A note on the simultaneous edge coloring

Nicolas Bousquet, Bastien Durain

To cite this version:

Nicolas Bousquet, Bastien Durain. A note on the simultaneous edge coloring. Discrete Mathematics, 2020, 343 (5), pp.111781. 10.1016/j.disc.2019.111781 . hal-02935482

HAL Id: hal-02935482
https://hal.science/hal-02935482
Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires

A note on the simultaneous edge coloring *

Nicolas Bousquet ${ }^{1}$ and Bastien Durain ${ }^{2}$
${ }^{1}$ Univ. Grenoble Alpes, CNRS, Laboratoire G-SCOP, Grenoble-INP, Grenoble, France. ${ }^{\dagger}$ ${ }^{2}$ ENS Lyon, Département d'informatique, France. \ddagger

December 2, 2019

Abstract

Let $G=(V, E)$ be a graph. A (proper) k-edge-coloring is a coloring of the edges of G such that any pair of edges sharing an endpoint receive distinct colors. A classical result of Vizing [3] ensures that any simple graph G admits a $(\Delta(G)+1)$-edge coloring where $\Delta(G)$ denotes the maximum degreee of G. Recently, Cabello raised the following question: given two graphs G_{1}, G_{2} of maximum degree Δ on the same set of vertices V, is it possible to edge-color their (edge) union with $\Delta+2$ colors in such a way the restriction of G to respectively the edges of G_{1} and the edges of G_{2} are edge-colorings? More generally, given ℓ graphs, how many colors do we need to color their union in such a way the restriction of the coloring to each graph is proper?

In this short note, we prove that we can always color the union of the graphs G_{1}, \ldots, G_{ℓ} of maximum degree Δ with $\Omega(\sqrt{\ell} \cdot \Delta)$ colors and that there exist graphs for which this bound is tight up to a constant multiplicative factor. Moreover, for two graphs, we prove that at most $\frac{3}{2} \Delta+4$ colors are enough which is, as far as we know, the best known upper bound.

1 Introduction

All along the paper, we only consider simple loopless graphs. In his seminal paper, Vizing proved in g [3] that any simple graph G can be properly edge-colored using $\Delta(G)+1$ colors (where $\Delta(G)$ denotes the maximum degreee of G). The union of two graphs G_{1} and G_{2} on vertex set V is the (simple) graph G with vertex set V and where $u v$ is an edge if and only if $u v$ is an edge of G_{1} or an edge of G_{2}. An edge coloring of G is simultaneous with respect to G_{1} and G_{2} if its restrictions to the edge set of G_{1} and to the edge set of G_{2} are proper edge-colorings. Recently, Cabello raised the following question ${ }^{1}$: given two graphs G_{1}, G_{2} of maximum degree Δ on the same set of vertices V, does it always exist a simultaneous $(\Delta+2)$-edge coloring with respect to G_{1} and G_{2} ? Cabello proved that this property is satisfied if the intersection of G_{1} and G_{2} is regular [1]. Using Vizing's theorem, one can easily notice that there exists a simultaneous $(2 \Delta+1)$-edge coloring. From a lower bound perspective, no graph where $\Delta+2$ colors are needed is known.

Cabello introduced a generalization of this notion. Let ℓ graphs $G_{1}, G_{2}, \ldots, G_{\ell}$ and G be their (edge) union. In other words, $u v$ is an edge of G if and only if $u v$ is an edge of at least one graph G_{i} with $i \leq \ell$. An edge-coloring of G is simultaneous with respect to G_{1}, \ldots, G_{ℓ} if its restriction to each graph G_{i} is a proper edge-coloring. Cabello asked how many colors are needed to ensure the existence of a simultaneous coloring of G with respect to each G_{i}. Let us denote by $\chi^{\prime}\left(G_{1}, \ldots, G_{\ell}\right)$ the minimum number of colors needed to obtain a simultaneous coloring. And let $\chi^{\prime}(\ell, \Delta)$ be the largest integer k such that $k=\chi^{\prime}\left(G_{1}, \ldots, G_{\ell}\right)$ for some graphs G_{1}, \ldots, G_{ℓ} of maximum degree (at most) Δ. Vizing's theorem ensures that $\chi^{\prime}(\ell, \Delta) \leq \ell \Delta+1$ and Cabello exhibit a graph for which $\chi^{\prime}(3, \Delta) \geq \Delta+5$ (with $\Delta=10$) [1]. In this note, we prove that the order of magnitude of $\chi^{\prime}(\ell, \Delta)$ is $\Theta(\sqrt{\ell} \Delta)$. More precisely, we prove that the following statement holds:

[^0]
Theorem 1

$$
\chi^{\prime}(\ell, \Delta) \leq 2 \sqrt{2 \ell} \Delta-\sqrt{2 \ell}+2 .
$$

We claim that this bound is tight up to a constant multiplicative factor. Let $\ell \in \mathbb{N}$ and Δ be an even value. Let $G:=S_{1, k \Delta}$ be the star with $k \Delta$ leaves, where $k=\left\lfloor\sqrt{\frac{\ell}{2}}\right\rfloor$. Partition the edges of G into $2 k$ sets $A_{1}, \ldots, A_{2 k}$ of size $\frac{\Delta}{2}$. For every pair i, j, create the graph $G_{i, j}$ with edge set $A_{i} \cup A_{j}$. Note that each graph $G_{i, j}$ has maximum degree Δ since by construction the set of edges A_{i} induces a graph of maximum degree $\Delta / 2$. Moreover the total number of graphs $G_{i, j}$ is $2 k(2 k-1) / 2 \leq \ell$. Finally, by construction, every pair of edges of G appears in at least one graph $G_{i, j}$. So in order to obtain a simultaneous coloring, we need to color all the edges of G with different colors (since all the edges are incident to the center of the star). So:

Proposition 2

$$
\chi^{\prime}(\ell, \Delta) \geq\left\lfloor\sqrt{\frac{\ell}{2}}\right\rfloor \Delta .
$$

Note that, for $\ell=3$ and the graph $S_{1,3\lfloor\Delta / 2\rfloor}$, a similar construction ensures that $\chi^{\prime}(3, \Delta) \geq 3\left\lfloor\frac{\Delta}{2}\right\rfloor$, improving the lower bound of $\Delta+5$. Indeed, let us partition the edges of the star into three sets A_{1}, A_{2}, A_{3} of size $\lfloor\Delta / 2\rfloor$. We similarly define for every $i \neq j$ the graph $G_{i, j}$ with edge set $A_{i} \cup A_{j}$. Each graph $G_{i, j}$ has maximum degree Δ and every pair of edges appears in at least one graph $G_{i, j}$. So an edge coloring of $S_{1,3\lfloor\Delta / 2\rfloor}$ simultaneous with respect to $G_{1,2}, G_{1,3}$ and $G_{2,3}$ is a proper edge coloring of $S_{1,3\lfloor\Delta / 2\rfloor}$.

When $\ell=2$, a careful reading of the proof of Theorem 1 permits to remark that we can improve the trivial $(2 \Delta+1)$ upper bound into 2Δ. We prove the following much better upper bound with a different technique:

Theorem 3

$$
\chi^{\prime}(2, \Delta) \leq\left\lfloor\frac{3}{2} \Delta+4\right\rfloor
$$

As far as we know, it is the best known upper bound.

2 Proof of Theorem 1

Let G_{1}, \ldots, G_{ℓ} be ℓ graphs of maximum degree Δ. Let us partition the set of edges of $G=\cup_{i=1}^{\ell} G_{i}$ into two sets (all along the paper, the notation \cup stands for edge union). The multiplicity of an edge e is the number of graphs G_{i} with $i \leq \ell$ on which e appears. For some fixed k, the set E_{1} is the set of edges with multiplicity at least k and E_{2} is the set of edges with multiplicity less than k. We will optimize the value of k later. (Note that we do not necessarily assume that k is an integer). For every $i \in\{1,2\}$, let us denote by H_{i} the graph G restricted to the edges of E_{i}. Note that $G=H_{1} \cup H_{2}$.

We claim that the graph H_{1} has degree at most $\ell \Delta / k$. Indeed, let u be a vertex and $E_{1}(u)$ be the set of edges of H_{1} incident to it. Since every edge of H_{1} has multiplicity at least k and at most $\ell \Delta$ edges (with multiplicity) are incident to u in G, at most $\frac{\ell}{k} \Delta$ different edges are in $E_{1}(u)$. So H_{1} has maximum degree $\frac{\ell}{k} \Delta$. By Vizing's theorem, H_{1} can be properly edge-colored with $\left(\frac{\ell}{k} \Delta+1\right)$ colors.

Let us now prove that H_{2} can be simultaneously edge-colored with $2 k(\Delta-1)+1$ colors. Let us prove it by induction on the number of edges of H_{2}. The empty graph can indeed be edge-colored with $2 k(\Delta-1)+1$ colors. Let $e=u v$ be an edge of H_{2}. By induction, there exists a simultaneous coloring c^{\prime} of $H_{2} \backslash e$ with $2 k(\Delta-1)+1$ colors. Let us prove that c^{\prime} can be extended into a simultaneous coloring of H_{2}. Without loss of generality, we can assume that e is an edge of the graphs G_{1}, \ldots, G_{r} with $r<k$ and is not an edge of $G_{r+1}, \ldots, G_{\ell}$. Let F be the set of edges of G_{1}, \ldots, G_{r} incident to u or to v distinct from e. By assumption, there are at most $2 r(\Delta-1)$ such edges $(2(\Delta-1)$ in each graph). Since $r<k$, at most $2 k(\Delta-1)$ edges are in F. So there exists a color a that does not appear in F. The edge e can be colored with a without violating any constraints. It holds by choice of a for G_{i} with $i \leq r$ and it holds since $e \notin G_{i}$ for $i>r$.

So $\chi^{\prime}(\ell, \Delta) \leq \frac{\ell}{k} \Delta+2 k(\Delta-1)+2$ colors. We finally optimize the integer k which minimize the number of colors. We want to minimize $\frac{\ell}{k}+2 k$ which is minimal when $k=\sqrt{\frac{\ell}{2}}$. It finally ensures that $\chi^{\prime}(\ell, \Delta) \leq 2 \sqrt{2 \ell} \Delta-\sqrt{2 \ell}+2$, which completes the proof of Theorem 1.

3 Proof of Theorem 3

Let G_{1}, G_{2} be two graphs of maximum degree Δ and let G be their union. Let E_{2} be the edges that appear in both graphs and, for every $i \in\{1,2\}$, let E_{1}^{i} be the set of edges that appears only in G_{i}. Let us denote by $H_{2}\left(\right.$ resp. $\left.H_{1}^{i}\right)$ the graph restricted to the edges of E_{2} (resp. E_{1}^{i}).

For every vertex v and every graph H, we denote by $\operatorname{deg} H(v)$ the degree of v in H. Let H be a graph and f, g be two functions from $V(H)$ to \mathbb{R}^{+}. A (g, f)-factor of H is an edge-subgraph H^{\prime} of H such that every vertex v satisfies $g(v) \leq d e g_{H^{\prime}}(v) \leq f(v)$. Kano and Saito proved in [2] that the graph H admits a (g, f)-factor if
(i) f and g are two integer valued functions, and
(ii) for every vertex $v, g(v)<f(v)$, and
(iii) there exists a real number θ such that $0 \leq \theta \leq 1$ and for every vertex $v, g(v) \leq \theta \cdot \operatorname{deg}_{H}(v) \leq f(v)$.

Let $1 \leq i \leq 2$. We will extract from H_{1}^{i} a (g, f)-factor where $g(v)=\left\lceil\frac{d e g_{H_{1}^{i}}(v)}{2}-1\right\rceil$ and $f(v)=$ $\left\lceil\frac{\operatorname{deg}_{H_{1}^{i}}(v)}{2}\right\rceil$. The points (i) and (ii) are satisfied. Moreover, by choosing $\theta=\frac{1}{2}$, (iii) is also satisfied. Thus by [2], the graphs H_{1}^{1} and H_{1}^{2} admit (g, f)-factors. For $i \leq 2$, let K_{1}^{i} be a (g, f)-factor of H_{1}^{i}. For every i, let $L_{1}^{i}=H_{1}^{i} \backslash K_{1}^{i}$. Let $L=L_{1}^{1} \cup L_{1}^{2}$ and $R=H_{2} \cup K_{1}^{1} \cup K_{1}^{2}$. Note that $G=L \cup R$. Let us now color these two graphs.

Let us first prove that L can be colored with $\left\lfloor\frac{\Delta}{2}\right\rfloor+2$ colors. For every i, the graph L_{1}^{i} has maximum degree at most $\lfloor(\Delta / 2)+1\rfloor$ since every vertex v of K_{1}^{i} has degree at least $\left\lceil\left(\operatorname{deg}_{H_{1}^{i}}(v) / 2\right)-1\right\rceil$. By Vizing's theorem, the graph L_{1}^{i} can be colored with at most $\left\lfloor\frac{\Delta}{2}+1\right\rfloor+1=\left\lfloor\frac{\Delta}{2}\right\rfloor+2$ colors. Since the edges of L_{1}^{1} and L_{1}^{2} are disjoint, $L=L_{1}^{1} \cup L_{1}^{2}$ can be simulteaneously colored with $\left\lfloor\frac{\Delta}{2}\right\rfloor+2$ colors (the same set of colors can be re-used for each graph).

Let us now color the graph R. Let v be a vertex of R. Let us denote by d the degree of v in H_{2}. Since edges of H_{2} are in both G_{1} and G_{2}, the vertex v has degree at most $\Delta-d$ in both graphs H_{1}^{1} and H_{1}^{2}. Since the graphs K_{1}^{1} and K_{1}^{2} are (g, f)-factors of respectively H_{1}^{1} and H_{1}^{2}, the degree of the vertex v is at most $\left\lceil\frac{\Delta-d}{2}\right\rceil$ in each graph. So the degree of v in the graph R is at most $d+2\left\lceil\frac{\Delta-d}{2}\right\rceil \leq \Delta+1$. By Vizing's theorem, the graph R can be colored using at most $\Delta+2$ colors.

Since $G=L \cup R$, we can find a simultaneous edge-coloring with respect to G_{1} and G_{2} using at most $\left\lfloor\frac{\Delta}{2}\right\rfloor+2+\Delta+2=\left\lfloor\frac{3}{2} \Delta\right\rfloor+4$ colors.

4 Conclusion

Theorem 1 and Proposition 2 ensures that the following holds:

$$
\left\lfloor\sqrt{\frac{\ell}{2}}\right\rfloor \Delta \leq \chi^{\prime}(\ell, \Delta) \leq 2 \sqrt{2 \ell} \Delta-\sqrt{2 \ell}+2 .
$$

Closing the multiplicative gap of 4 between lower and upper bound is an interesting open problem. For $\ell=2$, we still do not know any graph for which $\chi^{\prime}(2, \Delta)>\Delta+1$. Cabello asked the following question that is still widely open despite the progress obtained in Theorem 3:
Question 4 (Cabello) Is it true that

$$
\chi^{\prime}(2, \Delta) \leq \Delta+2 ?
$$

Acknowledgements. The authors want to thank Louis Esperet for fruitful discussions and suggestions.

References

[1] S. Cabello. private communication, 2018.
[2] M. Kano and A. Saito. [a, b]-factors of graphs. Discrete Mathematics, 47:113-116, 1983.
[3] V. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz, 3(7):25-30, 1964.

[^0]: *This work was supported by the ANR Project GrR (ANR-18-CE40-0032).
 ${ }^{\dagger}$ nicolas.bousquet@grenoble-inp.fr
 \ddagger bastien.durain@ens-lyon.fr
 ${ }^{1}$ BIRS Workshop: Geometric and Structural Graph Theory (2017). See e.g. https://sites.google.com/site/ sophiespirkl/birs-open-problems.pdf

