new ideas will be needed.
The FPT algorithms of the current paper merely serve for classification purposes, and are not
practical. A possible line of work is to get improved running times for the already established
FPT cases. We also hope that the results of Section 3 will prove useful in a context other
than H-free graphs.

ISAAC 2019



49:6 When Maximum Stable Set Can Be Solved in FPT Time

2 Preliminaries

Here, we introduce some basics about graph notations, Ramsey numbers, and FPT algorithms.

2.1 Notations
For any pair of integers i 6 j, we denote by [i, j] the set of integers {i, i+ 1, . . . , j− 1, j}, and
for any positive integer i, [i] is a shorthand for [1, i]. We use the standard graph terminology
and notations [16]. All our graphs are finite and simple, i.e., they have no multiple edge nor
self-loop. For a vertex v, we denote by N(v) the set of neighbors of v, and N [v] := N(v)∪{v}.
For a subset of vertices S, we set N(S) :=

⋃
v∈S N(v) \ S and N [S] := N(S) ∪ S. The

degree (resp. co-degree) of a vertex v is |N(v)| (resp. |V \N [v]|). If G is a graph and X is
a subset of its vertices, G[X] is the subgraph induced by X and G−X is a shorthand for
G[V (G) \X]. We denote by α(G) the independence number, that is the size of a maximum
independent set. If H and G are two graphs, we write H ⊆i G to mean that H is an induced
subgraph of G, and H ⊂i G if H is a proper induced subgraph of G. We denote by K`, P`,
C`, the clique, path, cycle, respectively, on ` vertices, and by Ks,t the complete bipartite
graph with s vertices on one side and t, on the other. The claw is K1,3, and the paw is the
graph obtained by adding one edge to the claw. If H is a graph and t is a positive integer,
we denote by tH the graph made of t disjoint copies of H. For instance, 2K2 corresponds to
the disjoint union of two edges. We say that a class of graphs C is hereditary if it is closed by
induced subgraph, i.e., ∀H,G, (G ∈ C ∧H ⊆i G)⇒ H ∈ C.

2.2 Ramsey numbers
For two positive integers a and b, R(a, b) is the smallest integer such that any graph with at
least that many vertices has an independent set of size a or a clique of size b. By Ramsey’s
theorem, R(a, b) always exists and is no greater than

(
a+b
a

)
. For the sake of convenience, we

set Ram(a, b) :=
(
a+b
a

)
=
(
a+b
b

)
. We will use repeatedly a constructive version of Ramsey’s

theorem.

I Lemma 3 (folklore). Let a and b be two positive integers, and let G be a graph on at least
Ram(a, b) vertices. Then an independent set of size a or a clique of size b can be found in
linear time.

Proof. We show this lemma by induction on a+ b. For a = 1 (or b = 1), any vertex of G
works (it is a clique and an independent set at the same time). And G is non-empty since it
has at least

(1+b
1
)
(or

(
a+1

1
)
) vertices. We assume a, b > 2 and consider any vertex v of G.

Let G1 := G−N [v] and G2 := G[N(v)], so |V (G)| = 1 + |V (G1)|+ |V (G2)|.
Since |V (G)| >

(
a+b
a

)
=
(
a+b−1
a−1

)
+
(
a+b−1
a

)
, it cannot be that both |V (G1)| 6 Ram(a−

1, b)− 1 and |V (G2)| 6 Ram(a, b− 1)− 1. If G1 has at least Ram(a− 1, b) vertices, we find
by induction an independent set I of size a − 1 or a clique of size b. Thus I ∪ {v} is an
independent set of size a in G. If instead G2 has at least Ram(a, b − 1) vertices, we find
by induction an independent set of size a or a clique C of size b − 1. Thus C ∪ {v} is an
independent set of size b in G. J

For two positive integers a and b, we denote by Rama(b) the smallest integer n such that
any edge-coloring of Kn with a colors has a monochromatic clique of size b. In particular,
Ram2(b) = Ram(b, b) (one color for the edges, and one color for the non-edges). Again,
Rama(b) always exists and a monochromatic clique of size b in an a-edge-colored clique of
size at least Rama(b) can be found in polynomial-time (whose exponent does not depend on
a and b).
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2.3 FPT Turing-reductions
For an instance (I, k) of MIS, let yes(I, k) be the Boolean function which equals True if and
only if (I, k) is a positive instance.

I Definition 4. A decreasing FPT g-Turing-reduction is an FPT algorithm which, given
an instance (I, k), produces ` := g(k) instances (I1, k1), . . . , (I`, k`), for some computable
function g, such that:

(i) yes(I, k) ⇔ φ(yes(I1, k1), . . . , yes(I`, k`)), where φ is a fixed FPT-time checkable
formula3,
(ii) |Ij | 6 |I| for every j ∈ [`], and
(iii) kj 6 k − 1 for every j ∈ [`].

Note that conditions (ii) and (iii) prevent the instance size from increasing and force the
parameter to strictly decrease, respectively.

I Lemma 5. Assume there is a decreasing FPT g-Turing-reduction for MIS on every
input (G ∈ C, k), running in time h(k)|V (G)|γ (this includes the time to check φ). Let
f : [k − 1] → N be a non-decreasing function. If any instance (H, k′) with k′ < k can be
solved in time f(k′)|V (H)|c with c > γ, then MIS can be solved in FPT time f(k)|V (G)|c in
C, with f(k) := h(k) + g(k)f(k − 1).

Proof. We show the lemma by induction. If k = 1, this is immediate. We therefore assume
that k > 2. We apply the decreasing FPT g-Turing-reduction to (G, k). That creates at most
g(k) instances with parameter at most k− 1. We solve each instance in time f(k− 1)nc with
n := |V (G)|. The overall running time is bounded by h(k)nγ + g(k)f(k − 1)nc 6 f(k)nc by
extending the partial function f with f(k) := h(k) + g(k)f(k − 1). J

This corollary follows by induction on the parameter k.

I Corollary 6. If MIS admits a decreasing FPT g-Turing-reduction on a hereditary class,
then MIS can be solved in FPT time in C.

I Definition 7. An improving FPT g-Turing-reduction is an FPT time h(k)|V (G)|γ al-
gorithm which, given an instance (I, k), produces some instances (I1, k1), . . . , (I`, k`), and
can check a formula φ, such that:

(i) yes(I, k)⇔ φ(yes(I1, k1), . . . , yes(I`, k`)), and
(ii) ∃c0, f0, ∀c > c0, f ∈ Ω(f0), h(k)|V (G)|γ +

∑
j∈[`]

f(kj)|Ij |c 6 f(k)|I|c.

I Lemma 8. Assume there is an improving FPT g-Turing-reduction for MIS on every input
(I ∈ C, k), producing in time h(k)|I|γ , some instances (I1, k1), . . . , (I`, k`). If each instance
(Ij , kj) can be solved in time h(kj)|Ij |c

′ , then MIS can be solved in FPT time in C.

Proof. Let c := max(c0, c
′) and f := max(f0, h), for the c0 and f0 of Definition 8. A

fortiori, instances (Ij , kj) can be solved in time f(kj)|Ij |c. We call the Turing-reduction on
(I, k), solve every subinstances (Ij , kj), and check φ. By item (ii), the overall running time
h(k)|V (G)|γ +

∑
j∈[`]

f(kj)|Ij |c is bounded by f(k)|I|c. By item (i), this decides (I, k). J

When trying to compute MIS in FPT time, one can assume that there is no vertex of
bounded degree or bounded co-degree (in terms of a function of k).

3 By FPT-time checkable formula, we mean that there exists an algorithm which takes as input ` Booleans
b1, . . . , b` and tests whether φ(b1, . . . , b`) is true in FPT time parameterized by `.

ISAAC 2019



49:8 When Maximum Stable Set Can Be Solved in FPT Time

I Observation 9. Let (G, k) be an input of MIS with a vertex v of degree g(k) for some
computable function g. Then the instance admits a decreasing FPT Turing-reduction.

Proof. A maximal independent set has to intersect N [v]. So, we can branch on g(k) + 1
instances with parameter k − 1. J

I Observation 10. Let (G, k) be an input of MIS with a vertex v of co-degree g(k) for some
computable function g. Then the instance admits an improving FPT Turing-reduction.

Proof. We can find the vertex v in time ng(k) with n := |V (G)|, and we assume n > 2. By
branching on v, we define two instances (G−N [v], k−1) and (G−{v}, k) (which corresponds
to including v to the solution, or not). The first instance can be further reduced in time
g(k)k−1 (by actually solving it). So the two instances output by the Turing-reduction are
Bool and (G−{v}, k), where Bool is the result of solving (G−N [v], k− 1). The formula φ is
just Bool ∨ yes(G− {v}, k). Let c0 := 2 and f0(k) := g(k)k−1. For all c > c0 and f ∈ Ω(f0),
ng(k) + g(k)k−1 + f(k)(n− 1)c 6 nf(k) + f(k) + f(k)(n− 1)c 6 f(k)(n+ 1 + (n− 1)c) 6
f(k)nc. J

3 Almost disconnected and almost join graphs

We say that a graph is a join or a complete sum, if there is a non-trivial bipartition (A,B) of
its vertex set (i.e. A and B are non-empty) such that every pair of vertices (u, v) ∈ A×B is
linked by an edge. Equivalently, a graph is a complete sum if its complement is disconnected.
In the following subsection, we define a series of variants of complete sums and disjoint
unions in the presence of a parameterized noise.

3.1 Definition of the classes
In all the following definitions, we say that a tripartition (A,B,R) is non-trivial if A and B
are non-empty and |R| < min(|A|, |B|). Notice that we do not assume R is non-empty.

I Definition 11. Graphs in a class C are (g, d)-almost disconnected if there exist two
computable functions g and d, such that for every G ∈ C and k > α(G), there is a non-trivial
tripartition (A,B,R) of V (G) satisfying:
|R| 6 g(k), and
∀v ∈ A, |N(v) ∩B| 6 d(k) and ∀v ∈ B, |N(v) ∩A| 6 d(k).

Similarly, we define a generalization of a complete sum.

IDefinition 12. Graphs in a class C are (g, d)-almost bicomplete if there exist two computable
functions g and d, such that for every G ∈ C and k > α(G), there is a non-trivial tripartition
(A,B,R) of V (G) satisfying:
|R| 6 g(k), and
∀v ∈ A, |B \N(v)| 6 d(k) and ∀v ∈ B, |A \N(v)| 6 d(k).

By extension, if C only contains graphs which are almost disconnected (resp. (g, d)-almost
disconnected, almost bicomplete, (g, d)-almost bicomplete), then we say that C is almost
disconnected (resp. (g, d)-almost disconnected, almost bicomplete, (g, d)-almost bicomplete).
Note that we do not require an almost disconnected or an almost bicomplete class to
be hereditary. For G ∈ C, we call a satisfying tripartition (A,B,R) a witness of almost
disconnectedness (resp. witness of almost bicompleteness).

We define the one-sided variants.
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I Definition 13. Graphs in a class C are one-sided (g, d)-almost disconnected if there exist
two computable functions g and d, such that for every G ∈ C and k > α(G), there is a
non-trivial tripartition (A,B,R) of V (G) satisfying:
|R| 6 g(k),
|B| > kd(k), and
∀v ∈ A, |N(v) ∩B| 6 d(k).

In the above definition, the second condition is purely a technical one. Observe, though,
that any tripartition (A,B,R) with |R| < |B| 6 d(k) trivially satisfies the third condition
(provided |R| < d(k)). So a condition forcing B to have more than d(k) vertices is somehow
needed. Now, we set the lower bound on |B| a bit higher to make Lemma 18 work. Similarly,
we could define the one-sided generalization of a complete sum.

I Definition 14. Graphs in a class C are one-sided (g, d)-almost bicomplete if there exist two
computable functions g and d, such that for every G ∈ C and k > α(G), there is a non-trivial
tripartition (A,B,R) of V (G) satisfying:
|R| 6 g(k),
if there is an independent set of size k, there is one that intersects A, and
∀v ∈ B, |A \N(v)| 6 d(k).

Again, the second condition is there to make Theorem 20 work.

3.2 Improving and decreasing FPT Turing-reductions
The following technical lemma will be used to bound the running time of recursive calls on
two almost disjoint parts of the input.

I Lemma 15. Suppose γ > 0 and c > max(2, γ + 2) are two constants, and n1, n2, n, u are
four positive integers such that n1 + n2 + u = n and min(n1, n2) > u. Then,

nγ + (n1 + u)c + (n2 + u)c < nc.

Proof. First we observe that n2 − ((n1 + u)2 + (n2 + u)2) = n2
1 + n2

2 + u2 + 2(n1n2 + n1u+
n2u) − (n2

1 + 2n1u + u2 + n2
2 + 2n2u + u2) = 2n1n2 − u2 > 2u2 − u2 = u2 > 1. Now,

nc = nc−2n2 > nc−2(1 + (n1 + u)2 + (n2 + u)2) > nc−2(nγ−c+2 + (n1 + u)2 + (n2 + u)2) =
nγ + nc−2(n1 + u)2 + nc−2(n2 + u)2 > nγ + (n1 + u)c + (n2 + u)c. The last inequality holds
since n > n1 + u and n > n2 + u. J

We start with an improving FPT Turing-reduction on almost bicomplete graphs. It finds
a kernel for solutions intersecting both A and B, solves recursively on A ∪R and B ∪R for
the other solutions, and uses Lemma 15 to bound the overall running time.

I Lemma 16. Let C be a (g, d)-almost bicomplete class of graphs. Suppose for every G ∈ C,
a witness (A,B,R) of almost bicompleteness can be found in time h(k)|V (G)|γ . Then, MIS
admits an improving FPT Turing-reduction in C. In particular, MIS can be solved in FPT
time if both (G[A ∪R], k) and (G[B ∪R], k) can.

Proof. We can detect a potential solution S intersecting both A and B in time n2(2d(k) +
g(k))k = n2s(k), with n := |V (G)|, by setting s(k) := (2d(k) + g(k))k−2. We exhaustively
guess one vertex a ∈ S ∩A and one vertex b ∈ S ∩B. For each of these quadratically many
choices, there are at most d(k) non-neighbors of a in B and at most d(k) non-neighbors of b
in A. So the remaining instance G− (N(a) ∪N(b)) has at most 2d(k) + g(k) vertices; hence
the running time.
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We are now left with potential solutions intersecting A but not B, or B but not A. These
are fully contained in A∪R or in B ∪R. Let n1 := |A| and n2 := |B| (so n = n1 + n2 + |R|).
The two last branches just consist of recursively solving the instances (G[A ∪ R], k) and
(G[B ∪R], k). Let c0 := max(4, γ + 2) and f0 := h+ s. For all c > c0 and f ∈ Ω(f0),

h(k)nγ + s(k)n2 + f(k)(n1 + g(k))c + f(k)(n2 + g(k))c

6 f(k)nmax(γ,2) + f(k)(n1 + g(k))c + f(k)(n2 + g(k))c 6 f(k)nc.

The last inequality holds by Lemma 15, since max(γ, 2) + 2 6 c and min(n1, n2) > g(k). The
conclusion holds by Lemma 8. J

If we only have one-sided almost bicompleteness, we need some additional conditions
on the solution: at least one solution should intersect A (see Definition 14). We recall that
H ⊂i G means that H is a proper induced subgraph of G.

I Lemma 17 (?). Let C be a one-sided (g, d)-almost bicomplete class of graphs. Suppose for
every G ∈ C, a witness (A,B,R) of one-sided almost bicompleteness can be found in time
h(k)|V (G)|γ. Then, MIS admits an improving FPT Turing-reduction in C. In particular,
MIS can be solved in FPT time if (G[A ∪R], k) and ∀k′ 6 k − 1, ∀H ⊂i G, (H, k′) all can.

We now turn our attention to almost disconnected classes. For these classes, we obtain
decreasing FPT Turing-reductions, i.e., where the produced instances have a strictly smaller
parameter than the original instance.

I Lemma 18 (?). Let C be a one-sided (g, d)-almost disconnected class of graphs. Suppose
for every G ∈ C, a witness (A,B,R) of one-sided almost disconnectedness can be found in
time h(k)|V (G)|γ . Then, MIS admits a decreasing FPT Turing-reduction in C. In particular,
MIS can be solved in FPT time if ∀k′ 6 k − 1 and ∀H ⊆i G, instances (H, k′) can.

Let B(A,B) be the bipartite graph between two disjoint vertex-subsets A and B (ignoring
the edges internal to A and to B). We can further generalize the previous result to tripartitions
(A,B,R) such that B(A,B) is Kd(k),d(k)-free.

I Definition 19. Graphs in a class C are (g, d)-weakly connected if there exist two computable
functions g and d, such that for every G ∈ C and k > α(G), there is a non-trivial tripartition
(A,B,R) of V (G) satisfying:
|R| 6 g(k),
|A|, |B| > dd(k)d(k)k2d(k)−1e+ 1, and
B(A,B) is Kd(k),d(k)-free.

Again, if we do not require |A| and |B| to be larger than d(k), such a tripartition may
trivially exist. We force A and B to be even larger than that to make the next theorem
work. We show this theorem by combining ideas of the proof of Lemma 18 with the extremal
theory result, known as Kővári-Sós-Turán’s theorem, that Kt,t-free n-vertex graphs have at
most tn2− 1

t edges [25].

I Theorem 20 (?). Let C be a (g, d)-weakly connected class of graphs. Suppose for every
G ∈ C, a witness (A,B,R) of weakly connectedness can be found in time h(k)|V (G)|γ . Then,
MIS admits a decreasing FPT Turing-reduction in C. In particular, MIS can be solved in
FPT time if ∀k′ 6 k − 1 and ∀H ⊆i G, the instance (H, k′) can.

A class of co-graphs with parameterized noise is a hereditary class in which all the graphs
are almost bicomplete or almost disconnected. The following is a direct consequence of the
previous lemmas.
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I Corollary 21. Given an FPT oracle finding the corresponding tripartitions, MIS is FPT
in co-graphs with parameterized noise.

The corollary still holds by replacing almost disconnected by one-sided almost disconnected,
or even by weakly connected.

3.3 Summary and usage
Figure 4 sums up the four FPT Turing-reductions that we obtained on almost disconnected
and almost join graphs.

|R| 6 g(k)

A B

6 d(k)

6 d(k)

(a) Almost bicomplete tri-
partition, A 6= ∅, B 6= ∅.

|R| 6 g(k)

A B

6 d(k)

(b) One-sided almost
bicomplete, S ∩ A 6= ∅
promise.

|R| 6 g(k)

A B

6 d(k)

(c) One-sided almost
disconnected,
|B| > kd(k), A 6= ∅.

|R| 6 g(k)

A B

d(k) d(k)

(d) Weakly connected,
min(|A|, |B|) >
(d(k)k2)d(k).

Figure 4 Summary of the FPT Turing-reductions and their hypotheses, provided we can efficiently
find such tripartitions. For (c) and (d), the FPT Turing-reductions are decreasing, while for (a) and
(b) they are just improving.

We know provide a few words in order to understand how to use these results. An obvious
caveat is that, even if such a tripartition exists, computing it (or even, approximating it)
may not be fixed-parameter tractable. What we hope is that on a class C, we will manage
to exploit the class structure in order to eventually find such tripartitions, in the cases we
cannot conclude by more direct means. One of our main results, Theorem 22, illustrates that
mechanism, when the algorithm is centered around getting to the hypotheses of Lemma 17
or Theorem 20.

4 FPT algorithm in P (1, t, t, t)-free graphs

We denote by P (a, b, c, d) the graph made by substituting the vertices of P4 by cliques of size
a, b, c, and d, respectively. For instance, P (1, 1, 1, 2) is P and P (1, 1, 2, 1) is the kite. We
settle the parameterized complexity of MIS on P -free and kite-free graphs simultaneously
(see Figure 3), by showing that MIS is FPT even in the much wider class of P (1, t, t, t)-free
graphs.

I Theorem 22. For every integer t, MIS is FPT in P (1, t, t, t)-free graphs.

Proof. Let t be a fixed integer, and (G, k) be an input such that G is P (1, t, t, t)-free and
α(G) 6 k. We assume that k > 3, otherwise we conclude in polynomial-time.

The global strategy is the following. First we extract a collection C of disjoint and
non-adjacent cliques with minimum and maximum size requirements, and some maximality
condition. Then we partition the remaining vertices into equivalence classes with respect
to their neighborhood in C. The maximum size imposed on the cliques of C ensures that
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the number of equivalence classes is bounded by a function of k. Setting C and the small4
equivalence classes apart, we show that the rest of the graph is partitionable into (A,B)
such that either B(A,B) is Kd(k),d(k)-free, in which case we conclude with Theorem 20, or
B(A,B) is almost a complete bipartite graph, in which case we conclude with Lemma 17
(see Algorithm 2 in the appendix for the pseudo-code).

As for the running time, we are looking for an algorithm in time f(k)nc for some fixed
constant c > 2, and f an increasing computable function. We see f as a partial function on
[k − 1], and extend it to [k] in the recursive calls.

Building the clique collection C. For technical reasons, we want our collection C to contain
at least two cliques, at least one of which being fairly large (larger than we can allow ourselves
to brute-force). So we proceed in the following way. We find in polynomial-time n8t+O(1) a
2K4t. If G is 2K4t-free, an FPT algorithm already exists [4]. We see these two K4t as the
two initial cliques of our collection. Let X be the set of vertices with less than t neighbors in
at least one of these two K4t. We partition X into at most 28t vertex-sets (later they will
be called subclasses) with the same neighborhood on the 2K4t. If all these sets contain less
than Ram(k + 1, 2kt) vertices, X is fairly small: it contains less than 28tRam(k + 1, 2kt).
The other vertices have at least t neighbors in both K4t. We will show (Lemma 24) that this
implies that these vertices are completely adjacent to both K4t. Hence, vertices in the 2K4t
would have at most 28tRam(k + 1, 2kt) non-neighbors. In that case, we can safely remove
the 2K4t from G, by Observation 10.

So we can safely assume that (eventually) one subclass of X has more than Ram(k+1, 2kt)
vertices. We can find in polynomial-time a clique C2 of size 2kt. We build a new collection
with 3t vertices of the first K4t, that we name C1. We take these vertices not adjacent to C2
(this is possible since vertices in C2 have the same at most t− 1 neighbors in K4t). Now we
have in C a clique C1 of size 3t and a clique C2 of size 2kt.

We say that a clique of C is large if its size is above kt, and small otherwise. We can
now specify the requirements on the collection C.
(1) C is a vertex-disjoint and independent5 collection of cliques.
(2) all the cliques have size at least 3t and at most 2kt.
(3) the number of cliques is at least 2.
(4) if we find a way to strictly increase the number of large cliques in C, we do it.

As α(G) 6 k, the number of cliques in C cannot exceed k. This has two positive
consequences. The first is in conjunction with the way we improve the collection C: by
always increasing the number of large cliques by 1. Therefore, we can improve the collection
C at most k − 1 times. In particular, the improving process of C terminates (in polynomial
time). The second benefit is that the total number of vertices of C is always bounded by
2k2t. Hence, the number of subclasses (sets of vertices with the exact same neighborhood in
C) is bounded by a function of k (and the constant t).

As a slight abuse of notation, C1, . . . , Cs will always be the current collection C (s < k).
We say that a vertex of G− C t-sees a clique Cj of C if it has at least t neighbors in Cj . A
class is a set of vertices t-seeing the same set of cliques of C. A subclass is a a set of vertices
with the same neighborhood in C. Both classes and subclasses partition G− C. Observe
that subclasses naturally refine classes. By extension, we say that a (sub)class t-sees a clique
Ci ∈ C if one vertex or equivalently all the vertices of that (sub)class t-see Ci.

4 the ones whose size is bounded by a later-specified function of k
5 There is no edge between two cliques of the collection.



É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:13

Let η := d(2Ram(k + 1, t))Ram(k+1,t)22Ram(k+1,t)−1e+ 1. We choose this value so that
η2/2 > Ram(k+ 1, t)(2η)2−1/Ram(k+1,t) (it will become clear why in the proof of Lemma 27).
We say that a subclass is big if it has more than max(Ram(k + 1, 2kt), η) = η vertices, and
small otherwise. Since α(G) 6 k, here are two convenient properties on a big subclass:

a clique of size t can be found in polynomial-time, in order to build a potential P (1, t, t, t),
a clique of size 2kt can be found, in order to challenge the maximality of C.

We will come back to the significance of η later.
We can now specify item (4) of the clique-collection requirements. We resume where we

left off the collection C, that is {C1 = K3t, C2 = K2kt}. While there is a big subclass that
does not t-see any large clique of C, we find a clique of size 2kt in that subclass, and add it
to the collection. We then remove the small clique (K3t) potentially left, and in each large
clique of C, we remove from C all neighbors of the subclass (they are at most t− 1 many of
them). This process adds a large clique to C, and decreases the size of the previous large
cliques by at most t− 1. Since the large cliques all enter C with size 2kt, and the number
of improvements is smaller than k, a large clique will remain large throughout the entire
process. Therefore, the number of large cliques in C increases by 1. Since we started with
one large clique among the first two cliques, the number of cliques remains at least 2. Note
that, at each iteration, we update the subclasses with respect to the new collection C (see
Algorithm 1 for the pseudo-code).

Algorithm 1 Routine for computing the clique collection C.

Precondition: k is a positive integer, G is not 2K4t-free, α(G) 6 k

1: function BuildCliqueCollection(G, k):
2: C ← {K4t,K4t} . computed by brute-force
3: if ∃ big subclass not t-seeing both K4t then
4: C2 ← K2kt in the subclass . by Ramsey
5: C1 ← 3t vertices not adjacent to C2 from one of the K4t not t-seen by the subclass
6: C ← {C1, C2}
7: else every big subclasses t-see both K4t
8: vertices in C have bounded co-degree . Lemma 24
9: we can safely delete them . Observation 10
10: and call BuildCliqueCollection(G′, k) with the new graph G′
11: end if
12: while ∃ big subclass not t-seeing any large clique do
13: Cj ← K2kt in the subclass . by Ramsey
14: C ′ ← C \ {small clique} . this is actually done at most once
15: C ′′ ← map(C ′,deleteNeighborsOf(Cj)) . remove Ci ∩N(Cj) from each Ci ∈ C
16: C ← C ′′ ∪ {Cj} . the new C contains one more large clique, Cj .
17: end while
18: return C

19: end function
Postcondition: output C is a collection of at least two (and at most k − 1) pairwise

independent cliques of size between 3t and 2tk, and every big subclass t-sees at least one
large clique (i.e., clique of C of size at least tk).

Small subclasses are set aside as their size is bounded by a function of k. Therefore, from
hereon, all the subclasses are supposed big. We denote by P (I) the class for which I ⊆ [s]
represents the indices of the cliques it t-sees. A first remark is that all the subclasses of P (∅)
are small (so we “get rid of” the whole class P (∅)).
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I Lemma 23. If P ′ is a subclass of P (∅), then |P ′| 6 Ram(k + 1, 2kt).

Proof. P ′ does not t-see any (large) clique of C. So by the maximality property of C, it
cannot contain a clique of size 2kt (see Algorithm 1). In particular, it cannot have more than
Ram(k + 1, 2kt) vertices. J

We turn our attention to classes P (I) with |I| > 1 and their subclasses.

Structure of the classes P (I). We show a series of lemmas explaining how classes are
connected to C and, more importantly, how they are connected to each other. This uses the
ability to build cliques of size t at will, in big subclasses. Avoiding the formation of P (1, t, t, t)
will imply relatively dense or relatively sparse connections between classes P (I) and P (J).

I Lemma 24. If a big subclass t-sees at least two cliques Ci and Cj of C, then all the vertices
of that subclass are adjacent to all the vertices of both cliques.

Proof. We find D, a clique of size t in the subclass. Let Di and Dj be t neighbors of the
subclass in Ci and Cj , respectively. Assume that the subclass has a non-neighbor v ∈ Ci.
Then vDiDDj is a P (1, t, t, t). J

In light of the previous lemma, if |I| > 2, the cliques of C that the class P (I) t-sees are
completely adjacent to P (I).

I Lemma 25. Let I ( J ⊆ [s]. Then, every vertex of P (I) is adjacent to every vertex of
P (J) except at most Ram(k + 1, t).

Proof. Let i ∈ I and j ∈ J \ I. By Lemma 24, all vertices of P (J) are adjacent to all vertices
of Ci ∪ Cj . Suppose, by contradiction, that there is a vertex u ∈ P (I) with more than
Ram(k + 1, t) non-neighbors in P (J). We find a clique D of size t in G[P (J) \N(u)]. Let
Di be t neighbors of u in Ci. Let Dj ⊂ Cj be t neighbors of P (J) which are not neighbors
of u. Such a set Dj necessarily exists since u has at most t− 1 neighbors in Cj , while P (J)
is completely adjacent to Cj , and |Cj | > 3t. Then uDiDDj is a P (1, t, t, t). J

We say that two sets I, J are incomparable if I is not included in J , and J is not included in
I. Recall that B(A,B) stands for the bipartite graph between vertex-set A and vertex-set B.
Let p(t, k) := 22k2t be a crude upper bound on the total number of subclasses.

I Lemma 26. Let I, J ⊆ [s] be two incomparable sets, and P`(I), P`′(J) be any pair of
subclasses of P (I) and P (J), respectively. Then, B(P`(I), P`′(J)) is KRam(k+1,t),Ram(k+1,t)-
free. Hence, B(P (I), P (J)) is Kp(t,k)Ram(k+1,t),p(t,k)Ram(k+1,t)-free.

Proof. Let i ∈ I \ J and j ∈ J \ I. We first assume that one of I, J , say I, has at least two
elements. Suppose, by contradiction, that there is a set BI ⊆ P`(I) and a set BJ ⊆ P`′(J)
both of size Ram(k + 1, t), such that there is no non-edge between BI and BJ . Let u be
a vertex of Cj which is adjacent to P`′(J) but not to P`(I). We find DI , a clique of size
t in G[BI ], and DJ , a clique of size t in G[BJ ]. Let Di be t neighbors of P`(I) in Ci that
are not adjacent to P`′(J). Those t vertices exist since, by Lemma 24, P`(I) is completely
adjacent to Ci (by assumption |I| > 2). And P`′(J) has more than t non-neighbors in Ci.
Then, uDJDIDi is a P (1, t, t, t).

We now have to settle the remaining case: |I| = |J | = 1 (I = {i} and J = {j}). If P`(I)
has at least 2t neighbors in Ci or P`′(J) has at least 2t neighbors in Cj , we conclude as in
the previous paragraph. So we assume that it is not the case. We distinguish two cases.
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Either P`(I) has at least one neighbor in Cj , say u. Let DI be a clique of size t in P`(I),
Di ⊆ Ci be t neighbors of P`(I), and D′i ⊆ Ci be t non-neighbors of P`(I). Di and D′i exist
since P`(I) has between t and 2t− 1 neighbors in Cj , and |Cj | > 3t. Then, uDIDiD

′
i is a

P (1, t, t, t).
Or P`(I) has no neighbor in Cj . Let u be a non-neighbor of P`′(J) in Cj , and Dj ⊆ Cj

be t neighbors of P`′(J). If there is a set BI ⊆ P`(I) and a set BJ ⊆ P`′(J) both of size
Ram(k + 1, t), such that BI and BJ are completely adjacent to each other. We can find
DI , a clique of size t in G[BI ], and DJ , a clique of size t in G[BJ ]. Then, uDjDJDI is a
P (1, t, t, t). This implies that, in any case, there cannot be a Kp(t,k)Ram(k+1,t),p(t,k)Ram(k+1,t)
in B(P (I), P (J)). J

We say that the sets I and J overlap if all three of I ∩ J , I \ J , J \ I are non-empty.

I Lemma 27. Let I, J ⊆ [s] be two overlapping sets. Then, at least one of P (I) and P (J)
have only small subclasses.

Proof. Suppose, by contradiction, that there is a big subclass P`(I) of P (I), and a big
subclass P`′(J) of P (J). Observe that, for I and J to overlap, their size should be at least 2.
Let i ∈ I \ J , j ∈ J \ I, h ∈ I ∩ J . By the arguments of Lemma 25 applied to the restriction
to P (I), P (J), Ch, and Cj , a vertex in P (I) has at most Ram(k + 1, t) non-neighbors in
P (J). Let us consider η vertices in P`(I) and η vertices in P`′(J). Since η > 2Ram(k + 1, t),
the previous observation implies that the number of edges between them is at least η2/2.
But by Lemma 26, the bipartite graph linking them should be KRam(k+1,t),Ram(k+1,t)-
free. By Kővári-Sós-Turán’s theorem, this number of edges is bounded from above by
Ram(k + 1, t)(2η)2−1/Ram(k+1,t) < η2/2, a contradiction. J

Hence, the remaining (not entirely made of small subclasses) classes define a laminar6
set-system. We denote by R the union of the vertices in all the small subclasses and C. We
now add a new condition to be a small subclass (condition that we did not need thus far). A
subclass is also small if it has at most |R| vertices. Note that this condition can snowball.
But eventually R has size bounded by g(k) := 2p(t,k)(p(t, k)η + 2k2t). A class is remaining if
it contains at least one big subclass. By Lemma 23, P (∅) cannot be remaining. If no class is
remaining, then the whole graph is a kernel. So we can assume that there is at least one
remaining class. Let P (I) be a remaining class in G−R such that I is maximal among the
remaining classes. We distinguish two cases: either there is at least one other remaining class
P (J) (I 6= J), or P (I) is the unique remaining class.

At least two remaining classes P (I) and P (J). By Lemma 27, any other class P (J)
satisfies J ( I or I ∩J = ∅. Let ι, δ 6 2k be the number of remaining classes such that J ( I

and such that I ∩ J = ∅, respectively. Again, we distinguish two cases: δ > 0, and δ = 0. If
δ > 0, we build the partition (A,B,R) of V (G) such that A contains the ι+ 1 classes whose
set is included in I and B contains the δ classes whose set is disjoint from I. By Lemma 26,
the bipartite graph between any of the (ι+ 1)δ pairs of classes made of one class whose set is
contained in I and one class whose set is disjoint from I is Kp(t,k)Ram(k+1,t),p(t,k)Ram(k+1,t)-
free. Hence, the bipartite graph between A and B is K2kp(t,k)Ram(k+1,t),2kp(t,k)Ram(k+1,t)-free.
Thus we conclude by Theorem 20 with d(k) = 2kp(t, k)Ram(k + 1, t).

6 where two sets are nested or disjoint
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We now tackle the case δ = 0, that is, all the remaining classes P (J) satisfy J ⊆ I. We
first assume that there are two remaining classes with disjoint sets. A laminar set-system
with a unique maximal set can be represented as a rooted tree, where nodes are in one-to-one
correspondence with the sets, and the parent-to-child arrow represents the partial order of
inclusion. Here, the root is labeled by I (since I is the unique maximal set), and all the nodes
are labeled by a subset of [s] corresponding to a remaining class. Let I = I1 ) I2 ) . . . ) Ih
be the path from the root to the first node with out-degree at least 2. Observe that C contains
at most k cliques, so h 6 k. Let J1, J2, . . . , J` be the ` children of Ih (with ` > 2). Let P1 be
the remaining classes whose set is included in J1, and P2+ be the remaining classes whose
set is included in one Ji for some i ∈ [2, `]. Let A :=

⋃
q∈[h] P (Iq), and B := V (G) \ (A ∪R).

By Lemma 25, vertices of B have at most hRam(k + 1, t) 6 kRam(k + 1, t) non-neighbors
in A. We apply Lemma 17 with the tripartition (A,B,R) and d1(k) = kRam(k + 1, t).
Only we did not cover the case in which the solution does not intersect A. We do so by
applying Theorem 20 to the tripartition (P1,P2+, R) with d2(k) = 2kp(t, k)Ram(k + 1, t).
A priori, what we just did is not bounded by f(k)|V (G)|c, hence not legal. Let us go
back to the last lines of Lemma 17 and of Theorem 20. Our running time is bounded by
f(k)|A∪R|c + k2(d1(k)

k

)
d1(k)cf(k− 1)|B|c + k(k+ 2)(dd2(k)d2(k)k2d2(k)−1e+ 1)f(k− 1)|B|c,

where the two first terms come from the application of Lemma 17, and the third term, from
Theorem 20. This is at most f(k)|A ∪ R|c + f(k)|B|c 6 f(k)|V (G)|c by Cauchy-Schwarz
inequality, with f(k) := (k2(d1(k)

k

)
d1(k)c + k(k + 2)(dd2(k)d2(k)k2d2(k)−1e+ 1))f(k − 1).

Let now assume that all the remaining classes have nested sets (no two sets are disjoint).
Let I = I1 ) I2 ) . . . ) Ih the sets of all the remaining classes (h 6 k). Suppose h > 3. We
apply Lemma 17 to the tripartition (P (I1) ∪ P (I2),

⋃
j∈[3,h] P (Ij), R) with d(k) = 2Ram(k +

1, t). Indeed, by Lemma 25, vertices of
⋃
j∈[3,h] P (Ij) have at most Ram(k+1, t) non-neighbors

in P (I1) and at most Ram(k+1, t) non-neighbors in P (I2). We deal with the case in which the
solution does not intersect P (I1)∪P (I2) in the following way. Let Cq be the clique of C only
t-seen by P (I1) and Cq′ the clique of C only t-seen by P (I1)∪P (I2). One of these two cliques
has to be large (since there is at most one small clique). We branch on the at least tk and at
most 2tk vertices of that large clique, say C ′. A maximal independent set cannot be fully
contained in

⋃
j∈[3,h] P (Ij). Indeed, any choice of at most k vertices in this set dominates at

most k(t−1) vertices of C ′. Thus, we cannot miss a solution. Let us turn to the running time.
Once again, we cannot use Lemma 17 as a total black-box. Our running time is bounded by
f(k)|A∪R|c+k2(d(k)

k

)
d(k)cf(k−1)|B|c+ 2tkf(k−1)|B∪R|c 6 f(k)|A∪R|c+f(k)|B∪R|c

with f(k) := (k2(d(k)
k

)
d(k)c + 2tkf)f(k− 1), and f(k)|A∪R|c + f(k)|B ∪R|c 6 f(k)|V (G)|c,

by Lemma 15. Here we need that |A| > |R| and |B| > |R| which is the case: recall that we
added that requirement to be a big subclass.

The last case is the following. There are exactly two remaining classes associated to sets
I = I1 ) I2. If a clique not t-seen by P (I2) is large or if P (I2) is 2K4t-free, we conclude with
Lemma 17 (recall that this finds a solution if there is one intersecting P (I1). In both cases,
if the solution does not intersect P (I1), we can find it with only a small overhead cost. If a
clique not t-seen by P (I2) is large, we branch on the at most 2kt vertices of that clique. If
P (I2) is 2K4t-free, an independent set of size k can be found in G[P (I2)] in FPT time [4].

Finally, we can assume that G[P (I2)] contains a 2K4t,4t and does not t-see a small clique
in C. Note that this implies that C is made of two cliques K3t and K2kt. We call critical
such a case where C = {K3t,K2kt} and a 2K4t can be found in a class not t-seeing K3t.

For this very specific case (that may also arise with a unique remaining class, see below),
we perform the following refinement of the clique-collection computation. We compute a new
clique collection, say C2, in G− C, starting with a 2K4t,4t found in the class not t-seeing
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the previous K3t. If C2 is not of the form {K3t,K2kt}, we add C to the bounded-in-k set R,
and we follow our algorithm (that is, a non-critical case). If C2 = {K3t,K2kt}, we compute
a new clique collection C3 in G− (C1 ∪ C2) (with C1 = C), again starting with a 2K4t,4t
found in the class not t-seeing the previous K3t, and so on. Let us assume that we are always
in a critical case, with Ch = {Ch1 = K3t, C

h
2 = K2kt}. We stop after ζ := Ram2(3t)2 (4kt)

iterations, leading to disjoint (though not independent) clique collections C = C1, C2, . . . , Cζ .
In particular, |

⋃
h∈ζ C

h| is still bounded by a function of k, namely ζ(3t+ 2kt). We claim
that we can find a 2K2kt,2kt in G[

⋃
h∈ζ C

h
1 ].

Because of the number of iterations, one can extract 4kt cliques Ch1 (of size 3t) with the
same bipartite graph linking any pair of Ch1 (with a fixed but arbitrary ordering of each Ch1 ).
This common bipartite graph has to be empty, complete, or a half-graph. Let us show that
it can only be a half-graph. For any i ∈ [3t], the i-th vertices in the Ch1 should be adjacent
(otherwise they form an independent set of size 2kt). That excludes the empty bipartite
graph. Let h1 be the smallest index such that we have extracted Ch1

1 . The common bipartite
graph cannot be complete either, since all the vertices of G− (

⋃
h∈[h1]) have at most t− 1

neighbors in Ch1
1 . This was one of the condition of a critical case. So the bipartite graph

is a half-graph. Then we find our 2K2kt,2kt as the first vertex (or last vertex) of the first
2kt extracted cliques, and the last vertex (or first vertex) of the last 2kt extracted cliques.
Now we finally have a clique collection with two independent large cliques, depending on the
orientation of the half-graph. So we can start again without reaching the problematic case.

Unique remaining P (I). If |I| > 2, by Lemma 24, P (I) is completely adjacent to one
clique Ci (with i ∈ I). Any vertex of Ci has at most g(k) non-neighbors. This case is
handled by Observation 10. So we now suppose that |I| = 1 (and I = {i}). If P (I) does
not t-see a large clique Cj , we can branch on the at most 2kt vertices of that clique. Indeed,
there is a solution that intersects it, since k − 1 vertices in G − R can dominate at most
(k− 1)(t− 1) < kt vertices. Thus, we can further assume that P (I) t-sees all the large cliques.
This forces that there is at most one large clique, since |I| = 1. There cannot be at least
three cliques in C. Indeed, the way the collection is maintained, that would imply that there
are at least two large cliques. So, C = {C1 = K3t, C2 = K2kt} and I = {2}. This is a critical
case, which we handle as in the previous paragraph (with two remaining classes). J

5 Randomized FPT algorithms in dart-free and cricket-free graphs

In this section, we consider the case of dart-free and cricket-free graphs, and prove that there
is a randomized FPT algorithm for MIS in both graph classes. To this end, we use the
technique of iterative expansion together with a Ramsey extraction, as well as the results
developed in Section 3. The proofs can be found in the long version of the paper [6].

I Theorem 28 (♠). There is a randomized FPT algorithm for MIS in dart-free graphs.

I Theorem 29 (♠). There is a randomized FPT algorithm for MIS in cricket-free graphs.
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A Proof of Lemma 17

Proof. Let S be an unknown solution. Let k1 := S ∩A and k2 := S ∩B. Let us anticipate
on an FPT running time f(k)nc for instances of size n and parameter k (the definition of f
will be given later). For instance, covering the case k2 = 0 takes time f(k)|A ∪R|c, since it
consists in solving (G[A ∪R], k). By assumption, we do not have to consider the case k1 = 0.
For each pair k1, k2 such that k1 > 1, k2 > 1, k1 + k2 6 k, we do the following.
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An independent set of size k1 in G[A] is candidate if it is in the non-neighborhood of at
least one vertex v ∈ B. Since k2 > 1, we can restrict the search in A to candidate independent
sets of size k1. Indeed, any independent set in A, not in the non-neighborhood of any vertex
of B, cannot be extended to k2 (> 1) more vertices of B. For each candidate independent
set I1 of size k1, we compute an independent set of size k2 in B \N(I1). This takes time

∑
I1 candidate
|I1|=k1

f(k2)|B \N(I1)|c = f(k2)
∑

I1 candidate
|I1|=k1

|B \N(I1)|c 6 f(k2)

 ∑
I1 candidate
|I1|=k1

|B \N(I1)|


c

by Cauchy-Schwarz inequality (since c > 2). Now, since k1 > 0,

∑
I1 candidate
|I1|=k1

|B \N(I1)| 6
∑

I1 candidate
|I1|=k1

|I1| · |B \N(I1)| 6
(
d(k)
k1

)
d(k)|B|.

The last inequality holds since
∑
I1 candidate,|I1|=k1

|I1| · |B \ N(I1)| counts the number of
non-edges between A and B with multiplicity at most

(
d(k)
k1

)
. Indeed a same non-edge uv

(with u ∈ A, v ∈ B) is counted for at most
(
d(k)
k1

)
candidate independent sets (since they

have to be in the non-neighborhood of v). Since, by assumption, vertices in B have at most
d(k) non-neighbors in A, the total number of non-edges is d(k)|B|. Let c0 > γ + 2 and
f0 := max(h, k 7→ k2k(d(k)

k

)ck
d(k)ck). For any c > c0 and f ∈ Ω(f0),

h(k)|V (G)|γ + f(k)|A ∪R|c +
∑

k1∈[k−1],k2∈[k−k1]

f(k2)

 ∑
I1 candidate
|I1|=k1

|B \N(I1)|


c

6 h(k)|V (G)|γ + f(k)|A ∪R|c + k2f(k − 1)
(
d(k)
k

)c
d(k)c|B|c

6 f(k)|V (G)|γ + f(k)|A ∪R|c + f(k)|B|c 6 f(k)|V (G)|c

since f(k) > k2(d(k)
k

)c
d(k)cf(k− 1). The last inequality holds by Lemma 15. The conclusion

holds by Lemma 8. J

B Proof of Lemma 18

Proof. Let S be an unknown but supposed independent set of G of size k. In time h(k)nc
with n := |V (G)|, we compute a witness (A,B,R). For each u ∈ R, we branch on including
u to our solution. This represents at most g(k) branches with parameter k− 1. Now, we can
focus on the case S ∩R = ∅.

We first deal separately with the special cases of |S ∩ A| = k, |S ∩ B| = 0 (a), and of
|S ∩ A| = 0, |S ∩B| = k (b). As by assumption |B| > kd(k), no maximal independent set
has k vertices in A and zero in B. Indeed, by the one-sided almost disconnectedness, any k
vertices in A dominate at most k2 vertices in B. Hence at least one vertex of B could be
added to this independent set of size k. So case (a) is actually impossible.

For case (b), we proceed as follows. We compute an independent set of size k − 1 in
G[B]. We temporary remove it from the graph, without removing its neighborhood. We
compute a second independent set of size k − 1 in G[B] (without the first independent set);
then a third one (in the graph deprived of the first two). We iterate this process until no
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independent set of size k − 1 is found or we reach a total of d(k) + 1 (disjoint) independent
sets of size k − 1 excavated in B. If we stop because of the former alternative, we know that
an independent set of size k (actually even of size k− 1) in B has to intersect the union of at
most d(k) independent sets of size k − 1; so at most (k − 1)d(k) vertices in total. In that
case, we branch on each vertex of this set of size at most (k − 1)d(k) with parameter k − 1.
If we stop because of the latter condition, we can include an arbitrary vertex w of A in the
solution. By assumption, w has at least one neighbor in at most d(k) independent sets of
size k − 1 in B. So at least one independent set of size k − 1 of the collection is not adjacent
to w, and forms with w a solution.

Now we are done with cases (a) and (b), we can assume that k1 := |S∩A|, k2 := |S∩B| =
k− k1 are both non-zero. Equivalently, 1 6 k1 6 k− 1. We try out all the k− 1 possibilities.
For each, we perform a similar trick to the one used for case (b). We compute an independent
set I1 of size k2 in G[B]. We then compute an independent set I2 of size k2 in G[B \ I1].
Observe that there may be edges between I1 and I2. We compute an independent set I3 in
G[B \ (I1 ∪ I2)], and so on. We iterate this process until no independent set of size k2 is
found or we reach a total of d(k)k1 + 1 (disjoint) independent sets of size k2 excavated in B.

Say, we end up with the sets I1, . . . , Is. Let I :=
⋃
j∈[s] Ij . If s 6 f(k)k1, then we stopped

because there was no independent set of size k2 in G[B \ I]. This means that S intersects I.
In that case, we branch on each vertex of I.

The other case is that s = f(k)k1 + 1 and we stopped because we had enough sets
Ij . In that case, we compute one independent set A1 of size k1 in G[A]. By assumption,
|NB(A1)| 6 k1d(k). In particular, there is at least one Ij which does not intersect NB(A1).
And A1 ∪ Ij is our independent of size k.

Our algorithm makes at most

g(k) + d(k) + 1 +
∑

k1∈[k−1]

(d(k)k1 + 1) + 1 6 g(k) + d(k) + 2 + k2d(k) + k

recursive calls to instances with parameter k − 1, and we conclude by Lemma 5. J

C Proof of Theorem 20

Proof. Let S be an unknown solution with k1 := S ∩ A and k2 := S ∩ B = k − k1. As
previously, we try out all the k + 1 values for k1, setting k2 to k − k1. Let us first consider
the k − 1 branches in which k1 6= 0 and k2 6= 0.

Let s := dd(k)d(k)k2d(k)−1e + 1. Using the same process as in Lemma 18, we compute
s disjoint independent sets A1, . . . , As of size k1 in G[A] and s disjoint independent sets
B1, . . . , Bs of size k2 in G[B]. Again, if the process stops before we reach s independent sets,
we know that a solution (with k1 vertices of A and k2 vertices of B) intersects a set of size
at most k1(s− 1) or k2(s− 1) and we can branch (since s is bounded by a function of k).

Now we claim that there is at least one pair (Ai, Bj) (among the s2 pairs) without any
edge between Ai and Bj ; hence Ai ∪Bj is an independent of size k. Suppose that this is not
the case. Then, there is at least one edge between each pair (Ai, Bj). Therefore the bipartite
graph B := B(

⋃
i∈[s] Ai,

⋃
i∈[s] Bi) has at least s2 edges, and sk1 + sk2 = sk vertices. As B

is also Kd(k),d(k)-free, it has, by Kővári-Sós-Turán’s theorem, at most d(k)(sk)2− 1
d(k) edges.

But, by the choice of s, s2 > d(k)(sk)2− 1
d(k) , a contradiction.

We now deal with the case k1 = 0. We show that if a solution exists with k1 = 0, k2 = k,
then the branch k1 = 1, k2 = k − 1 also leads to a solution. Let us revisit that latter branch.
We compute s disjoint independent sets B1, . . . , Bs of size k−1 in G[B]. Again, if this process
stops before we reach s independent sets, we can branch on each vertex of a set of size at
most (k− 1)(s− 1). This branching also covers the case k2 = k, since clearly, an independent
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set of size k in G[B] intersects those at most (k − 1)(s− 1) vertices. Now, let A′ be any set
of s vertices in A and B := B(A′,

⋃
i∈[s] Bi). By applying Kővári-Sós-Turán’s theorem to B

as in the previous paragraph, there should be at least one pair (u,Bj) ∈ A′ × {B1, . . . , Bs}
such that u is not adjacent to Bj .

We handle the case k2 = 0 similarly, the conclusion being that we do not need to explore
these branches. So we have described a decreasing FPT Turing-reduction creating less than
k(k + 2)s instances (each with parameter k′ 6 k − 1), and we conclude by Lemma 5. J

D Pseudo-code for P (1, t, t, t)-free graphs

Algorithm 2 FPT algorithm for MIS on P (1, t, t, t)-free graphs.

Precondition: G is P (1, t, t, t)-free, k > α(G)
1: function Stable(G, k):
2: if k 6 2 then solve in n2 by brute-force
3: end if . now k > 3
4: if G is 2K4t-free then solve in FPT time
5: end if . see [4]
6: C ← BuildCliqueCollection(G, k)
7: R ← C ∪ subclasses of size less than η . small subclasses are set aside
8: while ∃ subclass Q of size at most |R| do
9: R ← R ∪Q
10: end while
11: P ← remaining classes
12: if P = ∅ then input is a kernel
13: end if
14: P (I) ← remaining class with I maximal for inclusion
15: if |P| > 2 then
16: if ∃P (J) ∈ P such that I ∩ J = ∅ then
17: (A,B,R) with B(A,B) Kd(k),d(k)-free . Theorem 20
18: end if
19: if ∀P (J) ∈ P, J ⊆ I then
20: (A,B,R) with ∀v ∈ B, v has co-degree 6 d1(k) in A . Lemma 17
21: and (B1, B2, R) in G[B ∪R] with B(B1, B2) Kd2(k),d2(k)-free, . Theorem 20
22: or branching on 2tk vertices,
23: or critical case, when repeated, yields a 2K2kt,2kt
24: end if
25: end if
26: if P = {P (I)} then a vertex of C has small co-degree, . see Observation 10
27: or branching on 2tk vertices,
28: or critical case, when repeated, yields a 2K2kt,2kt
29: end if
30: end function
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