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Abstract

Let G = (V, E) be a graph. A (proper) k-edge-coloring is a coloring of the edges of G such that
any pair of edges sharing an endpoint receive distinct colors. A classical result of Vizing [3] ensures
that any simple graph G admits a (A(G) 4 1)-edge coloring where A(G) denotes the maximum
degreee of G. Recently, Cabello raised the following question: given two graphs G1, G2 of maximum
degree A on the same set of vertices V, is it possible to edge-color their (edge) union with A + 2
colors in such a way the restriction of G to respectively the edges of G and the edges of G2 are
edge-colorings? More generally, given ¢ graphs, how many colors do we need to color their union in
such a way the restriction of the coloring to each graph is proper?

In this short note, we prove that we can always color the union of the graphs Gi,...,G¢ of
maximum degree A with Q(\/Z - A) colors and that there exist graphs for which this bound is tight
up to a constant multiplicative factor. Moreover, for two graphs, we prove that at most %A + 4
colors are enough which is, as far as we know, the best known upper bound.

1 Introduction

All along the paper, we only consider simple loopless graphs. In his seminal paper, Vizing proved in g [3]
that any simple graph G can be properly edge-colored using A(G) + 1 colors (where A(G) denotes the
maximum degreee of G). The union of two graphs G; and Gs on vertex set V is the (simple) graph G
with vertex set V and where uv is an edge if and only if wv is an edge of G; or an edge of G3. An edge
coloring of G is simultaneous with respect to G1 and G if its restrictions to the edge set of G; and to
the edge set of G are proper edge-colorings. Recently, Cabello raised the following question!: given two
graphs G1, G5 of maximum degree A on the same set of vertices V', does it always exist a simultaneous
(A + 2)-edge coloring with respect to Gy and G2? Cabello proved that this property is satisfied if the
intersection of Gy and G3 is regular [1]. Using Vizing’s theorem, one can easily notice that there exists
a simultaneous (2A + 1)-edge coloring. From a lower bound perspective, no graph where A + 2 colors
are needed is known.

Cabello introduced a generalization of this notion. Let £ graphs G1,Ga, ..., Gy and G be their (edge)
union. In other words, uv is an edge of G if and only if uv is an edge of at least one graph G; with
i < £. An edge-coloring of G is simultaneous with respect to Gy,...,Gy if its restriction to each graph
G; is a proper edge-coloring. Cabello asked how many colors are needed to ensure the existence of a
simultaneous coloring of G with respect to each G;. Let us denote by x'(Gi,...,Gy) the minimum
number of colors needed to obtain a simultaneous coloring. And let x'(¢, A) be the largest integer k such
that k = x'(G1,...,Gy) for some graphs Gi,..., Gy of maximum degree (at most) A. Vizing’s theorem
ensures that (¢, A) < {A+1 and Cabello exhibit a graph for which x/(3,A) > A+5 (with A = 10) [1].
In this note, we prove that the order of magnitude of x'(¢,A) is ©(v/¢A). More precisely, we prove that
the following statement holds:
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Theorem 1

X (6, A) < 2V2A — V20 + 2.

We claim that this bound is tight up to a constant multiplicative factor. Let £ € N and A be an even
value. Let G := S pa be the star with kA leaves, where k = L\/gj Partition the edges of G into 2k sets

Ay, ..., Ay of size %. For every pair i, j, create the graph G; ; with edge set A; U A;. Note that each
graph G; ; has maximum degree A since by construction the set of edges A; induces a graph of maximum
degree A/2. Moreover the total number of graphs G; ; is 2k(2k — 1)/2 < {. Finally, by construction,
every pair of edges of G' appears in at least one graph G; ;. So in order to obtain a simultaneous coloring,
we need to color all the edges of G with different colors (since all the edges are incident to the center of

the star). So:
1
V|

Note that, for £ = 3 and the graph S) 3a,2), a similar construction ensures that y/'(3,A) > 3| %],
improving the lower bound of A + 5. Indeed, let us partition the edges of the star into three sets
Ay, Ay, As of size [A/2]. We similarly define for every i # j the graph G; ; with edge set A; U A;. Each
graph G;; has maximum degree A and every pair of edges appears in at least one graph G; ;. So an
edge coloring of S} 3/ A 2] simultaneous with respect to GG12,G1 3 and Ga 3 is a proper edge coloring of
S1,31a/2]

When ¢ = 2, a careful reading of the proof of Theorem 1 permits to remark that we can improve the
trivial (2A + 1) upper bound into 2A.We prove the following much better upper bound with a different
technique:

Proposition 2

X (6,A) >

Theorem 3 3
X'(2,4) < {2A + 4J .

As far as we know, it is the best known upper bound.

2 Proof of Theorem 1

Let G1,...,Gy be £ graphs of maximum degree A. Let us partition the set of edges of G = Uf_,G; into
two sets (all along the paper, the notation U stands for edge union). The multiplicity of an edge e is the
number of graphs G; with ¢ < ¢ on which e appears. For some fixed k, the set F; is the set of edges
with multiplicity at least k and Fs is the set of edges with multiplicity less than k. We will optimize the
value of k later. (Note that we do not necessarily assume that k is an integer). For every i € {1,2}, let
us denote by H; the graph G restricted to the edges of F;. Note that G = Hy, U Hs.

We claim that the graph H; has degree at most /A/k. Indeed, let u be a vertex and Fj(u) be the
set of edges of H; incident to it. Since every edge of H; has multiplicity at least k and at most ¢A edges
(with multiplicity) are incident to u in G, at most £A different edges are in F (u). So H; has maximum
degree %A. By Vizing’s theorem, H; can be properly edge-colored with (%A + 1) colors.

Let us now prove that Hy can be simultaneously edge-colored with 2k(A — 1) 4+ 1 colors. Let us
prove it by induction on the number of edges of Hs. The empty graph can indeed be edge-colored with
2k(A —1)+1 colors. Let e = uv be an edge of Hy. By induction, there exists a simultaneous coloring ¢/
of Hy \ e with 2k(A — 1) + 1 colors. Let us prove that ¢’ can be extended into a simultaneous coloring
of Hy. Without loss of generality, we can assume that e is an edge of the graphs Gy, ...,G, with r < k
and is not an edge of G411, ...,Gy. Let I be the set of edges of G1,...,G, incident to u or to v distinct
from e. By assumption, there are at most 2rr(A — 1) such edges (2(A — 1) in each graph). Since r < k, at
most 2k(A — 1) edges are in F. So there exists a color a that does not appear in F. The edge e can be
colored with a without violating any constraints. It holds by choice of a for G; with ¢ < r and it holds
since e ¢ G; for i > r.



So X'(¢,A) < £A + 2k(A — 1) + 2 colors. We finally optimize the integer k& which minimize the
number of colors. We want to minimize % + 2k which is minimal when k = \/g . It finally ensures that
X (6, A) < 2¢/20A — /20 + 2, which completes the proof of Theorem 1.

3 Proof of Theorem 3

Let G1,G2 be two graphs of maximum degree A and let G be their union. Let E5 be the edges that
appear in both graphs and, for every i € {1,2}, let Ei be the set of edges that appears only in G;. Let
us denote by Hy (resp. Hi) the graph restricted to the edges of Fy (resp. EY).

For every vertex v and every graph H, we denote by degH (v) the degree of v in H. Let H be a graph
and f, g be two functions from V(H) to RT. A (g, f)-factor of H is an edge-subgraph H' of H such that
every vertex v satisfies g(v) < degps(v) < f(v) . Kano and Saito proved in [2] that the graph H admits
a (g, f)-factor if

(i) f and g are two integer valued functions, and
(i) for every vertex v, g(v) < f(v), and

(iii) there exists a real number 6 such that 0 < 6 < 1 and for every vertex v, g(v) < 8 -degy(v) < f(v).

) deg i (v)
Let 1 < i < 2. We will extract from Hj a (g, f)-factor where g(v) = | eglgl 2 1] and f(v) =
deg i (v)
[ gl; ]. The points (i) and (ii) are satisfied. Moreover, by choosing 6 = 1, (iii) is also satisfied. Thus

by [2], the graphs Hi and H? admit (g, f)-factors. For i < 2, let K! be a (g, f)-factor of H:. For every
i,let L{ = Hi\ K. Let L =LiUL? and R = Hy U K] U K?. Note that G = LU R. Let us now color
these two graphs.

Let us first prove that L can be colored with L%J +2 colors. For every i, the graph L} has maximum

degree at most | (A/2) + 1] since every vertex v of K} has degree at least [(degui(v)/2)—1]. By Vizing’s

theorem, the graph L} can be colored with at most L% + 1J +1= L%J + 2 colors. Since the edges of
L1 and L? are disjoint, L = L1 U L? can be simulteaneously colored with L%J + 2 colors (the same set

of colors can be re-used for each graph).

Let us now color the graph R. Let v be a vertex of R. Let us denote by d the degree of v in Hs.
Since edges of Hy are in both G and G, the vertex v has degree at most A — d in both graphs Hi and
H?. Since the graphs K{ and K? are (g, f)-factors of respectively Hi and H%, the degree of the vertex
v is at most f%] in each graph. So the degree of v in the graph R is at most d + 2[%] <A+1. By
Vizing’s theorem, the graph R can be colored using at most A + 2 colors.

Since G = LU R, we can find a simultaneous edge-coloring with respect to G; and G5 using at most
2] +2+A+2=|3A] +4 colors.
4 Conclusion

Theorem 1 and Proposition 2 ensures that the following holds:

\/Z
2
Closing the multiplicative gap of 4 between lower and upper bound is an interesting open problem. For

¢ = 2, we still do not know any graph for which x'(2, A) > A + 1. Cabello asked the following question
that is still widely open despite the progress obtained in Theorem 3:

A <Y (6,A) < 2V2UA — V20 + 2.

Question 4 (Cabello) Is it true that

X(2,A)<A+2 7
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