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Delivery options are at the heart of the generalized vehicle routing problem with time windows (GVRPTW) allowing that customer requests are shipped to alternative delivery locations which can also have different time windows. Recently, the vehicle routing problem with delivery options was introduced into the scientific literature. It extends the GVRPTW by capacities of shared locations and by specifying service-level constraints defined by the customers' preferences for delivery options. The vehicle routing problem with delivery options also generalizes the vehicle routing problem with home roaming delivery locations and the vehicle routing problem with multiple time windows. For all these GVRPTW variants, we present a widely applicable matheuristic that relies on a large neighborhood search (LNS) employing several problemtailored destruction operators. Most of the time, the LNS performs relatively small and fast moves, but when the solution has not been improved for many iterations, a larger destruction move is applied to arrive in a different region of the search space. Moreover, an adaptive layer of the LNS embeds two exact components: First, a set-partitioning formulation is used to combine previously found routes to new solutions. Second, the Balas-Simonetti neighborhood is adapted to further improve already good solutions. These new components are in the focus of our work and we perform an exhaustive computational study to evaluate four configurations of the new matheuristic on several benchmark instances of the above-mentioned variants. On all the benchmark sets, our matheuristic is competitive with the previous state-of-the-art methods. Without manual problem-specific re-configurations of the matheuristic, we provide 81 new best-known solutions.

Introduction

Delivery options are at the heart of the well-known generalized vehicle routing problem with time windows (GVRPTW, [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF]. Delivery options allow customer requests to be shipped to alternative delivery locations which can also have different time windows. In this paper, we present and computationally evaluate a new matheuristic that can deal with several generalizations of the GVRPTW.

The most general of these is the vehicle routing problem with delivery options (VRPDO). The VRPDO has been first described in [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF][START_REF] Tilk | The last-mile vehicle routing problem with delivery options[END_REF] and captures one of the recent trends in last-mile package delivery related to the introduction of delivery options. [START_REF] Tilk | The last-mile vehicle routing problem with delivery options[END_REF] provide a more detailed introduction to the VRPDO in the context of parcel delivery and last-mile vehicle routing problems [START_REF] Cattaruzza | Vehicle routing problems for city logistics[END_REF]. In last-mile package delivery, a delivery option can be, e.g., the delivery to an individual home location, to the customer's car trunk when parking positions are known and communicated in advance, or to shared delivery locations such as apartment buildings, shops, and lockers. Motivated by the real-world characteristics of some delivery options, the VRPDO further extends the GVRPTW by service-level constraints defined by the customers' preferences for options and by location capacities that must be respected. For example, a customer may prefer home delivery over delivery to a nearby locker, and locker delivery over delivery to a nearby shop (preferences can depend on the time of the day). Moreover, lockers and also smaller shops certainly have only limited capacity to store parcels until they are finally picked up by customers. Such locationspecific capacities are, therefore, taken into account in the VRPDO.

The VRPDO also generalizes other problems such as the vehicle routing problem with roaming delivery locations (VRPRDL, [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF] in which options result from deliveries to a customer's car trunk, and the vehicle routing problem with multiple time windows (VRPMTW, [START_REF] Favaretto | Ant colony system for a VRP with multiple time windows and multiple visits[END_REF]) in which all options of a customer refer to the same physical location but have disjoint time windows.

The contribution of this work is the development of a powerful matheuristic that is sufficiently general to cope with all vehicle routing problem (VRP) variants mentioned above. The new matheuristic relies on a large neighborhood search (LNS) employing several destruction operators. Most of the time, the LNS performs fast and small moves, but when the solution has not been improved for many iterations, a larger destruction move is applied to arrive in a different region of the search space. The idea of mixing small and large moves within an LNS was introduced in the paper by [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF] where specific neighborhoods were introduced for the VRPDO. In the paper at hand, we improve the results of [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF] by a better control of large and small destructions. Moreover, the focus of our research is not on designing an LNS, but on an adaptive layer of the matheuristic that embeds two exact components: First, a set-partitioning problem (SPP) is solved from time to time to combine previously found routes into new solutions. Second, the Balas-Simonetti (BS, [START_REF] Balas | Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study[END_REF] neighborhood is adapted to further improve already good solutions. The BS neighborhood is an exponentially-sized neighborhood in which a best improving solution can be found by solving a shortest-path problem in a layered graph. The two components are optional, giving rise to four different configurations of the matheuristic.

The experimentation with the two exact components complementing the LNS follows the general trend towards hybridization and matheuristics for difficult VRP variants. For example, [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] embed a dynamic-programming component in a tabu search for the GVRPTW, [START_REF] Tellez | The fleet size and mix dial-a-ride problem with reconfigurable vehicle capacity[END_REF] solve a set-partitioning problem in an LNS for a rich dial-a-ride problem, and [START_REF] Toffolo | Heuristics for vehicle routing problems: Sequence or set optimization?[END_REF] use the BS neighborhood in a structural decomposition approach for the capacitated vehicle routing problem. Our idea behind the two exact components in the LNS is that delivery options require a 'global view' on the search space, because the usefulness of an option is observable only when it is combined with suitable other options. Thus, simple local modifications of a solution alone will typically not show the usefulness of an option. What is required is larger modifications that result from several simultaneous changes in the assignment of customer requests to routes, the selection of possible options, and the routing, i.e., sequence in which deliveries are performed. LNS by itself and also the two exact components pursue this ideas.

In an exhaustive computational study, we evaluate the four configurations of our matheuristic on several benchmark instances of the GVRPTW, VRPRDL, VRPMTW, and VRPDO. On all benchmark sets, at least one configuration of the matheuristic, often several, or even all configurations are competitive with the previous state-of-the-art methods. Without manual variant-specific parameter tuning of the matheuristic, we provide 81 new best-known solutions.

The remainder of this paper is organized as follows. Section 2 formally defines the GVRPTW variants. We describe the matheuristic with small and fast LNS moves and the two exact components, i.e., the SPP formulation and the BS neighborhood and its adaption to the GVRPTW variants, in Section 3. Section 4 presents the computational experiments and their results. Final conclusions are drawn in Section 5.

Problem Variants

In this section, we formally introduce the considered problem variants. We start with the VR-PDO, because it is the most general variant. Afterwards, GVRPTW, VRPRDL and VRPMTW are briefly described and it is explained how they can be modeled as special cases of the VRPDO.

Vehicle Routing Problem with Delivery Options

The VRPDO is the problem of selecting delivery options, exactly one for each customer, and determining a cost-minimal set of feasible routes that serve the selected delivery options while respecting location-capacity and service-level constraints.

Let N be the set of customers (=delivery requests), L be the set of locations, and P = {1, 2, . . . , p} be the priority levels. A delivery option is a triple composed of a customer, location, and priority level. Formally, let O ⊂ N × L × P be the set of delivery options. For an option o ∈ O, we write n o ∈ N for its customer/delivery request, o ∈ L for its location, and p o ∈ P for its priority level. The priority indicates how much the customer prefers this option, smaller numbers indicate higher customer satisfaction. Additionally, each option o has a service time s o .

A request n ∈ N is characterized by a demand q n , e.g., given by the number of parcels to deliver to that customer. The request can be served by choosing one of the options

O N n = {(n o , o , p o ) ∈ O : n o = n}.
With a location we model all activities that can take place at the same physical place. Accordingly, we define

O L = {(n o , o , p o ) ∈ O : o = }
as the set of options belonging to location ∈ L. An individual delivery location is one with a unique option, i.e., |O L | = 1. Otherwise, we denote a location as a shared delivery location. Let L m = { ∈ L : |O L | > 1} be the set of shared delivery locations. Shared locations ∈ L m have a limited capacity C in terms of the number of shipments that can be delivered there. Moreover, we assume that at all locations ∈ L have an associated time window [a , b ] that describes the time period in which deliveries can be performed.

A fleet of K homogeneous vehicles with capacity Q is housed at the depot location 0 ∈ L. For each pair of locations and ∈ L, the travel time t and the travel cost c are given. The travel time t also includes a preparation time, e.g., for parking a vehicle at before the actual delivery at can start.

Service-level constraints are modeled with numbers β p ∈ [0, 1] for p ∈ P . The value β p is the minimum percentage of options of service level not greater than p that must be chosen. For example, β 2 = 0.8 means that at least 80 % of the chosen options must have service level 1 or 2.

The capacities of the shared delivery locations and required service levels add synchronization constraints to the VRPDO, defined by [START_REF] Drexl | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF] as 'at any point in time, the total utilization or consumption of a specified resource by all vehicles must be less than or equal to a specified limit'. In the VRPDO, resource consumption is cumulative over the time horizon. Hence, they can also be interpreted as inter-tour resource constraints as defined in [START_REF] Hempsch | Vehicle routing problems with inter-tour resource constraints[END_REF].

A route r = (0, o 1 , . . . , o h , 0) is as sequence of options in which the artificial options o 0 = 0 and o h+1 = 0 represent the visit of the depot location 0 at the start and end of the route, respectively. The demand served by route r is q(r) = h j=1 q no j , so that r is capacity-feasible if q(r) ≤ Q holds. A route is time-window feasible if there exists a schedule (T 0 , T 1 , . . . , T h , T h+1 ) ∈ R h+2 which complies with the option service times, travel times, and time windows, i.e., if

T j-1 +t o j-1 , o j +s o j-1 ≤ T j for all 1 ≤ j ≤ h+1 (assuming s o 0 = 0) and [T j , T j +s o j ] ⊆ [a o j , b o j ]
for all 0 ≤ j ≤ h + 1. A route r is feasible if it fulfils both capacity and time-window constraints. The cost of a route is the sum of the travel cost between the consecutively visited locations, i.e., c r = h+1 j=1 c o j-1 , o j . A solution S to VRPDO is a set of feasible routes that selects exactly one option per customer. Let O(S) be the set of options selected in the solution S. Then, the requirement that S selects exactly one option per request translates into

|O(S) ∩ O N n | = 1 for all n ∈ N . The solution fulfills the location-capacity constraints if |O(S) ∩ O L | ≤ C for all ∈ L m . It fulfills the service-level constraints if |{o ∈ O(S) : p o ≤ p}| ≥ β p |N | ⇔ |{o ∈ O(S) : p o > p}| ≤ (1 -β p )|N | (1) 
for all p ∈ P . (Note that it suffices to test these conditions for p ∈ P \ {p}, because β p = 1 is inevitable.) A solution S is feasible if it fulfills both location-capacity and service-level constraints. The objective of the VRPDO is to first minimize the number of vehicles, and second to minimize the routing cost r∈S c r over all feasible solutions. Summarizing, the VRPDO is a GVRPTW with additional resources synchronization constraints [START_REF] Drexl | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]. Up to now, there are only two papers addressing the VRPDO: [START_REF] Tilk | The last-mile vehicle routing problem with delivery options[END_REF] solve the VRPDO exactly with a branch-price-and-cut algorithm and report provably optimal solutions for instances with up to 50 customers and 100 options. [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF] use an LNS matheuristic to solve the VRPDO heuristically and report solutions on instances with up to 200 customers and 400 options.

Generalized Vehicle Routing Problem with Time Windows

The GVRPTW [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] is a direct generalization of the vehicle routing problem with time windows (VRPTW, [START_REF] Savelsbergh | Local search in routing problems with time windows[END_REF][START_REF] Desaulniers | The vehicle routing problem with time windows[END_REF], in which customers has to be served at one of their alternative delivery locations respecting the corresponding time window. Each alternative delivery location defines a delivery option for the customer. Thus, the GVRPTW can be modeled and solved as a VRPDO without synchronized resources. To the best of our knowledge, [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] is the only article that deals with the heuristic solution of the GVRPTW. They propose an incremental tabu search using a dynamic-programming component that allows changing customers' locations when inserting a customer in a route. The tabu search provides solutions for instances with up to 120 customers in a few hundred seconds.

Vehicle Routing Problem with (Home and) Roaming Delivery Locations

The VRPRDL, introduced by [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF], specifically models the delivery to the trunk of cars. Customers must a priori specify where they are over the planning horizon, thereby defining different delivery options. The VRPRDL can be seen as a special case of the GVRPTW with non-overlapping time windows for the delivery options of each customer [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF].

The VRPHRDL is an extension of the VRPRDL with an additional so-called home option for each customer [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. This additional delivery option has a non-constraining time window, e.g., identical to the planning horizon. Both problems are special cases of the GVRPTW and can, therefore, be modeled and solved as VRPDO without synchronized resources. [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF] propose a variable neighborhood search to solve the VRPRDL. It embeds a dynamic-programming algorithm to optimize the travel distance of a given customer sequence. [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] develop a branch-and-price algorithm to solve the VRPRDL and VRPHRDL with up to 120 customers. [START_REF] Lombard | Vehicle routing problem with roaming delivery locations and stochastic travel times (VRPRDL-S)[END_REF] solve smaller instances of a stochastic VRPRDL.

Vehicle Routing Problem with Multiple Time Windows

The VRPMTW was introduced by [START_REF] Favaretto | Ant colony system for a VRP with multiple time windows and multiple visits[END_REF] as an extension of the VRPTW where each customer can have multiple time windows. If one considers each time window as a different option, the VRPMTW is a special case of the VRPDO. All delivery locations of a customer are at the same physical place. Options of two customers, however, always refer to different physical places.

The objective of the VRPMTW is either minimizing the travel distance or travel duration (total travel, service, and waiting time). In both cases, a fixed cost per route is included in the objective function fostering that the number of employed vehicles is kept small. [START_REF] Belhaiza | A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[END_REF] propose a hybrid variable neighborhood tabu search and a set of benchmark instances with 100 customers. A revised version of the approach was described in [START_REF] Belhaiza | A new hybrid genetic variable neighborhood search heuristic for the vehicle routing problem with multiple time windows[END_REF] as a hybrid genetic variable neighborhood search. [START_REF] Larsen | Fast delta evaluation for the vehicle routing problem with multiple time windows[END_REF] solve the VRPMTW with an adaptive LNS with a problem-tailored insertion procedure. They generalize the forward time slack procedure of [START_REF] Savelsbergh | Local search in routing problems with time windows[END_REF] to take into account all the time windows of the visited customers. Thus, the time windows used to visit the customers of a route can be changed to insert a new customer in this route. [START_REF] Hoogeboom | Efficient neighborhood evaluations for the vehicle routing problem with multiple time windows[END_REF] describe an adaptive variable neighborhood search relying on a generalization of the forward time slacks for the VRPMTW with duration-minimization objective.

LNS-based Matheuristic with Exact Components

In an LNS algorithm, the current solution is iteratively improved by removing a part of it (a.k.a. destroy, ruin) and reinserting the removed parts (a.k.a. repair, recreate). This process repeats until a stopping criterion is met, e.g., an iteration or time limit. LNS was first introduced by Shaw (1998) in a constraint programming context. The potential of solving a broad variety of VRPs with LNS was emphasized by Ropke and Pisinger (2006b,a); [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]. They proposed an adaptive version of LNS, known as ALNS, consisting of multiple destroy and repair operators adaptively selected according to their past performance. As surveyed in [START_REF] Pisinger | Large neighborhood search[END_REF], LNS has been successfully applied to many variants of the VRP.

As it is clearly beyond the scope of the paper at hand to survey LNS, we highlight two leading sources of inspiration for our matheuristic. First, [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF] developed a fast LNS based on small removals and fast greedy insertion heuristics as repair operators. Thanks to these two factors, their LNS can perform a very high number of iterations, which somehow compensates the lack of a local search in LNS. The LNS of Christiaens and Vanden Berghe proved competitive with state-of-the-art algorithms on many VRPs, including the fundamental and intensively-studied VRPTW.

Preliminary experiments on GVRPTW variants indicate that fast and small moves alone are not sufficient for finding excellent solutions for the VRP variants considered here. Additionally, some more global modifications are needed from time to time. Therefore, we follow an idea of [START_REF] Hemmelmayr | An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics[END_REF] who developed the following ALNS for the 2-echelon VRP: Mostly, their ALNS applies operators that modify only the second echelon. However, if the current solution is not improved for several iterations, a specific operator modifies the first echelon. Because of the structure of the 2-echelon VRP, such a first-echelon move strongly affects the resulting preconditions for the second echelon.

Both strategies can be transmitted to the GVRPTW case: the matheuristic mostly performs fast and small local moves and, when the solution has not been improved for some iterations, a larger destroy followed by one of the standard repair operators is applied.

In what follows, we describe the specific exact components of the new matheuristic relying on a mixed integer programming (MIP) solver and dynamic programming, respectively. The overall outline is first presented in Section 3.1. The Balas-Simonetti neighborhood and its adaption to the GVRPTW variants are described in Section 3.2. Finally, the set-partitioning formulation for all GVRPTW variants and the adaptive layer are detailed in Section 3.3.

Algorithm Outline

Recall that a solution has been defined as a set of feasible routes (see Section 2), where each route is represented as a sequence of options. Also in our matheuristic (MathHeu), a solution S comprises only feasible routes (w.r.t. vehicle-capacity and time-window constraints). Moreover, all options of all routes must refer to different customers, i.e., a packing solution. In addition, all feasible solutions fulfill the service-level requirements and the capacity constraints of the shared locations. However, as proposed by [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF], we allow partial solutions, i.e., solutions that do not serve all the customers in the course of the algorithm. As a consequence, we define the modified cost of a solution S as

f (S) = f (S) 1 + ζ |B(S)| |N |
where B(S) is the set of customer requests that are not served by solution S (often called the request bank). In our experiments, we use a static value ζ = 20. As the LNS for the VRPDO developed in [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF], our MathHeu is composed of two local and seven global destroy operators as well as six repair operators, all adapted from the literature. The operators are summarized in Table 1. Following the ideas of [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF], there is a probability of 0.3 to not remove a customer that should have been removed by the destroy operator. We called it the blink at the deletion. For all the operators, we are using their adaption to the GVRPTW variants as described in [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF]. All six repair operators (see Table 1) rely on constant-time feasibility checks when inserting a customer into a route. To this end, the utilization of each shared location and the current priority fulfillment of each priority level is seamlessly recorded. In addition, the load onboard of each vehicle is recorded and forward time slacks [START_REF] Savelsbergh | The vehicle routing problem with time windows: Minimizing route duration[END_REF]) are computed at each option in a route. As in [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF], the insertion of a request n between two visited options in a route is tested considering all its possible options O N n . Note that the focus of the paper at hand is not to further fine-tune the LNS for all GVRPTW components. Instead, the primary focus is on defining and analyzing the impact that the new adaptive layer and the two exact components have on the performance, i.e., solution quality and speed.

We can now present a synopsis of the new MathHeu for all GVRPTW variants in Algorithm 1. In this pseudo code, S is the current solution, S * is the best-found solution, and S is a copy of the current solution to be modified. Moreover, Σ + is the set of repair operators, Σ -the set of destroy operators, and Σ -| local ⊂ Σ -is the set of local destroy operators. Each operator has a given and fixed probability to be selected (see Section 4.1). The variable iter counts the number of iterations since the last new best solution was found or the last large destroy was performed. The pool of routes to be used in the SPP is denoted by P (see Section 3.3).

The algorithm is initialized by setting iter to zero and the pool P of routes is cleared (Line 1). The main loop of the MathHeu is given by the Lines 3 to 20. In each iteration, either a local or large destruction operator is selected depending on the value of iter and the input parameter ω: If iter < ω, the iteration counter is increased, the current solution is copied and a small destruction using a local destroy operator in σ -∈ Σ -| local with destruction size in [δ min , ∆ min ] is performed (Lines 4 to 5). Otherwise, the counter iter is reset, the best-found solution is copied and a large destruction is performed, i.e., the destroy operator is randomly selected in Σ -and the destruction size is chosen at random in [δ big , ∆ big ] (Lines 7 to 8). A repair operator is randomly selected in σ + ∈ Σ + (Line 9). Then, the combination of the selected operators, σ -and σ + , is applied to solution S in Line 10.

If the resulting solution serves all the customers and its cost is less than percent away from the cost of the best-found solution, the algorithm tries to improve S with the Balas-Simonetti component at Line 12 (see Section 3.2 for details). In Line 13, the routes of the newly generated solution are stored into the pool of routes. The new solution becomes the current solution in Algorithm 1: LNS-based Matheuristic (MathHeu) with two Exact Components Line 14 if its modified cost is smaller than the current or a large destruction was performed. In Line 16, the best-found solution may be updated and the counter iter is reset accordingly. Finally, when the pool of routes is big enough, the SPP is solved in Line 19 (details are provided in Section 3.3) and the pool is cleared afterwards.

input : operators Σ + , Σ -, Σ -| local , parameters [δ min , ∆ min ], [δ big , ∆ big ], ω, initial solution S output: best-found solution S * 1 P ← ∅, iter ← 0 2 while the time budget is not reached do 3 if iter < ω then 4 iter ← iter + 1, S ← S 5 randomly select a destroy operator σ -∈ Σ -| local , a destruction size Φ ∈ [δ min , ∆ min ] 6 else 7 iter ← 0, S ← S * 8 randomly select a destroy operator σ -∈ Σ -, a destruction size Φ ∈ [δ big , ∆ big ] 9 randomly select a repair operator σ + ∈ Σ + 10 S ← σ + (σ -(S , Φ)) 11 if f (S ) < (1 + )f (S *
In the following, we evaluate four configurations of the MathHeu:

MH: without any exact component (Lines 11-12 and 18-20 deactivated) MH+BS: with only the BS component activated (Lines 18-20 deactivated) MH+SPP: with only the SPP component activated (Lines 11-12 deactivated) MH+SPP+BS: with both exact components activated 3.2 Balas-Simonetti Component [START_REF] Balas | New classes of efficiently solvable generalized traveling salesman problems[END_REF] proposed and analyzed a family of large-scale neighborhoods for the asymmetric traveling salesman problem (ATSP) that can be searched efficiently (in linear time in the size of the Hamiltonian path). The neighborhoods N k BS are parameterized by an integer k ≥ 2 and [START_REF] Balas | Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study[END_REF] used them within a local-search algorithm for the ATSP and the ATSP with time windows.

In order to be self-contained, we very briefly summarize the Balas-Simonetti neighborhoods for the ATSP: Given an TSP Hamiltonian path x = (x 0 , x 1 , . . . , x n , x n+1 ) the neighborhood N k BS (x), for a given value k ≥ 2, consists of all tours x = (x 0 , x π(1) , . . . , x π(n) , x n+1 ), where π is a permutation of {1, . . . , n} that fulfills the following conditions: For any two indices i, j ∈ {1, . . . , n} with i + k ≤ j, the inequality π(i) < π(j) holds. It means that if a vertex x i precedes a vertex x j by at least k positions in the given path x, then x i must also precede x j in the neighbor x . For a given value of the parameter k, a best neighbor x ∈ N k BS (x) can be determined in O(k 2 2 k-2 n) by solving a shortest-path problem in an auxiliary network [START_REF] Balas | New classes of efficiently solvable generalized traveling salesman problems[END_REF], i.e., for a fixed value of the parameter k the neighborhood exploration is linear in n.

An example of an auxiliary network is depicted in Figure 1 for k = 3 and n = 5. The graph consist of stages/levels (depicted from left to right in the figure) that correspond to the positions in the Hamiltonian path. The vertices at each stage can be ordered into rows that are associated with an offset value α. In the following, the vertices of the auxiliary network are called states. Thus, each state in the auxiliary network is associated with the vertex x j+α where j is the stage of the state and α the value associated with the state. Arcs exclusively go from states of a stage j to states of the subsequent stage j + 1. The general structure of the auxiliary network is described in several works, e.g., [START_REF] Balas | Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study[END_REF] and several subsequent articles [START_REF] Irnich | Solution of real-world postman problems[END_REF][START_REF] Tilk | Dynamic programming for the minimum tour duration problem[END_REF][START_REF] Hintsch | Large multiple neighborhood search for the clustered vehiclerouting problem[END_REF]. Every source-sink path, from 0 to n+1, in the auxiliary network corresponds to a neighbor x . For example, the green sequence of states at the top row in Figure 1 corresponds to x = x = (0, 1, 2, 3, 4, 5, 6). The red sequence of states corresponds to the neighbor x = (0, 2, 3, 1, 5, 4, 6), i.e., a Hamiltonian path that respects the precedence constraint with respect to the initial tour x and the given parameter k = 3.

α = 0 α = 1 α = -1 α = 2 α = 1 α = -1 α = 0 α = -2
The structure of the auxiliary network, i.e., states and connecting arcs, depends only on k and n, but not on the given path x. The only difference between two auxiliary networks is the cost of the arcs that must be set to the distance between the considered customers. Consequently, if the BS neighborhood must be explored multiple times, the auxiliary network can be kept. Moreover, the auxiliary network for k is always a state-induced subgraph of the auxiliary network for any larger k > k (indicated by the separating lines in Figure 1).

Adaptions. Next, we explain how to adapt the Balas-Simonetti neighborhood such that it can be used for all GVRPTW variants, including the VRPDO with the inter-route synchronization constraints imposed by location capacities and service-level requirements.

First, we generalize the auxiliary network such that it can deal with options. Contrary to the TSP, a delivery request n can in our applications be served using the different delivery options O N n . Hence, meta states encompass sets of states that represent all options of the respective customer as shown in Figure 2. All states for options of a customer are linked to all states for options of the subsequent customer.

Second, a shortest-path problem with resources constraints (SPPRC, Irnich and Desaulniers, 2005) must be solved on the generalized auxiliary network, in contrast to solving one without resource constraints for the ATSP.

We solve the corresponding SPPRCs with a label-setting algorithm as follows: A label

L i = (i, C i , T i , Q i , (R p i ) p∈P , (H i ) ∈L m
) represents a partial path from the depot 0 to a state i in the auxiliary network. Recall that a state i represents an option and therefore a delivery request n i , a location i , a priority level p i , and a service time s i are associated. The components of the label L i are (i) last state i of the partial path, (ii) the accumulated routing cost C i , (iii) the earliest arrival time T i at the location associated with i, (iv) the accumulated demand (=load) Q i in the vehicle, (v) the number H i of shipments for each shared delivery location (for all ∈ L m ), and (vi) the number R p i of options o with priority p o greater than p served along the partial path (for all p ∈ P \ {p}). The initial partial path in the auxiliary network starts from the depot 0 and the label L 0 = (0, 0, a 0 , 0, 0, 0). The label-setting algorithm extends labels along the arcs of the auxiliary network. Extending a label

L i = (i, C i , T i , Q i , (R p ) p∈P \{p} i , (H ) ∈L m i ) along an arc (i, j) results in the label L j = (j, C j , T j , Q j , (R p ) p∈P \{p} j , (H ) ∈L m j
) defined by:

C j = C i + c i j Q j = Q i + q n j T j = max{a j , T i + t i j + s i } H j = H i + 1, if j = H i , otherwise for all ∈ L R p j = R p i + 1, if p j > p R p i , otherwise for all p ∈ P \ {p}
The extension is feasible, if the following constraints

Q j ≤ Q T j ≤ b j H j ≤ C -H , for all ∈ L m R p j ≤ (1 -β p )|N | -Rp , for all p ∈ P \ {p}
are fulfilled, where the values H for ∈ L and Rp for p ∈ P \ {p} are parameters that control the required slack in the location-capacity and service-level constraints. For the latter, please compare with (1) and (2d) in the next section. We consider three different use cases for the BS component:

(1) the local optimization of a single route, (2) the local optimization of the giant route, and

(3) the simultaneous local optimization of pairs of routes.

In case of a single route r ∈ S taken from a current solution S, the parameters H and Rp for p ∈ P \ {p} can be set to the resource consumptions of all other routes r ∈ S \ {r}.

In case of the giant route, all routes of a given solution S need to be joined as in [START_REF] Irnich | A unified modeling and solution framework for vehicle routing and local search-based metaheuristics[END_REF] and [START_REF] Hintsch | Large multiple neighborhood search for the clustered vehiclerouting problem[END_REF]. The parameters H and Rp are set to 0. On arcs (0, 0) joining two different routes, the resources T and Q are reset to a 0 and 0, respectively. In contrast, the resources H and R are kept at their current value enabling that the inter-route synchronization constraints are incorporated correctly.

In case of pairs (r 1 , r 2 ) of routes, the two routes are joined leading to a partial giant route. The parameters H and Rp are then set to the resource consumptions of all other routes r ∈ S \ {r 1 , r 2 }. Note that the BS neighborhood here also allows moving the depot vertices (in the middle) so that the route length of r 1 and r 2 can change.

Since all resource extensions are non-decreasing and resource consumptions are bounded from above, we can apply standard ≤-dominance (Irnich, 2008a). Obviously, resource H and R are obsolete in the GVRPTW, VRPRDL, VRPHRDL, and VRPMTW. However, due to a possibly large number of shared delivery locations and priorities in the VRPDO, the dominance relation can become rather weak in this variant.

We have conducted some preliminary experiments that have shown that the route-pairing version is the most effective (note that it includes the single route optimization). Solving the SPPRC for the giant route is excessively time-consuming, even on small instances and for small BS parameters k ≥ 2. We therefore use the BS component only for all pairs of routes in the following.

Acceleration Techniques. As speed is essential, we devise six different acceleration techniques, two exact (they do not change the output of the labeling algorithm) and four heuristic acceleration methods (they may hinder the labeling algorithm to compute an optimal solution of the SPPRC).

On the exact side, we first use a bidirectional labeling algorithm [START_REF] Righini | Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints[END_REF]. Note that backward extension and merging of labels follows standard rules (Irnich, 2008a).

Second, when pairing routes, we solve an SPPRC on every pair of routes in the solution, i.e., the routes will be used in several combinations. Therefore, some of the labels computed at the beginning of the forward and backward labeling are identical for pairs that share a common route and must be computed only once.

On the heuristic side, we first restrict the labeling to a limited discrepancy search [START_REF] Feillet | New refinements for the solution of vehicle routing problems with branch and price[END_REF]. Therein, we limit the number of customers that can change their delivery option. The consequence is that all customer requests can still be permuted but only a limited number of the currently used options can be replaced by an alternative option of the respective request. In our experiments, we limit the number of customers that can change their delivery option to 3.

Second, we use a heuristic bounding strategy that discards labels if their cost is larger than some threshold value. The threshold value is computed as the difference between the best known cost and the sum of the best individual service cost of each non-served customer. For each solution computed in the course of the MathHeu, we compute a customer-specific service cost of each customer and update the best one if necessary: If a customer is served in an individual delivery location, its customer-specific service cost is the mean of the costs of the ingoing and outgoing arcs used to access it. If a customer is served in a shared delivery location, the cost of the ingoing and outgoing arcs is divided by two times the number of customers served at this location by this route.

Third, a significant number of the resources of a label is dedicated to the capacity consumption of shared delivery locations which results in a relatively weak dominance. To strengthen the dominance, we ignore some of the shared delivery locations in the dominance test. To decide which shared delivery locations are ignored, the cost of the best solution that completely utilizes the capacity of a location is recorded in the LNS. We ignore those locations used only in solutions with a cost that is more than 10 % higher than the cost of the current best-found solution.

Fourth and finally, routes are sequences of options and multiple options taking place at the same shared delivery location can be exchanged without changing the cost of the solution. We break these symmetries by maintaining the order of the currently chosen options of the same shared delivery locations.

Set-Partitioning Component

The set-partitioning formulation for vehicle routing and scheduling problems has a long tradition [START_REF] Foster | An integer programming approach to the vehicle scheduling problem[END_REF]. It is nowadays widely used in column-generation approaches for many types of problems [START_REF] Toth | Vehicle routing: problems, methods, and applications[END_REF]. The extended model presented in the following was developed in [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF] and [START_REF] Tilk | The last-mile vehicle routing problem with delivery options[END_REF].

Let R be a set of feasible routes, e.g., the pool P in Algorithm 1. For each route r ∈ R and each option o ∈ O, the binary parameter α o r takes value 1 if the option o ∈ O is served by the route r ∈ R, and 0 otherwise. The model uses binary variables λ r for r ∈ R that indicate if route r is used in the solution:

min r∈R c r λ r (2a) subject to r∈R o∈O N n α o r λ r = 1 ∀n ∈ N (2b) r∈R o∈O L α o r λ r C ∀ ∈ L m (2c) r∈R o∈O:po>p α o r λ r (1 -β p )|N | ∀p ∈ P \ {p} (2d) r∈R λ r K (2e) λ r ∈ {0, 1} ∀r ∈ R (2f)
The objective (2a) minimizes the total cost of the solution, i.e., the sum of the cost of the routes used. The set-partitioning constraints (2b) state that each customer must be served exactly once. The capacity constraints for shared locations are given by (2c) and the service-level constraints by (2d). The fleet-size constraint (2e) sets the upper bound K on the number of routes used in the solution. Finally, the variable domains are given in (2f).

For solving the model with a MIP solver, it is known that typically set-covering formulations have shorter computation times than the respective set-partitioning formulations (see, e.g., [START_REF] Yıldırım | An ant colony-based matheuristic approach for solving a class of vehicle routing problems[END_REF]. If the travel times and costs fulfill the triangle inequality (always true for the benchmarks of Section 4), the partitioning constraints can be replaced by covering constraints, i.e., ≥ 1 instead of = 1 in (2b). In a set-covering solution, more than one option may be used to serve a customer. A simple greedy procedure can quickly repair and improve solutions which overcover some customers. Note that the repaired solutions automatically respect the location-capacity and service-level constraints.

To further reduce the solution times, we extend the formulation by introducing binary variables y o that indicate if option o ∈ O is selected. The new y variables are coupled with the route variables via

r∈R α o r λ r = y o ∀o ∈ O. (2g) 
We prioritize branching on these variables in the MIP solver.

Computational Experiments

In this section, we report the results of computational experiments that were conducted on GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and VRPDO benchmarks with the four configurations of the matheuristic. The algorithms have been coded in C++ and compiled into 64-bit single-thread code with g++ 5.4.0. All experiments were performed using Linux, Ubuntu 16.04 LTS, running on an Intel Xeon X5650 @ 2.57 GHz. We use IBM Ilog CPLEX 12.8.0 (IBM, 2018) to solve the SPP and activate the options branch up first and emphasis on hidden feasible solutions. Section 4.1 summarizes the parameter values used in the experiments. A comparison with algorithms from the literature on standard benchmark sets for the GVRPTW, VRPRDL, VR-PHRDL, VRPMTW, and VRPDO is conducted in Sections 4.2 to 4.5, respectively. Finally, all results are discussed together and a summary is given in Section 4.6.

LNS Parameters and Adaptive Layer

We briefly sketch the parameter settings of the LNS, even though, our focus is primarily on the new matheuristic components. First, we do not dynamically adapt the probability of each operator as suggested by Ropke and Pisinger (2006b). Indeed, [START_REF] Turkeš | Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search[END_REF] reviewed the LNS literature and conclude that this feature has, at best, a very little positive impact. Our preliminary experiments confirm this observation for the GVRPTW variants and our matheuristic configurations. Hence, the probability to choose an operator is constant and inversely proportional to its average run time as proposed in [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF]. Destroy operators are equiprobable. The two operators random order best insertion and largest first best insertion have a probability of 40 %, while all other repair operators have a probability of 5 % to be chosen. Moreover, we set the size of the small destruction interval to [δ min , ∆ min ] = [0.01|N |, 0.1|N |] and the size of the large destruction interval to [δ big , ∆ big ] = [0.1|N |, 0.3|N |]. Our LNS always works in two phases: In the first phase, it reduces the number of routes, and in the second phase, it minimizes the routing cost using the established number of routes. The first phase is either stopped when half of the time budget has been used, or sooner when a feasible solution with the given number of routes has been found. The number of iterations between two big destructions is set to ω = 10|N | 1.5 (we refer to the paper of Dumez et al., 2020, for further details on the LNS configuration).

In many applications, the strength of LNS relies on its speed. Pisinger and Ropke (2007) report that their ALNS takes 146 seconds, on average, for performing 50,000 iterations on the Solomon instances for the VRPTW with 100 customers. With the same time budget, on the same instances, MathHeu performs 7.4 million iterations on average, i.e., approximately 150 times more iterations with a CPU that is only 1.91 times faster per thread according to (PassMark-Software, 2020). This is possible thanks to the small and fast destroy moves.

Next, we determine a strategy for the adaptive layer of MathHeu. The question is when and how to employ the exact components of Algorithm 1. We extend the procedure used in [START_REF] Tellez | The fleet size and mix dial-a-ride problem with reconfigurable vehicle capacity[END_REF] to solve the fleet size and mix dial-a-ride problem with reconfigurable vehicle capacity with an LNS coupled with SPP: They initially solve the SPP every 1 000 iterations, but, if the solver fails to prove optimality twice in a row the time between two calls is reduced by a quarter. We use the size |P| of the route pool instead of the consumed time to decide when the SPP component is invoked. More precisely, we solve formulation (2) with the MIP solver when the pool of routes R contains at least max(100, 38000 -180|N |) different routes. This threshold size is increased by 60% if the solver has proven optimality twice in a row. Conversely, it is reduced by the same factor if the solver has failed to prove optimality twice in a row.

Both exact components are only applied if the cost of the best-known solution has improved by less than 1 % over the last 5ω iterations. Moreover, a good solution-quality-to-time compromise is a small value of k = 5. With this value the BS component is applied exclusively to solutions that serve all customers and with a cost smaller than 1.01 times of the cost of the best-known solution. The used parameter values come from preliminary experiments that were satisfactory.

The results presented in the following sections provide the following information: 

Results for the GVRPTW

We compare all four configurations of MathHeu with the iterative tabu search (ITS) of [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] on their benchmark containing instances with up to 120 customers. These instances are named i-n-v min -v max where n is the number of customers, v min the minimum, and v max the maximum number of options per customer. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] consider the single objective of routing-cost minimization. For a fair comparison, we bound the number of available vehicles to the value computed in their work. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] performed their computational experiments on an Intel Core Duo @ 1.83 GHz and limited their algorithm to 10 5 iterations taking a total computation time of 8,105 seconds. In our matheuristic, we allocate a quota for the computation time for each instance according to the number of customers. In total, the MathHeu consume 524 seconds for all 20 benchmark instances. According to PassMark-Software (2020), on single thread benchmarks, their processor is 2.18 times slower than ours. It means that, on average, the MathHeu is configured to run approximately 7 times faster than the ITS.

The results are presented in Table 2. Note that it is not indicated in Moccia et al. (2012) whether their results are the best results out of several runs. For the four MathHeu configuration, the best solution out of five runs is taken into account. The best solution values are marked in bold.

All four MathHeu configurations clearly outperform the results of the ITS. The most BKS are found with MH and MH+SPP+BS. Regarding the routing cost, MH+SPP performs best and improves the results of ITS by 0.42 %. Moreover, MH+SPP provides an equivalent or better solution than ITS on 15 of the 20 instances. However, all four configurations of MathHeu perform rather similarly on the GVRPTW benchmark while the ITS perform worse. In total, we provide 14 new best-known solutions. Detailed instance-by-instance results can be found in Appendix A.

Results for the VRPRDL and VRPHRDL

We next compare the four MathHeu configurations with the exact branch-price-and-cut (BPC) algorithm of [START_REF] Tilk | The last-mile vehicle routing problem with delivery options[END_REF] on a benchmark set originally proposed by [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF]. As suggested by [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF], the instances should be modified such that the triangle inequality for travel cost and travel times holds. The modified benchmark that we also use consists of 120 randomly generated instances with a size ranging from 15 to 120 delivery requests, with a maximum of 6 options per request. The benchmark set is divided into 60 VRPRDL and 60 VRPHRDL instances. Note that we cannot fairly compare with the variable neighborhood search of Reyes et al. The time budget for the four configurations of the MathHeu is now set to 60 seconds for instances with up to 60 customers, and 300 seconds for the 120-customer instances. This is again a rather small computation time compared to the 2 hour and 6 hour time limit used in [START_REF] Tilk | The last-mile vehicle routing problem with delivery options[END_REF].

Aggregated results for the VRPRDL are shown in Comparing the four matheuristic configurations, MH+SPP performs best on both problem variants. For the VRPRDL, all optimal solutions could be found, while for the three other configurations the results are between 0.01 % and 0.04 % worse than the optimal solutions. Regarding the VRPHRDL, the four configurations improve the cost over the solutions provided in [START_REF] Tilk | The last-mile vehicle routing problem with delivery options[END_REF]. MH+SPP contributes with the largest improvement (0.6 %). Moreover, seven new best-known solutions have been computed. Detailed results can be found in Appendix B.

Results for the VRPMTW

We compare the MathHeu configurations with the ALNS of [START_REF] Larsen | Fast delta evaluation for the vehicle routing problem with multiple time windows[END_REF] on the adapted Solomon benchmark instances for the VRPMTW provided by [START_REF] Belhaiza | A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[END_REF]. The algorithm of Belhaiza et al. minimizes the sum of the total routing cost and cost of the used vehicles. Since vehicle costs are fairly large, we run Algorithm 1 twice, first to minimize the number of vehicles (which is then bounded), and second to minimize the routing cost, similar to Ropke and Pisinger (2006a). The first phase tries to decrease the number of vehicles by removing the smallest route from the solution each time a feasible solution is found.

We report the best solution found out of 10 runs with an overall time budget of 600 seconds for both phases per instance. Larsen and Pacino (2019) used the same time limit and number of runs. Moreover, they performed their computational experiments on an Intel Core i7-4790K @ 4.00GHz, which is 2.02 times faster than our processor (see PassMark-Software, 2020). Table 5: Results for the VRPMTW benchmark of [START_REF] Belhaiza | A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[END_REF].

Table 5 shows aggregated results for the six groups of instances (R=random, C=clustered, or RC=partly random, partly clustered; series 1 and 2 with tight and wide time windows, respectively). Detailed results per instance are presented in Appendix C.

Comparing all five algorithms, the ALNS produces solutions with more vehicles than our MathHeu configurations, which is caused by the different performance in the group CM 1. Regarding the overall-cost objective, results over all five algorithms are rather similar (total differences are below 0.2 %). MH+SPP+BS performs best, it improves the results of the ALNS by 0.11 % and provides the most best-known solutions. Over the 48 instances, 23 new best solutions are found by (at least) one of the four MathHeu configurations.

Results for the VRPDO

For the VRPDO, we test the MathHeu configurations on the instances proposed by [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF]. The required service levels are given by β 1 = 80 % and β 2 = 90 %. The time budget is set to 300 seconds for 100-customer instances and 2 000 seconds for 200-customer instances.

We rerun the LNS of [START_REF] Dumez | A large neighborhood search approach to the vehicle routing problem with delivery options[END_REF] on all instances with the new time limit. The tests were performed on the same computer.

Recall that the VRPDO has a hierarchical objective. Thus, similar to Ropke and Pisinger (2006a), Algorithm 1 is run twice, first to minimize the number of vehicles (which is then bounded), and second to minimize the routing cost. The first phase systematically removes the smallest route from the current solution each time a feasible solution is found.

Table 6 presents the aggregated results. Each line refers to a group of instances with identical number of customers and options. Detailed results can be found in Appendix D. 

Overall, the four MathHeu configurations clearly outperform the LNS that is also equipped with a SPP component which is only controlled with a much simpler manner compared to the new adaptive layer, see Section 4.1. Among the MathHeu configurations, MH+SPP produces the best results with 737 routes and the smallest routing costs. Indeed, MH+SPP is the only configuration that is able to find a solution with 20 vehicles on instance V 200 3. For all other instances the minimum number of vehicles is identical over all configurations. MH+SPP improves the results compared to LNS by 6.3 % on average. It finds the best-known solution on 22 of the 60 instances.

Configuration MH+SPP+BS performs very similar to MH+SPP. It finds one more best-known solution and the solution quality is less than 0.1 % worse. Moreover, the detailed results of Appendix D show that configuration MH+SPP+BS exclusively finds new best solutions for 14 instances. Overall, the four MathHeu configurations together provide 41 new best-known solutions.

Summary

To summarize the results for the four GVRPTW variants, we group all instances according to different criteria to further assess the performance of the matheuristic configurations. To this end, we report the gap to the best-known solution and the number of best-known solutions found. Formally, the gap (in percent) is computed as 100 • (U B -BKS)/BKS, where BKS is the best-known solution value from the literature and U B is the best solution value found by the respective algorithm.

For the VRPDO, we consider only instances for which all four configurations achieve a solution with the same number of vehicles. As a consequence, the instance V 200 3 is disregarded.

We group the instances according to the VRP variant, the number of customers per route in the BKS, and the number of options per customer.

Table 7 shows aggregated results regarding the performance per group: The first column indicates the category used for grouping the instances, the second column gives the value defining the group, and the third column shows the number of instances in that group. The next four columns report the average gap and the last four columns report the number of best-known solutions found. In each line, the smallest average gap and the largest number of BKSs found are highlighted in bold. Regarding the different problem variants, all configurations except Table 7: Performance of the four matheuristic configurations MH+BS perform rather similarly on the instances for the GVRPTW, VRPRDL, and VRPHRDL. For VRPMTW instances, MH+SPP+BS is clearly the best configuration, and for the VRPDO instances, MH+SPP is the best. In particular, regarding '# BKS', the two configurations with the SPP component outperform their counterparts without SPP component on the VRPMTW and VRPDO.

The rather bad performance of the BS component on VRPDO instances can be attributed to the additional synchronizations constraints only present in this variant. These constraints imply that a larger set of resources has to be taken into account in the label-setting algorithm. As a result, the practical difficulty of the SPPRC increases substantially, making the BS component too time-consuming relative to the improvements obtained with BS.

When instances are grouped according to route length, we can clearly see that the two exact components (i.e., MH+SPP+BS) are beneficial for the route lengths between 6 and 20 customers. There is nearly no difference between configurations for routes with 6 or less customers, while the exact components worsen the results for more than 20 customers.

When grouped according to the number of options per request, it seems that gaps decrease when the number of options per customer rises. However, this trend is not clear cut. Other instance characteristics seem to be more important.

Summarizing, configuration MH+BS performs worst, while both configurations MH+SPP and MH+SPP+BS are very competitive. The former produces the best gaps, while the latter provides the most BKS. Both configurations are also complementing each other well, because the overlap between the 169 and 173 BKS (see last two columns of Table 7) is only 145 instances. We can also conclude that the BS component is only beneficial in combination with the SPP component.

Conclusions

The GVRPTW is the archetypal problem in vehicle routing that combines time window constraints and delivery options. It exists in several variants under different names, sometimes focussing on particular aspects (VRPRDL, VRPMTW). We consider additional inter-route resource constraints giving rise to the so-called vehicle routing problem with delivery options (VRPDO), which captures two very important practical side constraints that can be found in last-mile delivery, e.g., in postal and package delivery applications. On the one hand, customers value the delivery options (home delivery, delivery to a locker or shop etc.) differently so that service-level constraints become relevant. On the other hand, delivery options of different customers may share limited capacities, e.g., restricted space for storage in lockers and shops from where customers retrieve their packages. The VRPDO adds these constraints to the basic GVRPTW.

In this paper, we presented a new LNS-based matheuristic that can cope with GVRPTW variants, in particular also with the most general and more involved VRPDO. The new matheuristic has an adaptive layer that controls the size of the destroy operation and the use of two (optional) exact components. The latter exact components allow an improvement of solutions when the standard LNS process stalls. The first component utilizes a MIP solver and SPP formulation that selects routes from a larger pool of potential routes. The second component uses BS neighborhood that we adapt for the use in a multiple vehicle context with capacity, time window, and inter-route constraints. Both components are, compared to a single LNS iteration, very time-consuming. Hence, the adaptive layer very carefully controls how often and when the exact components are invoked.

The primary focus of our research is the evaluation of the adaptive layer as well as the two exact components. We compare four different configurations of the new matheuristic (MH, MH+BS, MH+SPP, and MH+SPP+BS, i.e., with and without SPP and BS component) among each other and against state-of-the-art algorithms for the GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and VRPDO. The experiments are conducted on standard benchmarks for these problems and have led to the following insights:

A key success factor of the underlying LNS is the tremendous number of iterations that can be performed thanks to the small destroy moves, while the search is diversified by larger destroy moves if necessary. The way the adaptive layer selects small and fast or large destroy moves already makes the new matheuristic superior to an older LNS (see Section 4.5).

The two configurations with the SPP component outperform their counterparts without SPP component regarding average gaps to best-known solutions (BKS) from the literature and the number of BKS computed (Table 7).

The configuration with the BS component alone (MH+BS) is inferior. In particular, for the VRPDO, the presence of many inter-route constraints that must be handled within the BS neighborhood exploration makes the BS component too time-consuming (see Section 4.5). However, when combined with SPP the resulting configuration MH+SPP+BS is competitive.

The practical difficulty of the VRPDO is well reflected in the results delivered by all matheuristic configurations. Average gaps of 0.73 % for the VRPDO are much bigger than gaps for the other GVRPTW variants which fall below 0.25 % (Table 7).

Compared to state-of-the-art metaheuristics from the literature, the new matheuristic is much faster (factor 7 for the GVRPTW; factor 2 for the VRPMTW, see Sections 4.2 and 4.4).

For the VRPRDL (VRPHRDL), the comparison against a recent exact branch-price-and-cut algorithm shows that configuration MH+SPP finds all (all except one) known optimal solutions in a fraction of the computation time available for the exact algorithm. In addition, all configurations together provide new best-known solutions for all instances that were not solved to proven optimality by the branch-price-and-cut algorithm (Section 4.3). Overall, without manual problem-specific parameter tuning of the matheuristic, we provide 81 new best-known solutions for the GVRPTW, VRPHRDL, VRPMTW, and VRPDO.

A Detailed results for the GVRPTW instances 
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Figure 1 :

 1 Figure 1: Example of the auxiliary network for k = 3 and n = 5

Figure 2 :

 2 Figure 2: A sequence of customers in the auxiliary network for the ATSP and its generalization to delivery options in the GVRPTW. There are three, two and, four options per delivery request in this example, i.e., |O N 1 | = 3, |O N 2 | = 2, and |O N 3 | = 4.

  Instance(s): Name of the benchmark instance (group) #: Number of instances in the group |N |: Number of customer requests #veh: Upper bound computed/set on the number of vehicle/the fleet size Σveh: Sum of the number of vehicles computed Cost: Overall cost of the best computed solution ΣCost: same, summed over the group of instances #Best: Number of instances for which an algorithm has found a best-known solution

  (2017), because we only have access to the modified instances provided by Ozbaygin et al.. Since the BPC of Tilk et al. minimizes routing costs (as typically done in studies of exact algorithms), we only focus on routing-cost minimization. To this end, we bound the number of vehicles by the number of routes given in their solutions.

Table 1 :

 1 Destroy and Repair Operators

	Type	Operator	Source
	local destroy distance related customer removal (Shaw, 1998)
		split string removal	(Christiaens and Vanden Berghe, 2016)
	destroy	random option removal	(Ropke and Pisinger, 2006a)
		time related customer removal	(Ropke and Pisinger, 2006a)
		cluster removal	(Pisinger and Ropke, 2007)
		route removal	(Nagata and Bräysy, 2009)
		zone removal	(Demir et al., 2012)
		historical knowledge node removal (Demir et al., 2012)
		SDL oriented random removal	(Dumez et al., 2020)
	repair	2-regret	(Ropke and Pisinger, 2006a)
		ejection search	(Nagata and Bräysy, 2009)
		random order best insertion	(Christiaens and Vanden Berghe, 2016)
		largest first best insertion	(Christiaens and Vanden Berghe, 2016)
		preferred best insertion	(Dumez et al., 2020)
		SDL-regret	(Dumez et al., 2020)

Table 2 :

 2 Results for the GVRPTW benchmark of[START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF].

		ITS		Cost of MathHeu configurations	
	Instance	#veh	Cost	MH	MH+BS	MH+SPP MH+SPP+BS
	i-030-04-08	4	3 498	3 497	3 497	3 497	3
	i-030-08-12	4	2 866	2 796	2 796	2 796	2
	i-040-04-08	6	3 811	3 811	3 811	3 811	3
	i-040-08-12	6	3 757	3 768	3 768	3 768	3
	i-050-04-08	8	5 447	5 447	5 447	5 439	5
	i-050-08-12	8	4 034	4 034	4 034	4 034	4
	i-060-04-08	8	5 919	5 908	5 926	5 919	5
	i-060-08-12	8	4 303	4 303	4 303	4 303	4
	i-070-04-08	10	6 205	6 246	6 246	6 224	6
	i-070-08-12	10	4 645	4 644	4 644	4 644	4
	i-080-04-08	12	7 425	7 390	7 394	7 394	7
	i-080-08-12	12	5 734	5 686	5 661	5 692	5
	i-090-04-08	11	7 110	7 187	7 182	7 187	7
	i-090-08-12	11	5 810	5 903	5 869	5 830	5
	i-100-04-08	14	7 455	7 308	7 349	7 295	7
	i-100-08-12	14	6 703	6 546	6 546	6 585	6
	i-110-04-08	16	8 719	8 696	8 720	8 711	8
	i-110-08-12	16	6 281	6 249	6 487	6 338	6
	i-120-04-08	15	8 512	8 344	8 357	8 344	8
	i-120-08-12	15	6 833	6 829	6 829	6 774	6
	Sum		115 069 114 592 114 866 114 585	114
	#Best		6	11	8	10	

Table 3 :

 3 Table 3 and for the VRPHRDL in Table 4. Each line refers to a group of instances with identical number |N | of customers. The BPC Results for the VRPRDL benchmark of Ozbaygin et al. (2017)

				BPC		ΣCost of MathHeu configurations
	Instances # |N | Σveh	ΣCost	MH	MH+BS	MH+SPP MH+SPP+BS
	1-5	5	15	24	6 072	6 072	6 072	6 072	6
	6-10	5	20	27	6 848	6 848	6 848	6 848	6
	11-20	10	30	68	18 595 18 595 18 595	18 595	18
	21-30	10	60	129	37 213 37 213 37 213	37 213	37
	31-40	10 120	189	53 738	53 759	53 876	53 738	53
	41-50 v1 10	40	94	29 838 29 838	29 842	29 838	29
	41-50 v2 10	40	74	21 863 21 863 21 863	21 863	21
	Sum	60		605 174 167 174 188 174 309 174 167	174
	#Best				60	59	55	60	
				BPC		ΣCost of MathHeu configurations
	Instances # |N | Σveh ΣCost	MH	MH+BS	MH+SPP	MH+SPP+BS
	1-5	5	15	19	5 450	5 450	5 450	5 450	5
	6-10	5	20	20	5 604	5 604	5 604	5 604	5
	11-20	10	30	52 15 128 15 128 15 128	15 128	15
	21-30	10	60	83 26 800 26 800 26 800	26 800	26
	31-40	10 120	128 38 107 ‡	37 263	37 349	37 234	37
	41-50 v1 10	40	87 27 996 27 996 27 996	27 996	27
	41-50 v2 10	40	67 20 958 20 958	20 962	20 962	21
	Sum	60		456 140.043 139.199 139.289 139.174	139.239
	#Best				53	57	54	58	

Table 4 :

 4 Results for the VRPHRDL benchmark of[START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] algorithm solves all 60 instances for the VRPRDL and 53 of 60 instances for the VRPHRDL benchmark set to proven optimality. The entry marked with ‡ indicates that best-known solution values have been used here, because optimality could not be proven by the BPC algorithm for seven instances in this group. Again, the best solution values are marked in bold.

Table 6 :

 6 Results for the VRPDO benchmark of Dumez et al.

					MathHeu configurations					
				LNS		MH		MH+BS		MH+SPP	MH+SPP+BS
	Group	# Σveh	ΣCost	Σveh	ΣCost	Σveh	ΣCost	Σveh	ΣCost	Σveh	ΣCost
	U100	10	105 6 489.95	105	6 558.55	105	6 612.34	105	6 528.21	105	6 548.26
	U200	10	205 13 421.93	205 11 959.32	205 11 983.34	205 11 768.85	205 11 786.57
	V100	10	104	7 031.37	104	7 078.08	104	7 070.62	104	7 026.62	104	7 052.34
	V200	10	204 15 089.31	204 13 716.05	204 13 725.32	203 13 741.99	204 13 540.19
	UBC100 10	40	3 624.20	40 3 593.88	40	3 657.44	40	3 599.04	40	3 612.59
	UBC200 10	80	6 338.74	80 6 062.81	80	6 227.54	80	6 072.03	80	6 232.32
	Sum	60	738 51 995.49	738 48 968.69	738 49 276.59	737 48 736.75	738 48 772.27
	#Best			10		12		6		22		23

Table 8 :

 8 Detailed results for the GVRPTW instances B Detailed results for the VRPRDL and VRPHRDL instances

	Instance		MH				MH+BS				MH+SPP				MH+SPP+BS		Time [s]
			Average	Best of 5		Average	Best of 5		Average	Best of 5		Average	Best of		
		#veh	Cost #veh	Cost #veh	Cost #veh	Cost #veh	Cost #veh	Cost #veh	Cost #veh	Cost	
	i-030-04-08	4	3 497.00	4	3 497	4	3 497.00	4	3 497	4	3 497.00	4	3 497	4	3 497.00	4	3	5
	i-030-08-12	4.6	3 152.29	4	2 796	4.4	3 066.71	4	2 796	4.4	2 771.14	4	2 796	4.2	2 802.00	4	2	5
	i-040-04-08	6	3 841.67	6	3 811	6	3 837.00	6	3 811	6	3 818.00	6	3 811	6	3 823.67	6	3	8
	i-040-08-12	6.7	4 094.83	6	3 768	6.7	4 100.00	6	3 768	6.7	3 820.00	6	3 768	6.5	3 908.67	6	3	8
	i-050-04-08	8	5 485.17	8	5 447	8	5 458.83	8	5 447	8	5 451.33	8	5 439	8	5 479.80	8	5	11
	i-050-08-12	8	4 070.33	8	4 034	8	4 055.00	8	4 034	8	4 043.67	8	4 034	8	4 034.00	8	4	11
	i-060-04-08	8	5 936.40	8	5 908	8	5 972.40	8	5 926	8	5 936.80	8	5 919	8	5 941.40	8	5	14
	i-060-08-12	8	4 327.40	8	4 303	8	4 396.40	8	4 303	8	4 413.20	8	4 303	8	4 395.60	8	4	14
	i-070-04-08	10	6 266.80	10	6 246	10	6 273.80	10	6 246	10	6 249.60	10	6 224	10	6 254.00	10	6	22
	i-070-08-12	10	4 734.20	10	4 644	10	4 803.20	10	4 644	10	4 728.40	10	4 644	10	4 780.20	10	4	22
	i-080-04-08	12	7 428.20	12	7 390	12	7 472.00	12	7 394	12	7 427.00	12	7 394	12	7 463.40	12	7	27
	i-080-08-12	12	5 718.40	12	5 686	12	5 802.80	12	5 661	12	5 752.20	12	5 692	12	5 772.00	12	5	27
	i-090-04-08	11.4	7 514.80	11	7 187	11.4	7 418.20	11	7 182	11.4	7 431.40	11	7 187	11.6	7 508.80	11	7	32
	i-090-08-12	11	6 113.00	11	5 903	11	5 937.20	11	5 869	11	5 938.40	11	5 830	11	5 956.40	11	5	32
	i-100-04-08	14	7 394.80	14	7 308	14	7 407.60	14	7 349	14	7 377.60	14	7 295	14	7 346.20	14	7	38
	i-100-08-12	14	6 643.20	14	6 546	14	6 648.40	14	6 546	14	6 677.60	14	6 585	14	6 677.40	14	6	38
	i-110-04-08	16	8 768.60	16	8 696	16	8 766.60	16	8 720	16	8 726.00	16	8 711	16	8 709.60	16	8	45
	i-110-08-12	16	6 379.80	16	6 249	16	6 611.80	16	6 487	16	6 406.20	16	6 338	16	6 394.60	16	6	45
	i-120-04-08	15	8 356.60	15	8 344	15	8 402.60	15	8 357	15	8 355.20	15	8 344	15	8 356.80	15	8	60
	i-120-08-12	15	7 018.80	15	6 829	15	7 005.80	15	6 829	15	6 859.80	15	6 774	15	6 877.40	15	6	60
	Total	209.6 116 742.29	208 114 592 209.5 116 933.35	208 114 866 209.5 115 680.54	208 114 585 209.3 115 978.93	208 114	524

Table 11 :

 11 Detailed results for the VRPMTW instances D Detailed results for the VRPDO instances

	Instance		MH					MH+BS			MH+SPP			MH+SPP+BS	
			Average		Best of 5		Average		Best of 5		Average		Best of 5		Average	Best of 5
		#veh	Cost #veh	Cost	#veh	Cost #veh	Cost	#veh	Cost #veh	Cost	#veh	Cost #veh	Cost
	U 100 1	11	483.314	11	481.815	11	486.620	11	482.775	11	482.422	11	481.815	11	481.475	479.972
	U 100 2	10	700.868	10	690.492	10	706.882	10	703.562	10	691.408	10	672.935	10	704.306	691.132
	U 100 3	11	638.635	11	638.344	11	637.781	11	637.302	11	632.362	11	631.513	11	634.724	630.020
	U 100 4	10	615.068	10	612.776	10	615.839	10	614.972	10	610.459	10	607.131	10	614.789	609.721
	U 100 5	10	684.479	10	680.541	10	708.342	10	701.200	10	677.526	10	673.312	10	679.947	673.312
	U 100 6	10	599.256	10	592.423	10	611.721	10	601.699	10	604.854	10	598.608	10	602.237	598.608
	U 100 7	11	756.634	11	747.047	11	755.025	11	749.348	11	764.625	11	763.735	11	766.904	763.644
	U 100 8	11	860.448	11	856.522	11	856.120	11	852.734	11	850.435	11	843.291	11	850.559	845.885
	U 100 9	10	689.242	10	683.954	10	695.653	10	693.102	10	683.792	10	680.248	10	684.387	682.765
	U 100 10	11	575.522	11	574.633	11	579.580	11	575.644	11	576.283	11	575.623	11	574.621	573.197
	V 100 1	11	655.611	11	654.423	11	648.805	11	647.566	11	647.696	11	647.566	11	647.696	647.566
	V 100 2	10	865.081	10	857.681	10	865.582	10	855.525	10	858.881	10	851.125	10	865.677	848.567
	V 100 3	10	711.580	10	707.802	10	715.417	10	700.693	10	694.383	10	686.649	10	708.965	706.331
	V 100 4	10	601.748	10	597.021	10	605.573	10	596.840	10	599.580	10	594.605	10	598.477	594.605
	V 100 5	10	779.856	10	778.419	10	795.838	10	790.631	10	783.311	10	771.775	10	809.732	802.718
	V 100 6	11	600.044	11	599.459	11	599.385	11	599.275	11	597.288	11	597.288	11	598.156	597.288
	V 100 7	11	705.915	11	705.063	11	706.822	11	703.775	11	708.458	11	707.928	11	707.009	703.341
	V 100 8	11	749.876	11	749.419	11	753.808	11	747.435	11	751.669	11	750.096	11	748.446	745.349
	V 100 9	10	815.874	10	811.910	10	808.097	10	805.638	10	809.362	10	804.279	10	808.749	800.959
	V 100 10	10	617.940	10	616.879	10	624.708	10	623.237	10	617.417	10	615.309	10	608.978	605.617
	UBC 100 1	4	368.636													

Table 13 :

 13 Detailed results for the VRPDO instances with 200 customers
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