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ASYMPTOTIC ANALYSIS OF THE EDGEWORTH COEFFICIENT

FOR A DIFFUSION UNDER THE INFLUENCE OF AN

ACCELERATED INCOMPRESSIBLE DRIFT

BRICE FRANKE AND ADEL OULED SAID

Abstract. We analyze the asymptotic behavior of the third coefficient of the Edge-

worth expansion of some diffusion under the influence of a drift, which grows to

infinity. To do this analysis, we have to extend some result on Edgeworth expansions

for discrete time Markov chains from Kontoyiannis and Meyn to diffusion.

Introduction

The Edgeworth expansion is a refinement of the central limit theorem which has played

an important role in many applications. There are numerous works in the literature

investigating the Edgeworth expansion in different situations (see for example [6], [12],

[3]). For instance, it has been investigated under various dependency assumptions.

In particular, Edgeworth expansion for discrete-time Markov chains was studied by

Kontoyiannis and Meyn in [12]. One of the goals of this paper is to extend their result

to continuous time diffusions. Let (Xt)t≥0 be a diffusion process on Rd with invariant

probability mesure π and infinitesimal generator L. We are interested in the integrated

long term behavior of an observable f satisfying π(f) = 0; i.e :

St =

∫ t

0
f(Xt)dt.

Under some ergodicity condition, it was established by Bhattacharya in [1] that (St)

satisfies a central limit theorem of the form

(1)
St√
t

d−→ N(0, σ2) as t→∞.

A way to refine this central limit theorem, is to establish an Edgeworth expansion of

the following form:

(2) sup
y

∣∣∣P{ St

σ
√
t
≤ y
}
− Φ(y)− γ(y)

σ
√
t

( ρ3

6σ2
(1− y2)− F̂ (y)

)∣∣∣ = o(t−1/2),

where γ is the density of the standard normal distribution and Φ is the corresponding

distribution function. In the above formula σ2 and ρ3 are suitable constants and F̂ is

a suitable function. In a first result, Theorem 1.1, we will establish such an Edgeworth

expansion for strongly non lattice function f : Rd → [−1, 1] under some V -uniform
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ergodicity condition on the diffusion (Xt). We will obtain the following expressions for

the coefficients of the Edgeworth expansion

σ2 = 2

∫
Rd
fgdπ, ρ3 = 6

∫
Rd
fghdπ and F̂ = g,

where g and h are uniques solutions of the two equations Lg = f and L∗h = f . Note

that we denote by L∗ the adjoint of L on L2(Rd, π).

In the second part of the manuscript, we investigate the asymptotic behavior of the

Edgeworth coefficient of a diffusion subject to growing drift. In this part we will consider

a non-reversible Rd-valued diffusion of the form

(3) dXb
t = −∇U(Xb

t )dt +
√

2dBt + cb(Xb
t )dt,

where (Bt)t≥0 is a Brownian motion, U : Rd → R is a given function such that π(dx) =

e−U(x)dx is a probability measure on Rd and b is a C1 vector field on Rd satisfying

div(be−U ) = 0. Note that under some mild assumptions on U and b the resulting

diffusion is V -uniformly ergodic and has invariant distribution π (see [9] and ??).

The real number c in front of the vector field b in (3) can be used to tune up the influence

of the incompressible drift generated through b on the diffusion (Xb
t ). One can then

study the asymptotic behavior of different quantities associated to the diffusion as the

parameter c goes to infinity. For example the asymptotic behavior of the semigroup

was investigated by Constantin, Kiselev, Ryzhik and Zlatos in [4] in a similar context.

They proved that the operator norm of the associated semigroups converge to zero if

and only if the drift generator has no non-zero eigenfunctions in H1. Again in a similar

context as in equation (3), the limit of the spectral gap of the generator of the diffusions

was computed and it can be obsered that this limit is infinit if and only if the drift

generator has no non-zero eigenfunctions in H1. Note that the equation (3) satisfies

a central limit theorem and that the Hedgeworth expansion that we obtained in the

first part holds under some conditions on U and b. It is then interesting to see how

the coefficients σ2
c and ρ3,c behave as c→∞. The limit of the asymptotic variance σ2

c

is computed in [9], [5], [15] and [7]. In the second part of this manuscript we compute

the limit of the Edgeworth coefficient ρc,3 as the constant c goes to infinity. Our proof

is based on a method from Bhattacharya, Gupta and Walker which was used in [2] to

compute asymptotic diffusion coefficients in the context of periodic homogenization as

a drift-tuning parameter goes to infinity. We will prove in Theorem 2.1 under suitable

conditions the following result

lim
c→∞

ρ3,c = 〈PL−1
0 f, (PL−1

0 f)2〉H1 and lim
c→∞

F̂c = −PL−1
0 f,

where P is the orthogonal projection from H1 to N0 = ker(b · ∇) ⊂ H1. This result

is some analogue to the result of Duncan, Lelievre and Pavliotis [5] where they proved

that

lim
|c|→∞

σ2
cb(f) = 2‖PL−1f‖2H1 .

1. Edgeworth expansion for diffusion processe

In this section we extend a result on the Edgeworth expansion for Markov chains from

Kontoyiannis and Meyn (see [12]) to continuous time diffusion processes. We essentially
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follow the proof hat they give for the discrete case, but we have to change to a generator

based approach instead of their semi-group based technique at some places in the proof.

A good account of the ergodic theory and spectral theory of diffusion processes that we

will use is given in Huisinga, Meyn and Schütte (see [10]). We will adopt their setting

for this manuscript. Let (Xt)t≥0 be a diffusion processe on Rd with generator smooth

coefficients of the form

Ldiffh(x) =
∑
i

ai∂xih(x) + 1
2

∑
i,j

aij∂xi∂xjh(x), h ∈ C2(Rd).

This means that (Xt) is a strong solutions to the stochastic differential equation

dXi
t = ai(Xt)dt+

m∑
j=1

σij(Xt)dB
j
t , X0 = x0,

where (Bt)t≥0 is standard Brownian motion on Rm and aij =
∑m

k=1 σikσjk. Then the

canonical semi group (P tcan)t≥0, which is defined for bounded continuous functions as

P tcanh(x) := Ex[h(Xt)]

satisfies for all h ∈ C2(Rd) with bounded second order derivatives that∥∥1
t (P

t
canh− h)− Ldiffh

∥∥
sup
→ 0, as t ↓ 0.

We assume that the coefficient functions ai, aij ; 1 ≤ i, j ≤ d are such that the resulting

diffusion is non-explosive. Let B(Rd) be the Borel σ-field on Rd. We will denote by

(P t)t≥0 the family of transition probability kernels which are related to (Xt) through

P t(x,A) := Px(Xt ∈ A);x ∈ Rd, x ∈ Rd, t ≥ 0, A ∈ B(Rd).

It is stated in [10] that if the generator Ldiff is hypoelliptic, then the resolvent kernel

Rθ :=

∫ ∞
0

e−θtP tdt; θ > 0

is strong Feller and that the existence of a x0 ∈ Rd and a t0 > 0 such that

P t(x,O) > 0 for all t > t0, x ∈ Rd and all open neighbourhoods O of x0

implies that the Makov process (Xt) is ψ-irreducible with ψ := R1(x0, .). Note that

this implies that there exists a function s : Rd →]0,∞[, a θ > 0 and a measure ν, which

is equivalent to the measure ψ, such that

Rθ(x,A) ≥ s(x)ν(A), x ∈ Rd, A ∈ B(Rd); (see Proposition 5.5.5 in [13]).

Besides the differential generator Ldiff we will eventually have to deal with the extended

generator Lext and the strong generator LV , which is associated to an ψ-almost every-

where finite function V : Rd → [1,∞]. The first one relates two measurable functions

h, g : Rd → R as Lexth = g if for each starting point x ∈ Rd the process

Mt := h(Xt)− h(X0)−
∫ t

0
g(Xs)ds; t ≥ 0
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is a local martingale with respet to the canonical filtration Ft := σ(Xs; s ≤ t); t ≥ 0.

The second one requires the introduction of the space L∞V of measurable, complex

valued functions h satisfying

‖h‖V := sup
x∈Rd

|h(x)|
V (x)

<∞.

Note that the probability kernel function (P t) can be identifieded with a semi groupe

on L∞V through

P th(x) :=

∫
Rd
P t(x, dy)h(y), t ≥ 0, x ∈ Rd.

Two functions h, g ∈ CV := {g ∈ L∞V : limt↓0 ‖P tg− g‖V = 0} satisfy relation LV h = g

if ∥∥1
t (P

th− h)− g
∥∥
V
→ 0, as t ↓ 0.

As is noted in [10], the operator Lext equals Ldiff when restricted to C2(Rd), the operator

LV has domain {Rh : h ∈ CV } and it satisfies LVRh = Rh − h for all h ∈ CV . A

major assumption, that is central in [12] and [10], is also assumed to hold for the

rest of this section. It claims the existence of a ψ-almost everywhere finite function

V : Rd → [1,∞], a small function s : Rd → [0,∞[ and two constants δ > 0, b ∈ R such

that

LextV (x) ≤ −δV (x) + bs(x).(4)

It is stated in Theorem 2.3 from [10] that if the diffusion (Xt) is ψ-irreducible and

aperiodic then the previous condition implies that (Xt) is V -uniform. This means that

there exists some ε > 0 such that the spectrum S(LV ) of the operator LV satisfies

Re(z) ≤ −ε for all z ∈ S(LV )\{0}

and moreover that the eigenvalue zero is simple; i.e.: its eigenspace is of dimension one.

This is equivalent to say that the operator P 1 has simple eigenvalue 1 and the that the

spectrum S(P 1) of P 1 satisfies

|z| ≤ 1− ε0 for all ∈ S(P 1)\{1}.

Then Theorem 2.2 of [10] ensures the existene of an invariant probability mesure π for

the Markov process (Xt) and two constants δ,K > 0 such that

‖(P t − 1⊗ π)h‖V ≤ Ke−δt‖h‖V , for all h ∈ L∞V and t ≥ 0.

For the rest of this section, as in [12], we will asume that

π(V 2) =

∫
Rd
V 2(x)π(dx) <∞.

Let now f : Rd → [−1, 1] be an observable with zero mean; i.e.: π(f) = 0. For α ∈ C,

we define the associated Feynman-Kac semi group

P̂ tαg(x) = Ex
[
eα

∫ t
0 f(Xs)dsg(Xt)

]
.

Note that this semi groupe is not probabilistic in the sens that P̂α1 is in general not

constant and equal to one. However, as is mentionned in [10], many concepts of semi

groupe theory, as resolvents and generators, can still be defined in this situation. Our
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later arguments are based on the strong generator LV,α of the semi groupe (P̂ tα). The

relation LV,αh = g holds for h, g ∈ CVα := {g ∈ L∞V : limt↓0 ‖P tαg − g‖V = 0} if∥∥1
t (P

t
αh− h)− g

∥∥
V
→ 0, as t ↓ 0.

Moreover, for θ > 0 the resolvent is defined through

Rα,θh :=

∫ ∞
0

e−tθP tαhdt.

It can be seen that the strong generator of the Feynma-Kac semi groupe factorizes as

follows :

(5) L̂α,V g = LV g + αfg, g ∈ .

In the following we will denote the spectral radius of the operator P̂ 1
α on L∞V as

ρ̂α := lim
t→∞
|||P̂ tα|||

1/t
V = sup{|z|; z ∈ S(P̂ 1

α)}.

We will say that the semi groupe (P̂ tα) is V -uniform, if there exists an eigenvalue λα in

the spectrum S(P̂ 1
α) of P̂ 1

α satisfying |λα| = ρ̂α, having multiplicity one and satisfying

for some ε > 0

S(P̂ 1
α)\{λα} ⊂ {z ∈ C; |z| ≤ ρ̂α − εα}.

In the following we will refer to λα as the generalized principal eigenvalue. The key

to the Edgeworth expansion presented in [12] relies on the fact that for all α in a

neighbourhood of zero the semi group (P̂ tα) also satisfies V -uniformity. We will see in

Proposition 1.3 that if the original semi groupe (P t) is V -uniform then (P̂ tα) is also

V -uniform for all α in some open neighborhood O of zero in the complex plane. For

α ∈ O, let f̌α be the eigenfunction associated to the unique eigenvalues λα which

satisfies |λα| = ρ̂α. It follows

P̂ tαf̌α = λtαf̌α for all t ≥ 0.

The function f̌α is also an eigenfunction for the generator L̂α; i.e.:

(6) Lα,V f̌α = Λ(α)f̌α, where Λ(α) = log λα.

We will see in the proof of Proposition 1.7 that the generalized principal eigenvalue λα
is an analytic function of α in a neighborhood around zero and so are Λ(α) and f̌α(x)

for any fixed x ∈ Rd. Our interest lies in the asymptotic behavior of the integrated

observations

St =

∫ t

0
f(Xs)ds.

We say that (St) satisfies an Edgeworth expansion if there exist σ2 > 0, ρ3 ∈ R and a

function F̂ : Rd → R such that the following asymptotic relation holds

(7) sup
y

∣∣∣∣∣P{ 1
σ
√
t
St ≤ y

}
− Φ(y)− γ(y)

σ
√
t

( ρ3

6σ2
(1− y2)− F̂ (y)

)∣∣∣∣∣ = o(t−1/2),

where γ is the density of the standard normal distribution and Φ is the corresponding

distribution function. It follows from the above relation that

(8) 1
σ
√
t
St

d−→ N(0, 1) as t→∞,
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which implies that the coefficient σ2 in (7) equals the asymptotique variance in the

central limit theorem (1). For the following we will restrain our analysis to non-latice

functions f . A function f : Rd → R is called lattice if there are h > 0 and 0 ≤ d < h,

such that for all x ∈ Rd the quotient 1
h(f(x) − d) is an integer. According to [12] a

function f is called almost lattice if it can be decompose as a sum f = fl + f0, where

fl is lattice and f0 has zero asymptotic variance, which means that

1

t
Var

(∫ t

0
f0(Xs)ds

)
−→ 0 as t→∞.

In the following a function is called strongly non-lattice whenever it is not almost lattice.

The following is a continuous time version of Theorem 5.1 in [12].

Theorem 1.1. Assume that f : Rd → [−1, 1] is a strongly nonlattice function with

π(f) = 0. Then the family of random variables St =
∫ t

0 f(Xs)ds; t ≥ 0 satisfies the

Edgeworth expansions (7) for all starting point x ∈ R with coefficients

σ2 = 2

∫
Rd
fgdπ, ρ3 = 6

∫
Rd
fhdπ and F̂ = g,

where g and h are the solutions of the two equations LV g = −f and LV h = fg−π(fg).

1.1. Proof Theorem 1.1. The following proof is an adaptation of the proof from

Kontoyiannis and Meyn [12] to the cas of a continuous time process. We add it here for

conveniance of the reader. Its starting point is the well known Berry-Esseen inequality

which can be found in Feller’s book (see formula (13.3) on page 538 in [6]). It states

that for any choice m > 0 and C > 0 and whenever F and G are distribution functions

satisfying |G′(y)| ≤ m, then one has

(9)
∣∣∣F (y)−G(y)

∣∣∣ ≤ 1

π

∫ C

C

∣∣∣χF (ω)− χG(ω)
∣∣∣dω|ω| +

24m

Cπ
; y ∈ R.

Here χF and χG are the characteristic functions which are associated with F and G.

In our situation we will choose

F (y) = Ft(y) = Px

{
1
σ
√
t
(St − Ex[St]) ≤ y

}
G(y) = Gt(y) = Φ(y)− ρ3

6σ2
√
t
(y2 − 1)γ(y)

and C = A
√
t, where A > 24(επ)−1|G′t(y)| for a given small ε > 0. Then (9) becomes

(10)
∣∣∣Ft(y)−Gt(y)

∣∣∣ ≤ 1

π

∫ A
√
t

−A
√
t

∣∣∣ηFt( iω
σ
√
t
)− χGt(ω)

∣∣∣dω|ω| +
ε√
t
,

where

(11) ηFt(α) := Ex
[

exp(αS̄t)
]

= mt(α) exp
(
− αEx(St)

)
,

with mt(α) = Ex
[

exp(αSt)
]

and S̄t = St−Ex[St]. Note that the characteristic function

associated with the distribution function to Gt(y) is given by

χGt(ω) = e−
ω2

2

(
1 +

ρ3(iω)3

6σ3
√
t

)
.
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To show that the Edgeworth expansion (7) holds, it suffices to show that the integral

I in inequality (10) is of order o(t−1/2). To do this we divide the integration domain in

three parts and show that all of them are o(T−1/2). We use the following decomposition

]−A
√
t, A
√
t[ = ]−A

√
t,−B

√
t[ ∪ ]−B

√
t, B
√
t[ ∪ ]B

√
t, A
√
t[

to decompose the integral of (10) as a sum of three integrals I = I1 + I2 + I3. The

constant B is supposed to satisfy B < A and will be fixed later. As a consequence, we

have to analyze the asymptotic behavior of the integrals

I1 =
1

π

∫ A
√
t

B
√
t

∣∣∣ηFt( iω
σ
√
t
)− χGt(ω)

∣∣∣dω|ω| .
Applying the change of variable u = ω

σ
√
t
, this leads to the following inequality

I1 =
1

π

∫ A/σ

B/σ

∣∣∣ηFt(iu)− χGT (σ
√
tu)
∣∣∣du|u|

=
1

π

∫ A/σ

B/σ

∣∣∣mt(iu)eEx[iuSt] − χGt(σ
√
tu)
∣∣∣du|u|

≤ σ

Bπ

∫ A/σ

B/σ

∣∣∣mt(iu)
∣∣∣du+

σ

Bπ

∫ A/σ

B/σ

∣∣∣χGt(σ√tu)
∣∣∣du

=
σ

Bπ

∫ A/σ

B/σ

∣∣∣etΛ(0)ε
′
t

∣∣∣du+
σ

Bπ

∫ A/σ

B/σ

∣∣∣e−u2tσ22

(
1 +

ρ3t(iu)3

6

)∣∣∣du.
Using part i) from Proposition 1.5 both integrals in the previous expression converge

toward zero exponentially fast, as long as B stays bounded away from zero and as long

as A stays bounded. Therefore the integral I1 is of order o(t−1/2). The integral I3 can

be treated in the same way. We now have to deal with the integral I2. After the change

of variables u = ω/σ
√
t, we obtain

I2 =
1

π

∫ B
√
t

−B
√
t

∣∣∣ηFt( iω
σ
√
t
)− χGt(ω)

∣∣∣dω|ω|
=

1

π

∫ B/σ

−B/σ

∣∣∣ηFt(iu)− χGt(uσ
√
t)
∣∣∣du|u| .

In order to understand the behavior of the integral I2 as t goes to infinity, we first

investigate it’s integrand :

Kt(u) =
∣∣∣ηFt(iu)− χGt(uσ

√
t)
∣∣∣.

With the Propositions 1.5 and 1.7 we can see that ηFt equals

ηFt(iu) = e−iuEx[St]etΛ(iu)
[
f̌iu(x) + |iu|εt

]
.

Expanding Λ(iu) in a Taylor series around zero yields.

Λ(iu) = iuΛ
′
(0)− 1

2u
2Λ
′′
(0) + 1

6(iu)3Λ
′′′

(is), for some suitable s ∈]0, u[.

By Proposition 1.7, we have Λ
′
(0) = 0 and Λ

′′
(0) = σ2, and it follows that

ηFt(iu) = e−iuEx[St] exp
(
t
(
− 1

2u
2σ2 + 1

6(iu)3Λ
′′′

(is)
))

[f̌iu(x) + |iu|εt].
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According to the definition of dt (see Proposition 1.8) this can be written as

ηFt(iu) = e−iudt−iug(x) exp
(
t
(
− 1

2u
2σ2 + 1

6(iu)3Λ
′′′

(is)
))

[f̌iu(x) + iuεt],

where g is the solution of the Poisson equation Ldiffg = −f . From this we deduce the

following expression for the integrand Kt(u) :

Kt(u) = e−
1
2
tu2σ2

∣∣∣∣∣ exp
(
−iudt+ t

6(iu)3Λ
′′′

(is)+log
(
f̌iu(x)+iuεt

)
−iug(x)

)
−1−tρ36 (iu)3

∣∣∣∣∣.
Note that

log
(
f̌iu(x) + iuεt

)
− iug(x) = log

(
1 +

iuεt

f̌iu

)
+ log(f̌iu(x))− iug(x)

= δ(iu) + log
(

1 +
iuεt

f̌iu

)
,

where δ(.) is as in Proposition 1.8. The second exponential in the above expression for

Kt(u) then becomes

Kt(u) = exp
(
t
6(iu)3Λ

′′′
(is)− iudt + iuε#t (iu) + δ(iu)

)
,

where

ε#t (iu) :=
1

iu
log
(

1 + iu
εt

f̌iu

)
.

Since according to Proposition 1.5 the function εt converges to zero as t→∞, it follows

that

(12) |ε#t (iu)| → 0 as t→∞ uniformly for all |u| ≤ B/σ.

Therefore, the expression for Kt(u) becomes

(13) Kt(u) = e−
1
2
tu2σ2

∣∣∣ exp
(
−iudt+ t

6(iu)3Λ
′′′

(is)+δ(iu)+iuε#t (iu)
)
−1−tρ36 (iu)3)

∣∣∣.
To show that this expression is o(t−1/2) we will apply the following inequality from

Feller’s book (see page 534 in [6]). It states that for arbitrary complex numbers α, β

and γ ≥ max{|α|, |β|} one has

(14)
∣∣∣eα − 1− β

∣∣∣ ≤ (|α− β|+ 1
2 |β|

2
)
eγ .

In our case we choose

α := −iudt + t
6(iu)3Λ

′′′
(is) + iuε#t (iu) + δ(iu)

and

β := tρ3
6 (iu)3.

With this choice of α and β we obtain the following bound for Kt in (14)

Kt(u) ≤
(
|α− β|+ 1

2 |β|
2
)
eγ .

We now seek bounds for |α − β|, |β| and γ ≥ max{|α|, |β|}. By proposition 1.7, Λ is

analytic in α and Λ
′′′

(0) = ρ3. It follows that Λ
′′′

is continuous. Therefore, we can

choose B small enough such that

(15) |Λ′′′(is)− ρ3| < 6ε, for |s| < B/σ.
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Furthermore, we choose B small enough such that

(16)
1

6
|Λ′′′(is)| ≤ σ3

4B
and

Bρ3

6σ3
≤ 1

4
.

Using Proposition 1.8 and (15) we obtain

|α− β| ≤ t

6
|u|3|Λ′′′(is)− ρ3|+

|u|
t

+ Cu2

≤ εt|u|3 +
|u|
t

+ Cu2.

Further, if we use (16), (12) and the fact that |u| ≤ B/σ we obtain that for large t

|α| ≤ t|u|3 1

6
sup
|u|<B/σ

|Λ′′′(iu)|+ |u|
(
|dt|+ |ε#t (iu)|

)
+ |δ(iu)|

≤ t|u|3 σ
3

4B
+
|u|
t

+
ε

2

≤ 1

4
tu2σ2 + ε.

On the other hand using again (16) and the fact that |u| ≤ B/σ, we obtain

|β| = tρ3

6
|u|3 ≤ uσ

B

1

4
tσ2u2 ≤ 1

4
tσ2u2.

From those bounds for α and β, we see that the choice γ := 1
4 tu

2σ2 + ε satisfies

γ ≥ max{|α|, |β|}. It now follows from inequality (14) that

Kt(u) ≤ e−
1
4
tu2σ2+ε

(
εt|u|3 + Cu2 + |u|

t + tρ3|u|3
12

)
.

This yields that I2 is bounded by

I2 ≤
1

π

∫ B/σ

−B/σ
e−

1
4 tu

2σ2+ε
(
εt|u|3 + Cu2 + |u|

t + tρ3|u|3
12

)du
|u|
.

We still have to prove that the integral in the previous formula is of order o(t−1/2).

With the change of variable ω = u(σ
√
t) we obtain

I2 ≤ eε

π

∫ B
√
t

−B
√
t
e−

ω2

4

(
ε ω2
√
tσ3 + C |ω|

tσ2 + 1
t3/2σ

+ ρ3ω2

12
√
tσ3

)
dω

≤ ε√
t

eε

π

∫ ∞
−∞

e−
ω2

4

(
ω2 + ρ3ω2

12σ3

)
dω +O(t−1).

This shows that the integral I2 is of order o(t−1/2) and the proof is archived. 2

1.2. Auxillary results for the proof of Theorem 1.1. The following results have

been used in the proof of the previous theorem.

Lemma 1.2. Suppose that the semigroup (P t)t≥0 satisfies assumption (4). Then for

all t ≥ 0 the family α 7→ P̂ tα;α ∈ C of bounded operators on L∞V is analytic in the

complex plane.



10 BRICE FRANKE AND ADEL OULED SAID

Proof. The analyticity of the exponential function together with the boundedness of

the function f yield the existence of a constant Kf > 0 such that∣∣∣∣∣
∫ t

0
f(Xs)dse

α0

∫ t
0 f(Xs)ds − 1

α0 − α

(
eα0

∫ t
0 f(Xs)ds − eα

∫ t
0 f(Xs)ds

)∣∣∣∣∣ ≤ Kf |α0 − α|.

Note that since f is bounded, the operator

P ′h(x) := Ex
[ ∫ t

0
f(Xs)dse

α0

∫ t
0 f(Xs)dsh(Xt)

]
is a bounded operator on L∞V . Using assumption (4), we then have for all h ∈ L∞V
satisfying ‖h‖V ≤ 1 that

1

V (x)

∣∣∣P ′h(x)− 1

α0 − α
(
P̂ tα0

h(x)− P̂ tαh(x)
)∣∣∣∣∣

≤
Kf

V (x)
|α0 − α|Ex[V (Xt)]

=
Kf

V (x)
|α0 − α|

∫ t

0
P sLextV (x)ds

≤
Kf

V (x)
|α0 − α|

(
− δ

∫ t

0
P sV (x)ds+ b

∫ t

0
P ss(x)ds

)
= O(|α0 − α|).

This shows that

sup
‖h‖V =1

∥∥∥P ′h(x)− 1

α0 − α
(
P̂ tα0

h(x)− P̂ tαh(x)
)∥∥∥
V

= O(|α0 − α|).

Thus α 7→ P̂ tα is complex differentiable in α0 ∈ C. This proves our result. �

Proposition 1.3. Suppose that the semi group (P t)t≥0 is V -uniform and satisfies

assumption (4). Then the Feynman-Kac semi group (P̂ tα)t≥0 is V -uniform for all α

from an open neighbourhood of zero in the complex plane.

Proof. This follows from the spectral characterization of V -uniformity and spectral

continuity with respect to closed curves as described in Kato’s book (see [11] p.379).

Note that Lemma 1.2 shows that for fixed t ≥ 0 the family of operators (P̂ tα) is a type

A holomorphic family of operators. �

The following proposition corresponds to Proposition 4.5 in [12] for the discrete case.

The proof that we present follows the line of arguments presented there with minor

modifications. We add it here for the conveniance of the reader, since its proof intro-

duces many notions, which are used later.

Proposition 1.4. Suppose that the semi group (P̂ tα)t≥0 is V-uniform for all α in a

neighborhood of zero and that the semi group (P t)t≥0 satisfies assumption (4). Then

the generalized principal eigenvalue λα is an analytic function of α in a neighborhood

of zero and so is f̌α(x) for any fixed x ∈ Rd.

Proof. We know from Lemma 1.2 that the function α 7→ P̂ 1
α is analytic. For α = 0,

we have λ0 = 1 and λ0 /∈ S(P̂ 1
0 − s0 ⊗ ν0), where s0 ⊗ ν0 is the linear form, which

corresponds to the projection to the one dimensional eigenspace associated with λ0. It
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follows from spectral continuity that for α in a sufficiently small neighborhood of zero,

we also have λα /∈ S(P̂ 1
α − s0 ⊗ ν0). We define the potential operator

Ûz,α := (Iz − P̂ 1
α + s0 ⊗ ν0)−1

Then, since

Ûz,0 := (Iz − P̂ 1
0 + s0 ⊗ ν0)−1

is a bounded linear operator for z in a neighborhood of λ0, it follows that Ûz,α is a

bounded linear operator for z in a sufficiently small neighbourhood around λ0. Since

α 7→ P̂ 1
α is analytic and since taken the inverse is an analytic operation, it follows

that Ûz,α is analytic for (z, α) in a neighborhood O of (λ0, 0). One the other hand, by

Proposition 5.2 of [14] we have the following equality

(17) [Iz − P̂ 1
α]−1 = Ûz,α +

(Ûz,αs0)⊗ (ν0Ûz,α)

1− ν0Ûz,αs0

.

Since the left side of (17) is known to have a singularity in z = λα, it follows that

ν0Ûλαs0 = 1.

In particular it follows from this that Ûλαs0 6= 0. Applying (Iz − P̂ 1
α) to (17) from the

left and s0 from the right, we obtain

(18) s0 = (Iz − P̂ 1
α)Ûz,αs0 + (Iz − P̂ 1

α)
(Ûz,αs0)(ν0Ûz,αs0)

1− ν0Ûz,αs0

.

Multiplying (18) by (1− ν0Ûz,αs0), it follows that

(19) (1− ν0Ûz,αs0)s0 = (1− ν0Ûz,αs0)(Iz− P̂ 1
α)Ûz,αs0 + (Iz− P̂ 1

α)(Ûz,αs0)(ν0Ûz,αs0).

Then setting z = λα in (19) we obtain

(Iλα − P̂ 1
α)Ûλα,αs0 = 0.

It follows that the eigenfunction f̌α can be written as

f̌α = Ûλα,αs0.

By applying ν0 on the left to (17) and doing the same argument we can show that

µ̌α = ν0Ûλα,α,

is a left eigenmeasure to the eigenvalue λα of P 1
α. If we define the analytic function

J (z, α) = ν0(Ûz,αs0), z, α ∈ C, we have

J (λα, α) = ν0(Ûλαs0) = 1

and by differentiation we obtain

∂

∂z
J (z, α)

∣∣
z=λα

= ν0(−Û2
λα,αs0) = −µ̌α(f̌α).

Note that µ̌(f̌0) is positive by Perron-Frobenius theorem and the irreducibility of P 1.

Thus, we can find a small neighborhood such that µ̌α(f̌α) 6= 0. It follows from the

implicit function theorem that λα is an analytic function of α. From the expansion

f̌α = Ûλα,αs0 =

∞∑
n=0

λ−n−1
α (P̂α − s0 ⊗ ν0)ns0
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we also can deduce that f̌α is analytic as a composition of two analytic functions. �

The following proposition corresponds to the statements P1 and P2 in the proof of the

discrete Edgeworth expansion in [12]. In the dicrete case, they rely on Theorem 4.1

and 4.2 from [12]. Continuous counterparts of those two theorems are stated in [12] as

Theorem 4.16 and 4.17.

Proposition 1.5. For x ∈ Rd let mt(α) := Ex
[
eαSt

]
, t ≥ 1, α ∈ C. i) There exists

an open neighbourhood O of zero in the complex plane and a family of functions εt
satisfying

mt(α) = exp(tΛ(α))(f̌α(x) + |α|εt(α)),

and supα∈O |εt(α)| → 0 exponentially fast as t→∞.

ii) If f is strongly nonlattice, there exist 0 < ω0 < ω1 < ∞, a > 0 and a family of

function ε
′
t satisfying

mt(α) = exp(tΛ(Re(α)))ε
′
t(α),

and supα∈[−a,a]×[iω0,iω1] |ε
′
t(α)| → 0 exponentially fast as t→∞.

Proof. It is proved in Theorem 4.16 from [12] that there exist constants B0 > 0 and

b0 > 0 such that for all x ∈ Rd and t > 0 one has∣∣∣Ex[ exp
(
αS(t)− tΛ(α)

)]
− f̌α

∣∣∣ ≤ B0|α| exp(−b0t)V (x),

where f̌α is the eigenvectors of the operator P̂ 1
α associated to the eigenvalue λα having

absolute value equal to the spectral radius ρ̂α. Multiplying both sides with exp(tΛ(α))

yields ∣∣∣Ex[exp
(
αS(t)

)
]− exp(tΛ(α))f̌α

∣∣∣ ≤ |α|εt(α) exp(tΛ(α)),

where the function |εt(α)| := B0e
−b0tV (x) converges exponentially fast as t→∞.

It is also proved in Theorem 4.17 from [12] that for any 0 < ω0 < ω1 < ∞ there exist

b0 > 0 and B0 <∞ such that for all α satisfying −ᾱ ≤ Re(α) ≤ ᾱ and ω0 ≤ |Im(α)| ≤
ω1. ∣∣∣Ex[ exp

(
αS(t)− tΛ(Re(α))

)]∣∣∣ ≤ B0V (x) exp(−b0t).

Multiplying both sides with exp(tΛ(Re(α)) yields

mt(α) =
∣∣∣Ex[ exp

(
αS(t)

)]∣∣∣ ≤ B0V (x) exp(−b0t) exp(tΛ(Re(α))

= exp(tΛ(Re(α))ε′t(α),

where the function ε′t(α) = B0V (x) exp(−b0t) converges to zero exponentially fast uni-

formly for all α satisfying −ᾱ ≤ Re(α) ≤ ᾱ and ω0 ≤ |Im(α)| ≤ ω1. �

The following proposition corresponds to Proposition 4.9 in [12]. Note however, that

the proof, given there for the discrete case, relies on some particularity of the discrete

time Feynman-Kac semi group

P̂nα g(x) := Ex
[
eα

∑n
i=1 f(Xi)g(Xn)

]
,

which has the advantage of factorizing at single time step level; i.e.:

(20) P̂ 1
αg(x) = Ex[eαf(X1)g(X1)] = P 1(geαf ).
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To prove the result in the continuous time case, we will use the factorization of the

generator L̂α,V of the Feynman-Kac semi group (P̂ tα), which was given in (5).

Proposition 1.6. There exist a neighborhood O of zero in R satisfying the following

properties :

i) For all a ∈ O we have d
daΛ(a) = π̌a(f), where π̌a is the invariant probability measure

for Ľa,V .

ii) For all a ∈ O, the function F̂a = d
da log f̌a is a solution to the equation

(21) Ľa,V F̂a = π̌a(f)− f.

iii) In particular, for a = 0, we have π̌0 = π, Ľ0 = L and we obtain the Poisson equation

LV F̂0 = π(f)− f.

Proof. We will see later in Proposition 1.8 that for real a in a small neighborhood of

zero the eigenfunction f̌a is strictly positive. Therefore, we can define the following

auxiliary operator

Ľa,V = (If̌a)−1(L̂a,V − Λ(a))If̌a ,

where for a given function g we introduce the multiplication operator Igh(x) := g(x)h(x).

The differentiation of the eigenvalue equation (6) gives

ff̌a + L̂a,V f̌
′
a = Λ

′
(a)f̌a + Λaf̌

′
a.

Dividing this identity by f̌a, we obtain

f + f̌−1
a L̂a,V f̌

′
a = Λ

′
(a)f̌−1

a f̌a + Λ(a)f̌−1
a f̌

′
a.

This can be written as

(If̌a)−1
(
L̂a,V − Λ(a)

)
If̌a

f̌
′
a

f̌a
= Λ

′
(a)f̌−1

a f̌a − f.

This implies

(22) Ľa,V F̂a = Λ
′
(a)− f.

By choice of a suitable norming constant ka, we obtain the probability measure

π̌a = kaµ̌aIf̌α ,

where µ̌a is the eigenmeasure associated to P̂ 1
a which for all t ≥ 0 also satisfies :

µ̌aP̂
t
a = λtaµ̌a.

We will prove in Proposition 1.8 that f̌a is strictly positive for real a in small neigh-

borhood of zero. We have

π̌a(|F̂a|) = π̌a
(∣∣f̌ ′a/f̌a∣∣) = kaµ̌a(|f̌

′
a|) < ∞



14 BRICE FRANKE AND ADEL OULED SAID

and

π̌aĽa,V 1Rd = kaµ̌aIf̌a

(
(If̌a)−1(L̂a − Λ(a))If̌a

)
1Rd

= kaµ̌aIf̌α

(
(If̌a)−1L̂af̌a

)
− kaµ̌aIf̌α

(
(If̌a)−1Λ(a)f̌a

)
= kaµ̌a

(
L̂af̌a

)
− kaµ̌a

(
(Λ(a)f̌a

)
= 0.

It follows that the probability measure π̌a is invariant. Since F̂a is a solution to the

Poisson equation if follows that the right side of (22) is of π mesure zero. We deduce

from this that Λ
′
(a) = π̌a(f). This proves the points (i) and (ii). The proof of (iii)

follows by considering the special case a = 0. �

The following proposition corresponds to statements P4 and P5 in [12] for the discrete

case. The proof follows the same line of arguments, while substituting the discrete

generator by the continuous time generator. However, instead of expressing the coef-

ficients as series, we express them in terms of integrated solutions of suitable Poisson

equations.

Proposition 1.7. The function α 7→ Λ(α) is analytic in an open neighbourhood O of

the origin in the complex plane. Furher, one has Λ(0) = Λ
′
(0) = 0 and

σ2 := Λ
′′
(0) = 2

∫
Rd
fgdπ,

ρ3 := Λ
′′′

(0) = 6

∫
Rd
fhdπ,

where g and h are solutions to the two equations LV g = −f and LV h = fg − π(fg).

Proof. We saw in Proposition 1.4 that λα is analytic in a neighbourhood O of zero in

the complex plane. Since we have Λ(α) = log(λα), this implies Λ(α) is analytic in O.

It follows that

Λ
′
(α) =

λ
′
α

λα
and Λ

′′
(α) =

λ
′′
αλα − λ

′
αλ
′
α

λ2
α

.

For α = 0 the operator P̂ 1
0 = P 1 is stochastic and it follows that λ0 = 1, which

implies Λ(0) = 0. Further, by Proposition 1.6 we have Λ
′
(0) = π(f) = 0. The

following computation is in its spirit the same as the one given in [12] for the time

discrete case. However, instead of using the semi groupe P̂α we use it’s generator L̂α,V
in the argument. Since f̌α is eigenfunction of P̂α associed to λα it follows that it is

eigenfunction of L̂α,V associated to the eigenvalues Λ(α); i.e :

(23) L̂α,V f̌α = Λ(α)f̌α.

Without loss of generality, we will suppose that f̌α is normalized to satisfy π(f̌α) = 1.

This implies that for Hα = Λ(α)Id− L̂α,V + 1⊗ π, we obtain

Hαf̌α = Λ(α)f̌α − L̂α,V f̌α + 1Rdπ(f̌α) = 1Rdπ(f̌α) = 1Rd ,

This yields the equation

f̌α = H−1
α 1Rd .
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Moreover, formula (5) for the Feynman-Kac generator L̂α,V yields

d

dα
Hαg = Λ

′
(α)g − fg and

dk

dkα
Hαg = Λ(k)(α)g, for k ≥ 2.

It follows from this that

d

dα

∣∣∣
α=0

Hαg = Λ
′
(0)g − fg = −fg and

dk

dkα

∣∣∣
α=0

Hαg = Λ(k)(0)g, for k ≥ 2.

Moreover, for all k ≥ 1 we have

(24) π
(dkf̌α
dkα

)
=

dk

dkα
π(f̌α) =

dk

dkα
1 = 0, for α in some neighborhood of zero.

By differentiation of (23), we obtain

d2

d2α

∣∣∣
α=0

f̌α = H−2
0 (H

′
0)2H−1

0 1Rd −H−1
0 H

′′
0H
−1
0 1Rd +H−1

0 (H
′
0)2H−2

0 1Rd

= 2H−1
0 H

′
0H
−1
0 H

′
0H
−1
0 1Rd −H−1

0 H
′′
0H
−1
0 1Rd .

Note that we have H−1
0 = [−LV + Π]−1 where Π = 1Rd ⊗ π is a rank one operator.

Since H−1
0 1Rd = f̌0 = 1Rd (see Proposition 1.8), it follows that

(25)
d2

d2α

∣∣∣
α=0

π(f̌α) = 2ΠH−1
0 (fH−1

0 f)−Π(H−1
0 Λ

′′
(0)).

On the other hand, for ψ ∈ H the equation H−1
0 (g) = ψ is equivalent to

g = −LV ψ + Π(ψ).

It follows from the invariance of π with respect the semi group (P t) that

Π(g) = Π(−LV ψ) + Π(ψ)Π(1) = Π
(
− d

dt
P tψ

)
+ Π(ψ)

= − d

dt
Π(ψ) + Π(ψ) = Π(ψ) = Π(H−1

0 g).

Therefore, we see from (25) that

d2

d2α

∣∣∣
α=0

π(f̌α) = 2Π(fH−1
0 f)− Λ

′′
(0) = −2

∫
Rd
fL−1

V fdπ − Λ
′′
(0).

The last equality follows from the fact that Π(f) = 0 implies H−1
0 f = −L−1

V f. It follows

from (24) that

σ2 = Λ
′′
(0) = −2

∫
Rd
fL−1

V fdπ = 2

∫
Rd
fgdπ

where g is the solution of the equation LV g = −f. This finish the proof of i).

Again by differentiation of f̌α = H−1
α 1 we obtain :

d3

d3α

∣∣∣
α=0

f̌α = − 6H−1
0 H

′
0H
−1
0 H

′
0H
−1
0 H

′
0H
−1
0 1Rd + 3H−1

0 H
′
0H
−1
0 H

′′
0H
−1
0 1Rd

+ 3H−1
0 H

′′
0H
−1
0 H

′
0H
−1
0 1Rd − H−1

0 H
′′′
0 H

−1
0 1Rd .
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Since Π(fH−1
0 1Rd) = Πf = π(f) = 0 and Π(H−1

0 f) = Πf = 0, it follows that

d3

d3α

∣∣∣
α=0

π(f̌α) = −6Π(fH−1
0 (fH−1

0 f)) + 3Λ
′′
(0)Π(fH−1

0 1Rd)

+ 3Λ
′′
(0)Π(H−1

0 f) − Λ
′′′

(0)Π(1Rd)

= 6

∫
Rd
fH−1

0 (fL−1
V f)dπ − Λ

′′′
(0)

= −6

∫
Rd
fH−1

0 (fg)dπ − Λ
′′′

(0)

= 6

∫
Rd
fhdπ − Λ

′′′
(0),

where we put h := −H−1
0 (fg). Note that it follows that

fg = −H0h = LV h−Πh = LV h+ Π(H−1
0 fg) = LV h+ Π(fg).

Thus g and h are the solutions of the equations LV g = −f and LV h = fg − π(fg). It

follows from (24) that

ρ3 = Λ
′′′

(0) = 6

∫
Rd
fhdπ.

The proof is complete. �

The part (i) of the following proposition corresponds to statement P6 in [12]. The

parts (ii) and (iii) corresponds to statement P7 in [12]. Its proof carries over without

difficulties to the continuous case

Proposition 1.8. Let g be the unique solution of the Poisson equation LV g = −f .

Then the two following statements hold :

i) For dt = Ex[St]− g, we have |dt| → 0 exponentially fast as t→∞ uniformly in x.

ii) The eigenfunction f̌α is analytic with respect to α in a neighborhood of zero in

the complex plane. It satisfies f̌0 = 1 and it is strictly positive for all real α in a

neighborhood of zero.

iii) There is some ω0 > 0 (depending on x) and a constant C such that

(26) δ(iω) := | log f̌iω(x)− iωg| ≤ Cω2, for all |ω| ≤ ω0.

Proof. : From the definition of St we have

Ex[St] = Ex
[ ∫ t

0
f(Xs)ds

]
=

∫ t

0
Ex
[
f(Xs)

]
ds =

∫ t

0
P sf(x)ds.

Also note that we have the following representation of the solution of the Poisson

equation

g =

∫ ∞
0

P sf(x)ds.

When restricted to functions with mean zero with respect to π, the semi group (Pt)

has spectral radius ρ∗ <∞ on L∞. Since f is of π-measure zero and since the absolute

value of f is bounded by one, we have ‖Ptf‖sup = ‖P tf‖∞ ≤ Ket log ρ∗ for all t > 0.

This yields∣∣dt(x)
∣∣ =

∣∣∣Ex[St]− g
∣∣∣ ≤ ∫ ∞

t
|P sf(x)|ds ≤ K

∫ ∞
t

es log ρ∗ds = − K

log ρ∗
et log ρ∗ .
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Hence supx |dt(x)| → 0 exponentially as t→∞.
In the following we will use the notation (P̂nα )n∈N to denote the discrete semigroup,

which results from observing (P̂ tα)t≥0 at integer time. For real a ∈ [−ā, ā] and λ̄ ≥
max(λā, λ−ā), we define the operator Ĝa by

Ĝa =
∞∑
n=0

λ̄−n−1P̂na .

Note that if the semi group (P t)t≥0 is ψ-irreducible then the discrete semi group

(P̂na )n∈N also is. For any θ > 0 we define the resolvent associated with the discrete

semi group (P̂na )n∈N as

(27) Rθ :=
∞∑
n=0

(1− eθ)e−nθP̂na .

It is proved in Proposition 5.5.5 from [13] that for a ψ-irreducible discrete semi group

(P̂nα )n∈N on can always find a θ > 0, a function s : Rd →]0,∞] and a signed measures

ν on B such that

Rθ(x,A) > s(x)ν(A), x ∈ Rd, A ∈ B.

Since by assumption |f | ≤ 1, this implies for x ∈ Rd and A ∈ B

Ĝa(x,A) =

∞∑
n=0

λ̄−n−1P̂na 1A =
1

λ̄

∞∑
n=0

e−n(log λ̄+ā)Ex
[
e−a

∫ n
0 f(Xs)ds1A(Xn)

]
≥ 1

λ̄

∞∑
n=0

e−n(log λ̄+ā)Pna 1A(x) ≥ 1

λ̄
Rlog λ̄+ā1A(x) ≥ 1

λ̄
s(x)ν(A).

It follows that for all a ∈ [−ā, ā] and for all x ∈ Rd

(λ̄− λa)−1f̌a(x) =
∞∑
n=0

λ̄−n−1λna f̌a(x) =

∞∑
n=0

λ̄−n−1P̂na f̌a(x) = Ĝaf̌a(x) ≥ s(x)ν(f̌a) > 0.

We deduce that f̌a(x) is strictly positive. We know from (i) in Proposition 1.5 that

f̌0 = 1Rd . Expanding log f̌iω in a Taylor series around zero yields log f̌iω = iωF̂ −ω2F̂
′
.

This implies that there exist a constant C such that

| log f̌iω(x)− iωF̂ | ≤ Cω2.

This finises the proof. �

2. Asymptotic analysis of Edgeworth coefficient

In this section we want to analyze the asymptotic behavior of the Edgeworth coefficient

as some drift enhancement parameter grows to infinity. We first fix the setting for our

study. for this let U : Rd → R be a given C1 function such that π(dx) := e−U(x)dx is

a the probability measure on Rd. Let (Xt)t≥0 be the strong solution of the stochastic

differential equation

(28) dXt = −∇U(Xt) dt +
√

2 dBt,
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where (Bt)t≥0 is a standard Brownian motion on Rd. Under some assumptions on

the fonction U , the diffusion (Xt) has equilibrium distribution π. The generator of the

diffusion (Xt) is the differential operator L0, given by the following differential operator

(29) L0f = ∆f −∇U · ∇f.

This generator generates a semi group on L2(Rd, π) through

P tf(x) = Ex[f(X(t))]; x ∈ Rd, t ≥ 0.

Perturbing the reversible diffusion (28) by adding a drift term, which preserves the

measure π, results in a stochastic equation of the form

(30) dXc
t = −∇U(Xc

t ) dt +
√

2 dBt + cb(Xc
t )dt,

where b is a C1-vectorfield on Rd satisfying div(be−U ) = 0. Then under some suitable

assumptions tthe resulting diffusion has equilibrium distribution π. The generator of

the diffusion (Xc
t ) is the differential operator

(31) Lcbf = L0f + cb · ∇f.

Let H be the Hilbert space of mean zero functions given by

H =

{
ψ ∈ L2(Rd, π),

∫
Rd
ψdπ = 0

}
,

with the inner product

< ψ, φ >:=

∫
M
ψφdπ.

Note that the operator L0 is self adjoint in H. In the following we assume that L0

has discrete spectrum with eigenvalues λ0 = 0 ≥ −λ1 ≥ −λ2 ≥ ... and associated

eigenfunctions φ0, φ1, φ2, .... It is well known that those functions can be choosen to be

orthonormal with respect to the scalar product on H. For all m ∈ R we introduce the

Hilbert space

Hm :=

{
ψ =

∞∑
i=1

αiφi ∈ H;

∞∑
i=1

|αi|2λmi <∞

}
with scalar product

〈ψ, φ〉Hm =
∞∑
i=1

αiβiλ
m
i , where ψ =

∞∑
i=1

αiϕi and φ =
∞∑
i=1

βiϕi.

From the above condition on the spectrum of L0 for all f ∈ H there exists a solution

g ∈ H1 to the Poisson equation

L0g = −f.
It follows, under suitable conditions on b that for all f ∈ H there exists a solution

g ∈ H1 to the Poisson equation

Lcbg = −f.
Suppose that the diffusion (Xc

t ) is V-uniform and that f : Rd → [−1, 1] is strongly

nonlattice function with zero mean, then it turns out that

St :=

∫ t

0
f(Xb

s)ds
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satisfies the Edgeworth expansion from Theorem 1.1 for all starting point x ∈ R with

σ2
c = 2

∫
Rd
fgdπ, ρ3,c = 6

∫
Rd
fghdπ and F̂c = g,

where Lcbg = −f and L−cbh = −f .

Remark : The Theorem 1.1 actually states that

ρ3,c = 6

∫
Rd
fh̃dπ,

where h̃ is the solutions to the equations Lcbh̃ = fg − π(fg). Using the relation

(Lcb)
∗ = L−cb the expression for ρ3,c can be reexpressed as

ρ3,c = 6

∫
Rd
fL−1

cb

(
fg − π(fg)

)
dπ = 6

∫
Rd

(
fg − π(fg)

)
L−1
−cbfdπ

= 6

∫
Rd
fgL−1

−cbfdπ = 6

∫
Rd
fghdπ.

Note that ρ3
c , σ

2
c and F̂c depend on c. The behavior of the asymptotic variance σ2

c as c

goes to infinity was studied in [5] and [9]. The next theorem investigates the behavior

of ρ3,c and F̂c as c goes to infinity.

Theorem 2.1. Suppose that the vector field b is bounded. For all f : Rd → [−1, 1] in

H, we have

lim
c→∞

ρ3,c = 〈PL−1
0 f, (PL−1

0 f)2〉H1 and lim
c→∞

F̂c = −PL−1
0 f

where P is the orthogonal projection from H1 to N0 = ker(b · ∇) ⊂ H1.

Proof. We introduce the operator B = L−1
0 b · ∇ which turns out to be a compact and

antiself-adjoint operator on H1. Then B has eigenfunctions {ψk}k≥1 and corresponding

eigenvalues iµk, k ∈ N where each µk is real and limk→∞ µk = 0. For all f ∈ H the

Poisson equation Lcbg = −f has unique solution g ∈ H1. This implies that the equation

(L0 − cb · ∇)g = f can be changed to

(32) g + cL−1
0 b · ∇g = −L−1f.

We have the following representations in H1 :

g = Pg +
∞∑
k=1

βkψk with βk ∈ C

and

(33) L−1
0 f = PL−1

0 f +

∞∑
k=1

αkψk,

where αk = 〈L−1
0 f, ψk〉H1 = 〈f, ψk〉H for all k ∈ N. If we replace f and L−1

0 f by their

respective representations in (32), this yields

Pg +
∞∑
k=1

βkψk + cB
∞∑
k=1

βkψk = −
∞∑
k=1

αkψk − PL−1
0 f,



20 BRICE FRANKE AND ADEL OULED SAID

which is equivalent to

Pg +
∞∑
k=1

(βk + icµkβk)ψk = −
∞∑
k=1

αkψk − PL−1
0 f.

By identification of the coefficients in the series we obtain

Pg = −PL−1
0 f and βk = − αk

1 + icµk
.

It is clear that when c→∞ we have βk → 0, and it follows that

g = L−1
cb f → Pg = −PL−1

0 f in H1.

The same argument shows also that

g = F̂c → Pg = −PL−1
0 f in H1 as c→∞.

if we apply the same argument equation and it follows that

L−cbh = −f,

we obtian h = −L−1
−cbf → Ph = −PL−1

0 f in H1 as c→∞. This implies that

lim
c→∞

ρ3,c = lim
c→∞

6〈f, hg〉H

= lim
c→∞

6〈f, (L−1
−cbf)L−1

cb f〉H

= lim
c→∞

6〈L−1
0 f, (L−1

−cbf)L−1
cb f〉H1

= 6〈L−1
0 f, (PL−1

0 f)2〉H1

= 6〈PL−1
0 f, (PL−1

0 f)2〉H1 ,

where in the last equality we used the fact that the product of two elements in N is

again in N . The theorem is established. �

2.1. The case of the perturbed Ornstein-Uhlenbeck diffusion. We now want

to study an example, where the conditions of Theorem 2.1 are satisfied. Let U(x) =

−1
2〈x,Dx〉 where D is a symmetric and strictly negative definite real d × d-matrix.

Then the measure π(dx) = Z−1e−U(x) = Z1e
1
2
〈x,Dx〉 is a centered gaussian distribution

with covariance matrix −D−1. We want to study the linear drift b(x) = SDx, where

D is a symmetric and strictly positive-definite real matrix. Note that this vectorfield

is weighted divergence-free with respect e−U(x); i.e.: div(e−Ub) = 0. The unperturbed

Ornstein-Uhlenbeck process (X0
t ) has generator

(34) L0f = ∆f − 〈Dx,∇f〉.

and invariant measure π. It is well established, that L0 is a self-adjoint operator on

L2(Rd, π) and that it has discrete spectrum. Let

Lcf = ∆f − 〈Dx,∇f〉+ c〈SDx,∇f〉

be the the generator of the perturbed Ornstein Uhlenbeck process (Xc
t )t≥0. We now

will see that (Xc
t ) is V -uniform, if we choose

V : Rd → [1,∞[; x 7→ −〈x,Dx〉+ 1.
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If we denote by νi, 1 ≤ i ≤ d the eigenvalues of the matrix D, then we have since they

are all strictly negative that

LcbV (x) = ∆V − 〈Dx,∇V 〉+ 〈SDx,∇V 〉
= ∆V − 2〈Dx,Dx〉+ 2〈SDx,Dx〉
= −tr(D)− 2〈Dx,Dx〉
≤ −tr(D) + 2 max

i
(νi)V (x)− 2 max

i
(νi)

= b0 − δV (x),

where b0 = −tr(D)− 2 maxi(νi) > 0 and δ = −2 maxi(νi) > 0.

Since the generator of the perturbed Ornstein Uhlenbeck semigroupe is elliptic, we

know that for all choice of x ∈ Rd and t > 0 the transition density y 7→ p(t, x, y)

is positive and continuous as a function of x and y. Let ν be the Lebesgue measure

restricted to [0, 1]d. We then have for any x ∈ Rd and A ∈ B(Rd that

R1(x,A) =

∫ ∞
0

e−tP t(x,A)dt =

∫ ∞
0

e−t
∫
A
p(t, x, y)dydt

≥
∫ ∞

0
e−t
∫
A∩[0,1]d

p(t, x, y)dydt ≥ s(x)ν(A).

with the positive function

s(x) := inf
y∈[0,1]d

∫ ∞
0

e−tp(t, x, y)dt.

We now show that the diffusion (Xc
t ) is ψ-irreducible for ψ = `, where ` is the Lebesgue

measure on Rd. Let u : Rd → [0, 1] be a function satisfing `(u) =
∫
Rd u(x)`(dx) > 0.

Then we have

R(x, u) =

∫
Rd
R(x, dy)u(y)

=

∫
Rd

∫ ∞
0

θe−θtP t(x, dy)u(y)dt

=

∫
Rd

∫ ∞
0

θe−θtp(t, x, dy)u(y)dtdx > 0.

This shows that the diffusion process (Xc
t ) is ψ-irreducible. Similarly, we have

P t(x, u) =

∫
Rd
P t(x, dy)u(y)

=

∫
Rd

∫
Rd
p(x, y, t)u(y)dxdy > 0,

which implies that (Xc
t ) is aperiodic. It follows that (Xc

t ) is V -uniform. This shows that

the perturbed Ornstein Uhlenbeck process (Xc
t ) satisfies all conditions for Theorem 1.1

to hold.
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