
Noname manuscript No.
(will be inserted by the editor)

Multimodal object-based environment representation for
assistive robotics

Yohan Breux · Sebastien Druon

the date of receipt and acceptance should be inserted later

Abstract Autonomous robots are nowadays success-

fully used in industrial environments, where tasks fol-

low predetermined plans and the world is a known (and

closed) set of objects. The context of social robotics

brings new challenges to the robot. First of all, the

world is no longer closed. New objects can be intro-

duced at any time, and it is now impossible to build

an exaustive list of them nor having a precomputed

set of descriptors. Moreover, natural interactions with

a human being don’t follow any precomputed graph of

sequences or grammar. To deal with the complexity of

such an open world, a robot can no longer solely rely

on its sensors data : a compact representation to com-

prehend its surrounding is needed.

Our approach focuses on task independent environ-

ment representation where human-robot interactions are

involved. We propose a global architecture bridging the

gap between perception and semantic modalities through

instances (physical realizations of semantic concepts).

In this article, we describe a method for automatic

generation of object-related ontology. Based on it, a

practical formalization of the ill-defined notion of ”con-

text” is discussed. We then tackle human-robot inter-

actions in our system through the description of user

request processing. Finally, we illustrate the flow of our

model on two showcases which demonstrate the validity

of the approach.
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1 Introduction

In the previous decades, efforts have been made to un-

derstand and exploit the social benefits of robots in

human environment [24]. In particular, some applica-

tions are focused on therapeutics [41, 54, 30, 17], ed-

ucation [19, 3] and human-robot cooperation [43, 4].

Unlike industrial applications where the environment

is controlled and the interaction with the human op-

erator limited, such applications require the robots to

have a deeper understanding of their surroundings. Fur-

thermore, these interactions are made easier for the op-

erator when performed through oral interactions.

Because of an early development towards industrial

applications, majority of researches in robotics are task

oriented and focus their efforts on action descriptions

[51, 52]. They use specific predefined environment rep-

resentations for the tasks at hand. However, these rep-

resentations lack genericity and can’t compactly repre-

sent abstract knowledge about the robot surroundings.

Furthermore, as underlined above, robots and human

should share a common way to describe the world and

its concepts through natural language.

It is important here to define the meaning of ”en-

vironment representation” as it depends on the appli-

cation context. We consider three main categories of

representation :

– Geometrical representation where the environment

is modelized as a set of primitives (point, surface,

volume) eg. occupancy grid in SLAM [53, 55].

– While geometrical representation suits applications

such as exploration or obstacle avoidance, it can’t

be used for objects manipulation as it models the

world as a unique ”block”. In this case, clustering of

primitives into objects hypothesis is required. This

leads to an object-based representation.
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Fig. 1: Axis characterizing environment representation

– Human beings, through natural language, have de-

fined a semantical representation of their surround-

ing. Unlike the previous representation based on

perception, it can compactly describe unseen ob-

jects. It also allows a robot to reason about facts

it has not experienced yet. Besides, this representa-

tion is fundamental for human-robot interaction.

We propose to characterize each representation accord-

ing to the three axis shown in Figure 1 :

– Spatiality (local-global) : an image of a room would

typically be a local representation whereas a map of

a building would be considered as global. In seman-

tics, some facts can be true only locally eg. taxi are

yellow which is true in New York but not in general.

– Temporality (instant-infinite) : any model has a

validity period. Thus an image can only be con-

sidered as a valid representation the instant it was

taken. The existence of some instances eg. my glasses

is valid on a limited period of time whereas general
facts such as glasses are used for vision correction

are timelessly true.

– Abstraction (concrete-abstract) : concrete raw sen-

sors data and abstract semantic concepts.

Based on the observation above, we propose a generic

and task independent architecture for environment rep-

resentation. The rest of the paper is organized as fol-

lows. First, section 2 provides a quick overview on our

multimodal architecture. In section 3 we discuss on the

state of the art for environment representation. The

section 4 is the main focus of this paper. It describes

our method for automatic ontology generation which is

the basis of the semantic modality in our architecture.

We define the important notion of context based on

this ontology in section 5. Section 6 deals with human-

robot interactions through the generation of requests

from natural language. Finally, section 7 illustrates the

global flow of our model on two showcases to demon-

strate the validity of our approach.

2 Environment modeling : a multimodal

approach

In this work, we propose a three-layer model covering

all the representation categories described previously

(Figure 2). It is composed of a perception, instance and

knowledge unit. The perception module processes low-

level raw sensors data. It is responsible for generic scene

segmentation, instance localization (tracking) and con-

cepts detection whereas the knowledge module repre-

sents high-level semantic relations expressed in natural

language. The instance unit bridges the gap between

those possibly contradictory modalities by linking real-

world observations to generic semantic concepts. Fur-

thermore, instances are related to each other through

the tasks in which they are involved (Figure 3).

This paper is an extension of our previous work [8].

We propose an heuristics-driven method for automatic

generation of an object-based ontology from dictionary

definitions. This is motivated by the fact that, at the

best of our knowledge, there is no generic yet expressive

ontology for objects description. Existing ontologies are

either

– Limited for specific applications. It results in shal-

low ontologies difficult to reuse.

– Too broad for robotics by covering domains such

as History or Politics. This is the case of OpenCyc

[25, 27] or DBpedia [2].

In both cases, they are lacking details on concepts re-

lated to physical objects as it is shown in section 4.

Based on the constructed ontology, we then attempt

to give a formal and computable definition of what

is commonly called as ”context”. It can be informally

defined as a ”confounding” set of concepts explaining

”why” some observational correlations occur. An illus-

trated example is given in Figure 9. The idea here is to

exploit causality information provided by semantics.

Semantic representation is also directly involved in

human-robot interactions. We discuss how natural lan-

guage inputs are processed and used to respond to sim-

ple user requests. In particular, we present three use

cases illustrating the general flow of our system.

3 Related work

The first need for an environment model is usually for

the robot to locate itself. This is why, in the past decade,

Simultaneous Localization and Mapping (SLAM) [53,

55] was the prominent method for environment mod-

eling in autonomous robotics. Depending on available

sensors, it provides 2D/3D geometric representation of

environment based on occupancy grid or unstructured
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Id Type Args Status
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Fig. 2: Illustration of our three layer environment representation built from a user request
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Fig. 3: Illustration of the Instance model (best viewed in color)

point cloud. More recently, Semantic mapping aims at

enriching the environment representation by cluster-

ing primitives into meaningful objects using recent ad-

vances in deep machine learning.

Sunderhauf et al. [48] propose a mobile robot system

for categorizing places based on Convolutional Neural

Network (CNN) [20]. They use a modified version of

occupancy grid where a vector of class probabilities is

attached to each cell. They leverage this information to

improve objects detection using prior probabilities on

the place category. The approach in [49] of the same au-

thors consists in merging geometrical and object-based

representation of the environment. They continuously

(partially) structure the raw point cloud map obtained

with ORB-SLAM2 [31] using CNN for object detection

and classification. Each detection is then used to build

or update the 3D model of corresponding object.

Those representations are solely focused on direct

observations. While those approaches are practically in-

teresting, they don’t leverage semantic information pro-

vided by their labeling. In our work, we are particularly

interested in multilayer methods using jointly semantic

and geometric information.

Pronobis et al. [37, 38] introduce a multilayer ar-

chitecture for indoor semantic mapping by reasoning

on heterogeneous data such as object occurrences or

room dimensions. The first low-level layer is an occu-

pancy grid which is spatially discretized into places in

the second layer. Each place is defined on object oc-

currences and geometrical aspects. The last conceptual

layer is an ontology linking semantic concepts and in-

stances detected in the environment eg. ”A living-room

has-a TV” or ”place1 has-a instance1”. This ontology

is then casted as a probabilistic graph for inference.

Lang et al. [22, 21, 23] propose a similar architec-

ture for outdoor semantic mapping. Their first layer

is a point cloud map which is first over-segmented into

cluxels (cluster of voxels) further grouped into Observa-

tions. Each Observation is classified into classes (hor-

izontal plan, scatter appearance). Finally, cluxels are

grouped into objects based on observation labels and

an ontology with relations such as tree has-a scatter

appearance.

Those two frameworks leverage both visual and se-

mantic modalities but are mainly centered on the map-

ping process. They both lack deeper understanding on



4 Yohan Breux, Sebastien Druon

relations between objects of the scene and are difficult

to scale up on an open world.

Some approaches are grounded on knowledge pre-

sentation. KnowRob [51, 52] is a task-oriented system

leveraging semantic knowledge in the context of hu-

man assisting robot. They use a knowledge base boot-

strapped on OpenCyc ontology [25, 27]. Visual infer-

ences are made at run-time by using computables which

are called when the attached concept is part of a query.

The system is essentially focused on action descrip-

tions. Object descriptions are limited to the minimum

required for their experiments (Figures 4a, 4b).

A large part of the literature attempts to increase

algorithms performance on a close-world assumption

through a variety of datasets. However, robots evolv-

ing in a partially unknown human environment have to

reason with generic and adaptable models. The guiding

idea behind our work is to complement, when possi-

ble, correlations inferred from observational data with

causalities extracted from semantic knowledge as illus-

trated in Figure 9. Occurrence of fork in kitchen is

a correlation expressed by the conditional probability

p(c = fork|r = kitchen). In fact, this occurrence can

be explained by their common context : eating food.

The objective is to leverage such facts to transfer the

observational correlation to unseen concepts sharing the

same context eg. occurrence of fork in restaurants.

In the following section, we first present our ap-

proach to build an object-based ontology and then use

it to extract context of concepts.

4 An automatically generated object-based

ontology

Our knowledge model is an ontological graph composed

of object (fruit, cup) and action (eat, serve) concepts.

In addition to classical relations such as isA (hyper-

/hyponymy) and hasA (meronymy), it provides rela-

tions expressing property and usage. It is a compact

representation of the environment as defined by human

through natural language. There is already a large va-

riety of ontologies in the literature. For instance, Open-

Cyc is an example of global ontology built manually

by experts whereas DBpedia [2] extracts structured in-

formation from Wikipedia. For environment represen-

tation purpose, those ontologies are too broad by de-

scribing domains such as History or Politics. Mean-

while, they do not provide enough details for object

descriptions. NELL (Never Ending Language Learning)

[10, 29] is a project aiming at continuously parsing In-

ternet to automatically build an ontology. Although the

results are promising, it is not adequate yet for robotic

applications. Figure 4 illustrates some problems with

existing ontologies. The subgraphs corresponding to the

fork and cup concepts were extracted from NELL and

KnowRob. We observe some overspecialized concepts

such as sippy cup with removable lid and two handles

or expresso cup with saucer. Some relations such as

< water glass cup, generalization, bathroomitem >

can hold but are not relevant in general. Besides, some

simple relations are not present eg.

< salad fork, generalization, fork >

Although there is no error-free methods, we can see that

there are only few information usable by a robot and

it is mainly connected to spatial context (eg kitchen-

item, bathroomitem). In comparison, the subgraphs 4e

and 4f extracted from our ontology show a variety of

relations related to object usage with the emergence

of what we call context concepts such as food in the

fork subgraph. At the best of our knowledge, there is

no ontology focused on object descriptions adapted for

robotic applications. This motivates our development

of an automatic ontology generation method explained

in the following section.

4.1 An ontology based on dictionary definitions

We generally think about physical objects in terms of

physical appearance (”a bottle has a cylindric shape”)

and/or usage (”a bottle is used to hold liquid”). We

also want a minimum of base concepts in our ontol-

ogy to avoid the overspecialization as seen in Figure 4.

As much as possible, complex concepts must be repre-

sented as a combination of basic ones. Thus dictionary

definitions are a natural source for creating such an on-

tology. For instance, Cambridge Dictionary 1 gives for

fork :

– First sense : a small object with three or four points

and a handle, that you use to pick up food and eat

with.

– Second sense : a tool with a long handle and three or

four points, used for digging and breaking soil into

pieces.

We clearly see that, for both senses, fork is defined by

its physical appearance (small, with a long handle) and

its usage (use to pick up food, used for digging ). In our

work, we choose to bootstrap our ontology on the lexical

database WordNet [28] and extends it by syntactically

analyzing its definitions.

We are not the first trying to exploit WordNet def-

initions. Novischi [33] aims at disambiguating words in

1 https ://dictionary.cambridge.org/dictionary/english/fork
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(a) fork-KnowRob (b) cup-KnowRob

(c) fork-NELL (d) cup-NELL

isA

prop

hasA

usedFor

on

homonym

linkedTo

Noun

Adjective

Verb

Factor

(e) fork-ours (f) cup-ours

Fig. 4: Comparison of KnowRob, NELL and our ontology for fork and cup concepts. Relations for KnowRob :

subClassOf (blue) and hasValue (green). Relations for NELL : generalizations (blue) and haswikipediaurl (green).

For our ontology, the subgraphs are the set of nodes at distance 1 (excluding factor node) from the concept node

and its hyponyms (best viewed in color)
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Table 1: WordNet categories for each Part-Of-Speech

(POS). We underline categories used in this work

POS Category

Noun act, animal, artifact, attribute, body,
cognition, communication, event, feel-
ing, food, group, location, motive,
object, person, phenomenon, plant,
possession, process, quantity, relation,
shape, state, substance, time

Adjective all,pert (pertainym), ppl (participial)
Adverb all
Verb body, change, cognition, communi-

cation, competition, consumption,
contact, creation, emotion, motion,
perception, possession, social, stative,
weather

WordNet definitions by prioritizing accuracy at the ex-

pense of coverage. He builds patterns by considering

successive words in the definition set, which are fur-

ther merged or filtered according to their occurrences

and some heuristics. The best corresponding pattern is

searched for each word of every definition. The word is

then assigned the same sens as the one it has in the pre-

viously found pattern. The proposed approach yields a

98% accuracy for a limited coverage of 6.6%. This shows

in particular that disambiguation is a rather difficult

problem. Currently we bypass it by keeping homonym

relations in our graph, allowing us to disambiguate on

the fly depending on the current context. DeBoni et

al. [12] extracts telic relations (equivalent to our used-

For). They consider a set of patterns corresponding to

the searched relations. Let O be a word of a relation

extracted from the definition DO′ of a word O′. D′

is defined as the set of words coming from DO and

DOh
where Oh are hyper/hyponyms of O. O is then

disambiguated using a similarity measure based on co-

occurrences of words in DO′ and D′. They obtain 60%

accuracy on a small WordNet sample (10%). Bracewell

and al. [5] also describe a pattern matching approach to

extract knowledge on causal agent in WordNet. How-

ever, they do not consider disambiguation problem in

their work.

4.2 WordNet

WordNet [28] is a manually generated lexical English

database. Words corresponding to the same concept

(synonyms) are grouped in a structure called synset

with a unique identifier (WordNetId) and a definition.

Synsets are also grouped depending on their Part-Of-

Speech (POS) and on their category as enumerated in

Table 1. The WordNetId starts with a letter (n for

noun, a for adjective and v for verb) followed by a se-

quence of 8 digits. In this paper, concepts are writ-

ten in the form concept-WordNetId to disambiguate

homonyms such as fork -n03383948 (hypernym of table-

fork) and fork -n03384167 (hypernym of hayfork).

WordNet ontology is a knowledge graph where nodes

correspond to synsets and edges are semantic relations,

mainly hyper/hyponymy (is-a) and meronymy (has-a).

However, some relations appearing in definitions are not

represented in the ontological graph. For instance, cup-

n03147509 is defined as small open container usually

used for drinking; usually has a handle but the han-

dle concept is not considered as a meronym (part) and

there is no relation with the drinking action. We extract

those relations with the method presented in section

4.4.

4.3 Definition of the ontology graph

We define our ontology graph by a mixed factor graph

GK = {VK , EK}. VK = V C
K ∪ V F

K represents the set of

nodes, which can be a concept (V C
K ) or a factorization

(V F
K ) of concepts. There are two types of concepts :

Object-Property V O
K or Action V A

K . Thus we have four

kinds of vertex : concept of physical object or property

V C,O
K , concept of actions V C,A

K , and those used to fac-

torized object V F,O
K and action concepts V F,A

K . Edges

EK can be of the following types :

– isA : expresses hyper/hyponymy eg.

isA(cup, container), isA(paper cup, cup).

– hasA : represents part of objects (meronymy) eg.

hasA(cup, handle).

– prop : represents properties of concept, usually ex-

pressed by an adjective but can be noun in case of

material eg.

prop(wheel, circular), prop(desk, wood).

– usedFor : represents the function of a concept which

is expressed by a verb of action eg.

usedFor(cup, drink).

– on : if such information is available, used to precise

the object on which the action applied eg.

on(drink, tea).

– linked-to : represents other unknown relations eg.

linkedTo(hold, hand).

– homonym : obtained by linking synsets with at

least one common word. They are substantial (see

Table 3a).

All edges are directed except for the homonym relation.

Unlike previous ontologies, we use factor nodes in

our graph. Their advantages is two-fold. First, it allows

to represent combination of concepts without explic-

itly creating (and naming) a new concept. More impor-
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(a) Specialized
action with factor
nodes

(b) Specialized
action without
factor nodes

(c) Specialized object with
factor nodes

(d) Specialized object
without factor nodes

Fig. 5: Illustration of the importance of factor nodes in

our ontology

tantly, they are essential for keeping information consis-

tent in our graph. To demonstrate this, we consider the

following pairs of concepts : (fork -n03383948, carafe-

n02960903 ) and (spatula-n04270147,saber -n04121511 ).

In Figure 5a, we can see the fact fork is used to serve

food which is expressed by

usedFor(fork, fn) ∧ isA(n, serve) ∧ on(fn, food)

where fn ∈ V F,A
K represents an action specialization.

Suppose now that we remove this factor node and link

directly fork to serve : we also have to link directly food

to serve so that we obtain

on(serve, food) ∧ usedFor(fork, serve)

as illustrated in Figure 5b. It is clear that if serve is

linked to other target objects (eg. wine for the carafe

concept), we can’t determine on which objects fork can

be used. Similarly, Figure 5c shows examples of object

specialization factor nodes (V F,O
K ) and Figure 5d illus-

trates how the representation would be like without fac-

tor nodes.

4.4 Generation of ontology from WordNet definitions

In this section, we discuss how we build our ontology

based on WordNet definitions. Figure 6 outlines the dif-

ferent steps. First, we initialize our ontological graph on

WordNet ontology based on hyper/hyponymy (isA) re-

lations. As some categories of words are not relevant

Fig. 6: Flow of the proposed approach for ontology con-

struction

for the robotic field, we limit our work on a subset un-

derlined in the Table 1. Then we extract the definitions

attached to each synset. They are syntactically ana-

lyzed using a pre-trained transition-based neural net-

work SyntaxNet [1]. Our approach is bottom-up : we

cluster words into Nominal Groups (NG) which are fur-

ther grouped as Relation Groups (RG) or Usage Rela-

tion Groups (URG). Finally, we convert this segmenta-

tion into a graph representation. In practice, our onto-

logical graph is stored as a list of Prolog facts.

4.4.1 Syntactical analysis

The first step of our method consists in converting def-

initions (set of words) in a richer representation. We

use the network SyntaxNet which returns data in the

CoNLL-X format [9] as illustrated in Figure 7. In brief,

it assigns a Universal (coarse)/ language-specific (fine)

Part-Of-Speech (resp. UPOS [36]/XPOS [42]) to each

word of the input sentence. Universal Dependency Rela-

tions (UDR) [13, 14, 32] express grammatical relations
between words such as dobj (direct object). Once this

representation obtained, we post-process it by adding

the lemma of each word using WordNet’s morphologi-

cal processing. We remove some useless patterns such

as kind/piece/type/variant of. Comma related to con-

jonction are replaced by the same conjunction (and or

or). Compound word POS is not used by SyntaxNet

so we use heuristics when two successive nouns have

a dependency relation. We then check if the poten-

tial compound word exists in the WordNet database.

Finally, another heuristics are used for correcting -ing

verbs wrongly labeled as noun.

4.4.2 Nominal Groups and (Usage) Relation Groups

Decomposition

We segment the input sentence S in the CoNLL-X for-

mat into a set of nominal groups NG (noun, deter-

minant and set of related adjectives). Constraints be-

tween NGs expressed by conjunction such as and and
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 Word
 

UPOS

 

Dependancy

index
Index UDR

SyntaxNet

 

XPOSLemma

ROOT A fork is a cutlery used for serving and eating food.

ROOT

nsubj
det cop

det
partmod prep pcomp cc

conj

dobj

DT NN VBZ DT NN VBN IN VBG CC VBG NN

CoNLL-X

 

(A fork is) a cutlery used for 
serving and eating food.

Fig. 7: Example of SyntaxNet output on WordNet definition for fork -n03383948

Table 2: Patterns employed to convert URG and RG

into relations

Relation Predicate XPOS Preposition COD UPOS

prop make VBN, VBZ, VBP of NOUN

hasA

have VBP, VBZ, VBG of NOUN
consist VBP, VBZ, VBG of NOUN
design VBN with NOUN
equip VBN with NOUN
support VBN on,by NOUN
with IN NOUN

useFor
design VBN for VERB
use VBN for,to VERB

or are also extracted. We also propagate conjunction

repeated by a comma such as in ”a banana is a yel-

low, green or red fruit.”. Those constraints are set of

set of NGs noted C∧
NG (resp. C∨

NG). We then obtain

in the banana example NG0 = ”a banana”, NG1 =

”yellow fruit”, NG2 = ”green fruit”, NG3 = ”red fruit”

and C∨
NG = {NG1, NG2, NG3}, C∧

NG = ∅.
NGs are then further grouped into Relation Groups

(RG) which are triplets of the form

< NGsubject, P redicate, NGobject >

Constraints C∧
NG, C

∨
NG are also propagated to RG. We

then have

RGi = < NG0, be,NGi >, i ∈ {1, 2, 3} (1)

C∨
RG = {RG1, RG2, RG3}, C∧

RG = ∅
We also define Usage Relation Group (URG) for rep-

resenting usedFor and on relations. Indeed, for predi-

cate corresponding to usage (eg. designed for, used to),

relations are of the form

< NGsubject, P redicate, V erb, Targets >

where Targets are direct objects of V erb.

4.4.3 Conversion to an ontological graph

Finally, we have to convert the segmented sentence into

an ontological graph. A node is created for each ana-

lyzed synset and for each word (noun, adjective and

(A hammer is) a hand tool with a heavy rigid head and a handle; used to deliver an impulsive force by striking.
ng0 ng1

rg0
{ng0,be,ng1}

ng2 V1

rg1
{ng0,with,ng2}

rg2
{ng0,with,ng3}

ng3 ng4

urg0
{ng0,use-to,V1,ng4}

 

Fig. 8: Construction of the ontological subgraph from

the definition of hammer -n03481172

verb) appearing in one of the structure (NG, RG and

URG). When a NG has at least one adjective, it is rep-

resented as a factor node. This is the case for the NG a

heavy rigid head in Figure 8. Similarly, a factor node is

created to represent URG with at least one direct ob-

ject. Homonym edges are created between synsets with

one homonym in common. Table 2 shows the patterns

employed for the different relations. Finally, Figure 8 is

a full illustration of the process for the concept ham-

mer -n03481172.

4.5 Evaluation

In this section, we provide different evaluations of our

ontological graph. At the end of the paper figures 19

and 20 provides different subgraphs extracted from our

ontology for qualitative evaluation.
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POS Quantity Ratio(%)

Node

Noun 23945 58.38
Factor 9338 22.77
Verb 5517 13.45

Adjective 2219 5.41

Edge

isA
WordNet 21191 20.06
Auto 15079 14.27

linkedTo 30379 28.76
prop 17000 16.09

homonym 13092 12.39
hasA 3679 3.48

usedFor 3020 2.86
on 2198 2.08

(a) Node/Edge proportions. isA relations not originally
present in WordNet and extracted by our methodology
correspond to the Auto line.

Characteristic Value
Mean degree 2.575

Diameter (graph as undirected) 16
Mean distance 5.227

(b) Global characteristics

small,large,form,material,substance,device,part,body,food,
surface,structure,fabric,metal,instrument,component,drug,

long,building,liquid,side,compound,acid,area,treat,wood,
river,object,end,place,various,line,white,make,thin,vein,

flesh,use,cell,artifact,ground,head,other,plant,stone,bone,
point,source,system,person,several,mixture,arm,mineral,meat,

skin,container,light,hold,color

(c) Nodes ordered by eigenvector centrality

Table 3: Ontology global description

4.5.1 General graph statistics

We give a global description in the Table 3. First, we see

that homonymy relations are far from negligible, con-

firming the importance of the disambiguation problem.

It also shows that a good proportion of extracted hy-

per/hyponymy relations were not present in the Word-

Net ontology. Table 3b exposes global characteristics

of the ontological graph. We recall that the degree of

a node is the number of incident edges. The diameter

of a graph is defined as the longest shortest path be-

tween two nodes. Finally, Table 3c presents concepts

ordered by their eigenvector centrality [40] which mea-

sures their influences in the graph. As expected, we find

rather generic concepts.

4.5.2 Quantitative analysis

It is difficult to quantitatively evaluate the relations

built in our ontology. Nevertheless, we manually ana-

lyze small randomly chosen samples (200) for each re-

lation type and put the results in the Table 4. The

total number of relations (edges) for each type can be

found in the Table 3a. Note that for isA relations we

only use relations extracted by our methodology which

were not present in WordNet. Homonym relations are

not represented as they are also directly extracted from

WordNet. We do not compute accuracies for linkedTo

relations as they correspond to unknown relations and

their pertinence is too subjective to assess. Consider-

ing the lack of statiscal significance of our samples set,

accuracy is only given on an indicative basis.

Failures can account for wrong or incomplete rela-

tions. We see that our approach creates some useful

relations. For instance,

isA(vinegar-n07828987, liquid)

brings a new description of the vinegar concept lacking

in the WordNet ontology where we only have

isA(vinegar-n07828987, condiment-n07810907)

We explain the drop in accuracy for the hasA and on re-

lations from the lack of some patterns in our approach.

Currently, patterns such as has a/the * of * are not

taken in account and will be integrated in a future

version. Some errors come from SyntaxNet which in-

correctly considers some adjectives or past participles

(shallow, bent) as nouns.

We consider that quantitative comparison with other

ontologies (KnowRob, NELL, ConceptNet [47]) is not

pertinent. Indeed, we are limited to compare them man-

ually which limits us to relatively small samples with

no statistical significance. Furthermore, their ontologies

are based from different sources which can contain man-

ually defined relations (WordNet, Open Mind common

sense [46]) or validated by volunteers. Ultimatly, our

objectif is to complement already existent ontologies

and use them also to robustify our own methodology.
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Relation Accuracy (95% CI) Correct examples Failures

isA 94% ± 3.3

(vinegar-n07828987,liquid)
(Tuileries-n04496173,palace)
(CD player-n02988304,equipment)
(clabber-n07850219, milk)
(dust-n14840092,particule)
(paraboloid-n13897002,surface)

(central nervous system-n05480794,part)
(sublimate-n15062284,product)
(main-n09345932,body)
(katharometer-n03609147,measure)

hasA 84.5% ± 5.0

(revolver-n04086273,cylinder)
(knife-n03623556,handle)
(French dressing-n07833816,mustard)
(hammer-n03481172,head)
(Emmenthal-n07854982,hole)
(marmite-n03722827,leg)

(triangle-n04480853,bent)
(mangosteen-n07763987,juicy)
(spoon-n04284002,shallow)
(Roman nose-n05599501,prominent)
(barbed wire-n02790823,regular)

prop 96% ± 2.7

(wafer-n07695012,thin)
(wheel-n04575723,circular)
(sapphirine-n15012810,blue)
(jawbreaker-n07599161,hard)
(headpiece-n03504205,protective)
(dolmen-n03220237,large)
(painting-n03876519,artistic)

(loft-n03686470,other)
(hydrocarbon-n14911057,only)
(synchromesh-n04375241,same)
(encephalogram-n03285730,X)

usedFor 94.5% ± 3.2

(drinking vessel-n03241496,drink)
(peavey-n03903133,handle)
(clothesbrush-n03050453,clean)
(chessboard-n03014317,play)
(estradiol-n14750316,treat)
(food processor-n03378174,blend)

(tin-n14658855,alloy)
(making-n03714899,perform)
(steam engine-n04309049,raise)

on 85.5% ± 4.9

(wallet-n04548362,money)
(mannequin-n03717921,clothes)
(butcher knife-n02927053,meat)
(bowl-n02881193,liquid)
(parer-n03890093,fruit)
(spoon-n04284002,food)

(stealth fighter-n04308397,bomb)
(liqueur glass-n03676623,amount)
(tire iron-n04441093,shell)

Table 4: Examples of extracted relations taken from our analyzed samples (200 per relation type).

4.6 Discussion

In this section, we introduced the semantic layer of our

environment modeling architecture. It is represented as

an ontological graph built automatically by analyzing

word definitions. Such a hierarchical representation pro-

vides some natural benefits in terms of computational

complexity. We computed the distance to the root node

for each of the Nleaf = 23330 leaf nodes of our ontologi-

cal graph and obtained an almost gaussian distribution

with a mean distance d̄ = 5 and a maximum distance

dmax = 15. In particular, we exploit this property in

the Identification process (Figure 2) which links our
perception model to the instance model.

The details of this process are out of the scoop of

this paper as they relate to image processing and ma-

chine learning. In short, for our architecture to scale

with an open world and an unknown number of object

classes, we can not use a unique multiclass classifier and

have to rely on binary classifiers attached to each con-

cept of the ontological graph. The idea is then to exploit

the ontological graph as a decision tree. We reduce then

the number of classifiers required to classify an object.

It also provides a way to connect unknown visualized

objects on intermediate nodes of the ontology. In the

following section, we propose another use of its graph

structure.

5 Application : notion of context

As explained in the introduction, the ontological graph

can be used to extract what we call a context of con-

cepts. We propose two definitions of it with slightly

different goals :

– Context by co-occurrences of concepts. This defini-

tion is the most frequent in practical robotic appli-

cations. It is generally used in probabilistic frame-

works as a prior information. In an open set world,

it could be used to preload classifiers on a limited

subset of concepts likely to be present in the cur-

rent context of the robot. However, it does not give

directly what the context is.

– Context as the confounding nodes explaining the co-

occurrences of concepts. This can be used to infer
new relations between concepts through their com-

mon context. This is the example of fork and restau-

rant in Figure 9.

In the following, we investigate measures for each of

those definitions. It is rather difficult to evaluate such

methods. Indeed, there is no available ground truth and

more importantly the results are dependent on the on-

tological graph used. We evaluate it here empirically

through examples. In the case of a unique concept, we

use its centered subgraph. For a subset of concepts, we

use the union of their subgraphs.

5.1 Measure of context based on word vector

representation

A simple way to have a measure of context is to use word

vector representation such as GloVe [35]. Those repre-

sentations learns words embedding in a vector space
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eat

forkkitchen restaurant

localize 

Observational

correlation
Hypothesis

localize 

room
isA isA 

food

p(c=fork|r=kitchen)

Context Contextual

causality

Fig. 9: Illustration of the notion of ”context” as defined

in our work, acting similarly to confounding variables

based on textual corpus. As they are based on local

neighbourhood, they capture the context through co-

occurrences of words. The measure of context pGloV e

between two nodes ci, cj is the cosine similarity of their

corresponding word vector G(ci), G(cj):

pGloV e(ci, cj) =
G(ci)

TG(cj)

||G(ci)||2||G(cj)||2
(2)

When no vector representation is found for a concept,

we use instead its first hypernyms with an available rep-

resentation. This simple method returns an ordered list

of related concepts which can be present in the same

scene as the targeted concept. Two concepts with a

high similarity are likely to share a common context.

However, it does not generally imply that a concept

has high similarity with concepts representing its con-

text. For instance, fork and spoon have a rather high

similarity (pGloV e(fork, spoon) = 0.44) whereas their

similarities with food is lower (pGloV e(fork, food) =

0.08, pGloV e(spoon, food) = 0.11).

Although its usefulness in practice, this measure has

some drawbacks. First, GloVe is a unimodal representa-

tion. This means that homonyms are represented by the

same feature vector. Furthermore, this approach can’t

take in account abstracted or action-related context.

This can be explained by the fact that the words fork

and food do not explicitly appear together in the train-

ing corpus. To extract such information, we have to rely

on the ontological graph structure.

5.2 Measure of context based on betweenness

centrality

Intuitively, context concepts are nodes with a high cen-

trality value in the subgraph of the targeted concept

(as food in figures 4e and 4f). In graph theory, there are

several definitions of centrality. As context concepts are

expected to be confounders between various concepts,

we propose to use a slightly modified version of be-

tweenness centrality [16][6]. It measures the proportion

of a node to be in the shortest path between two other

nodes. Formally, for a graph G = {V,E}, the between-

ness centrality bc of a node v ∈ V is given by

bc(v) =
∑

s,t∈V,s 6= t6=v

σ(s, t|v)

σ(s, t)
(3)

where σ(s, t) is the total number of shortest path be-

tween two nodes s and t. σ(s, t|v) is the number of short-

est path going through v. The result can be normalized

by the number of pairs of nodes. However, we can’t use

this measure directly in our graph :

– A high value of betweenness centrality is a neces-

sary but not a sufficient condition : nodes with high

degree are prone to high betweenness centralities.

– We have to adapt the measure when dealing with

factor nodes. They should not be taken in account

and share their centrality values to their direct neigh-

bourhood.

Those two problems are addressed by the following mod-

ification to the original measure (2). First, we normalize

the betweenness centrality value by the degree of the

node :

bc′(v) =
1

deg(v)

∑
s,t∈V,s6= t6=v

σ(s, t|v)

σ(s, t)
(4)

In addition, we remove node with a degree 1 not related

to a factor node : they don’t provide information on

context. Let vf ∈ V F
K be a factor node of our ontological

graph and C(vf ) the set of its neighbour nodes. The

modified betweenness centrality bc′ is given by :

∀v ∈ C(vf ), bc′(v) = bc(v) +
bc(vf )

deg(vf )
(5)

bc′(vf ) = 0 (6)

The figures 10a,10b show examples with node size

proportional to the GloVe similarity measure and our

normalized version of betweenness centrality. More ex-

amples are provided at the end of the paper in Figure

21.
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(a) GloVe similarities for
fork-n03383948

(b) Betweenness centralities
for fork-n03383948

(c) GloVe similarities for
the subset cup-n03147509,
spoon-n04284002

(d) Betweenness cen-
tralities for the subset
cup-n03147509,spoon-
n04284002

Fig. 10: Examples of context relatedness measures as

exposed in section 5. Nodes size and color are propor-

tional to their contextual measure values

5.3 Extension to common context

The previous sections deal with the context of one con-

cept. Another interesting case is its extension to the

common context of a set of concepts. Let C = {ci}1,...,m
a set of concepts. We consider the subgraph GC defined

as the union of subgraph Gci centered on each ci ∈ C :

GC =

m⋃
i=1

Gci (7)

In the case of the betweenness centrality, the extension

is immediate by applying the measure on the subgraph

GC . For the approach based on GloVe vector represen-

tation, we need to adapt the measure. By noting P (E)

the set of subset of a set E, we define a new context

measure pcGloV e : P (Vk)× VK 7→ [0, 1] as the geometric

mean of the similarities between a concept c ∈ GC to

each concept of C :

pcGloV e(C, c) = m

√√√√ m∏
i=1

pGloV e(ci, c) (8)

Example for the subset cup-n03147509, spoon-n04284002

is given in Figure 10d. Geometric mean was chosen here

because it decreases as the dispersion in the similarities

pGloV e(ci, c) increases.

5.4 Discussion

The measure of context based on the ontology structure

(betweenness centrality) is a first step towards transfert

learning of facts learned from observational correlations

as illustrated in Figure 9. Figure 21 gives some more

examples at the end of the paper. We provide a proof-

of-concept through qualitative evaluation. The measure

based on GloVe similarity is more practical as it allows,

in our open-set world assumption, to give priorities to

objects sharing the current context of the robot. Prelim-

inary works using current flow betweenness centrality

[7] seems promising by giving more robust evaluation

of context as it is not limited to shortest path between

concepts.

6 Human-robot interactions : task creation

from request

This section deals with how our system process infor-

mations coming from human users. We mainly consider

three type of information :

– General information eg. A cup has a handle. Such

information is processed as explained in section 4.4

and added to the ontological graph.

– Specific information concerning instances eg. My

cup is red. Semantic analysis is also similar to the

previous point. The corresponding instance is cre-

ated or updated in the instance model. For instance,

the input My cup is red made by a user userName

translates to a Prolog rule my cup/1 :

my cup(A) : - isA(A, cup), prop(A, red), (9)

belongTo(A, userName).

where belongTo is a specific predicate used in the in-

stance model. In fact, as ownership can’t be detected

by observation, we separate the instance ”core” def-

inition and create a new rule for ownership so that

(9) is replaced by :

my cup(A) : - isA(A, cup), prop(A, red). (10)

belongToUserName(A) : - my cup(A). (11)

– Request eg. Bring me my cup. There are converted

into Prolog rules. Solutions are searched by exploit-

ing both perception (instances detections), instances

definitions (if any) and generic knowledge (ontol-

ogy).

In the following, we focus on the request case.
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Table 5: Decomposition of the request Bring me the fork with a red handle behind my small cup into prolog clauses.

We use t.w.f.a.r.h to refer to the fork with a red handle

Clause P αi αc αf

isA(t.f.w.a.r.h, fork) isA {t.f.w.a.r.h} {fork} ∅
isA(my small cup, cup) isA {my small cup} {cup} ∅
isA(red handle, handle) isA ∅ {handle} {red handle}
prop(red handle, red) prop ∅ {red} {red handle}
hasA(t.f.w.a.r.h, red handle) hasA {t.f.w.a.r.h} ∅ {red handle}
prop(my small cup, small) prop {my small cup} {small} ∅
behind(the fork, my cup) behind {the fork, my cup} ∅ ∅

6.1 Request conversion in Prolog rule

6.1.1 Prolog clause definition

First, in our work we define a Prolog clause F as

F = P (α = {a1, . . . , an}) [αi, αc, αf ] (12)

where P is the predicate and α its set of arguments.

Note that in Prolog, constants (atomic terms) start

with a lower case and variables with a upper case. αi

(resp. αc and αf ) are the subsets of arguments corre-

sponding to instances (resp. generic classes (concept)

and intermediate equivalent to factor nodes). Those

clauses are extracted from the request similarly to the

section 4.4. An example of a decomposition following

the definition (12) is given in Table 5. Predicates are

the same as in the ontological graph with addition of

spatial relations (behind,to the left of,...) and existence

(isDetected). We use here the concept of ”computable

classes” in KnowRob [51] where some predicates are

checked at run-time based on perception.

6.1.2 Prolog rule conversion

Formally we represent the request Rm/k as a Prolog

rule based on the Prolog clause decomposition :

Rm(A)[αi
m,α

c
m,α

f
m] : -

N∧
j=1

Fj(σ(αj))[α
i
j , α

c
j ,α

f
j ].

(13)

A = {A1, . . . , Ak} is a set of variable arguments which

can correspond to concepts (eg. cup) or instances (eg.

my cup). We have the mapping

σ :

N⋃
j=1

αj →
N⋃
j=1

αj ∪A (14)

which sends some arguments of the clauses Fj to the

variable arguments A. We also define for t ∈ {i, c, f}

αt
m =

N⋃
j=1

αt
j (15)

respectively the union of the instance, concept and fac-

tor constants from the clause arguments. Generally pred-

icates are directly obtained from the syntactical anal-

ysis of the request. However, clauses involved with in-

stance arguments generate different predicates depend-

ing on the situation. For the sake of clarity, consider

the simple request Bring me my cup behind the fork. It

translates to the following Prolog rules :

– In case the instance (here my cup) has already be

seen2, we have :

Rm(A1) : - isDetected(my cup), isA(A1, fork),

behind(my cup,A1). (16)

with σ(the fork ∈ αi
m) = A1.

– In case the instance has not been seen but is already

semantically defined, we have :

Rm(A1, A2) : - my cup(A2), isA(A1, fork),

behind(A2, A1). (17)

where my cup/1 is the corresponding Prolog rule

(as in (10)). Here

σ(the fork ∈ αi
m) = A1, σ(my cup ∈ αi

m) = A2

– In the remaining case where the instance is un-

known, we have :

Rm(A1, A2) : - isA(A1, fork), isA(A2, cup),

behind(A2, A1). (18)

with the same mapping σ as in the previous case.

A detection thread is started for each concept c ∈ αc
m

and instance i ∈ αc
m appearing in the Prolog rule. In

both case, we use a pretrained Convolutional Neural

Network [20, 45, 50] casted to a Fully Convolutional

Network (FCN) [26] for detection. We then replace the

last softmax layer respectively by a binary Random For-

est layer or a cosine similarity layer as illustrated in

Figure 11.

2 In other words, it means that it can be detected by the
perception module
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Fig. 11: Modified version of FCN used in our work.

Binary Random Forest are used for concept detection.

Cosine similarity with previous observations is used for

instance detection

7 Use cases

An intrinsic evaluation of our model is hard to obtain

as the results rely heavily on external tools (CNN, Syn-

taxNet). In order to assess the validity of our approach,

we propose to illustrate our system through some use

cases.

7.1 Experimental settings

We consider a scene consisting of several table-top ob-

jects. We use a RGBD Kinect sensor and detect the ta-

ble plane using a RANSAC-based plane fitting on the

3D point cloud. Objects above the table are clustered

and then registered as instances. The initial 2D object

masks are further refined using GrabCut algorithm [39].

The system core is implemented in C++. Prolog is inte-

grated through the C/C++ interface of the SWI-Prolog

7.7.12 environment [56]. FCNs for concept and instance

detection are implemented using Caffe framework [18]

based on AlexNet [20] and VGGNet [45]. We use the

Random Forest implementation of OpenCV and train

those binary classifiers with the image database Ima-

geNet [15].

7.2 Multi-instances scenario

We consider an initially empty scene. The user (here

Yohan) provides some specific information to the sys-

tem : ”My cup is to the left of the car”. From the syn-

tactical analysis, the semantic definition of the instance

my cup induced Prolog rules as in figure 12 :

my cup(A) : - isA(A, cup), isA(B, car), (19)

to the left of(A,B).

belongToY ohan(A) : - my cup(A).

Objects are then added to the scene and passively de-

tected using the method described in section 7.1 (Figure

13). Each detection generates a new instance in the in-

stance model. The request ”Bring me the cup behind

NG0 = "my cup", NG1 = "the car"
 RG0 = <NG0, to_the_left_of,NG1>

Fig. 12: Specific information provided by the user gen-

erates an instance defined semantically

Fig. 13: State before the request after introduction of

objects

my cup” is then made by the user. Following section

6.1.2, it is internally represented by the rule

Rm(A,B) : - isA(A, cup),my cup(B), behind(A,B).

(20)

Two threads for the detection of cup and car (required

by the my cup clause) are started. Spatial clauses re-

lated to current observations are evaluated on the fly

and stored in a temporary file.

Finally, the task is completed by finding the re-

quested instance (figure 14a). The instance model is

thus updated as in figure 14b.

7.3 Ontology usage and opportunist detection

We propose a case involving directly our generated on-

tology. The scene can be seen in figure 16. Note that

the spoon has not been detected because it was too

close to the Kinect sensor. We consider the following

request : ”Give me something for serving coffee”. Un-

like the previous case, the requested object is not di-

rectly given. Here our ontology provides the subset of
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(a) Final state of the system

(b) Updated instance model after task completion

Fig. 14: Final state after the request resolution

candidate concepts. After the syntactical analysis of the

request, we obtain the clause which should be satisfied

by the requested object as well as the rule representing

the task

conceptDef(A) : - useFor(A,F ), on(F, coffee),

isA(F, serve). (21)

Rm(A) : - conceptDef(B), isA(A,B). (22)

where F is a variable corresponding to a factor node.

First, the system searchs for the sets of concepts

(synset) corresponding to the words coffee and serve.

We obtain coffee-n07929519 and serve-v01181295/

v01180351/v01428011/v01438681. For each pair of con-

cepts, we search through the ontology using the rule

(21) as shown in Figure 15. The negative integers are

the identifiers used for factor nodes. Two concepts are

satisfying (21) : demitasse-n03174731 and coffee mug-

n03063599. Each of those concepts are searched in sep-

arate threads similarly to the previous case. Finally, an

instance is found to be a coffee mug-n03063599 which

solves (21) (figure 16). At this point, the system knows

that the scene is composed of a coffee mug. One oppor-

tunist strategy to detect new instances in the scene is

to exploit the current context from the instance model.

Fig. 15: Search of requested concept with the Prolog

engine

Fig. 16: System after task completion in the use case

illustrating ontology usage and opportunist detection

Fig. 17: Heatmap obtained from the opportunist detec-

tion of a spoon using context information

Figure 18 shows the ontological subgraph of coffee mug

with node size proportional to the context measure em-

ployed. The first concepts are then searched for with a

Random Forest FCN (Figure 11). Figure 17 shows the

resulting heat map for the spoon concept.

7.4 Discussion

In this section we illustrate how our system globally

works on simple usage cases. This practical implemen-

tation allowed us to validate our approach. Note that
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(a) Betweenness centrality
measure

(b) GloVe similarity measure

Fig. 18: Context for coffee mug-n03063599 with GloVe

similarity and betweenness centrality

the objective is to illustrate the ideas and architecture

presented throughout this paper. In a real settings, it

would be necessary to optimize the different algorithms

used and notably the binary Random Forest classifiers.

Although it is not refined enough yet for real-world ex-

ploitation, this proof-of-concept gives encouraging re-

sults and encourage us to pursue our efforts in this di-

rection.

8 Conclusion and Future work

The vast majority of the robotic literature focuses on

task description. While we are convinced that the task-

oriented approach is fundamental, little has been done

on environment representation for its own sake. It is

generally defined at hand according to the targeted

task. The originality of our approach is to uncorrelate

(as possible) the environment representation from the

final task. We propose a general, task-independent envi-

ronment representation for robotic applications where

interactions with human are involved. It encompasses

classical representations (geometrical, instance-oriented,

semantic) in a unique framework.

In particular, this paper is focused on the seman-

tic knowledge representation and human-robot interac-

tions. Knowledge representation is often done using on-

tologies. From a robotics point of view, they often con-

cerns unrelated domains (eg. History, Politics) and in

the same time lacks detailed description of usual physi-

cal objects. We propose an original method to generate

automatically an object-based ontology from WordNet

definitions where concepts are defined by their physi-

cal appearance and/or their functions (usage). We vali-

date our approach by visually inspecting the generated

graph and by evaluating samples of inferred relations.

Based on the ontological graph, we make a first step

towards the formalization of what we usually call con-

text. We proposed two main measures of context relat-

edness and empirically showed their pertinence.

Finally, we discussed about how our system deals

with human interactions. We propose a formalization

for request conversion into Prolog rules. This is vali-

dated by two simple use cases which illustrates how

our system can be used.

There is still a lot of room for improvements. As our

measure of context is directly related to the quality of

our ontology, we are first considering a refined process

for the ontology generation. The idea is to recursively

analyse WordNet definitions using the ontology built in

the previous iteration and learns new predicates/rules

for relation extraction. We also envisage to apply the

method to different dictionaries and merge the resulting

graphs. Another possibility is to filter pertinent rela-

tions from existing ontologies and to integrate them. In

particular, ConceptNet [47] proposes relations similar

to ours and is a good candidate for integration.

Feedbacks between the robot and users are an ab-

solute necessity when requests have no or several solu-

tions. In both cases, the robot should think with con-

trafactualities : think about what could have been if

but is not (from its point of view). Our perspectives in-

clude the study of an approach for generating questions

(feedback) in order to obtain a unique solution to the

request.

Note that our work shows some similarities with

the approach proposed by [11] and [34]. Indeed, cur-

rent AI trend of deep machine learning is to learn cor-

relations from data. We believe that the AI field (and

autonomous robotics) should leverage causality in order

to adapt and learn in an open world. However, those two

approaches are not mutually exclusive. The recent Al-

phaGo Zero deep reinforcement learning system [44] for

playing Go has demonstrated impressive results with-

out any external data but the rules of the game. Our

work can be thought as a step towards defining rules

describing a robot environment. Its use in a reinforce-

ment learning framework is a promising research path.
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(a) handbag-n02774152 (b) screwdriver-n04154565 (c) spatula-n04269944 (d) knife-n03623556

(e) desk-n03179701 (f) cup-n03147509 (g) microwave-n03761084 (h) scalpel-n02774152

Fig. 19: Examples of subgraphs built from WordNet definitions following the approach explained in section 4.4

(best viewed in color)

(a) bottle-n02876657

(b) automobile-n02958343 (c) spoon-n04284002

Fig. 20: Subgraphs consisting of nodes at a distance 1 (excluding factor nodes) of a central concept and its

hyponyms (best viewed in color)
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(a) spoon-n04284002 (b) automobile-n02958343

(c) chair-n03001627 (d) bottle-n02876657

(e) handbag-n02774152 (f) hammer-n03481172

Fig. 21: Subgraphs with nodes size and color proportional to their modified betweenness centrality measures


