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We analyze the asymptotic behavior of the third coefficient of the Edgeworth expansion of some diffusion under the influence of a drift, which grows to infinity. To do this analysis, we have to extend some result on Edgeworth expansions for discrete time Markov chains from Kontoyiannis and Meyn to diffusion.

Introduction

The Edgeworth expansion is a refinement of the central limit theorem which has played an important role in many applications. There are numerous works in the literature investigating the Edgeworth expansion in different situations (see for example [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF], [START_REF] Bhattacharya | Normal Approximation and Asymptotic Expansions[END_REF]). For instance, it has been investigated under various dependency assumptions. In particular, Edgeworth expansion for discrete-time Markov chains was studied by Kontoyiannis and Meyn in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF]. One of the goals of this paper is to extend their result to continuous time diffusions. Let (X t ) t≥0 be a diffusion process on R d with invariant probability mesure π and infinitesimal generator L. We are interested in the integrated long term behavior of an observable f satisfying π(f ) = 0; i.e :

S t = t 0 f (X t )dt.
Under some ergodicity condition, it was established by Bhattacharya in [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF] that (S t ) satisfies a central limit theorem of the form [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF] S t √ t d -→ N (0, σ 2 ) as t → ∞.

A way to refine this central limit theorem, is to establish an Edgeworth expansion of the following form:

(2) sup

y P S t σ √ t ≤ y -Φ(y) - γ(y) σ √ t ρ 3 6σ 2 (1 -y 2 ) -F (y) = o(t -1/2 ),
where γ is the density of the standard normal distribution and Φ is the corresponding distribution function. In the above formula σ 2 and ρ 3 are suitable constants and F is a suitable function. In a first result, Theorem 1.1, we will establish such an Edgeworth expansion for strongly non lattice function f : R d → [-1, 1] under some V -uniform ergodicity condition on the diffusion (X t ). We will obtain the following expressions for the coefficients of the Edgeworth expansion

σ 2 = 2 R d f gdπ, ρ 3 = 6 R d
f ghdπ and F = g, where g and h are uniques solutions of the two equations Lg = f and L * h = f . Note that we denote by L * the adjoint of L on L 2 (R d , π).

In the second part of the manuscript, we investigate the asymptotic behavior of the Edgeworth coefficient of a diffusion subject to growing drift. In this part we will consider a non-reversible R d -valued diffusion of the form

(3)

dX b t = -∇U (X b t )dt + √ 2dB t + cb(X b t
)dt, where (B t ) t≥0 is a Brownian motion, U : R d → R is a given function such that π(dx) = e -U (x) dx is a probability measure on R d and b is a C 1 vector field on R d satisfying div(be -U ) = 0. Note that under some mild assumptions on U and b the resulting diffusion is V -uniformly ergodic and has invariant distribution π (see [START_REF] Hwang | Variance reduction for diffusions[END_REF] and ??). The real number c in front of the vector field b in (3) can be used to tune up the influence of the incompressible drift generated through b on the diffusion (X b t ). One can then study the asymptotic behavior of different quantities associated to the diffusion as the parameter c goes to infinity. For example the asymptotic behavior of the semigroup was investigated by Constantin, Kiselev, Ryzhik and Zlatos in [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF] in a similar context. They proved that the operator norm of the associated semigroups converge to zero if and only if the drift generator has no non-zero eigenfunctions in H 1 . Again in a similar context as in equation ( 3), the limit of the spectral gap of the generator of the diffusions was computed and it can be obsered that this limit is infinit if and only if the drift generator has no non-zero eigenfunctions in H 1 . Note that the equation (3) satisfies a central limit theorem and that the Hedgeworth expansion that we obtained in the first part holds under some conditions on U and b. It is then interesting to see how the coefficients σ 2 c and ρ 3,c behave as c → ∞. The limit of the asymptotic variance σ 2 c is computed in [START_REF] Hwang | Variance reduction for diffusions[END_REF], [START_REF] Duncan | Variance reduction using nonreversible langevin samplers[END_REF], [START_REF] Said | Some remark on the asymptotic variance in a drift accelerated diffusion[END_REF] and [START_REF] Franke | Short notice the behavior of asymptotic variance for an drift accelerated diffusion[END_REF]. In the second part of this manuscript we compute the limit of the Edgeworth coefficient ρ c,3 as the constant c goes to infinity. Our proof is based on a method from Bhattacharya, Gupta and Walker which was used in [START_REF] Bhattacharya | Asymptotics of solute dispersion in periodic porous media[END_REF] to compute asymptotic diffusion coefficients in the context of periodic homogenization as a drift-tuning parameter goes to infinity. We will prove in Theorem 2.1 under suitable conditions the following result

lim c→∞ ρ 3,c = P L -1 0 f, (P L -1 0 f ) 2 H 1 and lim c→∞ Fc = -P L -1 0 f,
where P is the orthogonal projection from

H 1 to N 0 = ker(b • ∇) ⊂ H 1 .
This result is some analogue to the result of Duncan, Lelievre and Pavliotis [START_REF] Duncan | Variance reduction using nonreversible langevin samplers[END_REF] where they proved that lim

|c|→∞ σ 2 cb (f ) = 2 P L -1 f 2 H 1 .

Edgeworth expansion for diffusion processe

In this section we extend a result on the Edgeworth expansion for Markov chains from Kontoyiannis and Meyn (see [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF]) to continuous time diffusion processes. We essentially follow the proof hat they give for the discrete case, but we have to change to a generator based approach instead of their semi-group based technique at some places in the proof.

A good account of the ergodic theory and spectral theory of diffusion processes that we will use is given in Huisinga, Meyn and Schütte (see [START_REF] Huisinga | Phase transitions and metastability in markovian and molekular systems[END_REF]). We will adopt their setting for this manuscript. Let (X t ) t≥0 be a diffusion processe on R d with generator smooth coefficients of the form

L diff h(x) = i a i ∂ x i h(x) + 1 2 i,j a ij ∂ x i ∂ x j h(x), h ∈ C 2 (R d ).
This means that (X t ) is a strong solutions to the stochastic differential equation

dX i t = a i (X t )dt + m j=1 σ ij (X t )dB j t , X 0 = x 0 ,
where (B t ) t≥0 is standard Brownian motion on R m and a ij = m k=1 σ ik σ jk . Then the canonical semi group (P t can ) t≥0 , which is defined for bounded continuous functions as

P t can h(x) := E x [h(X t )]
satisfies for all h ∈ C 2 (R d ) with bounded second order derivatives that

1 t (P t can h -h) -L diff h sup → 0, as t ↓ 0.
We assume that the coefficient functions a i , a ij ; 1 ≤ i, j ≤ d are such that the resulting diffusion is non-explosive. Let B(R d ) be the Borel σ-field on R d . We will denote by (P t ) t≥0 the family of transition probability kernels which are related to (X t ) through

P t (x, A) := P x (X t ∈ A); x ∈ R d , x ∈ R d , t ≥ 0, A ∈ B(R d ).
It is stated in [START_REF] Huisinga | Phase transitions and metastability in markovian and molekular systems[END_REF] that if the generator L diff is hypoelliptic, then the resolvent kernel

R θ := ∞ 0
e -θt P t dt; θ > 0 is strong Feller and that the existence of a x 0 ∈ R d and a t 0 > 0 such that

P t (x, O) > 0 for all t > t 0 , x ∈ R d and all open neighbourhoods O of x 0
implies that the Makov process (X t ) is ψ-irreducible with ψ := R 1 (x 0 , .). Note that this implies that there exists a function s : R d →]0, ∞[, a θ > 0 and a measure ν, which is equivalent to the measure ψ, such that

R θ (x, A) ≥ s(x)ν(A), x ∈ R d , A ∈ B(R d );
(see Proposition 5.5.5 in [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF]).

Besides the differential generator L diff we will eventually have to deal with the extended generator L ext and the strong generator L V , which is associated to an ψ-almost everywhere finite function

V : R d → [1, ∞].
The first one relates two measurable functions h, g : R d → R as L ext h = g if for each starting point x ∈ R d the process

M t := h(X t ) -h(X 0 ) - t 0 g(X s )ds; t ≥ 0
is a local martingale with respet to the canonical filtration F t := σ(X s ; s ≤ t); t ≥ 0.

The second one requires the introduction of the space L ∞ V of measurable, complex valued functions h satisfying

h V := sup x∈R d |h(x)| V (x) < ∞.
Note that the probability kernel function (P t ) can be identifieded with a semi groupe on

L ∞ V through P t h(x) := R d P t (x, dy)h(y), t ≥ 0, x ∈ R d . Two functions h, g ∈ C V := {g ∈ L ∞ V : lim t↓0 P t g -g V = 0} satisfy relation L V h = g if 1 t (P t h -h) -g V → 0, as t ↓ 0.
As is noted in [START_REF] Huisinga | Phase transitions and metastability in markovian and molekular systems[END_REF], the operator L ext equals L diff when restricted to C 2 (R d ), the operator L V has domain {Rh : h ∈ C V } and it satisfies L V Rh = Rh -h for all h ∈ C V . A major assumption, that is central in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] and [START_REF] Huisinga | Phase transitions and metastability in markovian and molekular systems[END_REF], is also assumed to hold for the rest of this section. It claims the existence of a ψ-almost everywhere finite function

V : R d → [1, ∞], a small function s : R d → [0, ∞[ and two constants δ > 0, b ∈ R such that L ext V (x) ≤ -δV (x) + bs(x). (4) 
It is stated in Theorem 2.3 from [START_REF] Huisinga | Phase transitions and metastability in markovian and molekular systems[END_REF] that if the diffusion (X t ) is ψ-irreducible and aperiodic then the previous condition implies that (X t ) is V -uniform. This means that there exists some > 0 such that the spectrum S(L V ) of the operator L V satisfies Re(z) ≤ -for all z ∈ S(L V )\{0} and moreover that the eigenvalue zero is simple; i.e.: its eigenspace is of dimension one. This is equivalent to say that the operator P 1 has simple eigenvalue 1 and the that the spectrum S(P 1 ) of P 1 satisfies |z| ≤ 1 -0 for all ∈ S(P 1 )\{1}. Then Theorem 2.2 of [START_REF] Huisinga | Phase transitions and metastability in markovian and molekular systems[END_REF] ensures the existene of an invariant probability mesure π for the Markov process (X t ) and two constants δ, K > 0 such that

(P t -1 ⊗ π)h V ≤ Ke -δt h V , for all h ∈ L ∞
V and t ≥ 0. For the rest of this section, as in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF], we will asume that

π(V 2 ) = R d V 2 (x)π(dx) < ∞.
Let now f : R d → [-1, 1] be an observable with zero mean; i.e.: π(f ) = 0. For α ∈ C, we define the associated Feynman-Kac semi group P t α g(x) = E x e α t 0 f (Xs)ds g(X t ) .

Note that this semi groupe is not probabilistic in the sens that Pα 1 is in general not constant and equal to one. However, as is mentionned in [START_REF] Huisinga | Phase transitions and metastability in markovian and molekular systems[END_REF], many concepts of semi groupe theory, as resolvents and generators, can still be defined in this situation. Our later arguments are based on the strong generator L V,α of the semi groupe ( P t α ). The relation

L V,α h = g holds for h, g ∈ C V α := {g ∈ L ∞ V : lim t↓0 P t α g -g V = 0} if 1 t (P t α h -h) -g V → 0, as t ↓ 0. Moreover, for θ > 0 the resolvent is defined through R α,θ h := ∞ 0 e -tθ P t α hdt.
It can be seen that the strong generator of the Feynma-Kac semi groupe factorizes as follows :

(5) Lα,V g = L V g + αf g, g ∈ .

In the following we will denote the spectral radius of the operator P 1 α on L ∞ V as ρα := lim

t→∞ ||| P t α ||| 1/t V = sup{|z|; z ∈ S( P 1 α )}.
We will say that the semi groupe ( P t α ) is V -uniform, if there exists an eigenvalue λ α in the spectrum S( P 1 α ) of P 1 α satisfying |λ α | = ρα , having multiplicity one and satisfying for some > 0

S( P 1 α )\{λ α } ⊂ {z ∈ C; |z| ≤ ρα -α }.
In the following we will refer to λ α as the generalized principal eigenvalue. The key to the Edgeworth expansion presented in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] relies on the fact that for all α in a neighbourhood of zero the semi group ( P t α ) also satisfies V -uniformity. We will see in Proposition 1.3 that if the original semi groupe (P t ) is V -uniform then ( P t α ) is also V -uniform for all α in some open neighborhood O of zero in the complex plane. For α ∈ O, let fα be the eigenfunction associated to the unique eigenvalues λ α which satisfies |λ α | = ρα . It follows P t α fα = λ t α fα for all t ≥ 0. The function fα is also an eigenfunction for the generator Lα ; i.e.: [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] L α,V fα = Λ(α) fα , where Λ(α) = log λ α .

We will see in the proof of Proposition 1.7 that the generalized principal eigenvalue λ α is an analytic function of α in a neighborhood around zero and so are Λ(α) and fα (x) for any fixed x ∈ R d . Our interest lies in the asymptotic behavior of the integrated observations

S t = t 0 f (X s )ds.
We say that (S t ) satisfies an Edgeworth expansion if there exist σ 2 > 0, ρ 3 ∈ R and a function F : R d → R such that the following asymptotic relation holds [START_REF] Franke | Short notice the behavior of asymptotic variance for an drift accelerated diffusion[END_REF] sup

y P 1 σ √ t S t ≤ y -Φ(y) - γ(y) σ √ t ρ 3 6σ 2 (1 -y 2 ) -F (y) = o(t -1/2 ),
where γ is the density of the standard normal distribution and Φ is the corresponding distribution function. It follows from the above relation that ( 8)

1 σ √ t S t d -→ N (0, 1) as t → ∞,
which implies that the coefficient σ 2 in (7) equals the asymptotique variance in the central limit theorem [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF]. For the following we will restrain our analysis to non-latice functions f . A function f : R d → R is called lattice if there are h > 0 and 0 ≤ d < h, such that for all x ∈ R d the quotient 1 h (f (x) -d) is an integer. According to [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] a function f is called almost lattice if it can be decompose as a sum f = f l + f 0 , where f l is lattice and f 0 has zero asymptotic variance, which means that

1 t Var t 0 f 0 (X s )ds -→ 0 as t → ∞.
In the following a function is called strongly non-lattice whenever it is not almost lattice.

The following is a continuous time version of Theorem 5.1 in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF].

Theorem 1.1. Assume that f : R d → [-1, 1] is a strongly nonlattice function with π(f ) = 0.
Then the family of random variables S t = t 0 f (X s )ds; t ≥ 0 satisfies the Edgeworth expansions ( 7) for all starting point x ∈ R with coefficients

σ 2 = 2 R d f gdπ, ρ 3 = 6 R d f hdπ and F = g,
where g and h are the solutions of the two equations

L V g = -f and L V h = f g -π(f g). 1.1. Proof Theorem 1.1.
The following proof is an adaptation of the proof from Kontoyiannis and Meyn [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] to the cas of a continuous time process. We add it here for conveniance of the reader. Its starting point is the well known Berry-Esseen inequality which can be found in Feller's book (see formula (13.3) on page 538 in [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]). It states that for any choice m > 0 and C > 0 and whenever F and G are distribution functions satisfying |G (y)| ≤ m, then one has ( 9)

F (y) -G(y) ≤ 1 π C C χ F (ω) -χ G (ω) dω |ω| + 24m Cπ ; y ∈ R.
Here χ F and χ G are the characteristic functions which are associated with F and G.

In our situation we will choose

F (y) = F t (y) = P x 1 σ √ t (S t -E x [S t ]) ≤ y G(y) = G t (y) = Φ(y) - ρ 3 6σ 2 √ t (y 2 -1)γ(y) and C = A √ t, where A > 24( π) -1 |G t (y)| for a given small > 0. Then (9) becomes (10) F t (y) -G t (y) ≤ 1 π A √ t -A √ t η Ft ( iω σ √ t ) -χ Gt (ω) dω |ω| + √ t ,
where

(11) η Ft (α) := E x exp(α St ) = m t (α) exp -αE x (S t ) , with m t (α) = E x exp(αS t ) and St = S t -E x [S t ].
Note that the characteristic function associated with the distribution function to G t (y) is given by

χ Gt (ω) = e -ω 2 2 1 + ρ 3 (iω) 3 6σ 3 √ t .
To show that the Edgeworth expansion [START_REF] Franke | Short notice the behavior of asymptotic variance for an drift accelerated diffusion[END_REF] holds, it suffices to show that the integral I in inequality ( 10) is of order o(t -1/2 ). To do this we divide the integration domain in three parts and show that all of them are o(T -1/2 ). We use the following decomposition t

[ ∪ ]B √ t, A √ t[
to decompose the integral of (10) as a sum of three integrals I = I 1 + I 2 + I 3 . The constant B is supposed to satisfy B < A and will be fixed later. As a consequence, we have to analyze the asymptotic behavior of the integrals

I 1 = 1 π A √ t B √ t η Ft ( iω σ √ t ) -χ Gt (ω) dω |ω| .
Applying the change of variable u = ω σ √ t , this leads to the following inequality

I 1 = 1 π A/σ B/σ η Ft (iu) -χ G T (σ √ tu) du |u| = 1 π A/σ B/σ m t (iu)e Ex[iuSt] -χ Gt (σ √ tu) du |u| ≤ σ Bπ A/σ B/σ m t (iu) du + σ Bπ A/σ B/σ χ Gt (σ √ tu) du = σ Bπ A/σ B/σ e tΛ(0) t du + σ Bπ A/σ B/σ e -u 2 tσ 2 2 1 + ρ 3 t(iu) 3 6
du.

Using part i) from Proposition 1.5 both integrals in the previous expression converge toward zero exponentially fast, as long as B stays bounded away from zero and as long as A stays bounded. Therefore the integral I 1 is of order o(t -1/2 ). The integral I 3 can be treated in the same way. We now have to deal with the integral I 2 . After the change of variables u = ω/σ √ t, we obtain

I 2 = 1 π B √ t -B √ t η Ft ( iω σ √ t ) -χ Gt (ω) dω |ω| = 1 π B/σ -B/σ η Ft (iu) -χ Gt (uσ √ t) du |u| .
In order to understand the behavior of the integral I 2 as t goes to infinity, we first investigate it's integrand :

K t (u) = η Ft (iu) -χ Gt (uσ √ t) .
With the Propositions 1.5 and 1.7 we can see that η Ft equals

η Ft (iu) = e -iuEx[St] e tΛ(iu) fiu (x) + |iu| t .
Expanding Λ(iu) in a Taylor series around zero yields.

Λ(iu) = iuΛ (0) -1 2 u 2 Λ (0) + 1 6 (iu) 3 Λ (is)
, for some suitable s ∈]0, u[. By Proposition 1.7, we have Λ (0) = 0 and Λ (0) = σ 2 , and it follows that

η Ft (iu) = e -iuEx[St] exp t -1 2 u 2 σ 2 + 1 6 (iu) 3 Λ (is) [ fiu (x) + |iu| t ].
According to the definition of d t (see Proposition 1.8) this can be written as

η Ft (iu) = e -iudt-iug(x) exp t -1 2 u 2 σ 2 + 1 6 (iu) 3 Λ (is) [ fiu (x) + iu t ],
where g is the solution of the Poisson equation L diff g = -f . From this we deduce the following expression for the integrand K t (u) :

K t (u) = e -1 2 tu 2 σ 2 exp -iud t + t 6 (iu) 3 Λ (is)+log fiu (x)+iu t -iug(x) -1-t ρ 3 6 (iu) 3 .
Note that

log fiu (x) + iu t -iug(x) = log 1 + iu t fiu + log( fiu (x)) -iug(x) = δ(iu) + log 1 + iu t fiu ,
where δ(.) is as in Proposition 1.8. The second exponential in the above expression for K t (u) then becomes

K t (u) = exp t 6 (iu) 3 Λ (is) -iud t + iu # t (iu) + δ(iu) , where # t (iu) := 1 iu log 1 + iu t fiu .
Since according to Proposition 1.5 the function t converges to zero as t → ∞, it follows that (12) | # t (iu)| → 0 as t → ∞ uniformly for all |u| ≤ B/σ. Therefore, the expression for K t (u) becomes

(13) K t (u) = e -1 2 tu 2 σ 2 exp -iud t + t 6 (iu) 3 Λ (is)+δ(iu)+iu # t (iu) -1-t ρ 3 6 (iu) 3 ) .
To show that this expression is o(t -1/2 ) we will apply the following inequality from Feller's book (see page 534 in [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]). It states that for arbitrary complex numbers α, β and γ ≥ max{|α|, |β|} one has

(14) e α -1 -β ≤ |α -β| + 1 2 |β| 2 e γ .
In our case we choose 3 . With this choice of α and β we obtain the following bound for K t in (14)

α := -iud t + t 6 (iu) 3 Λ (is) + iu # t (iu) + δ(iu) and β := tρ 3 6 (iu)
K t (u) ≤ |α -β| + 1
2 |β| 2 e γ . We now seek bounds for |α -β|, |β| and γ ≥ max{|α|, |β|}. By proposition 1.7, Λ is analytic in α and Λ (0) = ρ 3 . It follows that Λ is continuous. Therefore, we can choose B small enough such that [START_REF] Said | Some remark on the asymptotic variance in a drift accelerated diffusion[END_REF] |Λ (is) -

ρ 3 | < 6 , for |s| < B/σ.
Furthermore, we choose B small enough such that

(16) 1 6 |Λ (is)| ≤ σ 3 4B and Bρ 3 6σ 3 ≤ 1 4 .
Using Proposition 1.8 and ( 15) we obtain

|α -β| ≤ t 6 |u| 3 |Λ (is) -ρ 3 | + |u| t + Cu 2 ≤ t|u| 3 + |u| t + Cu 2 .
Further, if we use ( 16), [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] and the fact that |u| ≤ B/σ we obtain that for large t

|α| ≤ t|u| 3 1 6 sup |u|<B/σ |Λ (iu)| + |u| |d t | + | # t (iu)| + |δ(iu)| ≤ t|u| 3 σ 3 4B + |u| t + 2 ≤ 1 4 tu 2 σ 2 + .
On the other hand using again (16) and the fact that |u| ≤ B/σ, we obtain

|β| = tρ 3 6 |u| 3 ≤ uσ B 1 4 tσ 2 u 2 ≤ 1 4 tσ 2 u 2 .
From those bounds for α and β, we see that the choice γ := 1 4 tu 2 σ 2 + satisfies γ ≥ max{|α|, |β|}. It now follows from inequality (14) that

K t (u) ≤ e -1 4 tu 2 σ 2 + t|u| 3 + Cu 2 + |u| t + tρ 3 |u| 3 12 .
This yields that I 2 is bounded by

I 2 ≤ 1 π B/σ -B/σ e -1 4 tu 2 σ 2 + t|u| 3 + Cu 2 + |u| t + tρ 3 |u| 3 12 du |u| .
We still have to prove that the integral in the previous formula is of order o(t -1/2 ). With the change of variable ω = u(σ √ t) we obtain

I 2 ≤ e π B √ t -B √ t e -ω 2 4 ω 2 √ tσ 3 + C |ω| tσ 2 + 1 t 3/2 σ + ρ 3 ω 2 12 √ tσ 3 dω ≤ √ t e π ∞ -∞ e -ω 2 4 ω 2 + ρ 3 ω 2 12σ 3 dω + O(t -1 ).
This shows that the integral I 2 is of order o(t -1/2 ) and the proof is archived. 2

1.2. Auxillary results for the proof of Theorem 1.1. The following results have been used in the proof of the previous theorem.

Lemma 1.2. Suppose that the semigroup (P t ) t≥0 satisfies assumption [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF]. Then for all t ≥ 0 the family α → P t α ; α ∈ C of bounded operators on L ∞ V is analytic in the complex plane.

Proof. The analyticity of the exponential function together with the boundedness of the function f yield the existence of a constant K f > 0 such that

t 0 f (X s )dse α 0 t 0 f (Xs)ds - 1 α 0 -α e α 0 t 0 f (Xs)ds -e α t 0 f (Xs)ds ≤ K f |α 0 -α|.
Note that since f is bounded, the operator

P h(x) := E x t 0 f (X s )dse α 0 t 0 f (Xs)ds h(X t ) is a bounded operator on L ∞ V .
Using assumption (4), we then have for all

h ∈ L ∞ V satisfying h V ≤ 1 that 1 V (x) P h(x) - 1 α 0 -α P t α 0 h(x) -P t α h(x) ≤ K f V (x) |α 0 -α|E x [V (X t )] = K f V (x) |α 0 -α| t 0 P s L ext V (x)ds ≤ K f V (x) |α 0 -α| -δ t 0 P s V (x)ds + b t 0 P s s(x)ds = O(|α 0 -α|).
This shows that sup

h V =1 P h(x) - 1 α 0 -α P t α 0 h(x) -P t α h(x) V = O(|α 0 -α|).
Thus α → P t α is complex differentiable in α 0 ∈ C. This proves our result. Proposition 1.3. Suppose that the semi group (P t ) t≥0 is V -uniform and satisfies assumption [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF]. Then the Feynman-Kac semi group ( P t α ) t≥0 is V -uniform for all α from an open neighbourhood of zero in the complex plane.

Proof. This follows from the spectral characterization of V -uniformity and spectral continuity with respect to closed curves as described in Kato's book (see [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] p.379). Note that Lemma 1.2 shows that for fixed t ≥ 0 the family of operators ( P t α ) is a type A holomorphic family of operators.

The following proposition corresponds to Proposition 4.5 in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] for the discrete case. The proof that we present follows the line of arguments presented there with minor modifications. We add it here for the conveniance of the reader, since its proof introduces many notions, which are used later. Proposition 1.4. Suppose that the semi group ( P t α ) t≥0 is V-uniform for all α in a neighborhood of zero and that the semi group (P t ) t≥0 satisfies assumption (4). Then the generalized principal eigenvalue λ α is an analytic function of α in a neighborhood of zero and so is fα (x) for any fixed x ∈ R d .

Proof. We know from Lemma 1.2 that the function α → P 1 α is analytic. For α = 0, we have λ 0 = 1 and λ 0 / ∈ S( P 1 0 -s 0 ⊗ ν 0 ), where s 0 ⊗ ν 0 is the linear form, which corresponds to the projection to the one dimensional eigenspace associated with λ 0 . It follows from spectral continuity that for α in a sufficiently small neighborhood of zero, we also have λ α / ∈ S( P 1 α -s 0 ⊗ ν 0 ). We define the potential operator Ûz,α := (Iz -P 1 α + s 0 ⊗ ν 0 ) -1 Then, since Ûz,0 := (Iz -P 1 0 + s 0 ⊗ ν 0 ) -1 is a bounded linear operator for z in a neighborhood of λ 0 , it follows that Ûz,α is a bounded linear operator for z in a sufficiently small neighbourhood around λ 0 . Since α → P 1 α is analytic and since taken the inverse is an analytic operation, it follows that Ûz,α is analytic for (z, α) in a neighborhood O of (λ 0 , 0). One the other hand, by Proposition 5.2 of [START_REF] Nummelin | General Irreducible Markov Chains and Nonnegative Operators[END_REF] we have the following equality

(17) [Iz -P 1 α ] -1 = Ûz,α + ( Ûz,α s 0 ) ⊗ (ν 0 Ûz,α ) 1 -ν 0 Ûz,α s 0 .
Since the left side of ( 17) is known to have a singularity in z = λ α , it follows that

ν 0 Ûλα s 0 = 1.
In particular it follows from this that Ûλα s 0 = 0. Applying (Iz -P 1 α ) to (17) from the left and s 0 from the right, we obtain (18)

s 0 = (Iz -P 1 α ) Ûz,α s 0 + (Iz -P 1 α ) ( Ûz,α s 0 )(ν 0 Ûz,α s 0 ) 1 -ν 0 Ûz,α s 0 .
Multiplying (18) by (1 -ν 0 Ûz,α s 0 ), it follows that (19) (1 -ν 0 Ûz,α s 0 )s 0 = (1 -ν 0 Ûz,α s 0 )(Iz -P 1 α ) Ûz,α s 0 + (Iz -P 1 α )( Ûz,α s 0 )(ν 0 Ûz,α s 0 ). Then setting z = λ α in (19) we obtain (Iλ α -P 1 α ) Ûλα,α s 0 = 0. It follows that the eigenfunction fα can be written as fα = Ûλα,α s 0 .

By applying ν 0 on the left to (17) and doing the same argument we can show that μα = ν 0 Ûλα,α , is a left eigenmeasure to the eigenvalue λ α of P 1 α . If we define the analytic function J (z, α) = ν 0 ( Ûz,α s 0 ), z, α ∈ C, we have

J (λ α , α) = ν 0 ( Ûλα s 0 ) = 1
and by differentiation we obtain

∂ ∂z J (z, α) z=λα = ν 0 (-Û 2 λα,α s 0 ) = -μ α ( fα ).
Note that μ( f0 ) is positive by Perron-Frobenius theorem and the irreducibility of P 1 . Thus, we can find a small neighborhood such that μα ( fα ) = 0. It follows from the implicit function theorem that λ α is an analytic function of α. From the expansion

fα = Ûλα,α s 0 = ∞ n=0 λ -n-1 α ( Pα -s 0 ⊗ ν 0 ) n s 0
we also can deduce that fα is analytic as a composition of two analytic functions.

The following proposition corresponds to the statements P1 and P2 in the proof of the discrete Edgeworth expansion in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF]. In the dicrete case, they rely on Theorem 4.1 and 4.2 from [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF]. Continuous counterparts of those two theorems are stated in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] as Theorem 4.16 and 4.17. Proof. It is proved in Theorem 4.16 from [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] that there exist constants B 0 > 0 and b 0 > 0 such that for all x ∈ R d and t > 0 one has

E x exp αS(t) -tΛ(α) -fα ≤ B 0 |α| exp(-b 0 t)V (x),
where fα is the eigenvectors of the operator P 1 α associated to the eigenvalue λ α having absolute value equal to the spectral radius ρα . Multiplying both sides with exp(tΛ(α)) yields

E x [exp αS(t) ] -exp(tΛ(α)) fα ≤ |α| t (α) exp(tΛ(α)),
where the function | t (α)| := B 0 e -b 0 t V (x) converges exponentially fast as t → ∞. It is also proved in Theorem 4.17 from [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] that for any 0 < ω 0 < ω 1 < ∞ there exist b 0 > 0 and B 0 < ∞ such that for all α satisfying -ᾱ ≤ Re(α) ≤ ᾱ and

ω 0 ≤ |Im(α)| ≤ ω 1 . E x exp αS(t) -tΛ(Re(α)) ≤ B 0 V (x) exp(-b 0 t).
Multiplying both sides with exp(tΛ(Re(α)) yields

m t (α) = E x exp αS(t) ≤ B 0 V (x) exp(-b 0 t) exp(tΛ(Re(α)) = exp(tΛ(Re(α)) t (α),
where the function t (α) = B 0 V (x) exp(-b 0 t) converges to zero exponentially fast uniformly for all α satisfying -ᾱ ≤ Re(α) ≤ ᾱ and

ω 0 ≤ |Im(α)| ≤ ω 1 .
The following proposition corresponds to Proposition 4.9 in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF]. Note however, that the proof, given there for the discrete case, relies on some particularity of the discrete time Feynman-Kac semi group

P n α g(x) := E x e α n i=1 f (X i ) g(X n ) ,
which has the advantage of factorizing at single time step level; i.e.:

(20) P 1 α g(x) = E x [e αf (X 1 ) g(X 1 )] = P 1 (ge αf ).

To prove the result in the continuous time case, we will use the factorization of the generator Lα,V of the Feynman-Kac semi group ( P t α ), which was given in (5).

Proposition 1.6. There exist a neighborhood O of zero in R satisfying the following properties : i) For all a ∈ O we have d da Λ(a) = πa (f ), where πa is the invariant probability measure for Ľa,V .

ii) For all a ∈ O, the function Fa = d da log fa is a solution to the equation

(21) Ľa,V Fa = πa (f ) -f.
iii) In particular, for a = 0, we have π0 = π, Ľ0 = L and we obtain the Poisson equation

L V F0 = π(f ) -f.
Proof. We will see later in Proposition 1.8 that for real a in a small neighborhood of zero the eigenfunction fa is strictly positive. Therefore, we can define the following auxiliary operator

Ľa,V = (I fa ) -1 ( La,V -Λ(a))I fa ,
where for a given function g we introduce the multiplication operator I g h(x) := g(x)h(x).

The differentiation of the eigenvalue equation ( 6) gives

f fa + La,V f a = Λ (a) fa + Λ a f a .
Dividing this identity by fa , we obtain

f + f -1 a La,V f a = Λ (a) f -1 a fa + Λ(a) f -1 a f a .
This can be written as

(I fa ) -1 La,V -Λ(a) I fa f a fa = Λ (a) f -1 a fa -f. This implies (22) Ľa,V Fa = Λ (a) -f.
By choice of a suitable norming constant k a , we obtain the probability measure

πa = k a μa I fα ,
where μa is the eigenmeasure associated to P 1 a which for all t ≥ 0 also satisfies : μa P t a = λ t a μa .

We will prove in Proposition 1.8 that fa is strictly positive for real a in small neighborhood of zero. We have

πa (| Fa |) = πa f a / fa = k a μa (| f a |) < ∞ and πa Ľa,V 1 R d = k a μa I fa (I fa ) -1 ( La -Λ(a))I fa 1 R d = k a μa I fα (I fa ) -1 La fa -k a μa I fα (I fa ) -1 Λ(a) fa = k a μa La fa -k a μa (Λ(a) fa = 0.
It follows that the probability measure πa is invariant. Since Fa is a solution to the Poisson equation if follows that the right side of ( 22) is of π mesure zero. We deduce from this that Λ (a) = πa (f ). This proves the points (i) and (ii). The proof of (iii) follows by considering the special case a = 0.

The following proposition corresponds to statements P4 and P5 in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] for the discrete case. The proof follows the same line of arguments, while substituting the discrete generator by the continuous time generator. However, instead of expressing the coefficients as series, we express them in terms of integrated solutions of suitable Poisson equations.

Proposition 1.7. The function α → Λ(α) is analytic in an open neighbourhood O of the origin in the complex plane. Furher, one has Λ(0) = Λ (0) = 0 and

σ 2 := Λ (0) = 2 R d f gdπ, ρ 3 := Λ (0) = 6 R d f hdπ,
where g and h are solutions to the two equations L V g = -f and L V h = f g -π(f g).

Proof. We saw in Proposition 1.4 that λ α is analytic in a neighbourhood O of zero in the complex plane. Since we have Λ(α) = log(λ α ), this implies Λ(α) is analytic in O.

It follows that

Λ (α) = λ α λ α and Λ (α) = λ α λ α -λ α λ α λ 2 α .
For α = 0 the operator P 1 0 = P 1 is stochastic and it follows that λ 0 = 1, which implies Λ(0) = 0. Further, by Proposition 1.6 we have Λ (0) = π(f ) = 0. The following computation is in its spirit the same as the one given in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] for the time discrete case. However, instead of using the semi groupe Pα we use it's generator Lα,V in the argument. Since fα is eigenfunction of Pα associed to λ α it follows that it is eigenfunction of Lα,V associated to the eigenvalues Λ(α); i.e :

(23) Lα,V fα = Λ(α) fα .
Without loss of generality, we will suppose that fα is normalized to satisfy π( fα ) = 1. This implies that for H α = Λ(α)Id -Lα,V + 1 ⊗ π, we obtain

H α fα = Λ(α) fα -Lα,V fα + 1 R d π( fα ) = 1 R d π( fα ) = 1 R d , This yields the equation fα = H -1 α 1 R d .
Moreover, formula (5) for the Feynman-Kac generator Lα,V yields

d dα H α g = Λ (α)g -f g and d k d k α H α g = Λ (k) (α)g, for k ≥ 2.
It follows from this that

d dα α=0 H α g = Λ (0)g -f g = -f g and d k d k α α=0 H α g = Λ (k) (0)g, for k ≥ 2.
Moreover, for all k ≥ 1 we have

(24) π d k fα d k α = d k d k α π( fα ) = d k d k α 1 = 0, for α in some neighborhood of zero.
By differentiation of (23), we obtain

d 2 d 2 α α=0 fα = H -2 0 (H 0 ) 2 H -1 0 1 R d -H -1 0 H 0 H -1 0 1 R d + H -1 0 (H 0 ) 2 H -2 0 1 R d = 2H -1 0 H 0 H -1 0 H 0 H -1 0 1 R d -H -1 0 H 0 H -1 0 1 R d .
Note that we have

H -1 0 = [-L V + Π] -1 where Π = 1 R d ⊗ π is a rank one operator. Since H -1 0 1 R d = f0 = 1 R d (see Proposition 1.8), it follows that (25) d 2 d 2 α α=0 π( fα ) = 2ΠH -1 0 (f H -1 0 f ) -Π(H -1 0 Λ (0)).
On the other hand, for ψ ∈ H the equation

H -1 0 (g) = ψ is equivalent to g = -L V ψ + Π(ψ).
It follows from the invariance of π with respect the semi group (P t ) that

Π(g) = Π(-L V ψ) + Π(ψ)Π(1) = Π - d dt P t ψ + Π(ψ) = - d dt Π(ψ) + Π(ψ) = Π(ψ) = Π(H -1 0 g).
Therefore, we see from (25) that

d 2 d 2 α α=0 π( fα ) = 2Π(f H -1 0 f ) -Λ (0) = -2 R d f L -1 V f dπ -Λ (0).
The last equality follows from the fact that Π(f ) = 0 implies

H -1 0 f = -L -1 V f. It follows from (24) that σ 2 = Λ (0) = -2 R d f L -1 V f dπ = 2 R d f gdπ
where g is the solution of the equation L V g = -f. This finish the proof of i).

Again by differentiation of fα = H -1 α 1 we obtain :

d 3 d 3 α α=0 fα = -6H -1 0 H 0 H -1 0 H 0 H -1 0 H 0 H -1 0 1 R d + 3H -1 0 H 0 H -1 0 H 0 H -1 0 1 R d + 3H -1 0 H 0 H -1 0 H 0 H -1 0 1 R d -H -1 0 H 0 H -1 0 1 R d . Since Π(f H -1 0 1 R d ) = Πf = π(f ) = 0 and Π(H -1 0 f ) = Πf = 0, it follows that d 3 d 3 α α=0 π( fα ) = -6Π(f H -1 0 (f H -1 0 f )) + 3Λ (0)Π(f H -1 0 1 R d ) + 3Λ (0)Π(H -1 0 f ) -Λ (0)Π(1 R d ) = 6 R d f H -1 0 (f L -1 V f )dπ -Λ (0) = -6 R d f H -1 0 (f g)dπ -Λ (0) = 6 R d f hdπ -Λ (0),
where we put h := -H -1 0 (f g). Note that it follows that

f g = -H 0 h = L V h -Πh = L V h + Π(H -1 0 f g) = L V h + Π(f g).
Thus g and h are the solutions of the equations L V g = -f and L V h = f g -π(f g). It follows from (24) that

ρ 3 = Λ (0) = 6 R d f hdπ.
The proof is complete.

The part (i) of the following proposition corresponds to statement P6 in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF]. The parts (ii) and (iii) corresponds to statement P7 in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF]. Its proof carries over without difficulties to the continuous case Proposition 1.8. Let g be the unique solution of the Poisson equation L V g = -f . Then the two following statements hold : i) For d t = E x [S t ] -g, we have |d t | → 0 exponentially fast as t → ∞ uniformly in x.

ii) The eigenfunction fα is analytic with respect to α in a neighborhood of zero in the complex plane. It satisfies f0 = 1 and it is strictly positive for all real α in a neighborhood of zero. iii) There is some ω 0 > 0 (depending on x) and a constant C such that Proof. : From the definition of S t we have

E x [S t ] = E x t 0 f (X s )ds = t 0 E x f (X s ) ds = t 0 P s f (x)ds.
Also note that we have the following representation of the solution of the Poisson equation

g = ∞ 0 P s f (x)ds.
When restricted to functions with mean zero with respect to π, the semi group (P t ) has spectral radius ρ * < ∞ on L ∞ . Since f is of π-measure zero and since the absolute value of f is bounded by one, we have P t f sup = P t f ∞ ≤ Ke t log ρ * for all t > 0. This yields

d t (x) = E x [S t ] -g ≤ ∞ t |P s f (x)|ds ≤ K ∞ t e s log ρ * ds = - K log ρ * e t log ρ * .
Hence sup x |d t (x)| → 0 exponentially as t → ∞.

In the following we will use the notation ( P n α ) n∈N to denote the discrete semigroup, which results from observing ( P t α ) t≥0 at integer time. For real a ∈ [-ā, ā] and λ ≥ max(λ ā, λ -ā ), we define the operator Ĝa by Ĝa = ∞ n=0 λ-n-1 P n a .

Note that if the semi group (P t ) t≥0 is ψ-irreducible then the discrete semi group ( P n a ) n∈N also is. For any θ > 0 we define the resolvent associated with the discrete semi group ( P n a ) n∈N as

(27) R θ := ∞ n=0
(1 -e θ )e -nθ P n a .

It is proved in Proposition 5.5.5 from [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF] that for a ψ-irreducible discrete semi group ( P n α ) n∈N on can always find a θ > 0, a function s : R d →]0, ∞] and a signed measures ν on B such that

R θ (x, A) > s(x)ν(A), x ∈ R d , A ∈ B.

Since by assumption

|f | ≤ 1, this implies for x ∈ R d and A ∈ B Ĝa (x, A) = ∞ n=0 λ-n-1 P n a 1 A = 1 λ ∞ n=0 e -n(log λ+ā) E x e -a n 0 f (Xs)ds 1 A (X n ) ≥ 1 λ ∞ n=0 e -n(log λ+ā) P n a 1 A (x) ≥ 1 λ R log λ+ā 1 A (x) ≥ 1 λ s(x)ν(A).
It follows that for all a ∈ [-ā, ā] and for all

x ∈ R d ( λ -λ a ) -1 fa (x) = ∞ n=0 λ-n-1 λ n a fa (x) = ∞ n=0 λ-n-1 P n a fa (x) = Ĝa fa (x) ≥ s(x)ν( fa ) > 0.
We deduce that fa (x) is strictly positive. We know from (i) in Proposition 1.5 that f0 = 1 R d . Expanding log fiω in a Taylor series around zero yields log fiω = iω F -ω 2 F .

This implies that there exist a constant C such that

| log fiω (x) -iω F | ≤ Cω 2 .
This finises the proof.

Asymptotic analysis of Edgeworth coefficient

In this section we want to analyze the asymptotic behavior of the Edgeworth coefficient as some drift enhancement parameter grows to infinity. We first fix the setting for our study. for this let U : R d → R be a given C 1 function such that π(dx) := e -U (x) dx is a the probability measure on R d . Let (X t ) t≥0 be the strong solution of the stochastic differential equation ( 28)

dX t = -∇U (X t ) dt + √ 2 dB t ,
where (B t ) t≥0 is a standard Brownian motion on R d . Under some assumptions on the fonction U , the diffusion (X t ) has equilibrium distribution π. The generator of the diffusion (X t ) is the differential operator L 0 , given by the following differential operator (29)

L 0 f = ∆f -∇U • ∇f.
This generator generates a semi group on L 2 (R d , π) through

P t f (x) = E x [f (X(t))]; x ∈ R d , t ≥ 0.
Perturbing the reversible diffusion (28) by adding a drift term, which preserves the measure π, results in a stochastic equation of the form (30)

dX c t = -∇U (X c t ) dt + √ 2 dB t + cb(X c t )
dt, where b is a C 1 -vectorfield on R d satisfying div(be -U ) = 0. Then under some suitable assumptions tthe resulting diffusion has equilibrium distribution π. The generator of the diffusion (X c t ) is the differential operator (31)

L cb f = L 0 f + cb • ∇f.
Let H be the Hilbert space of mean zero functions given by

H = ψ ∈ L 2 (R d , π), R d ψdπ = 0 ,
with the inner product < ψ, φ >:= M ψφdπ.

Note that the operator L 0 is self adjoint in H. In the following we assume that L 0 has discrete spectrum with eigenvalues λ 0 = 0 ≥ -λ 1 ≥ -λ 2 ≥ ... and associated eigenfunctions φ 0 , φ 1 , φ 2 , .... It is well known that those functions can be choosen to be orthonormal with respect to the scalar product on H. For all m ∈ R we introduce the Hilbert space

H m := ψ = ∞ i=1 α i φ i ∈ H; ∞ i=1 |α i | 2 λ m i < ∞ with scalar product ψ, φ H m = ∞ i=1 α i β i λ m i , where ψ = ∞ i=1 α i ϕ i and φ = ∞ i=1 β i ϕ i .
From the above condition on the spectrum of L 0 for all f ∈ H there exists a solution g ∈ H 1 to the Poisson equation L 0 g = -f.

It follows, under suitable conditions on b that for all f ∈ H there exists a solution g ∈ H 1 to the Poisson equation L cb g = -f.

Suppose that the diffusion (X c t ) is V-uniform and that f : R d → [-1, 1] is strongly nonlattice function with zero mean, then it turns out that Remark : The Theorem 1.1 actually states that

ρ 3,c = 6 R d f hdπ,
where h is the solutions to the equations L cb h = f g -π(f g). Using the relation (L cb ) * = L -cb the expression for ρ 3,c can be reexpressed as

ρ 3,c = 6 R d f L -1 cb f g -π(f g) dπ = 6 R d f g -π(f g) L -1 -cb f dπ = 6 R d f gL -1 -cb f dπ = 6 R d f ghdπ.
Note that ρ 3 c , σ 2 c and Fc depend on c. The behavior of the asymptotic variance σ 2 c as c goes to infinity was studied in [START_REF] Duncan | Variance reduction using nonreversible langevin samplers[END_REF] and [START_REF] Hwang | Variance reduction for diffusions[END_REF]. The next theorem investigates the behavior of ρ 3,c and Fc as c goes to infinity. Proof. We introduce the operator B = L -1 0 b • ∇ which turns out to be a compact and antiself-adjoint operator on H 1 . Then B has eigenfunctions {ψ k } k≥1 and corresponding eigenvalues iµ k , k ∈ N where each µ k is real and lim k→∞ µ k = 0. For all f ∈ H the Poisson equation L cb g = -f has unique solution g ∈ H 1 . This implies that the equation (L 0 -cb • ∇)g = f can be changed to (32) g + cL -1 0 b • ∇g = -L -1 f. We have the following representations in H 1 :

g = P g + ∞ k=1 β k ψ k with β k ∈ C and (33) L -1 0 f = P L -1 0 f + ∞ k=1 α k ψ k , where α k = L -1 0 f, ψ k H 1 = f, ψ k H for all k ∈ N.
If we replace f and L -1 0 f by their respective representations in (32), this yields

P g + ∞ k=1 β k ψ k + cB ∞ k=1 β k ψ k = - ∞ k=1 α k ψ k -P L -1 0 f,
which is equivalent to

P g + ∞ k=1 (β k + icµ k β k )ψ k = - ∞ k=1 α k ψ k -P L -1 0 f.
By identification of the coefficients in the series we obtain P g = -P L -1 0 f and β k = -

α k 1 + icµ k .
It is clear that when c → ∞ we have β k → 0, and it follows that g = L -1 cb f → P g = -P L -1 0 f in H 1 . The same argument shows also that g = Fc → P g = -P L -1 0 f in H 1 as c → ∞. if we apply the same argument equation and it follows that

L -cb h = -f, we obtian h = -L -1
-cb f → P h = -P L -1 0 f in H 1 as c → ∞. This implies that lim

c→∞ ρ 3,c = lim c→∞ 6 f, hg H = lim c→∞ 6 f, (L -1 -cb f )L -1 cb f H = lim c→∞ 6 L -1 0 f, (L -1 -cb f )L -1 cb f H 1 = 6 L -1 0 f, (P L -1 0 f ) 2 H 1
= 6 P L -1 0 f, (P L -1 0 f ) 2 H 1 , where in the last equality we used the fact that the product of two elements in N is again in N . The theorem is established.

2.1. The case of the perturbed Ornstein-Uhlenbeck diffusion. We now want to study an example, where the conditions of Theorem 2.1 are satisfied. Let U (x) = -1 2 x, Dx where D is a symmetric and strictly negative definite real d × d-matrix. Then the measure π(dx) = Z -1 e -U (x) = Z 1 e 1 2 x,Dx is a centered gaussian distribution with covariance matrix -D -1 . We want to study the linear drift b(x) = SDx, where D is a symmetric and strictly positive-definite real matrix. Note that this vectorfield is weighted divergence-free with respect e -U (x) ; i.e.: div(e -U b) = 0. The unperturbed Ornstein-Uhlenbeck process (X 0 t ) has generator (34)

L 0 f = ∆f -Dx, ∇f . This shows that the diffusion process (X c t ) is ψ-irreducible. Similarly, we have

P t (x, u) = R d P t (x, dy)u(y) = R d R d
p(x, y, t)u(y)dxdy > 0, which implies that (X c t ) is aperiodic. It follows that (X c t ) is V -uniform. This shows that the perturbed Ornstein Uhlenbeck process (X c t ) satisfies all conditions for Theorem 1.1 to hold.

  (26) δ(iω) := | log fiω (x) -iωg| ≤ Cω 2 , for all |ω| ≤ ω 0 .

S t := t 0 f 2 c = 2 R d f gdπ, ρ 3 ,c = 6 R

 02236 (X b s )ds satisfies the Edgeworth expansion from Theorem 1.1 for all starting point x ∈ R with σ d f ghdπ and Fc = g, where L cb g = -f and L -cb h = -f .

Theorem 2 . 1 .) 2 H 1

 2121 Suppose that the vector field b is bounded. For all f : R d → [-1, 1] in H, we have lim c→∞ ρ 3,c = P L -1 0 f, (P L -1 0 f and lim c→∞ Fc = -P L -1 0 f where P is the orthogonal projection from H 1 to N 0 = ker(b • ∇) ⊂ H 1 .
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 0 and invariant measure π. It is well established, that L 0 is a self-adjoint operator on L 2 (R d , π) and that it has discrete spectrum. LetL c f = ∆f -Dx, ∇f + c SDx, ∇fbe the the generator of the perturbed Ornstein Uhlenbeck process (X c t ) t≥0 . We now will see that (X c t ) is V -uniform, if we chooseV : R d → [1, ∞[; x → -x, Dx + 1.If we denote by ν i , 1 ≤ i ≤ d the eigenvalues of the matrix D, then we have since they are all strictly negative thatL cb V (x) = ∆V -Dx, ∇V + SDx, ∇V = ∆V -2 Dx, Dx + 2 SDx, Dx = -tr(D) -2 Dx, Dx ≤ -tr(D) + 2 max i (ν i )V (x) -2 max i (ν i ) = b 0 -δV (x),where b 0 = -tr(D) -2 max i (ν i ) > 0 and δ = -2 max i (ν i ) > 0.Since the generator of the perturbed Ornstein Uhlenbeck semigroupe is elliptic, we know that for all choice of x ∈ R d and t > 0 the transition density y → p(t, x, y) is positive and continuous as a function of x and y. Let ν be the Lebesgue measure restricted to [0, 1] d . We then have for anyx ∈ R d and A ∈ B(R d that R 1 (x, A) = ∞ 0 e -t P t (x, A)dt = , x, y)dydt ≥ s(x)ν(A).with the positive functions(x) := inf y∈[0,1] d ∞ -t p(t, x, y)dt.We now show that the diffusion (X c t ) is ψ-irreducible for ψ = , where is the Lebesgue measure on R d . Let u : R d → [0, 1] be a function satisfing (u) = R d u(x) (dx) > 0. Then we have R(x, u) = R d R(x, dy)u(y) = R d ∞ 0 θe -θt P t (x, dy)u(y)dt = R d ∞ 0 θe -θt p(t, x, dy)u(y)dtdx > 0.

  Proposition 1.5. For x ∈ R d let m t (α) := E x e αSt , t ≥ 1, α ∈ C. i) There exists an open neighbourhood O of zero in the complex plane and a family of functions t satisfying m t (α) = exp(tΛ(α))( fα (x) + |α| t (α)), and sup α∈O | t (α)| → 0 exponentially fast as t → ∞.

ii) If f is strongly nonlattice, there exist 0 < ω 0 < ω 1 < ∞, a > 0 and a family of function t satisfying m t (α) = exp(tΛ(Re(α))) t (α),

and sup α∈[-a,a]×[iω 0 ,iω 1 ] | t (α)| → 0 exponentially fast as t → ∞.