
HAL Id: hal-02935356
https://hal.science/hal-02935356v1

Submitted on 10 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybridizing Large Neighborhood Search and Exacts
Methods for Generalized Vehicles Routing Problems

with Time Windows
Dorian Dumez, Christian Tilk, Stefan Irnich, Fabien Lehuédé, Olivier Péton

To cite this version:
Dorian Dumez, Christian Tilk, Stefan Irnich, Fabien Lehuédé, Olivier Péton. Hybridizing Large
Neighborhood Search and Exacts Methods for Generalized Vehicles Routing Problems with Time
Windows. EURO Journal on Transportation and Logistics, 2021, �10.1016/j.ejtl.2021.100040�. �hal-
02935356�

https://hal.science/hal-02935356v1
https://hal.archives-ouvertes.fr

Hybridizing Large Neighborhood Search and Exacts Methods for

Generalized Vehicles Routing Problems with Time Windows

Dorian Dumez2, Christian Tilk*1, Stefan Irnich1, Fabien Lehuédé2, and Olivier Péton2

1Chair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, 55099 Mainz, Germany.

2IMT Atlantique, Laboratoire des Sciences du Numérique de Nantes (LS2N, UMR
CNRS 6004), Nantes, France

September 9, 2020

Abstract

Delivery options are at the heart of the generalized vehicle routing problem with time windows
(GVRPTW) allowing that customer requests are shipped to alternative delivery locations which
can also have different time windows. Recently, the vehicle routing problem with delivery op-
tions was introduced into the scientific literature. It extends the GVRPTW by capacities of
shared locations and by specifying service-level constraints defined by the customers’ preferences
for delivery options. The vehicle routing problem with delivery options also generalizes the ve-
hicle routing problem with home roaming delivery locations and the vehicle routing problem
with multiple time windows. For all these GVRPTW variants, we present a widely applica-
ble matheuristic that relies on a large neighborhood search (LNS) employing several problem-
tailored destruction operators. Most of the time, the LNS performs relatively small and fast
moves, but when the solution has not been improved for many iterations, a larger destruction
move is applied to arrive in a different region of the search space. Moreover, an adaptive layer
of the LNS embeds two exact components: First, a set-partitioning formulation is used to com-
bine previously found routes to new solutions. Second, the Balas-Simonetti neighborhood is
adapted to further improve already good solutions. These new components are in the focus of
our work and we perform an exhaustive computational study to evaluate four configurations of
the new matheuristic on several benchmark instances of the above-mentioned variants. On all
the benchmark sets, our matheuristic is competitive with the previous state-of-the-art meth-
ods. Without manual problem-specific re-configurations of the matheuristic, we provide 81 new
best-known solutions.

Keywords: vehicle routing; delivery options; time windows; matheuristic; large neighborhood
search

1 Introduction

Delivery options are at the heart of the well-known generalized vehicle routing problem with
time windows (GVRPTW, Moccia et al., 2012). Delivery options allow customer requests to

*Corresponding author.

1

be shipped to alternative delivery locations which can also have different time windows. In this
paper, we present and computationally evaluate a new matheuristic that can deal with several
generalizations of the GVRPTW.

The most general of these is the vehicle routing problem with delivery options (VRPDO).
The VRPDO has been first described in (Dumez et al., 2020; Tilk et al., 2020) and captures
one of the recent trends in last-mile package delivery related to the introduction of delivery
options. (Tilk et al., 2020) provide a more detailed introduction to the VRPDO in the context
of parcel delivery and last-mile vehicle routing problems (Cattaruzza et al., 2017). In last-mile
package delivery, a delivery option can be, e.g., the delivery to an individual home location, to
the customer’s car trunk when parking positions are known and communicated in advance, or
to shared delivery locations such as apartment buildings, shops, and lockers. Motivated by the
real-world characteristics of some delivery options, the VRPDO further extends the GVRPTW
by service-level constraints defined by the customers’ preferences for options and by location
capacities that must be respected. For example, a customer may prefer home delivery over
delivery to a nearby locker, and locker delivery over delivery to a nearby shop (preferences can
depend on the time of the day). Moreover, lockers and also smaller shops certainly have only
limited capacity to store parcels until they are finally picked up by customers. Such location-
specific capacities are, therefore, taken into account in the VRPDO.

The VRPDO also generalizes other problems such as the vehicle routing problem with roam-
ing delivery locations (VRPRDL, Reyes et al., 2017) in which options result from deliveries to a
customer’s car trunk, and the vehicle routing problem with multiple time windows (VRPMTW,
Favaretto et al., 2007)) in which all options of a customer refer to the same physical location
but have disjoint time windows.

The contribution of this work is the development of a powerful matheuristic that is suffi-
ciently general to cope with all vehicle routing problem (VRP) variants mentioned above. The
new matheuristic relies on a large neighborhood search (LNS) employing several destruction
operators. Most of the time, the LNS performs fast and small moves, but when the solution
has not been improved for many iterations, a larger destruction move is applied to arrive in a
different region of the search space. The idea of mixing small and large moves within an LNS
was introduced in the paper by Dumez et al. (2020) where specific neighborhoods were intro-
duced for the VRPDO. In the paper at hand, we improve the results of Dumez et al. (2020) by
a better control of large and small destructions. Moreover, the focus of our research is not on
designing an LNS, but on an adaptive layer of the matheuristic that embeds two exact compo-
nents: First, a set-partitioning problem (SPP) is solved from time to time to combine previously
found routes into new solutions. Second, the Balas-Simonetti (BS, Balas and Simonetti, 2001)
neighborhood is adapted to further improve already good solutions. The BS neighborhood is an
exponentially-sized neighborhood in which a best improving solution can be found by solving a
shortest-path problem in a layered graph. The two components are optional, giving rise to four
different configurations of the matheuristic.

The experimentation with the two exact components complementing the LNS follows the
general trend towards hybridization and matheuristics for difficult VRP variants. For exam-
ple, Moccia et al. (2012) embed a dynamic-programming component in a tabu search for the
GVRPTW, Tellez et al. (2018) solve a set-partitioning problem in an LNS for a rich dial-a-ride
problem, and Toffolo et al. (2019) use the BS neighborhood in a structural decomposition ap-
proach for the capacitated vehicle routing problem. Our idea behind the two exact components
in the LNS is that delivery options require a ‘global view’ on the search space, because the use-
fulness of an option is observable only when it is combined with suitable other options. Thus,
simple local modifications of a solution alone will typically not show the usefulness of an option.
What is required is larger modifications that result from several simultaneous changes in the

2

assignment of customer requests to routes, the selection of possible options, and the routing, i.e.,
sequence in which deliveries are performed. LNS by itself and also the two exact components
pursue this ideas.

In an exhaustive computational study, we evaluate the four configurations of our matheuris-
tic on several benchmark instances of the GVRPTW, VRPRDL, VRPMTW, and VRPDO.
On all benchmark sets, at least one configuration of the matheuristic, often several, or even
all configurations are competitive with the previous state-of-the-art methods. Without manual
variant-specific parameter tuning of the matheuristic, we provide 81 new best-known solutions.

The remainder of this paper is organized as follows. Section 2 formally defines the GVRPTW
variants. We describe the matheuristic with small and fast LNS moves and the two exact com-
ponents, i.e., the SPP formulation and the BS neighborhood and its adaption to the GVRPTW
variants, in Section 3. Section 4 presents the computational experiments and their results. Final
conclusions are drawn in Section 5.

2 Problem Variants

In this section, we formally introduce the considered problem variants. We start with the VR-
PDO, because it is the most general variant. Afterwards, GVRPTW, VRPRDL and VRPMTW
are briefly described and it is explained how they can be modeled as special cases of the VRPDO.

2.1 Vehicle Routing Problem with Delivery Options

The VRPDO is the problem of selecting delivery options, exactly one for each customer, and
determining a cost-minimal set of feasible routes that serve the selected delivery options while
respecting location-capacity and service-level constraints.

Let N be the set of customers (=delivery requests), L be the set of locations, and P =
{1, 2, . . . , p̄} be the priority levels. A delivery option is a triple composed of a customer, location,
and priority level. Formally, let O ⊂ N × L × P be the set of delivery options. For an option
o ∈ O, we write no ∈ N for its customer/delivery request, `o ∈ L for its location, and po ∈ P
for its priority level. The priority indicates how much the customer prefers this option, smaller
numbers indicate higher customer satisfaction. Additionally, each option o has a service time so.

A request n ∈ N is characterized by a demand qn, e.g., given by the number of parcels
to deliver to that customer. The request can be served by choosing one of the options ONn =
{(no, `o, po) ∈ O : no = n}.

With a location we model all activities that can take place at the same physical place.
Accordingly, we define OL` = {(no, `o, po) ∈ O : `o = `} as the set of options belonging to
location ` ∈ L. An individual delivery location ` is one with a unique option, i.e., |OL` | = 1.
Otherwise, we denote a location as a shared delivery location. Let Lm = {` ∈ L : |OL` | > 1}
be the set of shared delivery locations. Shared locations ` ∈ Lm have a limited capacity C` in
terms of the number of shipments that can be delivered there. Moreover, we assume that at all
locations ` ∈ L have an associated time window [a`, b`] that describes the time period in which
deliveries can be performed.

A fleet of K homogeneous vehicles with capacity Q is housed at the depot location `0 ∈ L.
For each pair of locations ` and `′ ∈ L, the travel time t``′ and the travel cost c``′ are given.
The travel time t``′ also includes a preparation time, e.g., for parking a vehicle at `′ before the
actual delivery at `′ can start.

Service-level constraints are modeled with numbers βp ∈ [0, 1] for p ∈ P . The value βp is
the minimum percentage of options of service level not greater than p that must be chosen. For
example, β2 = 0.8 means that at least 80 % of the chosen options must have service level 1 or 2.

3

The capacities of the shared delivery locations and required service levels add synchroniza-
tion constraints to the VRPDO, defined by Drexl (2012) as ‘at any point in time, the total
utilization or consumption of a specified resource by all vehicles must be less than or equal to
a specified limit ’. In the VRPDO, resource consumption is cumulative over the time horizon.
Hence, they can also be interpreted as inter-tour resource constraints as defined in (Hempsch
and Irnich, 2008).

A route r = (0, o1, . . . , oh, 0) is as sequence of options in which the artificial options o0 = 0
and oh+1 = 0 represent the visit of the depot location `0 at the start and end of the route,
respectively. The demand served by route r is q(r) =

∑h
j=1 qnoj

, so that r is capacity-feasible if

q(r) ≤ Q holds. A route is time-window feasible if there exists a schedule (T0, T1, . . . , Th, Th+1) ∈
Rh+2 which complies with the option service times, travel times, and time windows, i.e., if
Tj−1+t`oj−1 ,`oj

+soj−1 ≤ Tj for all 1 ≤ j ≤ h+1 (assuming so0 = 0) and [Tj , Tj+soj] ⊆ [a`oj , b`oj]
for all 0 ≤ j ≤ h+1. A route r is feasible if it fulfils both capacity and time-window constraints.
The cost of a route is the sum of the travel cost between the consecutively visited locations,
i.e., cr =

∑h+1
j=1 c`oj−1 ,`oj

.
A solution S to VRPDO is a set of feasible routes that selects exactly one option per

customer. Let O(S) be the set of options selected in the solution S. Then, the requirement that
S selects exactly one option per request translates into |O(S) ∩ ONn | = 1 for all n ∈ N . The
solution fulfills the location-capacity constraints if |O(S) ∩ OL` | ≤ C` for all ` ∈ Lm. It fulfills
the service-level constraints if

|{o ∈ O(S) : po ≤ p}| ≥ βp|N | ⇔ |{o ∈ O(S) : po > p}| ≤ (1− βp)|N | (1)

for all p ∈ P . (Note that it suffices to test these conditions for p ∈ P \ {p̄}, because βp̄ = 1
is inevitable.) A solution S is feasible if it fulfills both location-capacity and service-level
constraints. The objective of the VRPDO is to first minimize the number of vehicles, and
second to minimize the routing cost

∑
r∈S cr over all feasible solutions.

Summarizing, the VRPDO is a GVRPTW with additional resources synchronization con-
straints (Drexl, 2012). Up to now, there are only two papers addressing the VRPDO: Tilk et al.
(2020) solve the VRPDO exactly with a branch-price-and-cut algorithm and report provably
optimal solutions for instances with up to 50 customers and 100 options. Dumez et al. (2020)
use an LNS matheuristic to solve the VRPDO heuristically and report solutions on instances
with up to 200 customers and 400 options.

2.2 Generalized Vehicle Routing Problem with Time Windows

The GVRPTW (Moccia et al., 2012) is a direct generalization of the vehicle routing problem
with time windows (VRPTW, Savelsbergh, 1985; Desaulniers et al., 2014), in which customers
has to be served at one of their alternative delivery locations respecting the corresponding time
window. Each alternative delivery location defines a delivery option for the customer. Thus, the
GVRPTW can be modeled and solved as a VRPDO without synchronized resources. To the best
of our knowledge, (Moccia et al., 2012) is the only article that deals with the heuristic solution
of the GVRPTW. They propose an incremental tabu search using a dynamic-programming
component that allows changing customers’ locations when inserting a customer in a route.
The tabu search provides solutions for instances with up to 120 customers in a few hundred
seconds.

2.3 Vehicle Routing Problem with (Home and) Roaming Delivery Locations

The VRPRDL, introduced by Reyes et al. (2017), specifically models the delivery to the trunk of
cars. Customers must a priori specify where they are over the planning horizon, thereby defining

4

different delivery options. The VRPRDL can be seen as a special case of the GVRPTW with
non-overlapping time windows for the delivery options of each customer (Ozbaygin et al., 2017).

The VRPHRDL is an extension of the VRPRDL with an additional so-called home option for
each customer (Ozbaygin et al., 2017). This additional delivery option has a non-constraining
time window, e.g., identical to the planning horizon. Both problems are special cases of the
GVRPTW and can, therefore, be modeled and solved as VRPDO without synchronized re-
sources.

Reyes et al. (2017) propose a variable neighborhood search to solve the VRPRDL. It em-
beds a dynamic-programming algorithm to optimize the travel distance of a given customer
sequence. Ozbaygin et al. (2017) develop a branch-and-price algorithm to solve the VRPRDL
and VRPHRDL with up to 120 customers. Lombard et al. (2018) solve smaller instances of a
stochastic VRPRDL.

2.4 Vehicle Routing Problem with Multiple Time Windows

The VRPMTW was introduced by Favaretto et al. (2007) as an extension of the VRPTW where
each customer can have multiple time windows. If one considers each time window as a different
option, the VRPMTW is a special case of the VRPDO. All delivery locations of a customer
are at the same physical place. Options of two customers, however, always refer to different
physical places.

The objective of the VRPMTW is either minimizing the travel distance or travel duration
(total travel, service, and waiting time). In both cases, a fixed cost per route is included in the
objective function fostering that the number of employed vehicles is kept small.

Belhaiza et al. (2014) propose a hybrid variable neighborhood tabu search and a set of
benchmark instances with 100 customers. A revised version of the approach was described in
(Belhaiza et al., 2017) as a hybrid genetic variable neighborhood search. Larsen and Pacino
(2019) solve the VRPMTW with an adaptive LNS with a problem-tailored insertion procedure.
They generalize the forward time slack procedure of Savelsbergh (1985) to take into account all
the time windows of the visited customers. Thus, the time windows used to visit the customers
of a route can be changed to insert a new customer in this route. Hoogeboom et al. (2020)
describe an adaptive variable neighborhood search relying on a generalization of the forward
time slacks for the VRPMTW with duration-minimization objective.

3 LNS-based Matheuristic with Exact Components

In an LNS algorithm, the current solution is iteratively improved by removing a part of it (a.k.a.
destroy, ruin) and reinserting the removed parts (a.k.a. repair, recreate). This process repeats
until a stopping criterion is met, e.g., an iteration or time limit. LNS was first introduced by
Shaw (1998) in a constraint programming context. The potential of solving a broad variety of
VRPs with LNS was emphasized by Ropke and Pisinger (2006b,a); Pisinger and Ropke (2007).
They proposed an adaptive version of LNS, known as ALNS, consisting of multiple destroy
and repair operators adaptively selected according to their past performance. As surveyed in
(Pisinger and Ropke, 2019), LNS has been successfully applied to many variants of the VRP.

As it is clearly beyond the scope of the paper at hand to survey LNS, we highlight two
leading sources of inspiration for our matheuristic. First, Christiaens and Vanden Berghe (2019)
developed a fast LNS based on small removals and fast greedy insertion heuristics as repair
operators. Thanks to these two factors, their LNS can perform a very high number of iterations,
which somehow compensates the lack of a local search in LNS. The LNS of Christiaens and

5

Vanden Berghe proved competitive with state-of-the-art algorithms on many VRPs, including
the fundamental and intensively-studied VRPTW.

Preliminary experiments on GVRPTW variants indicate that fast and small moves alone are
not sufficient for finding excellent solutions for the VRP variants considered here. Additionally,
some more global modifications are needed from time to time. Therefore, we follow an idea of
Hemmelmayr et al. (2012) who developed the following ALNS for the 2-echelon VRP: Mostly,
their ALNS applies operators that modify only the second echelon. However, if the current
solution is not improved for several iterations, a specific operator modifies the first echelon.
Because of the structure of the 2-echelon VRP, such a first-echelon move strongly affects the
resulting preconditions for the second echelon.

Both strategies can be transmitted to the GVRPTW case: the matheuristic mostly performs
fast and small local moves and, when the solution has not been improved for some iterations, a
larger destroy followed by one of the standard repair operators is applied.

In what follows, we describe the specific exact components of the new matheuristic relying
on a mixed integer programming (MIP) solver and dynamic programming, respectively. The
overall outline is first presented in Section 3.1. The Balas-Simonetti neighborhood and its
adaption to the GVRPTW variants are described in Section 3.2. Finally, the set-partitioning
formulation for all GVRPTW variants and the adaptive layer are detailed in Section 3.3.

3.1 Algorithm Outline

Recall that a solution has been defined as a set of feasible routes (see Section 2), where each
route is represented as a sequence of options. Also in our matheuristic (MathHeu), a solution S
comprises only feasible routes (w.r.t. vehicle-capacity and time-window constraints). Moreover,
all options of all routes must refer to different customers, i.e., a packing solution. In addition, all
feasible solutions fulfill the service-level requirements and the capacity constraints of the shared
locations. However, as proposed by Pisinger and Ropke (2007), we allow partial solutions, i.e.,
solutions that do not serve all the customers in the course of the algorithm. As a consequence,
we define the modified cost of a solution S as

f ′(S) = f(S)

(
1 + ζ

|B(S)|
|N |

)
where B(S) is the set of customer requests that are not served by solution S (often called the
request bank). In our experiments, we use a static value ζ = 20.

As the LNS for the VRPDO developed in Dumez et al. (2020), our MathHeu is composed of
two local and seven global destroy operators as well as six repair operators, all adapted from
the literature. The operators are summarized in Table 1. Following the ideas of Christiaens
and Vanden Berghe (2019), there is a probability of 0.3 to not remove a customer that should
have been removed by the destroy operator. We called it the blink at the deletion. For all the
operators, we are using their adaption to the GVRPTW variants as described in Dumez et al.
(2020).

6

Table 1: Destroy and Repair Operators

Type Operator Source

local destroy distance related customer removal (Shaw, 1998)
split string removal (Christiaens and Vanden Berghe, 2016)

destroy random option removal (Ropke and Pisinger, 2006a)
time related customer removal (Ropke and Pisinger, 2006a)
cluster removal (Pisinger and Ropke, 2007)
route removal (Nagata and Bräysy, 2009)
zone removal (Demir et al., 2012)
historical knowledge node removal (Demir et al., 2012)
SDL oriented random removal (Dumez et al., 2020)

repair 2-regret (Ropke and Pisinger, 2006a)
ejection search (Nagata and Bräysy, 2009)
random order best insertion (Christiaens and Vanden Berghe, 2016)
largest first best insertion (Christiaens and Vanden Berghe, 2016)
preferred best insertion (Dumez et al., 2020)
SDL-regret (Dumez et al., 2020)

All six repair operators (see Table 1) rely on constant-time feasibility checks when inserting
a customer into a route. To this end, the utilization of each shared location and the current
priority fulfillment of each priority level is seamlessly recorded. In addition, the load onboard
of each vehicle is recorded and forward time slacks (Savelsbergh, 1992) are computed at each
option in a route. As in Dumez et al. (2020), the insertion of a request n between two visited
options in a route is tested considering all its possible options ONn .

Note that the focus of the paper at hand is not to further fine-tune the LNS for all GVRPTW
components. Instead, the primary focus is on defining and analyzing the impact that the new
adaptive layer and the two exact components have on the performance, i.e., solution quality
and speed.

We can now present a synopsis of the new MathHeu for all GVRPTW variants in Algorithm 1.
In this pseudo code, S is the current solution, S∗ is the best-found solution, and S′ is a copy
of the current solution to be modified. Moreover, Σ+ is the set of repair operators, Σ− the set
of destroy operators, and Σ−|local ⊂ Σ− is the set of local destroy operators. Each operator
has a given and fixed probability to be selected (see Section 4.1). The variable iter counts the
number of iterations since the last new best solution was found or the last large destroy was
performed. The pool of routes to be used in the SPP is denoted by P (see Section 3.3).

The algorithm is initialized by setting iter to zero and the pool P of routes is cleared
(Line 1). The main loop of the MathHeu is given by the Lines 3 to 20. In each iteration, either
a local or large destruction operator is selected depending on the value of iter and the input
parameter ω: If iter < ω, the iteration counter is increased, the current solution is copied and
a small destruction using a local destroy operator in σ− ∈ Σ−|local with destruction size in
[δmin,∆min] is performed (Lines 4 to 5). Otherwise, the counter iter is reset, the best-found
solution is copied and a large destruction is performed, i.e., the destroy operator is randomly
selected in Σ− and the destruction size is chosen at random in [δbig,∆big] (Lines 7 to 8). A
repair operator is randomly selected in σ+ ∈ Σ+ (Line 9). Then, the combination of the selected
operators, σ− and σ+, is applied to solution S′ in Line 10.

If the resulting solution serves all the customers and its cost is less than ε percent away from
the cost of the best-found solution, the algorithm tries to improve S′ with the Balas-Simonetti
component at Line 12 (see Section 3.2 for details). In Line 13, the routes of the newly generated
solution are stored into the pool of routes. The new solution becomes the current solution in

7

Algorithm 1: LNS-based Matheuristic (MathHeu) with two Exact Components

input : operators Σ+,Σ−,Σ−|local, parameters [δmin,∆min], [δbig,∆big], ω, initial solution S
output: best-found solution S∗

1 P ← ∅, iter ← 0
2 while the time budget is not reached do
3 if iter < ω then
4 iter ← iter + 1, S′ ← S
5 randomly select a destroy operator σ− ∈ Σ−|local , a destruction size Φ ∈ [δmin,∆min]

6 else
7 iter ← 0, S′ ← S∗

8 randomly select a destroy operator σ− ∈ Σ− , a destruction size Φ ∈ [δbig,∆big]

9 randomly select a repair operator σ+ ∈ Σ+

10 S′ ← σ+(σ−(S′,Φ))
11 if f(S′) < (1 + ε)f(S∗) and S′ is feasible then
12 improve S′ with the Balas-Simonetti neighborhood

13 add routes of S′ to pool P
14 if f ′(S′) < f ′(S) or iter = ω then
15 S ← S′;

16 if f(S′) < f(S∗) and S′ is feasible then
17 S∗ ← S′, iter ← 0

18 if a sufficient number of routes is generated then
19 improve S with the SPP and route set P
20 P ← ∅

Line 14 if its modified cost is smaller than the current or a large destruction was performed.
In Line 16, the best-found solution may be updated and the counter iter is reset accordingly.
Finally, when the pool of routes is big enough, the SPP is solved in Line 19 (details are provided
in Section 3.3) and the pool is cleared afterwards.

In the following, we evaluate four configurations of the MathHeu:
MH: without any exact component (Lines 11–12 and 18–20 deactivated)

MH+BS: with only the BS component activated (Lines 18–20 deactivated)
MH+SPP: with only the SPP component activated (Lines 11–12 deactivated)

MH+SPP+BS: with both exact components activated

3.2 Balas-Simonetti Component

Balas (1999) proposed and analyzed a family of large-scale neighborhoods for the asymmetric
traveling salesman problem (ATSP) that can be searched efficiently (in linear time in the size
of the Hamiltonian path). The neighborhoods Nk

BS are parameterized by an integer k ≥ 2 and
Balas and Simonetti (2001) used them within a local-search algorithm for the ATSP and the
ATSP with time windows.

In order to be self-contained, we very briefly summarize the Balas-Simonetti neighborhoods
for the ATSP: Given an TSP Hamiltonian path x = (x0, x1, . . . , xn, xn+1) the neighborhood
Nk
BS(x), for a given value k ≥ 2, consists of all tours x′ = (x0, xπ(1), . . . , xπ(n), xn+1), where

π is a permutation of {1, . . . , n} that fulfills the following conditions: For any two indices
i, j ∈ {1, . . . , n} with i + k ≤ j, the inequality π(i) < π(j) holds. It means that if a vertex xi
precedes a vertex xj by at least k positions in the given path x, then xi must also precede xj
in the neighbor x′. For a given value of the parameter k, a best neighbor x′ ∈ Nk

BS(x) can be

8

determined in O(k22k−2 n) by solving a shortest-path problem in an auxiliary network (Balas,
1999), i.e., for a fixed value of the parameter k the neighborhood exploration is linear in n.

An example of an auxiliary network is depicted in Figure 1 for k = 3 and n = 5. The
graph consist of stages/levels (depicted from left to right in the figure) that correspond to the
positions in the Hamiltonian path. The vertices at each stage can be ordered into rows that
are associated with an offset value α. In the following, the vertices of the auxiliary network
are called states. Thus, each state in the auxiliary network is associated with the vertex xj+α
where j is the stage of the state and α the value associated with the state. Arcs exclusively go
from states of a stage j to states of the subsequent stage j + 1. The general structure of the
auxiliary network is described in several works, e.g., (Balas and Simonetti, 2001) and several
subsequent articles (Irnich, 2008b; Tilk and Irnich, 2016; Hintsch and Irnich, 2018).

α = 0

α = 1

α = −1

α = 2

α = 1

α = −1

α = 0

α = −2

0 1

2

3

2

3

1

4

3

1

2

3

4

2

5

4

2

3

1

4

5

3

5

3

4

2

5

4

3

6

k
=

1
k

=
2

k
=

3

1 2 3 4 5

2

3

1

5

4

Figure 1: Example of the auxiliary network for k = 3 and n = 5

Every source-sink path, from 0 to n+1, in the auxiliary network corresponds to a neighbor x′.
For example, the green sequence of states at the top row in Figure 1 corresponds to x′ = x =
(0, 1, 2, 3, 4, 5, 6). The red sequence of states corresponds to the neighbor x′ = (0, 2, 3, 1, 5, 4, 6),
i.e., a Hamiltonian path that respects the precedence constraint with respect to the initial tour
x and the given parameter k = 3.

The structure of the auxiliary network, i.e., states and connecting arcs, depends only on
k and n, but not on the given path x. The only difference between two auxiliary networks
is the cost of the arcs that must be set to the distance between the considered customers.
Consequently, if the BS neighborhood must be explored multiple times, the auxiliary network
can be kept. Moreover, the auxiliary network for k′ is always a state-induced subgraph of the
auxiliary network for any larger k > k′ (indicated by the separating lines in Figure 1).

Adaptions. Next, we explain how to adapt the Balas-Simonetti neighborhood such that it can
be used for all GVRPTW variants, including the VRPDO with the inter-route synchronization
constraints imposed by location capacities and service-level requirements.

First, we generalize the auxiliary network such that it can deal with options. Contrary to the
TSP, a delivery request n can in our applications be served using the different delivery options
ONn . Hence, meta states encompass sets of states that represent all options of the respective
customer as shown in Figure 2. All states for options of a customer are linked to all states for
options of the subsequent customer.

Second, a shortest-path problem with resources constraints (SPPRC, Irnich and Desaulniers,

9

1 2 3

1 2 3

Figure 2: A sequence of customers in the auxiliary network for the ATSP and its generalization
to delivery options in the GVRPTW. There are three, two and, four options per delivery request
in this example, i.e., |ON1 | = 3, |ON2 | = 2, and |ON3 | = 4.

2005) must be solved on the generalized auxiliary network, in contrast to solving one without
resource constraints for the ATSP.

We solve the corresponding SPPRCs with a label-setting algorithm as follows: A label
Li = (i, Ci, Ti, Qi, (R

p
i)p∈P , (H

`
i)`∈Lm) represents a partial path from the depot 0 to a state i in

the auxiliary network. Recall that a state i represents an option and therefore a delivery request
ni, a location `i, a priority level pi, and a service time si are associated. The components of the
label Li are

(i) last state i of the partial path,
(ii) the accumulated routing cost Ci,

(iii) the earliest arrival time Ti at the location associated with i,
(iv) the accumulated demand (=load) Qi in the vehicle,
(v) the number H`

i of shipments for each shared delivery location (for all ` ∈ Lm), and
(vi) the number Rpi of options o with priority po greater than p served along the partial path

(for all p ∈ P \ {p̄}).
The initial partial path in the auxiliary network starts from the depot 0 and the label L0 =
(0, 0, a`0 , 0,0,0). The label-setting algorithm extends labels along the arcs of the auxiliary

network. Extending a label Li = (i, Ci, Ti, Qi, (R
p)
p∈P\{p̄}
i , (H`)

`∈Lm

i) along an arc (i, j) results

in the label Lj = (j, Cj , Tj , Qj , (R
p)
p∈P\{p̄}
j , (H`)

`∈Lm

j) defined by:

Cj = Ci + c`i`j

Qj = Qi + qnj

Tj = max{a`j , Ti + t`i`j + si}

H`
j =

{
H`
i + 1, if `j = `

H`
i , otherwise

for all ` ∈ L

Rpj =

{
Rpi + 1, if pj > p

Rpi , otherwise
for all p ∈ P \ {p̄}

The extension is feasible, if the following constraints

Qj ≤ Q
Tj ≤ bj
H`
j ≤ C` − H̄`, for all ` ∈ Lm

Rpj ≤ (1− βp)|N | − R̄p, for all p ∈ P \ {p̄}

are fulfilled, where the values H̄` for ` ∈ L and R̄p for p ∈ P \ {p̄} are parameters that control
the required slack in the location-capacity and service-level constraints. For the latter, please
compare with (1) and (2d) in the next section.

We consider three different use cases for the BS component:

10

(1) the local optimization of a single route,
(2) the local optimization of the giant route, and
(3) the simultaneous local optimization of pairs of routes.
In case of a single route r ∈ S taken from a current solution S, the parameters H̄` and R̄p for
p ∈ P \ {p̄} can be set to the resource consumptions of all other routes r′ ∈ S \ {r}.

In case of the giant route, all routes of a given solution S need to be joined as in (Irnich,
2008c) and (Hintsch and Irnich, 2018). The parameters H̄` and R̄p are set to 0. On arcs (0, 0)
joining two different routes, the resources T and Q are reset to a`0 and 0, respectively. In
contrast, the resources H and R are kept at their current value enabling that the inter-route
synchronization constraints are incorporated correctly.

In case of pairs (r1, r2) of routes, the two routes are joined leading to a partial giant route.
The parameters H̄` and R̄p are then set to the resource consumptions of all other routes r′ ∈
S \ {r1, r2}. Note that the BS neighborhood here also allows moving the depot vertices (in the
middle) so that the route length of r1 and r2 can change.

Since all resource extensions are non-decreasing and resource consumptions are bounded
from above, we can apply standard ≤-dominance (Irnich, 2008a). Obviously, resource H and
R are obsolete in the GVRPTW, VRPRDL, VRPHRDL, and VRPMTW. However, due to a
possibly large number of shared delivery locations and priorities in the VRPDO, the dominance
relation can become rather weak in this variant.

We have conducted some preliminary experiments that have shown that the route-pairing
version is the most effective (note that it includes the single route optimization). Solving the
SPPRC for the giant route is excessively time-consuming, even on small instances and for small
BS parameters k ≥ 2. We therefore use the BS component only for all pairs of routes in the
following.

Acceleration Techniques. As speed is essential, we devise six different acceleration tech-
niques, two exact (they do not change the output of the labeling algorithm) and four heuristic
acceleration methods (they may hinder the labeling algorithm to compute an optimal solution
of the SPPRC).

On the exact side, we first use a bidirectional labeling algorithm (Righini and Salani, 2006).
Note that backward extension and merging of labels follows standard rules (Irnich, 2008a).

Second, when pairing routes, we solve an SPPRC on every pair of routes in the solution,
i.e., the routes will be used in several combinations. Therefore, some of the labels computed at
the beginning of the forward and backward labeling are identical for pairs that share a common
route and must be computed only once.

On the heuristic side, we first restrict the labeling to a limited discrepancy search (Feillet
et al., 2007). Therein, we limit the number of customers that can change their delivery option.
The consequence is that all customer requests can still be permuted but only a limited number
of the currently used options can be replaced by an alternative option of the respective request.
In our experiments, we limit the number of customers that can change their delivery option
to 3.

Second, we use a heuristic bounding strategy that discards labels if their cost is larger than
some threshold value. The threshold value is computed as the difference between the best
known cost and the sum of the best individual service cost of each non-served customer. For
each solution computed in the course of the MathHeu, we compute a customer-specific service
cost of each customer and update the best one if necessary: If a customer is served in an
individual delivery location, its customer-specific service cost is the mean of the costs of the
ingoing and outgoing arcs used to access it. If a customer is served in a shared delivery location,

11

the cost of the ingoing and outgoing arcs is divided by two times the number of customers served
at this location by this route.

Third, a significant number of the resources of a label is dedicated to the capacity consump-
tion of shared delivery locations which results in a relatively weak dominance. To strengthen
the dominance, we ignore some of the shared delivery locations in the dominance test. To de-
cide which shared delivery locations are ignored, the cost of the best solution that completely
utilizes the capacity of a location is recorded in the LNS. We ignore those locations used only
in solutions with a cost that is more than 10 % higher than the cost of the current best-found
solution.

Fourth and finally, routes are sequences of options and multiple options taking place at the
same shared delivery location can be exchanged without changing the cost of the solution. We
break these symmetries by maintaining the order of the currently chosen options of the same
shared delivery locations.

3.3 Set-Partitioning Component

The set-partitioning formulation for vehicle routing and scheduling problems has a long tradition
(Foster and Ryan, 1976). It is nowadays widely used in column-generation approaches for many
types of problems (Toth and Vigo, 2014). The extended model presented in the following was
developed in (Dumez et al., 2020) and (Tilk et al., 2020).

Let R be a set of feasible routes, e.g., the pool P in Algorithm 1. For each route r ∈ R and
each option o ∈ O, the binary parameter αor takes value 1 if the option o ∈ O is served by the
route r ∈ R, and 0 otherwise. The model uses binary variables λr for r ∈ R that indicate if
route r is used in the solution:

min
∑
r∈R

crλr (2a)

subject to
∑
r∈R

∑
o∈ON

n

αorλr = 1 ∀n ∈ N (2b)

∑
r∈R

∑
o∈OL

`

αorλr 6 C` ∀` ∈ Lm (2c)

∑
r∈R

∑
o∈O:po>p

αorλr 6 (1− βp)|N | ∀p ∈ P \ {p̄} (2d)

∑
r∈R

λr 6 K (2e)

λr ∈ {0, 1} ∀r ∈ R (2f)

The objective (2a) minimizes the total cost of the solution, i.e., the sum of the cost of the routes
used. The set-partitioning constraints (2b) state that each customer must be served exactly
once. The capacity constraints for shared locations are given by (2c) and the service-level
constraints by (2d). The fleet-size constraint (2e) sets the upper bound K on the number of
routes used in the solution. Finally, the variable domains are given in (2f).

For solving the model with a MIP solver, it is known that typically set-covering formulations
have shorter computation times than the respective set-partitioning formulations (see, e.g.,
Yıldırım and Çatay, 2015). If the travel times and costs fulfill the triangle inequality (always
true for the benchmarks of Section 4), the partitioning constraints can be replaced by covering
constraints, i.e., ≥ 1 instead of = 1 in (2b). In a set-covering solution, more than one option may
be used to serve a customer. A simple greedy procedure can quickly repair and improve solutions

12

which overcover some customers. Note that the repaired solutions automatically respect the
location-capacity and service-level constraints.

To further reduce the solution times, we extend the formulation by introducing binary
variables yo that indicate if option o ∈ O is selected. The new y variables are coupled with the
route variables via ∑

r∈R
αorλr = yo ∀o ∈ O. (2g)

We prioritize branching on these variables in the MIP solver.

4 Computational Experiments

In this section, we report the results of computational experiments that were conducted
on GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and VRPDO benchmarks with the four
configurations of the matheuristic. The algorithms have been coded in C++ and com-
piled into 64-bit single-thread code with g++ 5.4.0. All experiments were performed using
Linux, Ubuntu 16.04 LTS, running on an Intel Xeon X5650 @ 2.57 GHz. We use IBM Ilog
CPLEX 12.8.0 (IBM, 2018) to solve the SPP and activate the options branch up first and
emphasis on hidden feasible solutions.

Section 4.1 summarizes the parameter values used in the experiments. A comparison with
algorithms from the literature on standard benchmark sets for the GVRPTW, VRPRDL, VR-
PHRDL, VRPMTW, and VRPDO is conducted in Sections 4.2 to 4.5, respectively. Finally, all
results are discussed together and a summary is given in Section 4.6.

4.1 LNS Parameters and Adaptive Layer

We briefly sketch the parameter settings of the LNS, even though, our focus is primarily on
the new matheuristic components. First, we do not dynamically adapt the probability of each
operator as suggested by Ropke and Pisinger (2006b). Indeed, Turkeš et al. (2019) reviewed the
LNS literature and conclude that this feature has, at best, a very little positive impact. Our pre-
liminary experiments confirm this observation for the GVRPTW variants and our matheuristic
configurations. Hence, the probability to choose an operator is constant and inversely pro-
portional to its average run time as proposed in Dumez et al. (2020). Destroy operators are
equiprobable. The two operators random order best insertion and largest first best insertion
have a probability of 40 %, while all other repair operators have a probability of 5 % to be cho-
sen. Moreover, we set the size of the small destruction interval to [δmin,∆min] = [0.01|N |, 0.1|N |]
and the size of the large destruction interval to [δbig,∆big] = [0.1|N |, 0.3|N |]. Our LNS always
works in two phases: In the first phase, it reduces the number of routes, and in the second
phase, it minimizes the routing cost using the established number of routes. The first phase is
either stopped when half of the time budget has been used, or sooner when a feasible solution
with the given number of routes has been found. The number of iterations between two big
destructions is set to ω = 10|N |1.5 (we refer to the paper of Dumez et al., 2020, for further
details on the LNS configuration).

In many applications, the strength of LNS relies on its speed. Pisinger and Ropke (2007)
report that their ALNS takes 146 seconds, on average, for performing 50,000 iterations on
the Solomon instances for the VRPTW with 100 customers. With the same time budget, on
the same instances, MathHeu performs 7.4 million iterations on average, i.e., approximately
150 times more iterations with a CPU that is only 1.91 times faster per thread according to
(PassMark-Software, 2020). This is possible thanks to the small and fast destroy moves.

13

Next, we determine a strategy for the adaptive layer of MathHeu. The question is when
and how to employ the exact components of Algorithm 1. We extend the procedure used in
Tellez et al. (2018) to solve the fleet size and mix dial-a-ride problem with reconfigurable vehicle
capacity with an LNS coupled with SPP: They initially solve the SPP every 1 000 iterations,
but, if the solver fails to prove optimality twice in a row the time between two calls is reduced
by a quarter. We use the size |P| of the route pool instead of the consumed time to decide when
the SPP component is invoked. More precisely, we solve formulation (2) with the MIP solver
when the pool of routes R contains at least max(100, 38000 − 180|N |) different routes. This
threshold size is increased by 60% if the solver has proven optimality twice in a row. Conversely,
it is reduced by the same factor if the solver has failed to prove optimality twice in a row.

Both exact components are only applied if the cost of the best-known solution has improved
by less than 1 % over the last 5ω iterations. Moreover, a good solution-quality-to-time com-
promise is a small value of k = 5. With this value the BS component is applied exclusively to
solutions that serve all customers and with a cost smaller than 1.01 times of the cost of the
best-known solution. The used parameter values come from preliminary experiments that were
satisfactory.

The results presented in the following sections provide the following information:
Instance(s): Name of the benchmark instance (group)

#: Number of instances in the group
|N |: Number of customer requests

#veh: Upper bound computed/set on the number of vehicle/the fleet size
Σveh: Sum of the number of vehicles computed
Cost: Overall cost of the best computed solution

ΣCost: same, summed over the group of instances
#Best: Number of instances for which an algorithm has found a best-known solution

4.2 Results for the GVRPTW

We compare all four configurations of MathHeu with the iterative tabu search (ITS) of Moccia
et al. (2012) on their benchmark containing instances with up to 120 customers. These instances
are named i-n-vmin-vmax where n is the number of customers, vmin the minimum, and vmax

the maximum number of options per customer.
Moccia et al. (2012) consider the single objective of routing-cost minimization. For a fair

comparison, we bound the number of available vehicles to the value computed in their work.
Moccia et al. (2012) performed their computational experiments on an Intel Core Duo @

1.83 GHz and limited their algorithm to 105 iterations taking a total computation time of 8,105
seconds. In our matheuristic, we allocate a quota for the computation time for each instance
according to the number of customers. In total, the MathHeu consume 524 seconds for all 20
benchmark instances. According to PassMark-Software (2020), on single thread benchmarks,
their processor is 2.18 times slower than ours. It means that, on average, the MathHeu is
configured to run approximately 7 times faster than the ITS.

The results are presented in Table 2. Note that it is not indicated in Moccia et al. (2012)
whether their results are the best results out of several runs. For the four MathHeu configuration,
the best solution out of five runs is taken into account. The best solution values are marked in
bold.

All four MathHeu configurations clearly outperform the results of the ITS. The most BKS are
found with MH and MH+SPP+BS. Regarding the routing cost, MH+SPP performs best and improves
the results of ITS by 0.42 %. Moreover, MH+SPP provides an equivalent or better solution than
ITS on 15 of the 20 instances. However, all four configurations of MathHeu perform rather

14

ITS Cost of MathHeu configurations

Instance #veh Cost MH MH+BS MH+SPP MH+SPP+BS

i-030-04-08 4 3 498 3 497 3 497 3 497 3 497
i-030-08-12 4 2 866 2 796 2 796 2 796 2 796
i-040-04-08 6 3 811 3 811 3 811 3 811 3 811
i-040-08-12 6 3 757 3 768 3 768 3 768 3 768
i-050-04-08 8 5 447 5 447 5 447 5 439 5 447
i-050-08-12 8 4 034 4 034 4 034 4 034 4 034
i-060-04-08 8 5 919 5 908 5 926 5 919 5 926
i-060-08-12 8 4 303 4 303 4 303 4 303 4 332
i-070-04-08 10 6 205 6 246 6 246 6 224 6 246
i-070-08-12 10 4 645 4 644 4 644 4 644 4 644
i-080-04-08 12 7 425 7 390 7 394 7 394 7 394
i-080-08-12 12 5 734 5 686 5 661 5 692 5 661
i-090-04-08 11 7 110 7 187 7 182 7 187 7 215
i-090-08-12 11 5 810 5 903 5 869 5 830 5 808
i-100-04-08 14 7 455 7 308 7 349 7 295 7 295
i-100-08-12 14 6 703 6 546 6 546 6 585 6 606
i-110-04-08 16 8 719 8 696 8 720 8 711 8 687
i-110-08-12 16 6 281 6 249 6 487 6 338 6 310
i-120-04-08 15 8 512 8 344 8 357 8 344 8 344
i-120-08-12 15 6 833 6 829 6 829 6 774 6 774

Sum 115 069 114 592 114 866 114 585 114 595
#Best 6 11 8 10 11

Table 2: Results for the GVRPTW benchmark of Moccia et al. (2012).

similarly on the GVRPTW benchmark while the ITS perform worse. In total, we provide 14
new best-known solutions. Detailed instance-by-instance results can be found in Appendix A.

4.3 Results for the VRPRDL and VRPHRDL

We next compare the four MathHeu configurations with the exact branch-price-and-cut (BPC)
algorithm of Tilk et al. (2020) on a benchmark set originally proposed by (Reyes et al., 2017).
As suggested by Ozbaygin et al. (2017), the instances should be modified such that the triangle
inequality for travel cost and travel times holds. The modified benchmark that we also use
consists of 120 randomly generated instances with a size ranging from 15 to 120 delivery requests,
with a maximum of 6 options per request. The benchmark set is divided into 60 VRPRDL and
60 VRPHRDL instances.

Note that we cannot fairly compare with the variable neighborhood search of Reyes et al.
(2017), because we only have access to the modified instances provided by Ozbaygin et al..
Since the BPC of Tilk et al. minimizes routing costs (as typically done in studies of exact
algorithms), we only focus on routing-cost minimization. To this end, we bound the number of
vehicles by the number of routes given in their solutions.

The time budget for the four configurations of the MathHeu is now set to 60 seconds for
instances with up to 60 customers, and 300 seconds for the 120-customer instances. This is
again a rather small computation time compared to the 2 hour and 6 hour time limit used in
(Tilk et al., 2020).

Aggregated results for the VRPRDL are shown in Table 3 and for the VRPHRDL in Table 4.
Each line refers to a group of instances with identical number |N | of customers. The BPC

15

BPC ΣCost of MathHeu configurations

Instances # |N | Σveh ΣCost MH MH+BS MH+SPP MH+SPP+BS

1–5 5 15 24 6 072 6 072 6 072 6 072 6 072
6–10 5 20 27 6 848 6 848 6 848 6 848 6 848
11–20 10 30 68 18 595 18 595 18 595 18 595 18 595
21–30 10 60 129 37 213 37 213 37 213 37 213 37 213
31–40 10 120 189 53 738 53 759 53 876 53 738 53 761
41–50 v1 10 40 94 29 838 29 838 29 842 29 838 29 838
41–50 v2 10 40 74 21 863 21 863 21 863 21 863 21 863

Sum 60 605 174 167 174 188 174 309 174 167 174 190
#Best 60 59 55 60 59

Table 3: Results for the VRPRDL benchmark of Ozbaygin et al. (2017)

BPC ΣCost of MathHeu configurations

Instances # |N | Σveh ΣCost MH MH+BS MH+SPP MH+SPP+BS

1–5 5 15 19 5 450 5 450 5 450 5 450 5 450
6–10 5 20 20 5 604 5 604 5 604 5 604 5 604
11–20 10 30 52 15 128 15 128 15 128 15 128 15 128
21–30 10 60 83 26 800 26 800 26 800 26 800 26 800
31–40 10 120 128 38 107‡ 37 263 37 349 37 234 37 232
41–50 v1 10 40 87 27 996 27 996 27 996 27 996 27 996
41–50 v2 10 40 67 20 958 20 958 20 962 20 962 21 029

Sum 60 456 140.043 139.199 139.289 139.174 139.239
#Best 53 57 54 58 56

Table 4: Results for the VRPHRDL benchmark of Ozbaygin et al. (2017)

16

algorithm solves all 60 instances for the VRPRDL and 53 of 60 instances for the VRPHRDL
benchmark set to proven optimality. The entry marked with ‡ indicates that best-known solution
values have been used here, because optimality could not be proven by the BPC algorithm for
seven instances in this group. Again, the best solution values are marked in bold.

Comparing the four matheuristic configurations, MH+SPP performs best on both problem
variants. For the VRPRDL, all optimal solutions could be found, while for the three other
configurations the results are between 0.01 % and 0.04 % worse than the optimal solutions.
Regarding the VRPHRDL, the four configurations improve the cost over the solutions provided
in Tilk et al. (2020). MH+SPP contributes with the largest improvement (0.6 %). Moreover, seven
new best-known solutions have been computed. Detailed results can be found in Appendix B.

4.4 Results for the VRPMTW

We compare the MathHeu configurations with the ALNS of Larsen and Pacino (2019) on the
adapted Solomon benchmark instances for the VRPMTW provided by Belhaiza et al. (2014).
The algorithm of Belhaiza et al. minimizes the sum of the total routing cost and cost of the
used vehicles. Since vehicle costs are fairly large, we run Algorithm 1 twice, first to minimize the
number of vehicles (which is then bounded), and second to minimize the routing cost, similar
to Ropke and Pisinger (2006a). The first phase tries to decrease the number of vehicles by
removing the smallest route from the solution each time a feasible solution is found.

We report the best solution found out of 10 runs with an overall time budget of 600 seconds
for both phases per instance. Larsen and Pacino (2019) used the same time limit and number
of runs. Moreover, they performed their computational experiments on an Intel Core i7-4790K
@ 4.00GHz, which is 2.02 times faster than our processor (see PassMark-Software, 2020).

MathHeu configurations

ALNS MH MH+BS MH+SPP MH+SPP+BS

Group # Σveh ΣCost Σveh ΣCost Σveh ΣCost Σveh ΣCost Σveh ΣCost

rm 1 8 73 21 831.5 73 21 849.0 73 21 830.8 73 21 817.6 73 21 825.3
rm 2 8 16 21 477.3 16 21 489.3 16 21 486.8 16 21 500.4 16 21 499.3
cm 1 8 86 25 821.1 84 25 754.3 83 25 750.5 83 25 609.3 83 25 550.6
cm 2 8 37 33 249.9 37 33 265.4 37 33 319.6 37 33 279.0 37 33 245.0
rcm 1 8 82 25 747.4 82 25 805.2 82 25 815.7 82 25 801.7 82 25 806.3
rcm 2 8 16 21 854.0 16 21 865.0 16 21 881.1 16 21 881.1 16 21 878.4

Sum 48 310 149 981.2 308 150 028.1 307 150 084.6 307 149 889.1 307 149 804.9
#Best 18 17 16 20 24

Table 5: Results for the VRPMTW benchmark of Belhaiza et al. (2014).

Table 5 shows aggregated results for the six groups of instances (R=random, C=clustered,
or RC=partly random, partly clustered; series 1 and 2 with tight and wide time windows, re-
spectively). Detailed results per instance are presented in Appendix C.

Comparing all five algorithms, the ALNS produces solutions with more vehicles than our
MathHeu configurations, which is caused by the different performance in the group CM 1. Re-
garding the overall-cost objective, results over all five algorithms are rather similar (total differ-
ences are below 0.2 %). MH+SPP+BS performs best, it improves the results of the ALNS by 0.11 %
and provides the most best-known solutions. Over the 48 instances, 23 new best solutions are
found by (at least) one of the four MathHeu configurations.

17

4.5 Results for the VRPDO

For the VRPDO, we test the MathHeu configurations on the instances proposed by Dumez et al.
(2020). The required service levels are given by β1 = 80 % and β2 = 90 %. The time budget is
set to 300 seconds for 100-customer instances and 2 000 seconds for 200-customer instances.

We rerun the LNS of Dumez et al. (2020) on all instances with the new time limit. The tests
were performed on the same computer.

Recall that the VRPDO has a hierarchical objective. Thus, similar to Ropke and Pisinger
(2006a), Algorithm 1 is run twice, first to minimize the number of vehicles (which is then
bounded), and second to minimize the routing cost. The first phase systematically removes the
smallest route from the current solution each time a feasible solution is found.

Table 6 presents the aggregated results. Each line refers to a group of instances with identical
number of customers and options. Detailed results can be found in Appendix D.

MathHeu configurations

LNS MH MH+BS MH+SPP MH+SPP+BS

Group # Σveh ΣCost Σveh ΣCost Σveh ΣCost Σveh ΣCost Σveh ΣCost

U100 10 105 6 489.95 105 6 558.55 105 6 612.34 105 6 528.21 105 6 548.26
U200 10 205 13 421.93 205 11 959.32 205 11 983.34 205 11 768.85 205 11 786.57
V100 10 104 7 031.37 104 7 078.08 104 7 070.62 104 7 026.62 104 7 052.34
V200 10 204 15 089.31 204 13 716.05 204 13 725.32 203 13 741.99 204 13 540.19
UBC100 10 40 3 624.20 40 3 593.88 40 3 657.44 40 3 599.04 40 3 612.59
UBC200 10 80 6 338.74 80 6 062.81 80 6 227.54 80 6 072.03 80 6 232.32

Sum 60 738 51 995.49 738 48 968.69 738 49 276.59 737 48 736.75 738 48 772.27
#Best 10 12 6 22 23

Table 6: Results for the VRPDO benchmark of Dumez et al. (2020)

Overall, the four MathHeu configurations clearly outperform the LNS that is also equipped
with a SPP component which is only controlled with a much simpler manner compared to
the new adaptive layer, see Section 4.1. Among the MathHeu configurations, MH+SPP produces
the best results with 737 routes and the smallest routing costs. Indeed, MH+SPP is the only
configuration that is able to find a solution with 20 vehicles on instance V 200 3. For all other
instances the minimum number of vehicles is identical over all configurations. MH+SPP improves
the results compared to LNS by 6.3 % on average. It finds the best-known solution on 22 of the
60 instances.

Configuration MH+SPP+BS performs very similar to MH+SPP. It finds one more best-known
solution and the solution quality is less than 0.1 % worse. Moreover, the detailed results of
Appendix D show that configuration MH+SPP+BS exclusively finds new best solutions for 14 in-
stances. Overall, the four MathHeu configurations together provide 41 new best-known solutions.

4.6 Summary

To summarize the results for the four GVRPTW variants, we group all instances according to
different criteria to further assess the performance of the matheuristic configurations. To this
end, we report the gap to the best-known solution and the number of best-known solutions
found. Formally, the gap (in percent) is computed as 100 · (UB −BKS)/BKS, where BKS is
the best-known solution value from the literature and UB is the best solution value found by
the respective algorithm.

For the VRPDO, we consider only instances for which all four configurations achieve a solu-
tion with the same number of vehicles. As a consequence, the instance V 200 3 is disregarded.

18

We group the instances according to the VRP variant, the number of customers per route in
the BKS, and the number of options per customer.

Table 7 shows aggregated results regarding the performance per group: The first column
indicates the category used for grouping the instances, the second column gives the value defining
the group, and the third column shows the number of instances in that group. The next four
columns report the average gap and the last four columns report the number of best-known
solutions found. In each line, the smallest average gap and the largest number of BKSs found
are highlighted in bold. Regarding the different problem variants, all configurations except

Results grouped by # % Gap # BKS

MH MH+BS MH+SPP MH+SPP+BS MH MH+BS MH+SPP MH+SPP+BS

Variant

GVRPTW 20 0.27 0.47 0.25 0.27 11 8 10 11
VRPRDL 60 0.01 0.04 0.00 0.01 59 55 60 59
VRPHRDL 60 0.04 0.08 0.03 0.08 57 54 58 56
VRPMTW 48 0.32 0.35 0.23 0.18 17 16 20 24
VRPDO 59 1.28 2.24 0.73 1.31 12 6 22 23

Customers
per Route

[0.6[77 0.00 0.03 0.00 0.00 77 75 77 77
[6,10) 83 0.37 0.45 0.21 0.20 50 43 56 59
[10,20) 44 1.06 1.31 0.41 0.55 11 11 24 23
[20,∞) 43 0.50 1.60 0.61 1.30 18 10 12 14

Options per
Customer

[1,2) 32 0.95 0.95 0.46 0.44 4 9 11 14
[2,3) 52 0.96 2.08 0.65 1.30 19 9 21 22
[3,4) 97 0.04 0.09 0.03 0.02 90 83 91 91
[4,∞) 66 0.22 0.28 0.14 0.19 43 38 46 46

Total 247 0.40 0.67 0.25 0.39 156 139 169 173

Table 7: Performance of the four matheuristic configurations

MH+BS perform rather similarly on the instances for the GVRPTW, VRPRDL, and VRPHRDL.
For VRPMTW instances, MH+SPP+BS is clearly the best configuration, and for the VRPDO
instances, MH+SPP is the best. In particular, regarding ‘# BKS’, the two configurations with
the SPP component outperform their counterparts without SPP component on the VRPMTW
and VRPDO.

The rather bad performance of the BS component on VRPDO instances can be attributed to
the additional synchronizations constraints only present in this variant. These constraints imply
that a larger set of resources has to be taken into account in the label-setting algorithm. As a
result, the practical difficulty of the SPPRC increases substantially, making the BS component
too time-consuming relative to the improvements obtained with BS.

When instances are grouped according to route length, we can clearly see that the two exact
components (i.e., MH+SPP+BS) are beneficial for the route lengths between 6 and 20 customers.
There is nearly no difference between configurations for routes with 6 or less customers, while
the exact components worsen the results for more than 20 customers.

When grouped according to the number of options per request, it seems that gaps decrease
when the number of options per customer rises. However, this trend is not clear cut. Other
instance characteristics seem to be more important.

Summarizing, configuration MH+BS performs worst, while both configurations MH+SPP and
MH+SPP+BS are very competitive. The former produces the best gaps, while the latter provides
the most BKS. Both configurations are also complementing each other well, because the overlap
between the 169 and 173 BKS (see last two columns of Table 7) is only 145 instances. We can
also conclude that the BS component is only beneficial in combination with the SPP component.

19

5 Conclusions

The GVRPTW is the archetypal problem in vehicle routing that combines time window con-
straints and delivery options. It exists in several variants under different names, sometimes
focussing on particular aspects (VRPRDL, VRPMTW). We consider additional inter-route re-
source constraints giving rise to the so-called vehicle routing problem with delivery options
(VRPDO), which captures two very important practical side constraints that can be found in
last-mile delivery, e.g., in postal and package delivery applications. On the one hand, cus-
tomers value the delivery options (home delivery, delivery to a locker or shop etc.) differently so
that service-level constraints become relevant. On the other hand, delivery options of different
customers may share limited capacities, e.g., restricted space for storage in lockers and shops
from where customers retrieve their packages. The VRPDO adds these constraints to the basic
GVRPTW.

In this paper, we presented a new LNS-based matheuristic that can cope with GVRPTW
variants, in particular also with the most general and more involved VRPDO. The new
matheuristic has an adaptive layer that controls the size of the destroy operation and the
use of two (optional) exact components. The latter exact components allow an improvement
of solutions when the standard LNS process stalls. The first component utilizes a MIP solver
and SPP formulation that selects routes from a larger pool of potential routes. The second
component uses BS neighborhood that we adapt for the use in a multiple vehicle context with
capacity, time window, and inter-route constraints. Both components are, compared to a single
LNS iteration, very time-consuming. Hence, the adaptive layer very carefully controls how often
and when the exact components are invoked.

The primary focus of our research is the evaluation of the adaptive layer as well as the two
exact components. We compare four different configurations of the new matheuristic (MH, MH+BS,
MH+SPP, and MH+SPP+BS, i.e., with and without SPP and BS component) among each other and
against state-of-the-art algorithms for the GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and
VRPDO. The experiments are conducted on standard benchmarks for these problems and have
led to the following insights:
� A key success factor of the underlying LNS is the tremendous number of iterations that can

be performed thanks to the small destroy moves, while the search is diversified by larger
destroy moves if necessary. The way the adaptive layer selects small and fast or large destroy
moves already makes the new matheuristic superior to an older LNS (see Section 4.5).

� The two configurations with the SPP component outperform their counterparts without
SPP component regarding average gaps to best-known solutions (BKS) from the literature
and the number of BKS computed (Table 7).

� The configuration with the BS component alone (MH+BS) is inferior. In particular, for the
VRPDO, the presence of many inter-route constraints that must be handled within the BS
neighborhood exploration makes the BS component too time-consuming (see Section 4.5).
However, when combined with SPP the resulting configuration MH+SPP+BS is competitive.

� The practical difficulty of the VRPDO is well reflected in the results delivered by all
matheuristic configurations. Average gaps of 0.73 % for the VRPDO are much bigger than
gaps for the other GVRPTW variants which fall below 0.25 % (Table 7).

� Compared to state-of-the-art metaheuristics from the literature, the new matheuristic is
much faster (factor 7 for the GVRPTW; factor 2 for the VRPMTW, see Sections 4.2 and 4.4).

� For the VRPRDL (VRPHRDL), the comparison against a recent exact branch-price-and-cut
algorithm shows that configuration MH+SPP finds all (all except one) known optimal solutions
in a fraction of the computation time available for the exact algorithm. In addition, all
configurations together provide new best-known solutions for all instances that were not

20

solved to proven optimality by the branch-price-and-cut algorithm (Section 4.3).
� Overall, without manual problem-specific parameter tuning of the matheuristic, we provide

81 new best-known solutions for the GVRPTW, VRPHRDL, VRPMTW, and VRPDO.

Acknowledgement

This research was supported by the Agence Nationale de la Recherche (ANR) under grant ANR-
17-CE22-0015 and Deutsche Forschungsgemeinschaft (DFG) under grant IR 122/8-1. This
support is gratefully acknowledged.

References

Balas, E. (1999). New classes of efficiently solvable generalized traveling salesman problems.
Annals of Operations Research, 86, 529–558.

Balas, E. and Simonetti, N. (2001). Linear time dynamic-programming algorithms for new
classes of restricted TSPs: A computational study. INFORMS Journal on Computing, 13(1),
56–75.

Belhaiza, S., Hansen, P., and Laporte, G. (2014). A hybrid variable neighborhood tabu search
heuristic for the vehicle routing problem with multiple time windows. Computers & Opera-
tions Research, 52, 269–281.

Belhaiza, S., M’Hallah, R., and Brahim, G. B. (2017). A new hybrid genetic variable neighbor-
hood search heuristic for the vehicle routing problem with multiple time windows. In 2017
IEEE Congress on Evolutionary Computation (CEC), pages 1319–1326. IEEE.

Cattaruzza, D., Absi, N., Feillet, D., and González-Feliu, J. (2017). Vehicle routing problems
for city logistics. EURO Journal on Transportation and Logistics, 6(1), 51–79.

Christiaens, J. and Vanden Berghe, G. (2016). A fresh ruin and recreate implementation for
the capacitated vehicle routing problem. Technical report, KU Leuven, Ghent, Belgium.

Christiaens, J. and Vanden Berghe, G. (2019). Slack induction by string removals for vehicle
routing problems. Transportation Science, 54, 417–433.

Demir, E., Bektaş, T., and Laporte, G. (2012). An adaptive large neighborhood search heuristic
for the pollution-routing problem. European Journal of Operational Research, 223(2), 346–
359.

Desaulniers, G., Madsen, O. B. G., and Ropke, S. (2014). The vehicle routing problem with
time windows. In P. Toth and D. Vigo, editors, Vehicle Routing, chapter 5, pages 119–159.
Society for Industrial and Applied Mathematics, Philadelphia, PA.

Drexl, M. (2012). Synchronization in vehicle routing—a survey of VRPs with multiple synchro-
nization constraints. Transportation Science, 46(3), 297–316.

Dumez, D., Lehuédé, F., and Péton, O. (2020). A large neighborhood search approach to
the vehicle routing problem with delivery options. HAL archives ouvertes hal-02452252.
https://hal.archives-ouvertes.fr/hal-02452252.

Favaretto, D., Moretti, E., and Pellegrini, P. (2007). Ant colony system for a VRP with multiple
time windows and multiple visits. Journal of Interdisciplinary Mathematics, 10(2), 263–284.

21

https://hal.archives-ouvertes.fr/hal-02452252

Feillet, D., Gendreau, M., and Rousseau, L.-M. (2007). New refinements for the solution of
vehicle routing problems with branch and price. INFOR, 45(4), 239–256.

Foster, B. A. and Ryan, D. M. (1976). An integer programming approach to the vehicle schedul-
ing problem. Journal of the Operational Research Society, 27(2), 367–384.

Hemmelmayr, V. C., Cordeau, J.-F., and Crainic, T. G. (2012). An adaptive large neighborhood
search heuristic for two-echelon vehicle routing problems arising in city logistics. Computers
& Operations Research, 39(12), 3215–3228.

Hempsch, C. and Irnich, S. (2008). Vehicle routing problems with inter-tour resource constraints.
In B. L. Golden, R. Raghavan, and E. Wasil, editors, The Vehicle Routing Problem: Latest
Advances and New Challenges, pages 421–444. Springer Nature.

Hintsch, T. and Irnich, S. (2018). Large multiple neighborhood search for the clustered vehicle-
routing problem. European Journal of Operational Research, 270(1), 118–131.

Hoogeboom, M., Dullaert, W., Lai, D., and Vigo, D. (2020). Efficient neighborhood evaluations
for the vehicle routing problem with multiple time windows. Transportation Science, 54(2),
400–416.

IBM (2018). CPLEX. https://www.ibm.com/analytics/data-science/

prescriptive-analytics/cplex-optimizer.

Irnich, S. (2008a). Resource extension functions: properties, inversion, and generalization to
segments. OR Spectrum, 30(1), 113–148.

Irnich, S. (2008b). Solution of real-world postman problems. European Journal of Operational
Research, 190(1), 52–67.

Irnich, S. (2008c). A unified modeling and solution framework for vehicle routing and local
search-based metaheuristics. INFORMS Journal on Computing, 20(2), 270–287.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In
G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 33–65.
Springer-Verlag.

Larsen, R. and Pacino, D. (2019). Fast delta evaluation for the vehicle routing problem with
multiple time windows. arXiv preprint arXiv:1905.04114.

Lombard, A., Tamayo-Giraldo, S., and Fontane, F. (2018). Vehicle routing problem with roam-
ing delivery locations and stochastic travel times (VRPRDL-S). Transportation Research
Procedia, 30, 167–177.

Moccia, L., Cordeau, J.-F., and Laporte, G. (2012). An incremental tabu search heuristic for the
generalized vehicle routing problem with time windows. Journal of the Operational Research
Society, 63(2), 232–244.

Nagata, Y. and Bräysy, O. (2009). A powerful route minimization heuristic for the vehicle
routing problem with time windows. Operations Research Letters, 37(5), 333–338.

Ozbaygin, G., Karasan, O. E., Savelsbergh, M., and Yaman, H. (2017). A branch-and-price
algorithm for the vehicle routing problem with roaming delivery locations. Transportation
Research Part B: Methodological, 100, 115–137.

22

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

PassMark-Software (2020). CPU benchmarks. https://www.cpubenchmark.net.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers
& Operations Research, 34(8), 2403–2435.

Pisinger, D. and Ropke, S. (2019). Large neighborhood search. In Handbook of Metaheuristics,
pages 99–127. Springer.

Reyes, D., Savelsbergh, M., and Toriello, A. (2017). Vehicle routing with roaming delivery
locations. Transportation Research Part C: Emerging Technologies, 80, 71–91.

Righini, G. and Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Optimiza-
tion, 3(3), 255–273.

Ropke, S. and Pisinger, D. (2006a). An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40(4), 455–472.

Ropke, S. and Pisinger, D. (2006b). A unified heuristic for a large class of vehicle routing
problems with backhauls. European Journal of Operational Research, 171(3), 750–775.

Savelsbergh, M. W. P. (1985). Local search in routing problems with time windows. Annals of
Operations Research, 4(1), 285–305.

Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: Minimizing
route duration. ORSA Journal on Computing, 4(2), 146–154.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing
problems. In International conference on principles and practice of constraint programming,
pages 417–431. Springer.

Tellez, O., Vercraene, S., Lehuédé, F., Péton, O., and Monteiro, T. (2018). The fleet size and
mix dial-a-ride problem with reconfigurable vehicle capacity. Transportation Research Part C:
Emerging Technologies, 91, 99–123.

Tilk, C. and Irnich, S. (2016). Dynamic programming for the minimum tour duration problem.
Transportation Science, 51(2), 549–565.

Tilk, C., Olkis, K., and Irnich, S. (2020). The last-mile vehicle routing problem with delivery
options. Technical Report LM-2020-06, Chair of Logistics Management, Gutenberg School of
Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany.

Toffolo, T. A. M., Vidal, T., and Wauters, T. (2019). Heuristics for vehicle routing problems:
Sequence or set optimization? Computers & Operations Research, 105, 118–131.

Toth, P. and Vigo, D. (2014). Vehicle routing: problems, methods, and applications. SIAM.

Turkeš, R., Sörensen, K., Hvattum, L. M., Barrena, E., Chentli, H., Coelho, L., Dayarian, I.,
Grimault, A., Gullhav, A., Iris, Ç., Keskin, M., Kiefer, A., Lusby, R., Mauri, G., Monroy-
Licht, M., Parragh, S., Riquelme-Rodŕıguez, J.-P., Santini, A., Santos Vinicius, G. M., and
Thomas, C. (2019). Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in
adaptive large neighborhood search. Working paper d/2019/1169/002, University of Antwerp.

Yıldırım, U. M. and Çatay, B. (2015). An ant colony-based matheuristic approach for solving
a class of vehicle routing problems. In International Conference on Computational Logistics
(ILCL), pages 105–119. Springer.

23

https://www.cpubenchmark.net

A Detailed results for the GVRPTW instances

Instance MH MH+BS MH+SPP MH+SPP+BS Time [s]

Average Best of 5 Average Best of 5 Average Best of 5 Average Best of 5

#veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost

i-030-04-08 4 3 497.00 4 3 497 4 3 497.00 4 3 497 4 3 497.00 4 3 497 4 3 497.00 4 3 497 5
i-030-08-12 4.6 3 152.29 4 2 796 4.4 3 066.71 4 2 796 4.4 2 771.14 4 2 796 4.2 2 802.00 4 2 796 5
i-040-04-08 6 3 841.67 6 3 811 6 3 837.00 6 3 811 6 3 818.00 6 3 811 6 3 823.67 6 3 811 8
i-040-08-12 6.7 4 094.83 6 3 768 6.7 4 100.00 6 3 768 6.7 3 820.00 6 3 768 6.5 3 908.67 6 3 768 8
i-050-04-08 8 5 485.17 8 5 447 8 5 458.83 8 5 447 8 5 451.33 8 5 439 8 5 479.80 8 5 447 11
i-050-08-12 8 4 070.33 8 4 034 8 4 055.00 8 4 034 8 4 043.67 8 4 034 8 4 034.00 8 4 034 11
i-060-04-08 8 5 936.40 8 5 908 8 5 972.40 8 5 926 8 5 936.80 8 5 919 8 5 941.40 8 5 926 14
i-060-08-12 8 4 327.40 8 4 303 8 4 396.40 8 4 303 8 4 413.20 8 4 303 8 4 395.60 8 4 332 14
i-070-04-08 10 6 266.80 10 6 246 10 6 273.80 10 6 246 10 6 249.60 10 6 224 10 6 254.00 10 6 246 22
i-070-08-12 10 4 734.20 10 4 644 10 4 803.20 10 4 644 10 4 728.40 10 4 644 10 4 780.20 10 4 644 22
i-080-04-08 12 7 428.20 12 7 390 12 7 472.00 12 7 394 12 7 427.00 12 7 394 12 7 463.40 12 7 394 27
i-080-08-12 12 5 718.40 12 5 686 12 5 802.80 12 5 661 12 5 752.20 12 5 692 12 5 772.00 12 5 661 27
i-090-04-08 11.4 7 514.80 11 7 187 11.4 7 418.20 11 7 182 11.4 7 431.40 11 7 187 11.6 7 508.80 11 7 215 32
i-090-08-12 11 6 113.00 11 5 903 11 5 937.20 11 5 869 11 5 938.40 11 5 830 11 5 956.40 11 5 808 32
i-100-04-08 14 7 394.80 14 7 308 14 7 407.60 14 7 349 14 7 377.60 14 7 295 14 7 346.20 14 7 295 38
i-100-08-12 14 6 643.20 14 6 546 14 6 648.40 14 6 546 14 6 677.60 14 6 585 14 6 677.40 14 6 606 38
i-110-04-08 16 8 768.60 16 8 696 16 8 766.60 16 8 720 16 8 726.00 16 8 711 16 8 709.60 16 8 687 45
i-110-08-12 16 6 379.80 16 6 249 16 6 611.80 16 6 487 16 6 406.20 16 6 338 16 6 394.60 16 6 310 45
i-120-04-08 15 8 356.60 15 8 344 15 8 402.60 15 8 357 15 8 355.20 15 8 344 15 8 356.80 15 8 344 60
i-120-08-12 15 7 018.80 15 6 829 15 7 005.80 15 6 829 15 6 859.80 15 6 774 15 6 877.40 15 6 774 60

Total 209.6 116 742.29 208 114 592 209.5 116 933.35 208 114 866 209.5 115 680.54 208 114 585 209.3 115 978.93 208 114 595 524

Table 8: Detailed results for the GVRPTW instances

B Detailed results for the VRPRDL and VRPHRDL instances

Instance MH MH+BS MH+SPP MH+SPP+BS

Average Best of 5 Average Best of 5 Average Best of 5 Average Best of 5

#veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost

instance 0 4.0 901.0 4 901 4.0 901.0 4 901 4.0 901.0 4 901 4.0 901.0 4 901
instance 1 5.0 1 286.0 5 1 286 5.0 1 286.0 5 1 286 5.0 1 286.0 5 1 286 5.0 1 286.0 5 1 286
instance 2 4.0 991.0 4 991 4.0 991.0 4 991 4.0 991.0 4 991 4.0 991.0 4 991
instance 3 5.0 1 062.0 5 1 062 5.0 1 062.0 5 1 062 5.0 1 062.0 5 1 062 5.0 1 062.0 5 1 062
instance 4 6.0 1 832.0 6 1 832 6.0 1 832.0 6 1 832 6.0 1 832.0 6 1 832 6.0 1 832.0 6 1 832
instance 5 5.0 1 294.0 5 1 294 5.0 1 294.0 5 1 294 5.0 1 294.0 5 1 294 5.0 1 294.0 5 1 294
instance 6 4.0 1 155.0 4 1 155 4.0 1 155.0 4 1 155 4.0 1 155.0 4 1 155 4.0 1 155.0 4 1 155
instance 7 6.0 1 455.0 6 1 455 6.0 1 455.0 6 1 455 6.0 1 455.0 6 1 455 6.0 1 455.0 6 1 455
instance 8 5.0 1 260.0 5 1 260 5.0 1 260.0 5 1 260 5.0 1 260.0 5 1 260 5.0 1 260.0 5 1 260
instance 9 7.0 1 684.0 7 1 684 7.0 1 684.0 7 1 684 7.0 1 684.0 7 1 684 7.0 1 684.0 7 1 684
instance 10 7.0 1 922.0 7 1 922 7.0 1 922.0 7 1 922 7.0 1 922.0 7 1 922 7.0 1 922.0 7 1 922
instance 11 8.0 2 324.0 8 2 324 8.0 2 324.0 8 2 324 8.0 2 324.0 8 2 324 8.0 2 324.0 8 2 324
instance 12 6.0 1 747.0 6 1 747 6.0 1 747.0 6 1 747 6.0 1 747.0 6 1 747 6.0 1 747.0 6 1 747
instance 13 6.0 1 273.0 6 1 273 6.0 1 273.0 6 1 273 6.0 1 273.0 6 1 273 6.0 1 273.0 6 1 273
instance 14 6.0 1 694.0 6 1 694 6.0 1 694.0 6 1 694 6.0 1 694.0 6 1 694 6.0 1 694.0 6 1 694
instance 15 7.0 1 938.0 7 1 938 7.0 1 938.0 7 1 938 7.0 1 938.0 7 1 938 7.0 1 938.0 7 1 938
instance 16 8.0 1 965.0 8 1 965 8.0 1 965.0 8 1 965 8.0 1 965.0 8 1 965 8.0 1 965.0 8 1 965
instance 17 7.0 1 827.0 7 1 827 7.0 1 827.0 7 1 827 7.0 1 827.0 7 1 827 7.0 1 827.0 7 1 827
instance 18 7.0 2 083.0 7 2 083 7.0 2 083.0 7 2 083 7.0 2 083.0 7 2 083 7.0 2 083.0 7 2 083
instance 19 6.0 1 822.0 6 1 822 6.0 1 822.0 6 1 822 6.0 1 822.0 6 1 822 6.0 1 822.0 6 1 822
instance 20 13.0 3 761.0 13 3 761 13.0 3 761.0 13 3 761 13.0 3 761.0 13 3 761 13.0 3 761.0 13 3 761
instance 21 10.0 2 828.0 10 2 828 10.0 2 828.0 10 2 828 10.0 2 828.0 10 2 828 10.0 2 828.0 10 2 828
instance 22 16.0 4 440.0 16 4 440 16.0 4 440.0 16 4 440 16.0 4 440.0 16 4 440 16.0 4 440.0 16 4 440
instance 23 11.0 3 378.0 11 3 378 11.0 3 378.0 11 3 378 11.0 3 378.0 11 3 378 11.0 3 378.0 11 3 378
instance 24 11.0 3 161.0 11 3 161 11.0 3 162.5 11 3 161 11.0 3 161.4 11 3 161 11.0 3 161.0 11 3 161
instance 25 16.0 4 536.0 16 4 536 16.0 4 536.0 16 4 536 16.0 4 536.0 16 4 536 16.0 4 536.0 16 4 536
instance 26 10.0 2 865.0 10 2 865 10.0 2 865.0 10 2 865 10.0 2 865.0 10 2 865 10.0 2 865.0 10 2 865
instance 27 14.0 4 173.0 14 4 173 14.0 4 173.0 14 4 173 14.0 4 173.0 14 4 173 14.0 4 173.0 14 4 173
instance 28 14.0 3 964.0 14 3 964 14.0 3 964.0 14 3 964 14.0 3 964.0 14 3 964 14.0 3 964.0 14 3 964
instance 29 14.0 4 107.0 14 4 107 14.0 4 107.0 14 4 107 14.0 4 107.0 14 4 107 14.0 4 107.0 14 4 107
instance 30 17.0 4 935.0 17 4 935 17.0 4 935.0 17 4 935 17.0 4 935.0 17 4 935 17.0 4 935.0 17 4 935
instance 31 18.0 5 269.3 18 5 258 18.0 5 311.0 18 5 267 18.0 5 258.0 18 5 258 18.0 5 261.6 18 5 258
instance 32 18.0 5 061.0 18 5 061 18.0 5 061.6 18 5 061 18.0 5 061.0 18 5 061 18.0 5 061.0 18 5 061

instance 33 17.0 5 248.2 17 5 218 17.0 5 259.8 17 5 220 17.0 5 218.0 17 5 218 17.0 5 218.0 17 5 218
instance 34 20.0 5 521.0 20 5 498 20.0 5 525.2 20 5 498 20.0 5 511.8 20 5 498 20.0 5 529.5 20 5 521
instance 35 22.0 6 498.0 22 6 498 22.0 6 621.0 22 6 621 22.0 6 498.0 22 6 498 22.0 6 503.3 22 6 498
instance 36 17.0 4 850.5 17 4 830 17.0 4 856.3 17 4 830 17.0 4 833.3 17 4 830 17.0 4 832.5 17 4 830
instance 37 22.0 5 618.4 22 5 604 22.0 5 631.3 22 5 604 22.0 5 604.0 22 5 604 22.0 5 604.0 22 5 604
instance 38 21.0 5 842.0 21 5 841 21.0 5 863.8 21 5 841 21.0 5 841.0 21 5 841 21.0 5 845.8 21 5 841
instance 39 17.8 5 194.3 17 5 016 17.3 5 076.0 17 4 999 17.0 5 004.5 17 4 995 17.0 5 002.2 17 4 995
41 v1 10.0 3 203.0 10 3 203 10.0 3 211.2 10 3 203 10.0 3 203.0 10 3 203 10.0 3 211.2 10 3 203
42 v1 9.0 2 799.0 9 2 799 9.0 2 799.0 9 2 799 9.0 2 799.0 9 2 799 9.0 2 799.0 9 2 799
43 v1 8.0 2 604.6 8 2 603 8.0 2 607.0 8 2 607 8.0 2 606.0 8 2 603 8.0 2 605.4 8 2 603
44 v1 7.0 2 261.0 7 2 261 7.0 2 261.0 7 2 261 7.0 2 261.0 7 2 261 7.0 2 261.0 7 2 261
45 v1 10.0 3 217.0 10 3 217 10.0 3 217.0 10 3 217 10.0 3 217.0 10 3 217 10.0 3 217.0 10 3 217
46 v1 9.0 2 805.0 9 2 805 9.0 2 805.0 9 2 805 9.0 2 805.0 9 2 805 9.0 2 805.0 9 2 805
47 v1 10.0 3 339.0 10 3 339 10.0 3 339.0 10 3 339 10.0 3 339.0 10 3 339 10.0 3 339.0 10 3 339
48 v1 10.0 3 325.0 10 3 325 10.0 3 325.0 10 3 325 10.0 3 325.0 10 3 325 10.0 3 325.0 10 3 325
49 v1 11.0 3 534.0 11 3 534 11.0 3 534.0 11 3 534 11.0 3 534.0 11 3 534 11.0 3 534.0 11 3 534
50 v1 10.0 2 752.0 10 2 752 10.0 2 752.0 10 2 752 10.0 2 752.0 10 2 752 10.0 2 752.0 10 2 752
41 v2 7.0 2 133.0 7 2 133 7.0 2 133.4 7 2 133 7.0 2 133.0 7 2 133 7.0 2 133.0 7 2 133
42 v2 6.0 1 946.0 6 1 946 6.0 1 946.0 6 1 946 6.0 1 946.0 6 1 946 6.0 1 946.0 6 1 946
43 v2 8.0 1 966.0 8 1 966 8.0 1 966.0 8 1 966 8.0 1 966.0 8 1 966 8.0 1 966.0 8 1 966
44 v2 6.0 1 610.0 6 1 610 6.0 1 610.0 6 1 610 6.0 1 610.0 6 1 610 6.0 1 610.0 6 1 610
45 v2 8.0 2 478.0 8 2 478 8.0 2 478.0 8 2 478 8.0 2 478.0 8 2 478 8.0 2 478.0 8 2 478
46 v2 8.0 2 469.0 8 2 469 8.0 2 469.0 8 2 469 8.0 2 469.0 8 2 469 8.0 2 469.0 8 2 469
47 v2 7.0 1 946.0 7 1 946 7.0 1 946.0 7 1 946 7.0 1 946.0 7 1 946 7.0 1 946.0 7 1 946
48 v2 8.0 2 380.0 8 2 380 8.0 2 380.0 8 2 380 8.0 2 380.0 8 2 380 8.0 2 380.0 8 2 380
49 v2 8.0 2 492.0 8 2 492 8.0 2 492.5 8 2 492 8.0 2 492.0 8 2 492 8.0 2 492.0 8 2 492
50 v2 8.0 2 443.0 8 2 443 8.0 2 444.8 8 2 443 8.0 2 443.0 8 2 443 8.0 2 443.0 8 2 443

total 605.8 174 468.2 605 174 188 605.3 174 586.2 605 174 309 605.0 174 197.0 605 174 167 605.0 174 232.4 605 174 190

Table 9: Detailed results for the VRPRDL instances

26

Instance MH MH+BS MH+SPP MH+SPP+BS

Average Best of 5 Average Best of 5 Average Best of 5 Average Best of 5

#veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost

instance 0 3.0 773.0 3 773 3.0 773.0 3 773 3.0 773.0 3 773 3.0 773.0 3 773
instance 1 4.0 1 065.0 4 1 065 4.0 1 065.0 4 1 065 4.0 1 065.0 4 1 065 4.0 1 065.0 4 1 065
instance 2 3.0 988.0 3 988 3.0 988.0 3 988 3.0 988.0 3 988 3.0 988.0 3 988
instance 3 3.0 914.0 3 914 3.0 914.0 3 914 3.0 914.0 3 914 3.0 914.0 3 914
instance 4 6.0 1 710.0 6 1 710 6.0 1 710.0 6 1 710 6.0 1 710.0 6 1 710 6.0 1 710.0 6 1 710
instance 5 4.0 1 099.0 4 1 099 4.0 1 099.0 4 1 099 4.0 1 099.0 4 1 099 4.0 1 099.0 4 1 099
instance 6 3.0 996.0 3 996 3.0 996.0 3 996 3.0 996.0 3 996 3.0 996.0 3 996
instance 7 5.0 1 346.0 5 1 346 5.0 1 346.0 5 1 346 5.0 1 346.0 5 1 346 5.0 1 346.0 5 1 346
instance 8 4.0 997.0 4 997 4.0 997.0 4 997 4.0 997.0 4 997 4.0 997.0 4 997
instance 9 4.0 1 166.0 4 1 166 4.0 1 166.0 4 1 166 4.0 1 166.0 4 1 166 4.0 1 166.0 4 1 166
instance 10 5.0 1 595.8 5 1 587 5.0 1 595.8 5 1 587 5.0 1 595.8 5 1 587 5.0 1 595.6 5 1 587
instance 11 6.0 1 808.0 6 1 808 6.0 1 808.0 6 1 808 6.0 1 808.0 6 1 808 6.0 1 808.0 6 1 808
instance 12 6.0 1 563.0 6 1 563 6.0 1 563.0 6 1 563 6.0 1 563.0 6 1 563 6.0 1 563.0 6 1 563
instance 13 4.0 1 058.0 4 1 058 4.0 1 058.0 4 1 058 4.0 1 058.0 4 1 058 4.0 1 058.0 4 1 058
instance 14 5.0 1 347.0 5 1 347 5.0 1 347.0 5 1 347 5.0 1 347.0 5 1 347 5.0 1 347.0 5 1 347
instance 15 5.0 1 517.0 5 1 517 5.0 1 517.0 5 1 517 5.0 1 517.0 5 1 517 5.0 1 517.0 5 1 517
instance 16 5.0 1 445.0 5 1 445 5.0 1 445.0 5 1 445 5.0 1 445.0 5 1 445 5.0 1 445.0 5 1 445
instance 17 5.0 1 627.0 5 1 627 5.0 1 627.0 5 1 627 5.0 1 627.0 5 1 627 5.0 1 627.0 5 1 627
instance 18 5.0 1 461.0 5 1 461 5.0 1 461.0 5 1 461 5.0 1 461.0 5 1 461 5.0 1 461.0 5 1 461
instance 19 6.0 1 715.0 6 1 715 6.0 1 715.0 6 1 715 6.0 1 715.0 6 1 715 6.0 1 715.0 6 1 715
instance 20 8.0 2 597.6 8 2 580 8.0 2 585.6 8 2 580 8.0 2 580.0 8 2 580 8.0 2 580.0 8 2 580
instance 21 7.0 2 206.0 7 2 206 7.0 2 206.0 7 2 206 7.0 2 206.0 7 2 206 7.0 2 206.0 7 2 206
instance 22 10.0 3 363.0 10 3 363 10.0 3 363.0 10 3 363 10.0 3 363.0 10 3 363 10.0 3 363.0 10 3 363
instance 23 8.0 2 569.0 8 2 569 8.0 2 569.0 8 2 569 8.0 2 569.0 8 2 569 8.0 2 569.0 8 2 569
instance 24 8.0 2 383.6 8 2 378 8.0 2 383.0 8 2 378 8.0 2 380.8 8 2 378 8.0 2 389.2 8 2 378
instance 25 9.0 2 845.0 9 2 845 9.0 2 845.3 9 2 845 9.0 2 845.0 9 2 845 9.0 2 845.0 9 2 845
instance 26 8.0 2 518.0 8 2 518 8.0 2 518.3 8 2 518 8.0 2 518.0 8 2 518 8.0 2 518.0 8 2 518
instance 27 8.0 2 758.0 8 2 758 8.0 2 758.0 8 2 758 8.0 2 758.0 8 2 758 8.0 2 758.0 8 2 758
instance 28 9.0 2 892.0 9 2 892 9.0 2 892.0 9 2 892 9.0 2 892.0 9 2 892 9.0 2 892.0 9 2 892
instance 29 8.0 2 691.0 8 2 691 8.0 2 691.0 8 2 691 8.0 2 691.0 8 2 691 8.0 2 691.0 8 2 691
instance 30 12.0 3 666.0 12 3 666 12.0 3 765.2 12 3 666 12.0 3 666.0 12 3 666 12.0 3 726.0 12 3 666
instance 31 13.0 3 885.2 13 3 885 13.0 3 885.4 13 3 885 13.0 3 885.0 13 3 885 13.0 3 885.0 13 3 885
instance 32 13.0 3 554.2 13 3 543 13.0 3 588.2 13 3 543 13.0 3 543.2 13 3 543 13.0 3 557.0 13 3 543
instance 33 12.0 3 767.4 12 3 705 12.0 3 783.4 12 3 783 12.2 3 783.6 12 3 694 12.0 3 751.3 12 3 715
instance 34 11.0 3 184.0 11 3 184 11.0 3 184.8 11 3 184 11.0 3 184.0 11 3 184 11.0 3 174.8 11 3 138

27

instance 35 15.0 4 286.6 15 4 273 15.0 4 378.5 15 4 279 15.0 4 273.0 15 4 273 15.0 4 302.8 15 4 278
instance 36 10.0 3 225.0 10 3 217 10.5 3 369.8 10 3 217 10.0 3 217.3 10 3 217 10.0 3 217.3 10 3 217
instance 37 14.0 3 935.0 14 3 935 14.0 3 939.3 14 3 937 14.0 3 935.8 14 3 935 14.0 3 936.5 14 3 935
instance 38 15.0 4 300.0 15 4 300 15.0 4 335.3 15 4 300 15.0 4 300.0 15 4 300 15.0 4 300.0 15 4 300
instance 39 13.0 3 556.2 13 3 555 13.0 3 557.3 13 3 555 13.0 3 549.5 13 3 537 13.0 3 556.0 13 3 555
41 v1 8.0 2 662.0 8 2 662 8.0 2 662.0 8 2 662 8.0 2 662.0 8 2 662 8.0 2 662.0 8 2 662
42 v1 8.0 2 610.0 8 2 610 8.0 2 610.0 8 2 610 8.0 2 610.0 8 2 610 8.0 2 610.0 8 2 610
43 v1 7.0 2 260.0 7 2 260 7.0 2 260.0 7 2 260 7.0 2 260.0 7 2 260 7.0 2 260.0 7 2 260
44 v1 7.0 2 147.0 7 2 147 7.0 2 147.0 7 2 147 7.0 2 147.0 7 2 147 7.0 2 147.0 7 2 147
45 v1 10.0 3 172.0 10 3 172 10.0 3 172.0 10 3 172 10.0 3 172.0 10 3 172 10.0 3 172.0 10 3 172
46 v1 8.0 2 616.0 8 2 616 8.0 2 616.0 8 2 616 8.0 2 616.0 8 2 616 8.0 2 616.0 8 2 616
47 v1 9.0 3 010.0 9 3 010 9.0 3 010.0 9 3 010 9.0 3 010.0 9 3 010 9.0 3 010.0 9 3 010
48 v1 10.0 3 278.0 10 3 278 10.0 3 278.0 10 3 278 10.0 3 278.0 10 3 278 10.0 3 278.0 10 3 278
49 v1 11.0 3 514.0 11 3 514 11.0 3 514.0 11 3 514 11.0 3 514.0 11 3 514 11.0 3 514.0 11 3 514
50 v1 9.0 2 727.0 9 2 727 9.0 2 727.0 9 2 727 9.0 2 727.0 9 2 727 9.0 2 727.0 9 2 727
41 v2 6.6 2 070.0 6 1 998 6.6 2 109.2 6 1 998 6.2 2 019.0 6 1 998 6.8 2 096.2 6 2 069
42 v2 6.0 1 930.5 6 1 927 6.0 1 931.0 6 1 931 6.0 1 931.0 6 1 931 6.0 1 930.2 6 1 927
43 v2 6.0 1 830.0 6 1 830 6.0 1 830.0 6 1 830 6.0 1 830.0 6 1 830 6.0 1 830.0 6 1 830
44 v2 5.0 1 478.0 5 1 478 5.0 1 478.0 5 1 478 5.0 1 478.0 5 1 478 5.0 1 478.0 5 1 478
45 v2 8.0 2 466.0 8 2 466 8.0 2 466.0 8 2 466 8.0 2 466.0 8 2 466 8.0 2 466.0 8 2 466
46 v2 8.0 2 388.0 8 2 388 8.0 2 388.0 8 2 388 8.0 2 388.0 8 2 388 8.0 2 388.0 8 2 388
47 v2 6.0 1 848.0 6 1 848 6.0 1 854.4 6 1 848 6.0 1 854.4 6 1 848 6.0 1 860.8 6 1 848
48 v2 7.0 2 264.0 7 2 264 7.0 2 266.4 7 2 264 7.0 2 265.0 7 2 264 7.0 2 265.5 7 2 264
49 v2 8.0 2 457.0 8 2 457 8.0 2 457.0 8 2 457 8.0 2 457.0 8 2 457 8.0 2 457.0 8 2 457
50 v2 7.5 2 419.3 7 2 302 7.5 2 363.5 7 2 302 7.5 2 329.8 7 2 302 7.0 2 302.0 7 2 302

total 457.1 139 520.4 456 139 199 457.6 139 928.4 456 139 289 456.9 139 345.1 456 139 174 456.8 139 478.1 456 139 239

Table 10: Detailed results for the VRPHRDL instances

28

C Detailed results for the VRPMTW instances

Instance MH MH+BS MH+SPP MH+SPP+BS

Average Best of 5 Average Best of 5 Average Best of 5 Average Best of 5

#veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost

rm101 10.0 2 978.6 10 2 972.3 10.0 2 983.0 10 2 969.7 10.0 2 973.2 10 2 967.8 10.0 2 976.6 10 2 967.8
rm102 9.6 2 844.5 9 2 730.8 9.4 2 813.4 9 2 715.3 9.2 2 759.0 9 2 703.9 9.3 2 791.8 9 2 711.6
rm103 9.0 2 689.1 9 2 682.5 9.0 2 690.9 9 2 682.5 9.0 2 688.8 9 2 682.5 9.0 2 694.2 9 2 682.5
rm104 9.0 2 692.4 9 2 688.3 9.0 2 693.1 9 2 688.3 9.0 2 691.5 9 2 688.3 9.0 2 692.8 9 2 688.3
rm105 9.0 2 684.9 9 2 682.0 9.0 2 687.2 9 2 682.0 9.0 2 684.8 9 2 682.0 9.0 2 684.2 9 2 682.0
rm106 9.0 2 701.9 9 2 700.0 9.0 2 702.2 9 2 700.0 9.0 2 701.3 9 2 700.0 9.0 2 702.0 9 2 700.0
rm107 9.0 2 679.4 9 2 679.4 9.0 2 682.4 9 2 679.4 9.0 2 681.8 9 2 679.4 9.0 2 679.4 9 2 679.4
rm108 9.0 2 716.7 9 2 713.7 9.0 2 716.8 9 2 713.7 9.0 2 717.2 9 2 713.7 9.0 2 718.2 9 2 713.7
rm201 2.0 2 776.4 2 2 756.2 2.0 2 787.9 2 2 752.9 2.0 2 779.2 2 2 761.7 2.0 2 782.0 2 2 759.0
rm202 2.0 2 691.4 2 2 682.6 2.0 2 691.7 2 2 683.5 2.0 2 698.5 2 2 685.6 2.0 2 694.0 2 2 687.1
rm203 2.0 2 689.4 2 2 679.2 2.0 2 685.3 2 2 679.2 2.0 2 690.1 2 2 679.2 2.0 2 689.6 2 2 679.7
rm204 2.0 2 677.1 2 2 672.8 2.0 2 681.5 2 2 672.8 2.0 2 678.2 2 2 672.8 2.0 2 678.4 2 2 672.8
rm205 2.0 2 673.0 2 2 671.3 2.0 2 676.3 2 2 671.0 2.0 2 675.8 2 2 671.0 2.0 2 675.2 2 2 671.3
rm206 2.0 2 684.9 2 2 679.0 2.0 2 688.8 2 2 679.0 2.0 2 686.9 2 2 679.0 2.0 2 686.1 2 2 679.0
rm207 2.0 2 683.7 2 2 674.4 2.0 2 685.6 2 2 674.4 2.0 2 681.9 2 2 674.4 2.0 2 686.6 2 2 674.7
rm208 2.0 2 679.1 2 2 673.9 2.0 2 677.3 2 2 673.9 2.0 2 680.1 2 2 676.7 2.0 2 679.3 2 2 675.7
cm101 10.0 3 181.9 10 3 112.2 10.0 3 161.1 10 3 120.8 10.0 3 175.0 10 3 091.1 10.0 3 115.4 10 3 060.2
cm102 12.0 3 451.2 12 3 445.3 11.9 3 451.2 11 3 370.0 11.6 3 406.4 11 3 326.3 11.8 3 442.1 11 3 305.4
cm103 11.0 3 472.1 11 3 416.3 11.0 3 483.4 11 3 420.7 11.0 3 453.4 11 3 415.3 11.0 3 463.8 11 3 429.3
cm104 13.0 3 883.0 13 3 859.6 13.3 3 936.2 13 3 873.4 13.0 3 866.7 13 3 859.6 13.2 3 903.5 13 3 859.6
cm105 10.0 3 017.8 10 2 999.3 10.0 3 020.5 10 2 999.3 10.0 3 014.1 10 2 999.3 10.0 3 013.6 10 2 999.3
cm106 9.2 3 012.5 9 2 975.6 9.3 3 029.9 9 3 008.6 9.3 3 005.4 9 2 976.1 9.3 2 998.6 9 2 953.1
cm107 10.0 3 077.1 10 3 077.1 10.0 3 077.1 10 3 077.1 10.0 3 077.1 10 3 077.1 10.0 3 077.5 10 3 077.1
cm108 9.0 2 896.9 9 2 868.8 9.0 2 910.0 9 2 880.6 9.0 2 885.5 9 2 864.5 9.0 2 885.8 9 2 866.7
cm201 5.0 4 416.8 5 4 365.6 5.0 4 441.6 5 4 395.9 5.0 4 414.8 5 4 376.1 5.0 4 433.9 5 4 371.1
cm202 6.0 4 996.8 6 4 982.4 6.0 5 007.7 6 4 991.4 6.0 5 001.6 6 4 982.4 6.0 4 999.7 6 4 982.4
cm203 5.0 4 468.2 5 4 438.6 5.0 4 474.1 5 4 452.9 5.0 4 466.4 5 4 446.8 5.0 4 475.4 5 4 432.8
cm204 5.0 4 337.4 5 4 317.5 5.0 4 344.0 5 4 317.5 5.0 4 340.3 5 4 317.5 5.0 4 344.3 5 4 317.5
cm205 4.0 3 859.9 4 3 832.1 4.0 3 842.4 4 3 822.4 4.0 3 843.4 4 3 820.6 4.0 3 863.4 4 3 800.7
cm206 4.0 3 723.2 4 3 696.0 4.0 3 712.4 4 3 699.9 4.0 3 724.6 4 3 696.0 4.0 3 707.6 4 3 696.0
cm207 4.0 3 954.2 4 3 919.4 4.0 3 944.2 4 3 925.9 4.0 3 954.9 4 3 925.9 4.0 3 949.6 4 3 930.7
cm208 4.0 3 725.8 4 3 713.9 4.0 3 736.2 4 3 713.9 4.0 3 735.2 4 3 713.9 4.0 3 736.8 4 3 713.9
rcm101 10.0 3 076.8 10 3 074.0 10.0 3 080.8 10 3 074.0 10.0 3 079.4 10 3 074.0 10.0 3 077.8 10 3 074.0

rcm102 10.0 3 122.9 10 3 121.6 10.2 3 171.2 10 3 121.6 10.1 3 146.0 10 3 121.6 10.1 3 159.9 10 3 121.6
rcm103 10.0 3 129.0 10 3 120.9 10.0 3 125.4 10 3 120.9 10.0 3 130.5 10 3 120.9 10.0 3 129.5 10 3 120.9
rcm104 10.0 3 127.3 10 3 124.3 10.0 3 131.0 10 3 124.3 10.0 3 125.5 10 3 124.3 10.0 3 126.3 10 3 124.3
rcm105 10.0 3 167.8 10 3 165.4 10.0 3 169.5 10 3 165.4 10.0 3 166.8 10 3 165.4 10.0 3 169.9 10 3 165.4
rcm106 10.0 3 179.1 10 3 165.7 10.1 3 194.6 10 3 167.7 10.0 3 174.7 10 3 165.7 10.0 3 173.4 10 3 165.7
rcm107 11.0 3 495.3 11 3 490.8 11.0 3 495.9 11 3 496.4 11.0 3 493.8 11 3 490.8 11.0 3 496.1 11 3 495.4
rcm108 11.0 3 553.8 11 3 542.5 11.0 3 548.0 11 3 545.4 11.0 3 544.3 11 3 539.0 11.0 3 545.8 11 3 539.0
rcm201 2.0 2 757.1 2 2 716.5 2.0 2 749.5 2 2 735.8 2.0 2 754.9 2 2 698.3 2.0 2 750.6 2 2 727.4
rcm202 2.0 2 745.0 2 2 719.5 2.0 2 745.5 2 2 727.2 2.0 2 748.6 2 2 732.5 2.0 2 748.7 2 2 722.9
rcm203 2.0 2 729.9 2 2 704.8 2.0 2 725.1 2 2 704.8 2.0 2 744.8 2 2 710.7 2.0 2 733.9 2 2 704.8
rcm204 2.0 2 702.5 2 2 692.6 2.0 2 699.4 2 2 692.2 2.0 2 696.5 2 2 692.6 2.0 2 704.1 2 2 692.2
rcm205 2.0 2 721.6 2 2 711.6 2.0 2 726.3 2 2 718.9 2.0 2 737.1 2 2 723.6 2.0 2 729.3 2 2 718.8
rcm206 2.0 2 744.7 2 2 732.4 2.0 2 755.7 2 2 721.9 2.0 2 759.2 2 2 736.9 2.0 2 743.8 2 2 721.9
rcm207 2.9 3 659.3 2 2 865.0 2.8 3 555.1 2 2 857.6 2.9 3 659.4 2 2 863.7 2.8 3 559.4 2 2 867.9
rcm208 2.0 2 733.1 2 2 722.7 2.0 2 735.1 2 2 722.7 2.0 2 734.7 2 2 722.7 2.0 2 732.1 2 2 722.7

total 309.7 151 662.3 308 150 028.1 310.1 151 723.5 307 150 084.6 309.1 151 529.2 307 149 889.1 309.5 151 501.9 307 149 804.9

Table 11: Detailed results for the VRPMTW instances

30

D Detailed results for the VRPDO instances

Instance MH MH+BS MH+SPP MH+SPP+BS

Average Best of 5 Average Best of 5 Average Best of 5 Average Best of 5

#veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost

U 100 1 11 483.314 11 481.815 11 486.620 11 482.775 11 482.422 11 481.815 11 481.475 11 479.972
U 100 2 10 700.868 10 690.492 10 706.882 10 703.562 10 691.408 10 672.935 10 704.306 10 691.132
U 100 3 11 638.635 11 638.344 11 637.781 11 637.302 11 632.362 11 631.513 11 634.724 11 630.020
U 100 4 10 615.068 10 612.776 10 615.839 10 614.972 10 610.459 10 607.131 10 614.789 10 609.721
U 100 5 10 684.479 10 680.541 10 708.342 10 701.200 10 677.526 10 673.312 10 679.947 10 673.312
U 100 6 10 599.256 10 592.423 10 611.721 10 601.699 10 604.854 10 598.608 10 602.237 10 598.608
U 100 7 11 756.634 11 747.047 11 755.025 11 749.348 11 764.625 11 763.735 11 766.904 11 763.644
U 100 8 11 860.448 11 856.522 11 856.120 11 852.734 11 850.435 11 843.291 11 850.559 11 845.885
U 100 9 10 689.242 10 683.954 10 695.653 10 693.102 10 683.792 10 680.248 10 684.387 10 682.765
U 100 10 11 575.522 11 574.633 11 579.580 11 575.644 11 576.283 11 575.623 11 574.621 11 573.197
V 100 1 11 655.611 11 654.423 11 648.805 11 647.566 11 647.696 11 647.566 11 647.696 11 647.566
V 100 2 10 865.081 10 857.681 10 865.582 10 855.525 10 858.881 10 851.125 10 865.677 10 848.567
V 100 3 10 711.580 10 707.802 10 715.417 10 700.693 10 694.383 10 686.649 10 708.965 10 706.331
V 100 4 10 601.748 10 597.021 10 605.573 10 596.840 10 599.580 10 594.605 10 598.477 10 594.605
V 100 5 10 779.856 10 778.419 10 795.838 10 790.631 10 783.311 10 771.775 10 809.732 10 802.718
V 100 6 11 600.044 11 599.459 11 599.385 11 599.275 11 597.288 11 597.288 11 598.156 11 597.288
V 100 7 11 705.915 11 705.063 11 706.822 11 703.775 11 708.458 11 707.928 11 707.009 11 703.341
V 100 8 11 749.876 11 749.419 11 753.808 11 747.435 11 751.669 11 750.096 11 748.446 11 745.349
V 100 9 10 815.874 10 811.910 10 808.097 10 805.638 10 809.362 10 804.279 10 808.749 10 800.959
V 100 10 10 617.940 10 616.879 10 624.708 10 623.237 10 617.417 10 615.309 10 608.978 10 605.617
UBC 100 1 4 368.636 4 365.802 4 370.097 4 368.237 4 370.097 4 368.237 4 370.097 4 368.237
UBC 100 2 4 344.624 4 344.624 4 349.995 4 346.316 4 353.569 4 353.098 4 351.769 4 350.970
UBC 100 3 4 323.464 4 323.464 4 323.464 4 323.464 4 323.464 4 323.464 4 323.464 4 323.464
UBC 100 4 4 337.950 4 334.615 4 334.924 4 334.615 4 337.950 4 334.615 4 336.029 4 334.615
UBC 100 5 4 371.537 4 371.037 4 392.966 4 391.884 4 380.563 4 371.549 4 381.405 4 371.549
UBC 100 6 4 355.332 4 349.580 4 381.508 4 379.375 4 352.329 4 346.906 4 371.882 4 363.770
UBC 100 7 4 337.902 4 337.902 4 337.902 4 337.902 4 337.902 4 337.902 4 337.902 4 337.902
UBC 100 8 4 422.822 4 422.483 4 427.742 4 423.280 4 424.281 4 422.483 4 418.019 4 415.075
UBC 100 9 4 391.634 4 388.042 4 399.755 4 396.029 4 387.614 4 384.456 4 401.030 4 384.456
UBC 100 10 4 356.334 4 356.334 4 358.823 4 356.334 4 358.823 4 356.334 4 364.269 4 362.556

Total 249 17 317.224 249 17 230.506 249 17 454.774 249 17 340.389 249 17 268.802 249 17 153.875 249 17 351.697 249 17 213.191

Table 12: Detailed results for the VRPDO instances with 100 customers

Instance MH MH+BS MH+SPP MH+SPP+BS

Average Best of 5 Average Best of 5 Average Best of 5 Average Best of 5

#veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost #veh Cost

U 200 1 21 1 548.342 21 1 542.480 21 1 539.278 21 1 536.110 21 1 513.882 21 1 508.560 21 1 502.832 21 1 491.370
U 200 2 21 1 216.688 21 1 208.020 21 1 217.644 21 1 214.840 21 1 197.432 21 1 195.000 21 1 202.872 21 1 189.360
U 200 3 20 1 322.138 20 1 310.720 20 1 332.844 20 1 324.300 20 1 297.886 20 1 289.180 20 1 296.944 20 1 289.470
U 200 4 21 940.705 21 931.995 21 942.423 21 939.911 21 928.217 21 924.914 21 924.582 21 920.695
U 200 5 21 1 078.336 21 1 072.840 21 1 071.700 21 1 056.720 21 1 056.238 21 1 052.940 21 1 052.728 21 1 050.600
U 200 6 20 1 109.626 20 1 106.350 20 1 119.048 20 1 106.790 20 1 089.182 20 1 081.080 20 1 092.318 20 1 087.790
U 200 7 21 1 023.036 21 1 007.640 21 1 039.078 21 1 035.930 21 1 017.442 21 1 001.940 21 1 012.292 21 1 007.830
U 200 8 20 1 116.908 20 1 095.710 20 1 122.330 20 1 105.120 20 1 098.650 20 1 093.050 20 1 090.720 20 1 079.740
U 200 9 20 1 203.062 20 1 197.170 20 1 202.216 20 1 183.060 20 1 186.462 20 1 177.170 20 1 199.858 20 1 191.320
U 200 10 20 1 490.590 20 1 486.390 20 1 485.150 20 1 480.560 20 1 468.650 20 1 445.020 20 1 485.614 20 1 478.390
V 200 1 21 1 301.110 21 1 293.370 21 1 308.064 21 1 307.260 21 1 301.780 21 1 292.040 21 1 300.722 21 1 293.090
V 200 2 20 1 247.108 20 1 241.740 20 1 265.440 20 1 246.820 20 1 222.038 20 1 212.850 20 1 214.104 20 1 203.660
V 200 3 21 1 262.810 21 1 255.860 21 1 260.366 21 1 250.380 20.6 1 308.970 20 1 397.310 21 1 250.494 21 1 243.620
V 200 4 21 1 379.662 21 1 368.870 21 1 384.654 21 1 378.370 21 1 359.564 21 1 349.480 21 1 342.916 21 1 329.730
V 200 5 20 1 416.110 20 1 409.910 20 1 404.168 20 1 398.440 20.4 1 375.512 20 1 364.600 20 1 390.838 20 1 369.240
V 200 6 21 1 453.872 21 1 446.090 21 1 436.040 21 1 431.780 21 1 464.726 21 1 453.410 21 1 453.182 21 1 445.760
V 200 7 20 1 172.212 20 1 166.020 20 1 166.680 20 1 158.900 20 1 169.826 20 1 166.340 20 1 166.274 20 1 163.270
V 200 8 20 1 515.420 20 1 499.910 20 1 496.576 20 1 489.010 20 1 502.948 20 1 491.970 20 1 493.640 20 1 486.380
V 200 9 20 1 640.758 20 1 636.770 20 1 658.764 20 1 652.390 20 1 638.112 20 1 623.120 20 1 630.906 20 1 623.930
V 200 10 20 1 407.380 20 1 397.510 20 1 422.134 20 1 411.970 20 1 399.784 20 1 390.870 20 1 391.236 20 1 381.510
UBC 200 1 8 584.186 8 570.262 8 595.963 8 573.345 8 587.010 8 572.463 8 595.690 8 590.562
UBC 200 2 8 492.103 8 491.967 8 508.878 8 508.495 8 492.755 8 491.523 8 495.136 8 493.489
UBC 200 3 8 790.370 8 781.196 8 813.213 8 801.096 8 787.989 8 783.611 8 819.289 8 802.842
UBC 200 4 8 654.003 8 647.939 8 674.314 8 669.280 8 643.298 8 639.340 8 650.038 8 647.167
UBC 200 5 8 619.365 8 616.843 8 629.376 8 619.177 8 622.453 8 620.446 8 639.134 8 633.661
UBC 200 6 8 620.324 8 620.040 8 649.853 8 644.267 8 626.438 8 620.751 8 638.475 8 627.195
UBC 200 7 8 591.024 8 589.950 8 616.753 8 592.136 8 608.325 8 590.601 8 616.665 8 607.539
UBC 200 8 8 616.004 8 613.413 8 626.750 8 620.689 8 622.741 8 608.578 8 649.081 8 642.490
UBC 200 9 8 532.771 8 525.495 8 560.208 8 559.022 8 548.009 8 537.647 8 545.697 8 525.656
UBC 200 10 8 611.626 8 605.709 8 640.371 8 640.036 8 620.200 8 607.067 8 667.705 8 661.724

Total 489 31 957.649 489 31 738.179 489 32 190.275 489 31 936.204 489 31 756.519 488 31 582.871 489 31 811.982 489 31 559.080

Table 13: Detailed results for the VRPDO instances with 200 customers

32

	Introduction
	Problem Variants
	Vehicle Routing Problem with Delivery Options
	Generalized Vehicle Routing Problem with Time Windows
	Vehicle Routing Problem with (Home and) Roaming Delivery Locations
	Vehicle Routing Problem with Multiple Time Windows

	LNS-based Matheuristic with Exact Components
	Algorithm Outline
	Balas-Simonetti Component
	Set-Partitioning Component

	Computational Experiments
	LNS Parameters and Adaptive Layer
	Results for the GVRPTW
	Results for the VRPRDL and VRPHRDL
	Results for the VRPMTW
	Results for the VRPDO
	Summary

	Conclusions
	Detailed results for the GVRPTW instances
	Detailed results for the VRPRDL and VRPHRDL instances
	Detailed results for the VRPMTW instances
	Detailed results for the VRPDO instances

