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Résumé :
Au-delà de la décomposition de données en clusters

homogènes et distincts, le subspace-clustering peut pro-
poser une caractérisation des sous-espaces dans lesquels
les clusters vivent. Cet article propose d’étudier la pos-
sibilité de capturer la notion d’attribut caractéristique
dans le cadre des degrés de typicité, comme attribut ty-
pique. Dans ce but, il étudie la notion de degrés de typi-
cité pour les attributs et propose un algorithme d’estima-
tion alternée de clusters, nommé TbSC, afin d’exploiiter
ces degrés dans le subspace clustering. Il illustre leurs
différences sur des bases de données simples.
Mots-clés :

subspace clustering, typicité
Abstract:

Subspace clustering can offer, beside a decomposition
of data into homogeneous and distinct clusters, a charac-
terisation of the subspaces in which the clusters live. This
paper explores the possibility of capturing the notion of
characteristic features in the framework of typicality de-
grees, as typical features. To that aim, it discusses the no-
tion of typicality degrees for features and proposes an Al-
ternating Cluster Estimation algorithm, named TbSC, to
exploit these degrees within subspace clustering. It illus-
trates their differences experimentally using simple data
sets.
Keywords:

subspace clustering, typicality

1 Introduction

Subspace clustering is an unsupervised learning
task that addresses a form of refined clustering
objective : as clustering, it decomposes data sets
into subgroups that must be both distinct and
compact. In addition to this double constraint,
subspace clustering takes into account the fact
that the data subgroups belong to different sub-
spaces of the feature space. On the one hand,
this assumption can help identify more rele-
vant data subgroups and relaxes the need to

use a single, global, similarity measure : sub-
groups need not be dense in the whole fea-
ture space, but only in local subspaces. Moreo-
ver these subspaces are automatically identified,
along with the clusters themselves and they do
not need to be predefined, e.g. by expert know-
ledge. On the other hand, this assumption can
lead to enrich the data description : beyond the
data summary provided by its decomposition
into a reduced number of subgroups, each clus-
ter can be further characterised and described
by its associated subspace.

As detailed in Section 2.1, numerous subspace
clustering approaches have been proposed, that
can be structured into two main families, depen-
ding on the point of view they favour among the
two abovementioned advantages.

This paper proposes to explore the interpreta-
tion of subspace clustering in the framework
of typicality degrees and prototypes introduced
in [23] following the cognitive notions propo-
sed in [24] : the computational definition of
prototypes characterises a set of instances, cal-
led class, as opposed to other classes, through
a representative instance that both does possess
properties shared among the class members and
does not possess properties shared with mem-
bers of the other classes. As detailed in Sec-
tion 2.2, the definition of prototypes relies on
the definition of typicality degrees, that can be
applied to instances or to attribute values.

This paper proposes to examine whether the



subspace that characterises a cluster in subspace
clustering can be interpreted as a subspace that
is typical for it. To that aim, it explores how ty-
picality degrees can be defined for subspaces,
viewed as feature combinations : it proposes a
prospective study about the introduction of ty-
picality related notions for subspace clustering.
At a formal level, it interprets existing weighted
approaches of subspace clustering in the typi-
cality framework and it proposes a new typica-
lity based subspace clustering algorithm, named
TbSC. It illustrates their differences experimen-
tally using simple 2D data sets.

The paper is organised as follows : Section 2 re-
minds the key notions used in the paper, consi-
dering in turn subspace clustering and typicality
degrees. Section 3 motivates the proposed ap-
proach by interpreting some existing subspace
clustering approaches in the framework of ty-
picality degrees. It then discusses the notion
of typicality degrees attached to attributes and
presents the proposed TbSC algorithm. Sec-
tion 4 describes the experimental study conduc-
ted to examine the properties of the proposed
approach. Section 5 draws the conclusion and
discusses directions for future work.

2 Reminder on the Key Notions

This section provides some required basics, re-
garding subspace clustering first, typicality de-
grees and prototypes then.

2.1 Subspace Clustering

Overview. As mentioned in the introduction,
subspace clustering [3, 25, 18] refines the clus-
tering task by considering that each cluster can
be associated with, or live in, its own subspace
of the feature space. As illustrated in Section 4
and in particular on Fig. 1, a cluster following
a Gaussian distribution may for instance not be
spherical, but it may live in a subspace of the
whole space characterised by the small values
of its covariance matrix. Among the numerous
approaches that have been proposed to perform

subspace clustering, two main paradigms can be
distinguished : they respectively (i) exploit the
hypothesis that the clusters live in different sub-
spaces to identify them better vs (ii) explicitly
identify the subspaces to extract more informa-
tion from the data and characterise the clusters.

The first paradigm can be exemplified by so-
called self-expressive approaches that represent
the data as linear combination of other data
points that must thus be in the same subspace.
Then they minimise the reconstruction cost with
various penalisation terms (see e.g. SSC [8, 9]
or LRR [20]). Deep learning methods have been
proposed to extend this principle to the case of
non-linear subspaces [21, 14, 26].

Methods in this first paradigm view the sub-
space existence as a useful intermediary tool for
the clustering aim, but their identification is not
a goal in itself and they are not further used. On
the other hand, methods in the second paradigm
consider that the subspaces provide valuable in-
formation in themselves and they aim at identi-
fying them explicitly.

They can be further organised into three ca-
tegories : bottom-up strategies [3, 6, 5] start
from atomic clusters with high density and very
low dimensionality that are then iteratively fu-
sed to build more complex clusters and sub-
spaces using A PRIORI like iterative fusion. Pro-
jected clustering approaches [1, 2] apply a top-
down strategy that progressively refines sub-
spaces initially defined as the whole feature
space. Finally partitioning strategies optimise a
cost function that extends the classical k-means
cost function so as to integrate the desired sub-
spaces associated with the clusters. As they are
the basis for the typicality based approach to
subspace clustering studied in this paper, they
are described in more details in the next subsec-
tion.

Cost Function-based Subspace Clustering. The
common point to subspace partitioning strate-
gies is to replace the standard Euclidean dis-
tance usually applied for clustering by weigh-



ted variants thereof : the weights are associated
with each cluster, leading to local definitions of
the distance function. These weights then define
the subspaces associated with each cluster.

The mathematical notations used in the paper
are the classic following ones : n denotes the
number of data points and d the number of
features, so that the data are denoted, for any
i = 1..n, xi = (xip)p=1..d ∈ Rd. The desi-
red number of clusters is denoted c, the clus-
ter centres cr = (crp)p=1..d ∈ Rd for r = 1..c.
The assignment of data xi to cluster r is de-
noted uri, with uri ∈ {0, 1} or uri ∈ [0, 1]
for crisp and fuzzy assignments respectively. Fi-
nally, the feature weights for cluster r are deno-
ted wr = (wrp)p=1..d. They are usually normali-
sed in [0, 1].

A reference cost-function subspace clustering
algorithm is AWFCM, the Attribute Weighted
Fuzzy c-Means [16] that generalises the fuzzy
c-means (fcm) cost function, considering locally
weighted Euclidean distances :

JAWFCM(U,C,W ) =
n∑
i=1

c∑
r=1

umri

d∑
p=1

wqrp(xip−crp)2

(1)
under the constraints

∑c
r=1 uri = 1 for all i,∑n

i=1 uri > 0 for all r and
∑d

p=1wrp = αr
for all r. The third constraint, new as compa-
red to the fcm ones, forbids the trivial solution
∀r, p, wrp = 0. The algorithm hyperparameters
arem and q, usually set to 2, and the αr, usually
set to 1. Other values for these (αr) hyperpara-
meters allow to weight the relative importance
of the c clusters in the final partition. This cost
function is optimised using a classic alterna-
ted scheme, that iteratively updates the cluster
centres, membership degrees and cluster feature
weights. The update equations for the cluster
centres and the membership degrees are iden-
tical to that of fcm, replacing the Euclidean dis-
tance by the local weighted variants when com-
paring a point to a cluster centre. Regarding the
attribute weights, for the classical choice q = 2,

the update equation is

wrp =
s−2
rp

d∑
q=1

s−2
rq

with s2rp =
n∑
i=1

umri(xip − crp)2

(2)
Due to the considered feature weighted Eucli-
dean distance, the cluster subspaces are defined
as axes-parallel hyperplanes.

Many variants have later been proposed : to
name a few in decreasing order of their simila-
rity to AWFCM, the PFCM algorithm [11] pro-
poses an inline version of the constraint with an
original optimisation process, based on proxi-
mal descent. Sparsity constraints on the wrp
weights can be introduced [4, 12], as well as
entropy terms [15] in a crisp and not fuzzy assi-
gnment setting (i.e. imposing uri ∈ {0, 1}). In
particular, it has been proposed [4] to apply to
the subspace coefficients wrq the approach used
to make the membership degrees uri sparse :
considering wqrq with the usual choice q = 2
actually only leads to values in ]0, 1[, but does
not allow for 0 values. Therefore it is propo-
sed to replace wqrq with g(wrq) where g(x) =
1−β
1+β

x2+ 2β
1+β

x : the combination of a term of de-
gree 1 with the quadratic term guides the weight
optimisation in the direction of binary, and thus
sparser, degrees.

It should be noted that, although proposed in a
different framework, the Gaussian Mixture Mo-
del (GMM) can be interpreted as subspace clus-
tering insofar as it introduces, for each clus-
ter, a local Mahalanobis distance : the cova-
riance matrix attached to each cluster defines
an ellipsoidal subspace. GMM optimises the
data log-likelihood, in a probabilistic approach
to clustering. The Gustafson-Kessel algorithm
(see e.g. [13]) also relies on local Mahalanobis
distance, but is more similar to the algorithms
mentioned above insofar as it also optimises
the quantisation error cost, and not the log-
likelihood. Both GMM and Gustafson-Kessel
provide rich subspaces, beyond axes-parallel
hyperplaces, that can adapt to the data com-



plexity, at the expense of a high computational
cost.

2.2 Prototypes and Typicality Degrees

Cognitive psychology [24] has shown that cate-
gory representative members are instances that
share both many features with the other mem-
bers of the category and few features with the
members of other categories. This well-studied
principle has been transposed to a computatio-
nal definition [23, 19] so as to make it possible
to characterise and summarise data sets, classes
or clusters, taking into account both common
and discriminative features : using these two
principles simultaneously makes it possible to
build context-dependent representatives that are
more relevant than classic representatives, such
as the average or the median for instance, that
actually only depend on common features.

In the machine learning view, the construction
of a prototype consists in three steps [23] :
first internal resemblance and external dissimi-
larity are computed, respectively comparing an
instance with the other members of its cate-
gory and with the members of the other cate-
gories. These two quantities are then aggrega-
ted into the typicality degree of the conside-
red instance. Finally, the most typical instances
are in turn aggregated into the prototype. These
definitions have been implemented to compute
prototypes of individual values or of data ins-
tances [23, 19].

The definitions of internal resemblance and ex-
ternal dissimilarity obviously depend on the de-
finition of resemblance and dissimilarity mea-
sures, respectively denoted r and d to compare
the instances. They are formally defined as

R(x,C) = avg(r(x, y), y ∈ C)
D(x,C) = avg(d(x, y), y 6∈ C)

The typicality degree is then defined as the ag-
gregation of these two quantities, the choice of
the aggregation operator determining the pro-
totype semantics and in particular the extent to

which they should be central or discriminative
elements. Common choices include conjunctive
or trade-off operators offering a compensation
property as well as operators with variable be-
haviours, such as the symmetric sum that is
conjunctive, disjunctive or trade-off depending
on the values to be aggregated and offers a full
reinforcement property (see e.g. [7]). The last
step builds the prototype itself, aggregating the
most typical objects for instance in a represen-
tative fuzzy prototype [23, 19].

The notions of typicality degrees and proto-
types have been exploited for machine learning,
both in supervised [22] and unsupervised set-
tings [17]. In the latter case, the underlying prin-
ciple consists in assigning points to data sub-
sets so that they have high typicality degrees
for the subset they are assigned to. Typicality
degrees are iteratively computed for each data
point with respect to the tentative clusters.

3 Proposed Approach

This section explores, at a theoretical level, the
relevance of applying the principles of typica-
lity degrees to the subspace clustering task :
it relies on the intuition that characteristic fea-
tures, as looked for when performing subspace
clustering, can be interpreted as typical attri-
butes. Nevertheless, typicality degrees are de-
fined for feature values or instances, but not
for features themselves : the section discusses
a possible definition of the latter and then pro-
poses a heuristic algorithm, called TbSC, to per-
form typicality-based subspace clustering.

3.1 Typicality Analysis of Subspace
Weights

This section proposes to interpret the weights
used in cost-based subspace clustering ap-
proaches, recalled in Section 2.1, and in parti-
cular AWFCM, in the framework of typicality
degrees, recalled in Section 2.2 : the AWFCM
cluster weight update equation (see Eq. (2)) can
be interpreted as a feature internal resemblance,



computed relatively to the other features.

Indeed, the s2rp component computes the weigh-
ted average squared distance to the cluster
centre across all data, using membership de-
grees as weights. It thus defines a weighted
cluster dispersion measured on feature p and, as
a consequence, its inverse captures a notion of
internal resemblance of cluster r on feature p.
Its being based on the cluster centre reduces
the computational complexity as compared to a
measure that would rely on the distances bet-
ween all pairs of points. The latter would, in
addition, raise the question of the membership
degree aggregation, as two memberships should
be taken into account and combined.

The last step for computing wrp normalises the
1/s2sp coefficients in [0, 1], so as to satisfy the
constraint that the sum of wrp weights equals 1
for each cluster across all features : it compares
the dispersion inverse over feature p to the dis-
persion inverse over the other features.

It can be shown that other subspace clustering
algorithms based on cost function rely on simi-
lar principles : even if they may take into ac-
count additional components, for instance to fa-
vour sparse weights, the definition of the lat-
ter corresponds to an internal resemblance mea-
sure, defined relatively to the other features.

3.2 Motivation for TbSC

The consequence is that existing subspace
weights do not take into account a notion of ex-
ternal dissimilarity : cluster subspaces are defi-
ned without considering the other clusters. Now
it can be argued that it would be relevant to re-
ward features that are specific of a cluster and
exclude others, making features all the more im-
portant to describe a cluster as they do not apply
to other ones.

It should be noted that such a typicality prin-
ciple differs from the one applied in typicality
based clustering [17] : the latter relies on a clas-
sical notion of typicality degrees, computing the
extent to which an instance is typical of a (ten-

tative) cluster, then assigning the instance to the
most appropriate cluster and iterating the steps
of typicality and assignment computations. Ap-
plying the notion of typicality degrees to sub-
space clustering requires to get down to the fea-
tures and thus to define typicality degrees asso-
ciated with features.

3.3 Feature Typicality Degrees

The aim of the feature typicality degree is to
assess the extent to which the considered fea-
ture is characteristic of a cluster. One approach
could thus be to compute the typicality degree
of each encountered value for this attribute and
to aggregate them using a relevant aggregation
operators. Yet it appears that it is difficult to spe-
cify the desired behaviour of such an aggrega-
tion operator, depending on the multiple situa-
tions that can arise.

As existing subspace weight definitions, we
propose to base the feature typicality on the va-
lue the cluster centre takes for this feature, so
as to reduce the computational cost. This sec-
tion discusses in turn all decision levels for the
definition of the feature typicality degrees.

Comparison Measures. The first step is to set the
considered comparison measures, both for re-
semblance and dissimilarity. For feature typica-
lity degrees, they simply apply to numerical va-
lues and not data instances, however numerous
possibilities can still be considered, as sketched
below.

First, regarding dissimilarity, it seems natural to
define it as an increasing function of the abso-
lute value of the difference of the compared va-
lues. We propose to consider a linear function,
only normalising the difference so as to get an
intuition to the scale of this difference value.
As normalisation factor, we propose to consider
the maximal distance observed among all data
for attribute p, ie to define Zp = maxi(xip) −
mini(xip) and

dissp(x, y) =
|xp − yp|
Zp

(3)



This definition implies that a single couple is
considered having a dissimilarity degree equal
to 1, the one providing the observed maximum
and minimum. Other possibilities would for ins-
tance be to decide of a fraction of this value
from which two values can be considered as to-
tally dissimilar, e.g. Zp/2. In case a data expert
can provide knowledge regarding a desired sa-
turation effect (the difference value from which
the dissimilarity must be considered 1), other
values can be given to Zp. Another line of va-
riants would be to define the dissimilarity mea-
sure with a non-linear dependence on the dif-
ference, e.g. through a quadratic function, ma-
king values with high differences have an even
higher dissimilarity.

Regarding the resemblance measure, we pro-
pose to define it as the complement to 1 of dis-
similarity :

ressp(x, y) = 1− dissp(x, y) (4)

Here also, numerous other possibilities could be
considered, most of them being derived from
the choice of the dissimilarity, e.g. replacing the
linear function by an exponential or a Cauchy
function [?].

Internal Resemblance and External Dissimilarity.
The comparison measures must then be aggre-
gated for the whole feature, so as to compute the
internal resemblance and external dissimilarity
of the considered feature p for the considered
cluster r, as opposed to the other clusters. Mo-
reover, the fact that data assignment to the clus-
ter is usually fuzzy must be taken into account.

As a consequence, we propose to define

R(r, p) =

∑n
i=1 uriressp(xi, cr)∑n

i=1 uri
(5)

D(r, p) =

∑n
i=1(1− uri)dissp(xi, cr)∑n

i=1(1− uri)
(6)

Internal resemblance is a weighted average of
the resemblance between the data instances and
the cluster centre, for the considered feature,
defining weights as membership degrees : the

more an instance belongs to the cluster, the
more influence it has on the cluster internal re-
semblance.

As a comparison, it can be observed that the
proposed interpretation of AWFCM weights in
the typicality framework relies on a definition
that differs in its principle : the cluster internal
dispersion is first computed over all data ins-
tances, and then the inverse is computed to turn
dispersion to a similarity semantics. In the pro-
posed approach, individual similarity degrees
are aggregated.

Regarding external dissimilarity, the question is
to assess the extent to which the feature also
applies to other clusters, and thus is not discri-
minative enough of the considered cluster. The
above definition proposes to compare data ins-
tances mostly assigned to other clusters (as ex-
pressed by the complement to 1 of the member-
ship degree) to the considered cluster centre.

Aggregation. The typicality degrees are then
defined as the aggregation of internal resem-
blance and external dissimilarity, whose ope-
rator must be defined. We propose to use a
variable behaviour one, namely the symmetric
sum, because of the reinforcement property it
proposes : in the case when both internal resem-
blance and external dissimilarity are high, their
aggregation is even higher :

T (r, p) =
R(r, p)D(r, p)

R(r, p)D(r, p) + (1−R(r, p))(1−D(r, p))
(7)

An experimental study on the effect of the cho-
sen aggregation operator for the task of sub-
space clustering constitutes a perspective for fu-
ture work.

Normalisation. To the best of our knowledge,
all existing subspace clustering approaches im-
pose that, for each cluster, the sum of the fea-
ture weights across all features equals 1. We
thus propose to apply the same normalisation
step and to define the weights of the Euclidean
distance that will be used to assign the data ins-
tances to the clusters as relative typicality de-



grees. This choice seems in agreement with an
intuition that features can be compared one with
another to identify the significant ones, leading
to relative feature importance :

wrp =
T (r, p)∑d
q=1 T (r, q)

(8)

As a consequence of these choices, the weight
attached to a feature for a given cluster depends
both on other clusters as well as on other fea-
tures.

Comment. It can be observed that the previous
decisions, that are commented and justified in
each case, actually lead to define the typicality
degree for feature p as the typicality degree of
the crp value, in the typicality framework remin-
ded in Section 2.2 : the proposed feature typica-
lity equals the typicality degree of the cluster
centre value for the considered feature, with the
specificity that its takes into account fuzzy as-
signments, beyond crisp ones. This is not expli-
citely a predefined choice, it emerges from the
choices made for each of the successive steps.

3.4 Proposed TbSC algorithm

The proposed typicality based subspace clus-
tering algorithm instanciates the Alternating
Cluster Estimation heuristic (see e.g. [13]) to
identify the clusters and the subspaces in which
they live : it applies the centre and assignment
update equations of the AWFCM algorithm [16]
and replaces its weight update equation given in
Eq. (2) by the expression given in Eq. (8).

It must be underlined that the proposed ap-
proach does not offer convergence guarantee as
it is based on a heuristic and it does not optimise
a cost function.

4 Preliminary Experimental Study
and Discussion

This section describes some preliminary expe-
riments conducted to examine the behaviour of
the proposed TbSC heuristic.

4.1 Experimental Protocol

One of the difficulties of subspace clustering is
experimental evaluation : as any unsupervised
learning task, it does not dispose of consensual
quality criteria that can be applied to compare
methods one with another. Moreover, subspace
clustering requires to assess both the identified
clusters and their associated subspaces, inclu-
ding possible position and distorsion errors. In
this exploratory paper, we perform visual ins-
pection of the obtained results, both regarding
the data assignment and the subspace weights.

As a consequence, the considered datasets are
very simple 2D data, drawn following two
Gaussian distributions that are axes parallel, in
agreement with the principles of the approaches
considered in the paper. Figure 1 shows the
four considered configurations that correspond
to different cases of relative positions of the
Gaussians, respectively named D1, D2, D3 and
D4 from left to right :D1 illustrates the principle
of subspace clustering, D2, D3 and D4 corres-
pond to three cases of two distinct clusters that
however share the same subspace.

The experiments compare the results provi-
ded by the proposed TbSC heuristic, with the
reference fuzzy subspace clustering algorithm
AWFCM [16] whose cost function is reminded
in Section 2.1, and with the algorithm we de-
note BOR proposed by [4]. As recalled in Sec-
tion 2.1, BOR is an AWFCM variant that aims
at identifying sparse representations of the clus-
ter associated subspaces.

In all experiments, the desired number of clus-
ters is set to the expected number of clusters,
i.e. 2.

4.2 Obtained Results

For datasets D1, D2 and D3, all three algo-
rithms output the expected clusters, the obtai-
ned partitions are thus not shown. For data-
set D4, Fig. 2 shows the only unexpected re-
sult, obtained both with AWFCM and BOR.



Figure 1 – Considered illustrative 2D data sets, from left to right D1, D2, D3, D4,

The weights obtained by the three compared
approaches are given in Tables 1 to 4. For all
tables, the first row shows the obtained wrp ma-
trices for the three algorithms, the second row
gives the matrices corresponding to the internal
ressemblance, external dissimilarity and typica-
lity degrees for TbSC. For all matrices, rows
correspond to clusters (first row : red cluster, se-
cond row : blue cluster) and columns to features
(first column : x-dimension, second column : y-
dimension).

For dataset D1, the three algorithms output, as
expected, a value for weight w12 greater than
the one for w11, i.e. for the y-feature for the
red cluster (that indeed corresponds to the ho-
rizontal one) and reciprocally a value for w21

greater than that for w22. Indeed, the horizon-
tal cluster lives in a subspace characterised by
the y-feature values. However, differences can
be observed : as expected, BOR achieves spar-
ser weight values than AWFCM and TbSC, it
outputs binary weights. TbSC has the least dis-
similar weights, even if the same ranking as
AWFCM and BOR is obtained for each cluster.
This results comes from the fact that, with the
chosen instantiation of typicality computation,
and in particular the normalisation multiplica-
tive coefficient used in the dissimilarity measure
(see Eq. 3), the differences in internal similarity
and external dissimilarity between the two fea-
tures remain small and are further attenuated in
the aggregation and normalisation of the typica-
lity degree. This data set thus illustrates the im-
portance of the definition of the typicality ins-
tantiation for subspace clustering.

For data setD2, a similar configuration is obser-
ved, except that the two clusters have the same

AWFCM BOR TbSC[
0.016 0.984
0.986 0.014

] [
0 1
1 0

] [
0.475 0.525
0.529 0.471

]
R D T[

0.884 0.964
0.972 0.846

] [
0.475 0.522
0.466 0.533

] [
0.873 0.967
0.968 0.862

]
Tableau 1 – Obtained weight matrices for data-
set D1

AWFCM BOR TbSC[
0.019 0.981
0.022 0.978

] [
0 1
0 1

] [
0.488 0.511
0.489 0.511

]
R D T[

0.922 0.927
0.921 0.923

] [
0.476 0.637
0.476 0.638

] [
0.915 0.957
0.914 0.954

]
Tableau 2 – Obtained weight matrices for data-
set D2

characteristic subspace. The difference between
the two features for TbSC appears to be even
smaller than for D1. This can be explained by
the global normalisation factor applied when
defining internal similarity : by default, the re-
ference value Zp is set to the maximal observed
distance, which is this case is smaller for the y-
axis than for the x-one. As a consequence, the
difference that can be observed for the two fea-
tures is less marked for TbSC that actually re-
scales the axes, questioning the normalisation
choice. The definition of the latter appears to be
a crucial and difficult question.

Regarding data set D3, it must be underli-
ned that all three algorithms appear to be sen-
sitive to the random initialisation and some-
times converge to an undesired data assignment,
where two left-right clusters are distinguished,



AWFCM BOR TbSC[
0.017 0.983
0.017 0.982

] [
0 1
0 1

] [
0.353 0.646
0.332 0.668

]
R D T[

0.859 0.914
0.847 0.914

] [
0.152 0.676
0.141 0.673

] [
0.523 0.957
0.476 0.956

]
Tableau 3 – Obtained weight matrices for data-
set D3

AWFCM BOR TbSC[
0.001 0.999
0.001 0.999

] [
0 1
0 1

] [
0.648 0.352
0.650 0.350

]
R D T[

0.912 0.868
0.903 0.865

] [
0.561 0.135
0.559 0.133

] [
0.930 0.505
0.922 0.497

]
Tableau 4 – Obtained weight matrices for data-
set D4

instead of the expected top-bottom ones. We
here focus on the case where they provide the
desired partition. D3, is then handled similarly
to data set D2 by AWFCM and BOR, whe-
reas TbSC makes a difference between them :
for D3, TbSC identifies the y-axis as being si-
gnificantly more typical than the x-axis, for
both clusters, whereas the difference between
the two axes is smaller for data set D2. This
is due to the low external dissimilarity of the
x-axis, as the clusters approximately have the
same distribution when projected on it. D3 also
illustrates that the characterisation captured by
typicality degrees differs from the one perfor-
med by AWFCM and BOR and allows to make
fine distinction between cases where the clus-
ters live in the same subspaces.

Dataset D4 illustrates a case where AWFCM
and BOR do not identify the expected clusters,
as shown on Figure 2, in a configuration simi-
lar to the one pointed out in [10] : AWFCM
and BOR can be considered as over-enthusiastic
in identifying subspaces, to the point that they
oversee the gap between the two expected clus-
ters and interpret them as being prolongation
one of another. Consistently, they identify the y-
axis as being totally characteristic for both clus-

Figure 2 – Partition output by AWFCM and
BOR for D4,

ters.

TbSC is the only algorithms among the three
considered ones that successfully identifies
the expected clusters. Regarding the subspace
weights, it indicates that the most typical di-
mension for both clusters is the x-axis : this cha-
racterisation is consistent with the absence of
external dissimilarity of the y-axis, which pre-
vents it from being typical of the cluster data.
Regarding internal similarity, due to the imple-
mented normalisation, as discussed above, no
big difference between the two axes is obser-
ved, and it does not counterbalance the external
dissimilarity effect when both criteria are aggre-
gated. These results illustrate that the conside-
red definition of typicality degrees differs from
the classical description of the cluster associa-
ted subspaces, i.e. the information captured by
typicality degrees in the proposed implementa-
tion differs from the principle of characteristic
subspaces in the sense of subspace clustering.

5 Conclusion and Future Works

This paper proposes a prospective study of the
possibility opened by the notion of feature ty-
picality degrees, as tools to characterise these
features, for the task of subspace clustering. It
proposes an implementation of the typicality
principles for this specific case and experimen-
tally examines the results it leads to on simple
data sets. Although preliminary, the obtained re-
sults allow to conclude that, as can be expec-
ted, the concepts of subspaces characteristic-of
vs typical-for clusters differ and possess dif-
ferent semantics. These differences require to
be further studied, in particular to identify their
respective relevance from possible application
points of view.



Ongoing works aim at performing such tho-
rough and systematic experiments to test more
diverse cluster configurations and examine the
effect of the parameters, in particular when
varying the relative positions of the Gaussian
distributions. Other instantiations of typicality
degree for the case of feature typicality also
constitute a perspective of these works : taking
into account a notion of external dissimilarity in
the weight computation for subspace clustering
can be considered as a relevant principle, but its
appropriate implementation remains a research
question.
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