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Subspace Clustering and Feature Typicality Degrees:
a Prospective Study

Marie-Jeanne Lesot
Sorbonne Université, LIP6,
F-75005, Paris, France
Email: Marie-Jeanne.Lesot@lip6.fr

Abstract—Subspace clustering can offer, beside a decomposi-
tion of data into homogeneous and distinct clusters, a charac-
terisation of the subspaces in which the clusters live. This paper
explores the possibility of capturing the notion of characteristic
features in the framework of typicality degrees, as typical
features. To that aim, it discusses the notion of typicality degrees
for features and proposes an Alternating Cluster Estimation
algorithm, named TbhSC, to exploit these degrees within subspace
clustering. It illustrates their differences experimentally using
simple data sets.

I. INTRODUCTION

Subspace clustering is an unsupervised learning task that
addresses a form of refined clustering objective: as clustering,
it decomposes data sets into subgroups that must be both
distinct and compact. In addition to this double constraint,
subspace clustering takes into account the fact that the data
subgroups belong to different subspaces of the feature space.
On the one hand, this assumption can help identify more
relevant data subgroups and relaxes the need to use a single,
global, similarity measure: subgroups need not be dense in the
whole feature space, but only in local subspaces. Moreover
these subspaces are automatically identified, along with the
clusters themselves and they do not need to be predefined,
e.g. by expert knowledge. On the other hand, this assumption
can lead to enrich the data description: beyond the data
summary provided by its decomposition into a reduced number
of subgroups, each cluster can be further characterised and
described by its associated subspace.

As detailed in Section II-A, numerous subspace clustering
approaches have been proposed, that can be structured into
two main families, depending on the point of view they favour
among the two abovementioned advantages.

This paper proposes to explore the interpretation of sub-
space clustering in the framework of typicality degrees and
prototypes introduced in [24] following the cognitive notions
proposed in [25]: the computational definition of prototypes
characterises a set of instances, called class, as opposed to
other classes, through a representative instance that both does
possess properties shared among the class members and does
not possess properties shared with members of the other
classes. As detailed in Section II-B, the definition of prototypes
relies on the definition of typicality degrees, that can be applied
to instances or to attribute values.
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This paper proposes to examine whether the subspace that
characterises a cluster in subspace clustering can be interpreted
as a subspace that is typical for it. To that aim, it explores
how typicality degrees can be defined for subspaces, viewed
as feature combinations: it proposes a prospective study about
the introduction of typicality related notions for subspace
clustering. At a formal level, it interprets existing weighted
approaches of subspace clustering in the typicality framework
and it proposes a new typicality based subspace clustering
algorithm, named TbSC. It illustrates their differences exper-
imentally using simple 2D data sets.

The paper is organised as follows: Section II reminds the
key notions used in the paper, considering in turn subspace
clustering and typicality degrees. Section III motivates the
proposed approach by interpreting some existing subspace
clustering approaches in the framework of typicality degrees.
It then discusses the notion of typicality degrees attached to
attributes and presents the proposed TbSC algorithm. Sec-
tion IV describes the experimental study conducted to examine
the properties of the proposed approach. Section V draws the
conclusion and discusses directions for future work.

II. REMINDER ON THE KEY NOTIONS

This section provides some required basics, regarding sub-
space clustering first, typicality degrees and prototypes then.

A. Subspace Clustering

1) Overview: As mentioned in the introduction, subspace
clustering [3], [26], [18] refines the clustering task by consid-
ering that each cluster can be associated with, or live in, its
own subspace of the feature space. As illustrated in Section IV
and in particular on Fig. 1, a cluster following a Gaussian
distribution may for instance not be spherical, but it may
live in a subspace of the whole space characterised by the
small values of its covariance matrix. Among the numerous
approaches that have been proposed to perform subspace
clustering, two main paradigms can be distinguished : they
respectively (i) exploit the hypothesis that the clusters live in
different subspaces to identify them better vs (ii) explicitly
identify the subspaces to extract more information from the
data and characterise the clusters.

The first paradigm can be exemplified by so-called self-
expressive approaches that represent the data as linear com-



bination of other data points that must thus be in the same
subspace. Then they minimise the reconstruction cost with
various penalisation terms (see e.g. SSC [8], [9] or LRR [21]).
Deep learning methods have been proposed to extend this
principle to the case of non-linear subspaces [22], [14], [27].

Methods in this first paradigm view the subspace existence
as a useful intermediary tool for the clustering aim, but their
identification is not a goal in itself and they are not further
used. On the other hand, methods in the second paradigm
consider that the subspaces provide valuable information in
themselves and they aim at identifying them explicitly.

They can be further organised into three categories: bottom-
up strategies [3], [6], [5] start from atomic clusters with
high density and very low dimensionality that are then iter-
atively fused to build more complex clusters and subspaces
using A PRIORI like iterative fusion. Projected clustering ap-
proaches [1], [2] apply a top-down strategy that progressively
refines subspaces initially defined as the whole feature space.
Finally partitioning strategies optimise a cost function that
extends the classical k-means cost function so as to integrate
the desired subspaces associated with the clusters. As they
are the basis for the typicality based approach to subspace
clustering studied in this paper, they are described in more
details in the next subsection.

2) Cost Function-based Subspace Clustering: The common
point to subspace partitioning strategies is to replace the
standard Euclidean distance usually applied for clustering by
weighted variants thereof: the weights are associated with each
cluster, leading to local definitions of the distance function.
These weights then define the subspaces associated with each
cluster.

The mathematical notations used in the paper are the classic
following ones: n denotes the number of data points and d
the number of features, so that the data are denoted, for any

= 1.n, & = (Tip)p=1.d € R, The desired number of
clusters is denoted c, the cluster centres ¢, = (¢yp)p=1..d € R4
for r = 1l..c. The assignment of data z; to cluster r is
denoted w,;, with u,; € {0,1} or u,; € [0,1] for crisp and
fuzzy assignments respectively. Finally, the feature weights
for cluster r are denoted w, = (w;p)p=1..4- They are usually
normalised in [0, 1].

A reference cost-function subspace clustering algorithm is
AWFCM, the Attribute Weighted Fuzzy c-Means [16] that
generalises the fuzzy c-means (fcm) cost function, considering
locally weighted Euclidean distances:

Jawrcem (U, C, W) ZZU”ZU) (Tip — crp)? (1)

i=1r=1 p=1

under the constraints » . _, u,; = 1 for all 4, > . uy; >0
for all r and 22:1 Wyp = a, for all r. The third constraint,
new as compared to the fcm ones, forbids the trivial solution
Vr,p, wrp, = 0. The algorithm hyperparameters are m and g,
usually set to 2, and the ., usually set to 1. Other values
for these (a,.) hyperparameters allow to weight the relative
importance of the c clusters in the final partition. This cost

function is optimised using a classic alternated scheme, that
iteratively updates the cluster centres, membership degrees
and cluster feature weights. The update equations for the
cluster centres and the membership degrees are identical to that
of fcm, replacing the Euclidean distance by the local weighted
variants when comparing a point to a cluster centre. Regarding
the attribute weights, for the classical choice ¢ = 2, the update
equation is
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Due to the considered feature weighted Euclidean distance,
the cluster subspaces are defined as axes-parallel hyperplanes.

Many variants have later been proposed: to name a few
in decreasing order of their similarity to AWFCM, the PFCM
algorithm [11] proposes an inline version of the constraint with
an original optimisation process, based on proximal descent.
Sparsity constraints on the w,,, weights can be introduced [4],
[12], as well as entropy terms [15] in a crisp and not fuzzy
assignment setting (i.e. imposing u,; € {0, 1}). In particular, it
has been proposed [4] to apply to the subspace coefficients w,,
the approach used to make the membership degrees wu..; sparse:
considering wf, with the usual choice ¢ = 2 actually only
leads to values in ]0, 1], but does not allow for 0 values.
Therefore it is proposed to replace wy, with g(w;,) where
g(x) = Lrg 24 1 5 the combination of a term of degree 1
with the quadratic term guides the weight optimisation in the
direction of binary, and thus sparser, degrees.

It should be noted that, although proposed in a different
framework, the Gaussian Mixture Model (GMM) can be inter-
preted as subspace clustering insofar as it introduces, for each
cluster, a local Mahalanobis distance: the covariance matrix
attached to each cluster defines an ellipsoidal subspace. GMM
optimises the data log-likelihood, in a probabilistic approach to
clustering. The Gustafson-Kessel algorithm (see e.g. [13]) also
relies on local Mahalanobis distance, but is more similar to the
algorithms mentioned above insofar as it also optimises the
quantisation error cost, and not the log-likelihood. Both GMM
and Gustafson-Kessel provide rich subspaces, beyond axes-
parallel hyperplaces, that can adapt to the data complexity, at
the expense of a high computational cost.

B. Prototypes and Typicality Degrees

Cognitive psychology [25] has shown that category repre-
sentative members are instances that share both many features
with the other members of the category and few features with
the members of other categories. This well-studied principle
has been transposed to a computational definition [24], [20] so
as to make it possible to characterise and summarise data sets,
classes or clusters, taking into account both common and dis-
criminative features: using these two principles simultaneously
makes it possible to build context-dependent representatives
that are more relevant than classic representatives, such as the



average or the median for instance, that actually only depend
on common features.

In the machine learning view, the construction of a prototype
consists in three steps [24]: first internal resemblance and
external dissimilarity are computed, respectively comparing
an instance with the other members of its category and with
the members of the other categories. These two quantities
are then aggregated into the typicality degree of the consid-
ered instance. Finally, the most typical instances are in turn
aggregated into the prototype. These definitions have been
implemented to compute prototypes of individual values or
of data instances [24], [20].

The definitions of internal resemblance and external dis-
similarity obviously depend on the definition of resemblance
and dissimilarity measures, respectively denoted r and d to
compare the instances. They are formally defined as

R(z,C) =
D(z,C) =

avg(r(z,y),y € C)
avg(d(z,y),y ¢ C)

The typicality degree is then defined as the aggregation of
these two quantities, the choice of the aggregation operator
determining the prototype semantics and in particular the
extent to which they should be central or discriminative
elements. Common choices include conjunctive or trade-off
operators offering a compensation property as well as opera-
tors with variable behaviours, such as the symmetric sum that
is conjunctive, disjunctive or trade-off depending on the values
to be aggregated and offers a full reinforcement property (see
e.g. [7]). The last step builds the prototype itself, aggregating
the most typical objects for instance in a representative fuzzy
prototype [24], [20].

The notions of typicality degrees and prototypes have been
exploited for machine learning, both in supervised [23] and
unsupervised settings [17]. In the latter case, the underlying
principle consists in assigning points to data subsets so that
they have high typicality degrees for the subset they are
assigned to. Typicality degrees are iteratively computed for
each data point with respect to the tentative clusters.

III. PROPOSED APPROACH

This section explores, at a theoretical level, the relevance of
applying the principles of typicality degrees to the subspace
clustering task: it relies on the intuition that characteristic
features, as looked for when performing subspace clustering,
can be interpreted as typical attributes. Nevertheless, typical-
ity degrees are defined for feature values or instances, but
not for features themselves: the section discusses a possible
definition of the latter and then proposes a heuristic algorithm,
called TbSC, to perform typicality-based subspace clustering.

A. Typicality Analysis of Subspace Weights

This section proposes to interpret the weights used in cost-
based subspace clustering approaches, recalled in Section II-A,
and in particular AWFCM, in the framework of typicality
degrees, recalled in Section II-B: the AWFCM cluster weight

update equation (see Eq. (2)) can be interpreted as a feature
internal resemblance, computed relatively to the other features.
Indeed, the sfp component computes the weighted average
squared distance to the cluster centre across all data, using
membership degrees as weights. It thus defines a weighted
cluster dispersion measured on feature p and, as a conse-
quence, its inverse captures a notion of internal resemblance
of cluster r on feature p. Its being based on the cluster
centre reduces the computational complexity as compared to a
measure that would rely on the distances between all pairs of
points. The latter would, in addition, raise the question of the
membership degree aggregation, as two memberships should
be taken into account and combined.

The last step for computing w,, normalises the 1/ sgp
coefficients in [0, 1], so as to satisfy the constraint that the
sum of w,, weights equals 1 for each cluster across all
features: it compares the dispersion inverse over feature p to
the dispersion inverse over the other features.

It can be shown that other subspace clustering algorithms
based on cost function rely on similar principles: even if they
may take into account additional components, for instance to
favour sparse weights, the definition of the latter corresponds
to an internal resemblance measure, defined relatively to the
other features.

B. Motivation for ThSC

The consequence is that existing subspace weights do not
take into account a notion of external dissimilarity: cluster
subspaces are defined without considering the other clusters.
Now it can be argued that it would be relevant to reward
features that are specific of a cluster and exclude others,
making features all the more important to describe a cluster
as they do not apply to other ones.

It should be noted that such a typicality principle differs
from the one applied in typicality based clustering [17]:
the latter relies on a classical notion of typicality degrees,
computing the extent to which an instance is typical of a
(tentative) cluster, then assigning the instance to the most
appropriate cluster and iterating the steps of typicality and
assignment computations. Applying the notion of typicality
degrees to subspace clustering requires to get down to the
features and thus to define typicality degrees associated with
features.

C. Feature Typicality Degrees

The aim of the feature typicality degree is to assess the
extent to which the considered feature is characteristic of a
cluster. One approach could thus be to compute the typicality
degree of each encountered value for this attribute and to
aggregate them using a relevant aggregation operators. Yet
it appears that it is difficult to specify the desired behaviour
of such an aggregation operator, depending on the multiple
situations that can arise.

As existing subspace weight definitions, we propose to base
the feature typicality on the value the cluster centre takes
for this feature, so as to reduce the computational cost. This



section discusses in turn all decision levels for the definition
of the feature typicality degrees.

1) Comparison Measures: The first step is to set the
considered comparison measures, both for resemblance and
dissimilarity. For feature typicality degrees, they simply apply
to numerical values and not data instances, however numerous
possibilities can still be considered, as sketched below.

First, regarding dissimilarity, it seems natural to define it as
an increasing function of the absolute value of the difference of
the compared values. We propose to consider a linear function,
only normalising the difference so as to get an intuition to
the scale of this difference value. As normalisation factor, we
propose to consider the maximal distance observed among all
data for attribute p, ie to define Z, = max;(x;p) — min;(z;p)
and
|Zp — Yy

Z 3)

dissp(z,y) =
This definition implies that a single couple is considered
having a dissimilarity degree equal to 1, the one providing the
observed maximum and minimum. Other possibilities would
for instance be to decide of a fraction of this value from
which two values can be considered as totally dissimilar, e.g.
Z,/2. In case a data expert can provide knowledge regarding
a desired saturation effect (the difference value from which
the dissimilarity must be considered 1), other values can be
given to Z,. Another line of variants would be to define the
dissimilarity measure with a non-linear dependence on the
difference, e.g. through a quadratic function, making values
with high differences have an even higher dissimilarity.
Regarding the resemblance measure, we propose to define
it as the complement to 1 of dissimilarity:

ressp(x,y) =1 —dissy(x,y) )

Here also, numerous other possibilities could be considered,
most of them being derived from the choice of the dissimilar-
ity, e.g. replacing the linear function by an exponential or a
Cauchy function [19].

2) Internal Resemblance and External Dissimilarity: The
comparison measures must then be aggregated for the whole
feature, so as to compute the internal resemblance and external
dissimilarity of the considered feature p for the considered
cluster r, as opposed to the other clusters. Moreover, the fact
that data assignment to the cluster is usually fuzzy must be
taken into account.

As a consequence, we propose to define

ST upiressy (T, )
R(rp) = =5 5)
Dimt Uri
Dirp) — Oyt - Upi )dissp (24, ¢r) ©
> iz (1 —up)
Internal resemblance is a weighted average of the resemblance
between the data instances and the cluster centre, for the
considered feature, defining weights as membership degrees:
the more an instance belongs to the cluster, the more influence
it has on the cluster internal resemblance.

As a comparison, it can be observed that the proposed
interpretation of AWFCM weights in the typicality framework
relies on a definition that differs in its principle: the cluster
internal dispersion is first computed over all data instances, and
then the inverse is computed to turn dispersion to a similarity
semantics. In the proposed approach, individual similarity
degrees are aggregated.

Regarding external dissimilarity, the question is to assess the
extent to which the feature also applies to other clusters, and
thus is not discriminative enough of the considered cluster. The
above definition proposes to compare data instances mostly
assigned to other clusters (as expressed by the complement to 1
of the membership degree) to the considered cluster centre.

3) Aggregation: The typicality degrees are then defined as
the aggregation of internal resemblance and external dissimi-
larity, whose operator must be defined. We propose to use a
variable behaviour one, namely the symmetric sum, because
of the reinforcement property it proposes: in the case when
both internal resemblance and external dissimilarity are high,
their aggregation is even higher:

R(r,p)D(r,p)
R(T,p)D(’F,p) + (1 - R(T7p)>(1 - D(’I",p))
An experimental study on the effect of the chosen aggregation
operator for the task of subspace clustering constitutes a
perspective for future work.

4) Normalisation: To the best of our knowledge, all ex-
isting subspace clustering approaches impose that, for each
cluster, the sum of the feature weights across all features
equals 1. We thus propose to apply the same normalisation
step and to define the weights of the Euclidean distance that
will be used to assign the data instances to the clusters as
relative typicality degrees. This choice seems in agreement
with an intuition that features can be compared one with
another to identify the significant ones, leading to relative
feature importance:

T(r,p) = (7

T ©

Y1 T(rq)
As a consequence of these choices, the weight attached to a
feature for a given cluster depends both on other clusters as
well as on other features.

5) Comment: It can be observed that the previous decisions,
that are commented and justified in each case, actually lead
to define the typicality degree for feature p as the typicality
degree of the c,, value, in the typicality framework reminded
in Section II-B: the proposed feature typicality equals the
typicality degree of the cluster centre value for the considered
feature, with the specificity that its takes into account fuzzy
assignments, beyond crisp ones. This is not explicitely a
predefined choice, it emerges from the choices made for each
of the successive steps.

D. Proposed TbSC algorithm

The proposed typicality based subspace clustering algorithm
instanciates the Alternating Cluster Estimation heuristic (see
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Fig. 1. Considered illustrative 2D data sets, from left to right D1, D2, D3, Dy,

e.g. [13]) to identify the clusters and the subspaces in which
they live: it applies the centre and assignment update equations
of the AWFCM algorithm [16] and replaces its weight update
equation given in Eq. (2) by the expression given in Eq. (8).

It must be underlined that the proposed approach does not
offer convergence guarantee as it is based on a heuristic and
it does not optimise a cost function.

IV. PRELIMINARY EXPERIMENTAL STUDY
AND DISCUSSION

This section describes some preliminary experiments con-
ducted to examine the behaviour of the proposed TbSC
heuristic.

A. Experimental Protocol

One of the difficulties of subspace clustering is experimental
evaluation: as any unsupervised learning task, it does not
dispose of consensual quality criteria that can be applied
to compare methods one with another. Moreover, subspace
clustering requires to assess both the identified clusters and
their associated subspaces, including possible position and
distorsion errors. In this exploratory paper, we perform visual
inspection of the obtained results, both regarding the data
assignment and the subspace weights.

As a consequence, the considered datasets are very simple
2D data, drawn following two Gaussian distributions that
are axes parallel, in agreement with the principles of the
approaches considered in the paper. Figure 1 shows the four
considered configurations that correspond to different cases of
relative positions of the Gaussians, respectively named Dy, Ds,
D3 and D, from left to right: D; illustrates the principle of
subspace clustering, Ds, D3 and D, correspond to three cases
of two distinct clusters that however share the same subspace.

The experiments compare the results provided by the pro-
posed TbSC heuristic, with the reference fuzzy subspace
clustering algorithm AWFCM [16] whose cost function is
reminded in Section II-A, and with the algorithm we denote
BOR proposed by [4]. As recalled in Section II-A, BOR is an
AWFCM variant that aims at identifying sparse representations
of the cluster associated subspaces.

In all experiments, the desired number of clusters is set to
the expected number of clusters, i.e. 2.

B. Obtained Results

For datasets Dy, D2 and Ds, all three algorithms output the
expected clusters, the obtained partitions are thus not shown.

2 o] gt i | et s |
AWFCM BOR TbSC
0.016 0.984 0 1 0.475 0.525
0.986 0.014 1 0 0.529 0471
R D T

[ 0.884 0.964 } [ 0.475  0.522 } { 0.873 0.967 ]
0.972 0.846 0.466 0.533 0.968 0.862
TABLE 1
OBTAINED WEIGHT MATRICES FOR DATASET 'Dl

For dataset D4, Fig. 2 shows the only unexpected result,
obtained both with AWFCM and BOR. The weights obtained
by the three compared approaches are given in Tables I
to IV. For all tables, the first row shows the obtained w;,
matrices for the three algorithms, the second row gives the
matrices corresponding to the internal ressemblance, external
dissimilarity and typicality degrees for TbSC. For all matrices,
rows correspond to clusters (first row: red cluster, second
row: blue cluster) and columns to features (first column: z-
dimension, second column: y-dimension).

For dataset Dy, the three algorithms output, as expected, a
value for weight wi5 greater than the one for wi, i.e. for the
y-feature for the red cluster (that indeed corresponds to the
horizontal one) and reciprocally a value for wy; greater than
that for wso. Indeed, the horizontal cluster lives in a subspace
characterised by the y-feature values. However, differences can
be observed: as expected, BOR achieves sparser weight values
than AWFCM and TbSC, it outputs binary weights. TbSC
has the least dissimilar weights, even if the same ranking as
AWFCM and BOR is obtained for each cluster. This results
comes from the fact that, with the chosen instantiation of
typicality computation, and in particular the normalisation
multiplicative coefficient used in the dissimilarity measure
(see Eq. 3), the differences in internal similarity and external
dissimilarity between the two features remain small and are
further attenuated in the aggregation and normalisation of the
typicality degree. This data set thus illustrates the importance
of the definition of the typicality instantiation for subspace
clustering.

For data set D, a similar configuration is observed, except
that the two clusters have the same characteristic subspace.
The difference between the two features for TbSC appears
to be even smaller than for D;. This can be explained by
the global normalisation factor applied when defining internal
similarity: by default, the reference value Z, is set to the
maximal observed distance, which is this case is smaller for the



AWFCM BOR TbSC
0.019 0.981 0 1 0.488 0.511
[ 0.022 0.978 } { 0 1 } { 0.489 0.511 ]
R D T
0.922 0.927 0.476 0.637 0.915 0.957
[ 0.921 0.923 } [ 0.476 0.638 } { 0.914 0.954 ]
TABLE II
OBTAINED WEIGHT MATRICES FOR DATASET D2
AWFCM BOR TbSC
0.017 0.983 0 1 0.353 0.646
[ 0.017 0.982 ] [ 0 1 } [ 0.332 0.668 ]
R D T

[ 0.859 0.914 } [ 0.152 0.676 } [ 0.523  0.957 ]
0.847 0.914 0.141 0.673 0.476  0.956
TABLE III
OBTAINED WEIGHT MATRICES FOR DATASET 'Dg

y-axis than for the z-one. As a consequence, the difference that
can be observed for the two features is less marked for TbSC
that actually rescales the axes, questioning the normalisation
choice. The definition of the latter appears to be a crucial and
difficult question.

Regarding data set Ds, it must be underlined that all three
algorithms appear to be sensitive to the random initialisation
and sometimes converge to an undesired data assignment,
where two left-right clusters are distinguished, instead of the
expected top-bottom ones. We here focus on the case where
they provide the desired partition. Ds, is then handled similarly
to data set Do by AWFCM and BOR, whereas TbSC makes
a difference between them: for D3, TbSC identifies the y-
axis as being significantly more typical than the z-axis, for
both clusters, whereas the difference between the two axes
is smaller for data set Dy. This is due to the low external
dissimilarity of the z-axis, as the clusters approximately have
the same distribution when projected on it. D3 also illustrates
that the characterisation captured by typicality degrees differs
from the one performed by AWFCM and BOR and allows to
make fine distinction between cases where the clusters live in
the same subspaces.

Dataset D, illustrates a case where AWFCM and BOR do
not identify the expected clusters, as shown on Figure 2, in a
configuration similar to the one pointed out in [10]: AWFCM
and BOR can be considered as over-enthusiastic in identifying
subspaces, to the point that they oversee the gap between the
two expected clusters and interpret them as being prolongation
one of another. Consistently, they identify the y-axis as being
totally characteristic for both clusters.

TbSC is the only algorithms among the three considered
ones that successfully identifies the expected clusters. Regard-
ing the subspace weights, it indicates that the most typical
dimension for both clusters is the z-axis: this characterisation
is consistent with the absence of external dissimilarity of the
y-axis, which prevents it from being typical of the cluster
data. Regarding internal similarity, due to the implemented
normalisation, as discussed above, no big difference between
the two axes is observed, and it does not counterbalance

AWFCM BOR TbSC
0.001  0.999 0 1 0.648  0.352
[ 0.001  0.999 } { 0 1 } { 0.650  0.350 ]

D T

0.903 0.865 0.559 0.133 0.922 0.497
TABLE IV
OBTAINED WEIGHT MATRICES FOR DATASET Dy

[ 0.912 0.868 } [ 0.561 0.135 } { 0.930 0.505 ]
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Fig. 2. Partition output by AWFCM and BOR for Dy,

the external dissimilarity effect when both criteria are aggre-
gated. These results illustrate that the considered definition
of typicality degrees differs from the classical description of
the cluster associated subspaces, i.e. the information captured
by typicality degrees in the proposed implementation differs
from the principle of characteristic subspaces in the sense of
subspace clustering.

V. CONCLUSION AND FUTURE WORKS

This paper proposes a prospective study of the possibility
opened by the notion of feature typicality degrees, as tools to
characterise these features, for the task of subspace clustering.
It proposes an implementation of the typicality principles for
this specific case and experimentally examines the results
it leads to on simple data sets. Although preliminary, the
obtained results allow to conclude that, as can be expected,
the concepts of subspaces characteristic-of vs typical-for clus-
ters differ and possess different semantics. These differences
require to be further studied, in particular to identify their
respective relevance from possible application points of view.

Ongoing works aim at performing such thorough and sys-
tematic experiments to test more diverse cluster configurations
and examine the effect of the parameters, in particular when
varying the relative positions of the Gaussian distributions.
Other instantiations of typicality degree for the case of feature
typicality also constitute a perspective of these works: taking
into account a notion of external dissimilarity in the weight
computation for subspace clustering can be considered as a
relevant principle, but its appropriate implementation remains
a research question.
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