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Abstract

We demonstrate a simple and robust scheme to measure the relative position of transverse
cavity modes with high precision. This is based on robust optical-feedback frequency locking
of a diode laser to a cavity resonance. A fraction of the laser power is then frequency shifted
and used to re-inject other cavity resonances to obtain their positions relative to the locking
resonance. This delivers the Gouy phase shift of the cavity modes with precision down to
6.4× 10−8 rad, comparable to previous state of the art based on a more complex setup.
This should also be of interest for high precision/accuracy measurement of distance and
displacement.

1 Introduction

In 1890, the french physicist Louis Georges
Gouy was performing interference experi-
ments and while observing fringe patterns he
remarked that these changed when replacing
a plane wave by a focused light beam [1, 2].
The dark fringes became bright fringes and
vice-versa, showing that a pi phase change was
occurring with the focused beam. This is con-
sidered as the first report that a wave acquires
a phase shift along its propagation axis when
passing through a focal point. A first expla-
nation can be obtained directly from Gaussian
beam properties [3]. A more satisfying physi-
cal interpretation was proposed by Feng et al.
[4] using the uncertainty principle associated
to the spatial confinement of a focused wave
in undulatory mechanics. More precisely, the
Gouy phase shift is a consequence of the trans-
verse momentum spread of photons as their
trajectory is limited in the transverse direc-

tion, which may result from focusing (in one
or two dimensions) or from passing through a
circular or slit aperture. The effect is there-
fore a manifestation of the uncertainty prin-
ciple of Fourier transform theory applied to
spatial waves. This explanation is universal
in character, for instance it also applies to
acoustic waves [5]. It is also quantitative, as
it yields the correct result of the dependence
of the Gouy phase shift for the Transverse
Electro–Magnetic (TEM) modes of propaga-
tion of light [4].

The correct determination of the Gouy
phase is relevant to various important applica-
tions such as laser wavelength metrology [6],
precise distance measurement [7], accurate re-
fractive index determination [8] and gravime-
try [9].

To the best of our knowledge, state of
the art measurements of Gouy phase shifts
were performed by Durand et al., achieving a
2.7× 10−6 rad accuracy and 6× 10−7 rad pre-
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cision with 10 s measurements [10]. Their
setup involved three narrow-linewidth fiber
lasers independently locked to different reso-
nances of a high finesse cavity (F=20 000) by
using the standard Pound-Drever-Hall (PDH)
technique, requiring electro-optic modulators.
They measured the beating frequencies be-
tween these locked lasers using fast (20 GHz)
photodiodes and frequency counters. We pro-
pose here a simpler approach using a single
DFB diode laser and a simpler frequency lock-
ing scheme based on resonant optical feed-
back from the cavity. This technique is robust
as it works even with DFB diode lasers pos-
sessing multi-MHz linewidth, while the PDH
technique requires narrow line lasers (with
short-term linewidth comparable to cavity res-
onances). For our implementation we use a
V-shaped cavity with finesse F=4300, still we
are able to improve on the precision of Du-
rand et al., down to 6.4× 10−8 rad with 100 s
averaging.

We should underline that the choice of a
V-shaped cavity helps to simplify the opti-
cal feedback locking scheme but is not strictly
necessary and does not reduce the general-
ity of our approach. Indeed, optical feedback
locking was exploited by Durand et al. [11]
with a linear cavity to obtain record sensitiv-
ity in gas birefringence measurements, and by
Hamilton et al. [12] with a ring cavity for
spectroscopy and trace gas analysis.

We should also remark that optical feed-
back locking works well in the limit of very
high finesse [11, 13]. Since the precision of
frequency measurements would increase pro-
portionally with the finesse, there is still much
place for improvement just by using better
mirrors. Main drawback would be the in-
creased cavity response time required to ob-
tain peak transmission signals and determine
the center frequencies of cavity resonances.

2 Theory

Inside a stable optical resonator or cavity, light
is focused at each round trip and acquires a
Gouy phase shift. It is customary to consider

the transverse electro-magnetic modes which
constitute an orthonormal set of functions for
expressing any light field propagating along
an optical axis. When propagating inside an
optical resonator, these TEMm,n modes (with
transverse order numbersm,n), acquire larger
Gouy phase shifts proportionally to m,n [14,
15]. As we will see below, this translates into
different resonance frequencies as a function of
m,n. Measuring transverse modes frequencies
gives then access to their Gouy phase shifts.

For a V-shaped cavity with equal mirrors
(see fig. 1), which the curvature of the folding
mirror renders astigmatic, the accumulated
phase on one round-trip for a TEM cavity
mode (assuming symmetrical arms) is found
to be:

(1)
φm,n = 2kL+ φM

−4

[(
m+

1

2

)
φxG+

(
n+

1

2

)
φyG

]
where k = 2π/λ = 2πν/c is the wave vector
corresponding to wavelength λ or optical fre-
quency ν (through the speed of light in air
c), and L is the total optical length of the
cavity (= 2Larm defined in fig. 1). The term
φM is the total dephasing due to reflections on
the cavity mirrors for one cavity pass, which
is in principle independent of the transverse
mode order while it depends on polarization
and frequency. This last dependence is weak
inside the mirror working range, and we will
neglect it (for a more complete discussion see
[10]). The dependence on polarization, due to
the off-normal reflection on the folding cavity
mirror, is considered later.

The last term in eq. (1) is the expression
of the accumulated Gouy phase taking into
account the astigmatism of the cavity, which
induces different confinement of light for the
two transverse directions (relative to the cav-
ity folding plane). Thus, there are different
φxG and φyG Gouy phases along the horizontal
x and vertical y axis (corresponding respec-
tively to the transverse mode indices m and
n). Confusion should be avoided with the hor-
izontal and vertical polarization states of light
that are additionally allowed for any trans-
verse mode. Polarization is actually exploited

2



in the measurement procedure discussed later
on. Finally, the factor 4 for the Gouy phases
rather than a factor 2 as in the expression for
a linear cavity, is due to the presence of 2 iden-
tical focal points inside the V-shaped cavity,
thus 4 passes through a focal point rather than
just 2.

As the resonance condition for theN th lon-
gitudinal cavity mode of a given transverse or-
der is φm,n = 2πN , eq. (1) gives:

ν(N,m, n) = FSR

[
N− φM

2π
+

2

π

((
m+

1

2

)
φxG

+

(
n+

1

2

)
φyG

)]
(2)

where FSR= c/2L is the free spectral range of
the cavity, that is, the separation of successive
resonances with the same transverse order.

In particular, applying eq. (2) to calculate
mode intervals, where the constant mirror de-
phasing φM cancels out, we can write:

(3a)
∆νx = ν(N, 1, 0)− ν(N, 0, 0)

=
2

π
FSRφxG

(3b)
∆νy = ν(N, 0, 1)− ν(N, 0, 0)

=
2

π
FSRφyG

From this we finally express the astigmatic
Gouy phases as a function of these measur-
able frequency intervals:

(4a)φxG =
π

2

∆νx
FSR

(4b)φyG =
π

2

∆νy
FSR

3 Experimental setup

For accurate and stable measurements of fre-
quency intervals between transverse cavity
modes, we exploit resonant optical feedback
frequency locking. This allows to keep the
laser continuously locked to a given cav-
ity mode while inducing a collapse of its

linewidth, which becomes significantly nar-
rower than the cavity resonance [16]. By res-
onant optical feedback we mean feedback pro-
duced by photons from a cavity resonance,
thus spectrally filtered by the cavity. We use
for this a V-shaped cavity geometry, as shown
in fig. 1, which avoids feedback from the in-
put mirror (in contrast to a linear cavity),
while it allows feedback from photons which
circulate inside the cavity at resonance [17].
In order to continuously maintain this lock-
ing condition it is necessary that the feedback
wave from the cavity reaches the laser in phase
with the emitted laser field. This is obtained
by fine control of the position of one of the
steering mirrors by a piezoelectric translator
(pzt in fig. 1). An error signal for this correc-
tion is generated by applying a small mod-
ulation (at about 7 kHz) to the position of
the same mirror, followed by lock-in detec-
tion on the cavity transmitted signal (from
PD1 in fig. 1). We thus obtain an ultranarrow
(sub-kHz) and stable laser source analogous
to that described by Burkart et al. [18], with
the difference that there the V shaped cavity
is made out of ultra-low expansion glass in-
stalled inside a high vacuum thermally stabi-
lized chamber. The cavity used here is made of
massive aluminum, is installed inside a plex-
iglass enclosure, and its temperature is sta-
bilized a few degrees above room tempera-
ture by using heating resistances. Residual
temperature fluctuations are seen occur over
timescales of about 2 hours and are bound to
40 mK pk-pk, which (by considering thermal
expansion coefficient of aluminum) translates
to maximum frequency fluctuations of the cav-
ity modes (around 764 nm) by about 200 MHz.
Correspondingly, the interval between mode
frequencies, which we measure, is expected to
suffer a drift not larger than about 200 Hz.

According to fig. 1, we use a 764 nm DFB
diode laser (Nanoplus GMBH) of vertical lin-
ear polarization, mode matched and frequency
locked to a V-shaped cavity with a vertex 32◦

angle and a total length L =468 mm. The
three mirrors are concave with a curvature ra-
dius of 500 mm, they are wedged and have
an anti-reflection coating on the back face of
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the substrate. They are pre-aligned and glued
to removable aluminum mounts (allowing easy
removal for cleaning) which are screwed on a
aluminum block whose shape is suggested in
fig. 1, where the two cavity channels have been
drilled over a length of 233mm and at an angle
of 32◦.

pz
t

V-shaped
cavity

DFB 764 nmOpt.
Isol.

AOM2

AOM1

LAOM1

LAOM2

Frequency locked sourceFrequency ramp

Mode MatchingLAOM3

λ/2
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Cube

PD1

PD2
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Figure 1: Experimental setup.

The diode laser is driven by a low noise
current source working on batteries (ILX
LDX3620) and by a high stability tempera-
ture controller (Thorlabs ITC502). Using op-
tical feedback, the laser is locked at frequency
νlock to a vertically polarized TEM0,0 cavity
mode, TEMlock in the following.

Part of the light (70%) from this
frequency–locked source is collected by a
beamsplitter and sent through an optical iso-
lator to avoid any parasite feedback that could
perturb the optical lock.

The beam is then focused through a sys-
tem composed of two Acousto-Optic Modula-
tors (AOM) with 150-250 MHz working range,
driven at a radio frequency (RF) δνAOM from
a waveform generator (240 MHz bandwidth),
which allows to shift the optical frequency to
νlock + 2δνAOM . These AOMs are mounted
with a focusing lens at half distance between
them, so that the first diffraction order of the
first AOM is refocused on the second AOM
mounted to have its first order deflected in
the opposite direction. As the two AOMs
are driven by the same RF source, the out-
put of the second AOM provides exact com-
pensation of the angular beam deviations of

the first AOM, for any RF value in the AOM
working range. We should underline that light
polarization must arrive on the AOMs either
parallel or perpendicular to their diffraction
plane in order to avoid formation of an ellip-
tical polarization state. A half–wave plate is
therefore installed after the optical isolator in
order to change its output 45◦ linear polariza-
tion to horizontal.

The frequency shifted beam is mode–
matched and injected to the V-shaped cavity
through one of its end mirrors. In order to
promote the excitation and thus the observa-
tion of transverse modes, the injected beam
can be slightly shifted or tilted relative to the
cavity axis. We underline that turning polar-
ization to horizontal before cavity injection al-
lows to excite cavity modes with polarization
orthogonal to that of the cavity-locking mode
and thus to easily separate cavity output sig-
nals of different origin by polarization. Using
orthogonal polarization is also a key point to
avoid perturbation of the optical feedback lock
by light re-injected into the cavity (except for
the TEM0,0 mode, as we will see later).

Light spilling out of the other cavity
end mirror is analyzed by a polarizer cube,
which allows monitoring vertical and horizon-
tal polarization states on separate photodi-
odes and/or cameras. One of the photodi-
odes (PD2 in fig. 1) allows to obtain frequency
profiles of horizontal cavity modes as the fre-
quency shift is linearly tuned in time. On the
other hand, the cameras allow to obtain the
transverse mode pattern for easy identification
of the transverse mode order.

4 Measurement

The cavity–locked DFB diode laser is used
as a frequency reference which is stable rela-
tive to the cavity resonances during measure-
ments. By changing the RF shift, the cavity
re-injected laser beam can be made to resonate
with any transverse mode on the horizontal
polarization as long as this can be attained in
the range allowed by the AOMs and the wave-
form generator (from 300 to 480 MHz). The
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transverse order is then readily deduced from
the stable camera image observed at cavity
output for the same polarization (see fig. 2).

Figure 2: Output of the cavity for the vertical
and horizontal polarizations, injected to dif-
ferent TEM cavity modes and monitored with
two cameras.

In order to determine the frequency shift of
the re-injected mode, a RF sweep of 400 kHz
around an initial rough guess of the resonance
frequency is applied to the AOMs for a total
sweep of 800 kHz, during typically 2 ms. This
linear sweep allows recording the transmission
profile of the mode versus frequency (using a
photodiode with response time ∼1 µs). The
frequency accuracy and stability of our RF
generator, which is referenced to a GPS dis-
ciplined Rb clock, is better than 10-10. The
transmission profile is then digitized and fit-
ted (using a Python routine based on the lmfit
[19] library) by a Lorentzian function includ-

ing a baseline term, to obtain a refined esti-
mate of the resonant mode center frequency
(fig. 3). From the modes linewidth (∼75 kHz)
we deduce a cavity finesse of about 4300.

The scheme in fig. 4 illustrates the deter-
mination of the mode frequencies needed to
calculate the ∆ν quantities in eqs.(4). Given
that the AOMs are used on their -1 order
of diffraction and the limited frequency shift
bandwith (300-480 MHz, we record the posi-
tions of the horizontally polarized TEM0,0,
TEM0,1/TEM1,0 modes with longitudinal or-
der (N−1) and (N−2) relative to the TEMlock
mode of order N and vertical polarization.
These positions are derived as stated above
by sweeping the re-injected beam frequency
around each mode. Profiles of the 3 modes are
obtained in rapid succession: 100 scans of 2 ms
over each mode, thus ∼700 ms measurement
time (including time lags) to obtain 100 posi-
tion determinations for each of the 3 modes.
Each series of 100 position determinations are
averaged before being used in eqs.(4). This
allows to minimize the effect of cavity length
fluctuations in between successive determina-
tions of the mode frequencies.

Faster frequency switching could improve
against short term effects (mechanical cavity
vibrations) but would impose too much time
lags in our measurements due to delays in the
communication protocol of our RF generator.
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Figure 3: Acquired mode profiles (2 ms acquisition time) with fits and residuals. Different noise
levels are due to different peak values before normalization.

5



700 600 500 400 300 200 100 0
Frequency shift (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ca
vi
ty
 t
ra
ns
mi
ss
io
n

FSR

x
y

mesX
mesY

Locking frequency
Vertical polarisation

Reference frequency
Horizontale polarisation

TEM0, 0
(N, 0, 0)

TEM0, 0
(N-1, 0, 0)

TEM0, 0
(N-2, 0, 0)

TEM1, 0
(N-1, 1, 0)

TEM1, 0
(N-2, 1, 0)

TEM0, 1
(N-1, 0, 1)

TEM0, 1
(N-2, 0, 1)

RF AOM
Succesive jumps

Frequency sweeps

Accessible frequencies with AOMs

Figure 4: Measurement of ∆ν values. AOMs RF range limitations impose to evaluate the
frequency intervals relative to the end of the mode structure (∆νmes quantities). From there,
the ∆ν quantities are deduced using evaluation of FSR (in gray).

0 50 100 150 200 250 300 350 400
Frequency shift (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ca
vi
ty
 t
ra
ns
mi
ss
io
n

ISL

Lock frequency
Vertical polar.

Reference frequency
Horizontal polar.

(N+1, 0, 0) split

Vertical polar.
Horizontal polar.

Figure 5: Measurement of FSR.

From there, the ∆νx and ∆νy quantities
can be calculated using cavity FSR which is
also required in eqs.(4). We obtain it from
the position of the (N − 1) TEM0,0 mode of
horizontal polarization, corrected (see fig. 5)
for the polarization mode splitting of the V-
shaped cavity: FSR= ∆ν0,0(h)−∆νsplit. This
splitting is due to the off-normal reflection at
the folding cavity mirror (the input mirror).
It can be understood by considering the well-
known Fresnel equations [20, 21] for reflected
s and p waves at a simple dielectric interface.
These equations yield different phase shifts
as a function of the incidence angle. Then,
upon off-normal reflection on the alternate in-

dex stack of a dielectric mirror, different phase
delays are also accumulated by vertically and
horizontally polarized waves. This phase shift
translates into a splitting (independent ofm,n
but slowly dependent on wavelength) of each
TEMm,n resonance according to polarization.
In other words, in a V-shaped cavity each
transverse mode comes as a frequency doublet
with vertical and horizontal polarizations sep-
arated by an almost constant frequency gap
∆νsplit.

To determine the polarization splitting of
our cavity, the polarization of the re-injected
beam is turned to 45◦, thanks to a second
half–wave plate placed after the AOMs. This
allows to obtain the TEM1,0 doublet profiles
within a single 1.2 MHz frequency scan over
2 ms: The vertically polarized component of
the doublet appears on the signal from PD1
(with an offset given by the locked laser)
while the other on the signal from PD2. In
fact, when we tried to perform this type of
measurement directly on the doublet of the
TEM0,0 mode (with N − 1), the laser lock
was perturbed when scanning over the ver-
tical polarized component. Instead, thanks
to spatial orthogonality of different transverse
modes (of same polarization), no perturbation
was observed when using the 1,0 mode. Fi-
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nally, after fitting with a Lorentzian profile
on a linear baseline, the center positions of
the TEM1,0 modes of the two polarizations
were subtracted to obtain a splitting value of
393471 ± 5Hz (from an average of 1.8× 106

acquisitions over 1 h).
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Figure 6: Measurement of the splitting.

It should be noted that this splitting,
which depends on the incidence angle and the
dielectric refraction indices of the coating ma-
terials of the mirror, is subject to significantly
smaller thermal drift compared to the other
frequency intervals contributing to our deter-
mination of the Gouy phases. This is com-
forted by the Allan deviation on this param-
eter which decreases steadily over the acqui-
sition time mentioned above. Thus in prac-
tice, the measurement error on the splitting
has negligible impact on the precision budget.
On the other hand, its frequency dependence
is not negligible: from modelling of the dielec-
tric mirrors we estimate its value changes by
about 140 Hz over one cavity FSR. Given that
we measure the splitting not on the (N − 2)
TEM0,0 mode (our virtual reference according
to fig. 4) but on the (N−1) TEM1,0 mode, we
introduce a systematic error of about 100 Hz,
which is here negligible relative to other sys-
tematic biases discussed below. On the other
hand, this error could be completely avoided
by addressing modes of the same polarization,

which was not possible here given the limited
RF range combined with the large cavity mode
spacing.

5 Results and discussion

The stability of our simple locking system al-
lows to average the mode positions during
hours without interruption. In fig. 7, we
show results from a 1-hour continuous acqui-
sition set, where profiles of 3 transverse modes
(TEM0,0, TEM0,1 and TEM1,0) are acquired
in succession, fitted, and resulting (averaged)
mode frequencies are used to calculate the
plotted quantities. The obtained traces for ∆ν
quantities show a doubling that probably cor-
responds to an oscillation on short time scales,
probably an electronic artifact whose origin we
still have to understand.
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Figure 7: One set of measurements during 1
hour.

Shot to shot fluctuations of these quan-
tities are governed by statistical type-A un-
certainty, where averaging over n successive
samples delivers values with fluctuations de-
creasing as 1/

√
n. However, as the system is

subject to drift, mostly of mechanical origin
due to temperature changes, at long enough
times this starts dominating over the statis-
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tical fluctuations of the averaged quantities.
We will use the Allan variance [22] to study
the effect of drift on our measurements.
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Figure 8: Allan deviations of mode positions.

Allan deviations (square-root of the vari-
ance) are calculated here with a Python rou-
tine using the allantools [23] library which de-
livers the “overlapping” Allan deviation [24].

In fig. 8 we see that frequency positions of
modes relative to TEMlock (mode intervals)
are initially determined with few hundred Hz
precision (for the 0.7 s acquisition time of an
elementary measurement cycle). Averaging
over 100 s leads to 10 Hz precision for the FSR
determination, and a few times worse for the
other mode intervals. This difference is mostly
due to the better signal to noise ratio for the
transmission peak obtained for the 0,0 mode.
Further averaging up to 1 hour is clearly af-
fected by drift degrading precision back up to
the hundred Hz range. A similar trend is ob-
served in fig. 9 for the Gouy phases calculated
from these three frequency intervals. The min-
imum of the Allan deviation plot gives the
lowest error achieved for the Gouy phases in
our setup and with our measurement scheme.
While this is about 1.2× 10−7 rad for φyG, it
goes down to 6.4× 10−8 rad for φxG. This dif-
ference is probably due to the higher rigidity
of our V-shaped cavity design on the horizon-
tal plane.
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Figure 9: Allan deviations of Gouy phases.

We can attribute the observed behavior of
the Allan deviation of the modes intervals to
thermal cavity drift. As we observed in the
experimental section, residual thermal drift of
the cavity length after active thermal stabi-
lization is limited in extent to 40 mK peak
to peak, which corresponds to a maximum
modes interval change of about 200 Hz, oc-
curring over about 2 hours timescales. On
the other hand, the observed Allan deviations
start with few hundred Hz precision on short
time scales, which is determined by signal to
noise of fitted resonance profiles. Then Allan
deviations decrease as precision improves with
averaging until reaching the tens Hz range at
two minutes. We may assume this minimum
to be given by the thermal drift, which in-
creases with time. However, if we naively take
a linear drift in time by using a 100Hz/hour
slope, we should expect a ten Hz level to be
attained on 6 minutes time scales. However,
it is rather intuitive that drift on short time
scales must be significantly faster than the
slope given by the maximum deviation divided
by the characteristic time scale over which it
occurs. Thus we conclude that the minimum
of the Allan deviation is consistent with cavity
thermal drift. On the other hand, the long-
term Allan deviation should go up to the ex-
pected maximum drift, which is the case here
even though we did not measure the Allan de-
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viation at even longer time scales. In fact if we
assume no other dominant drift mechanisms,
we should expect a leveling off of the Allan
variance at longer time scales. Thus it will be
interesting in the future to use better temper-
ature stabilization and/or longer acquisition
times to verify this hypothesis.

With respect to systematic errors, be-
sides the polarization splitting discussed above
(negligible for the time being), we should con-
sider the offset of the locked laser frequency
relative to the center of the TEMlock mode. As
with other frequency locking schemes, this off-
set may be due either to parasitic etalon effects
or to a non-zero locking point due to electronic
drift or to residual amplitude modulation of
the source as a result of applied modulation
(of the feedback phase through the piezo-
electrically controlled mirror). The entity of
changing frequency offset can be roughly eval-
uated by looking at variations in the cavity
transmission level for the vertical polarization
(lock) on the PD1 photodiode. By consider-
ing the width of the cavity resonances, for our
measurements these variations can be trans-
lated to a maximum offset of ±2 kHz, corre-
sponding to a maximum ±12× 10−6 rad error
on the Gouy phases. This estimate is likely in
large excess since changes in the cavity trans-
mission level may have several origins besides
drift of the locking point.

While we could find a way to measure and
control this locking frequency offset, we think
it would be preferable to circumvent it al-
together. Thus an interesting improvement
would be to use AOMs with wider bandwidth
or a cavity with a smaller FSR. This would
allow to perform direct measurement of FSR
and other ∆ν values relative to the TEM0,0
mode of the same polarization, by including
this mode in our rapid measurement cycle.
Such differential measurements would free our
measurements from any offset of the locking
frequency (as long as this is slowly drifting)
and also from the need to consider the polar-
ization splitting.

Finally, we should observe that the mea-
sured Gouy phases are consistent with ex-
pected values for our cavity, and can be made

to coincide to within measurement accuracy
by small adjustment of the radius of curvature
R of the three mirrors (for simplicity supposed
identical) and of the cavity folding angle. For
this check, we applied the standard Gaussian
beam propagation model based on transfer
matrices for the cavity mirrors and the free-
space propagation in between them. Astig-
matism is introduced by the incidence angle
θ on the folding mirror which gives two differ-
ent mirror matrices [25] for propagation in the
horizontal and vertical planes. As discussed
e.g. by Yariv[14], the round-trip Gaussian
beam propagation matrix can be used to cal-
culate all geometrical properties of the cavity,
in particular the TEM modes frequencies and
the Gouy phases. We first set the cavity length
to produce the measured FSR (320.2410 MHz
from fig. 7), giving L =234.1986 mm rather
than 234.2mm by construction. Then, by fit-
ting R and θ to obtain the Gouy phase values
φx =1.024 765 rad and φy =1.003 764 rad (also
from fig. 7) we obtain respetively 496.667 mm
(manufacturer specification is 500 mm) and
15.6524◦ (16◦ by construction). This is not
surprising since two model parameters are ad-
justed to obtain perfect match for two depen-
dent variables. In place of adjusting the cavity
angle, we could also have allowed for mirror
astigmatism by using different curvature radii
in the vertical and horizontal planes. How-
ever, the message is that the adjusted param-
eter values do match the cavity design values
to within reasonable mechanical tolerances.

6 Conclusions

To our knowledge, the best measurement of a
Gouy phase in a cavity was made by Durand
et al. [10] in 2012. They managed to achieve
a 2.7× 10−6 rad accuracy and 6× 10−7 rad
precision with only 10 s averaging (they did
not provide Allan variance plots), using a 5×
higher finesse cavity than here, and a more
complex setup.

By using optical frequency locking we are
able to reach similar performance for a much
lower finesse cavity, with 6.4× 10−8 rad pre-
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cision in 100 s averaging (and 2× 10−7 rad in
10 s). As our setup does not allow variation of
the cavity length, we cannot present a thor-
ough comparison of measurements with the
theory as Durand et al. did. However, we es-
timate systematic errors and their drift as be-
ing not larger than ±2 kHz in the determina-
tion of the frequency intervals between modes,
yielding ±12× 10−6 rad accuracy on the Gouy
phases.

Our approach can be applied to linear or
ring cavities as well, and higher finesse should
not be a problem [11–13]. This should allow
sensitivity increase of a few orders of magni-
tude, at the price of increased measurement
time. An important improvement is to re-
design our setup to allow sampling the cav-
ity FSR on successive transverse modes of
the same polarization, which would allow to
set aside the polarization mode splitting and
the associated frequency dependence (which
may introduces a sizable bias). One could
also use a more agile RF generator in or-
der to reduce the commutation time between
the resonances needed for the determination
of mode intervals. The measurement scheme
could also be adapted to allow measurement of
distances or displacements within a cavity of
adjustable size, in particular by using electro-
optically generated sidebands in place of AOM
frequency shifts, together with a more broadly
tuneable RF generator.
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