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Summary. The objective is to improve the learning of a regression model of the hydroc-
racking process using a reduced number of observations. When a new catalyst is used for
the hydrocracking process, a new model must be fitted. Generating new data is expensive
and therefore it is advantageous to limit the amount of new data generation. Our idea is
to use a second data set of measurements made on a process using an old catalyst. This
second data set is large enough to fit performing models for the old catalyst. In this work,
we use the knowledge from this old catalyst to learn a model on the new catalyst. This task
is a transfer learning task. We show that the results are greatly improved with a Bayesian
approach to transfer linear model and kriging model.
Keywords: Transfer Knowledge of Parameters, Regression modeling, Gaussian Process,
MCMC algorithm, kriging

1. Introduction

1.1. Industrial Challenge
Refineries convert crude oil into usable products, mostly fuels for the transport industry
like gasoline, kerosene for planes or diesel, and high purity chemicals that will be used
to produce plastics including propylene, butadiene and aromatics. The most important
unit operations are distillations to separate the chemical constituents according to their
boiling points, and two types of chemical reaction: 1) purification that aims at removing
impurities like sulfur, nitrogen, and 2) conversion that changes the chemical structure of
the molecules and improve their commercial value. A refinery is thus a complex network
of interconnected units. A modern refinery costs in the order of several billion euros,
and there is a great financial interest to optimize design and operation.

Reactions take place in presence of a catalyst whose aim is to reduce temperature,
pressure and time required to achieve the performance as well as to orientate the reactions
toward the desired products (selectivity). For each reaction, several vendors offer their
own catalysts. When offering a new catalyst, a vendor must guarantee its performance:
a lot of effort of the catalyst development cycle is to be able to predict, as accurately
as possible, its performance in the customer’s refinery. Performance prediction is based
on both experimental data and models. Experiments are very expensive as they must
be performed in conditions mimicking those of refineries on a variety of feedstocks that
are not commercial and difficult to obtain. The cost for one point is around 10,000
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euros. Modeling can be based on either physical approaches or statistical approaches.
Physical approaches are possible for simple molecules and when the scientific knowledge
is sufficient enough to predict all properties of interest from the chemical composition.
In most cases, this is not possible and correlations are built and used. New catalysts
are constantly being developed so that each new generation of a catalyst requires a new
model that is built from scratch from new experiments. In this paper, we are interested
in using previous knowledge on an old catalyst to build a model for a new catalyst with
fewer new data points.

This work focuses on the hydrocracking process that converts heavy products from
vacuum distillation into diesel and lubricants, which are more valuable products. Chem-
ically speaking, it breaks long hydrocarbon chains into smaller bits in the presence of
high temperature (> 380◦C) and hydrogen under high pressure (∼ 150 bars). Down-
stream of the hydrocracking reactor, a distillation column splits the products into several
cuts, one being the diesel cut. More specifically, we want to predict the density of the
diesel cut based on information about the feedstock, the operating conditions and some
information on the diesel cut.

The challenge in this paper is to build the best predictive model for a new catalyst
with the fewest observations on that new catalyst (“new”) and having access to many
observations on a previous generation catalyst (“old”). In the field of catalyst models,
when defining a model for a new catalyst, data related to the previous catalysts are
never used. In this paper, we propose an approach that greatly reduces the number
of observations required to build an efficient kriging model on the new catalyst, and
therefore the cost of fitting this new model. For this reason, we will be working on two
data sets, one corresponding to the old catalyst, large in size, and the other corresponding
to a new generation of catalyst. We want the latter to be as small as possible. This task
is known as transfer learning (Pan and Yang (2010)).

1.2. Related work on Transfer Learning
Let’s define a domain as D = (X , P (X )) with X a feature space and P (X ) its probabil-
ity distribution, and an associated task T = (Y, f) with f the function used to predict
y ∈ Y given x ∈ X . We name Ds and Ts the domain and task of source data and Dt
and Tt the domain and task of the target data. There are two distinct areas in Transfer
Learning, the Transductive Transfer Learning when Ds 6= Dt and the Inductive Transfer
Learning when Ts 6= Tt. For this work, the source data are those from the old catalyst,
while the target data are those from the new one. Xs = Xt is the space of the 12 features
previously presented while Ys = Yt is DIES D154, the variable to be predicted. The
values of these 12 features are determined by the refiner, and we can therefore assume
that P (Xs) = P (Xt). Thus, Ds = Dt and Ts 6= Tt which means it is an Inductive Transfer
Learning problem.
Inductive Transfer Learning is classically split into three categories: transfer knowledge
of instances, transfer of features representation and transfer of parameters. The distinc-
tion is, as their name suggests, the way in which information is transferred. Literature
on transfer learning is abundant and we will only present some of them here. Those
interested can read reviews (Pan and Yang (2010) and Tsung et al. (2018)), the latter
presenting a more statistical point of view.
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The transfer knowledge of instances is based on the direct reuse of observations from
the source data set. To quote some works of this method, we can mention Transfer
Adaptive Boosting (Dai et al. (2007)), which adapts the Adaptive Boosting algorithm
(AdaBoost) for Transfer Learning in classification or its adaptation for regression (Pardoe
and P. Stone (2010)). The AdaBoost algorithm builds a set of weak learners iteratively,
a weak learner being a poor predictor or classifier, barely better than chance but robust
to overfitting. The observations are weighted and the first weak learner is learned on the
observations having all the same weight. The weak learners are then successively learned
by increasing the weights of the observations incorrectly predicted by the previous learner
and decreasing the weights of those well predicted. The prediction is then made by
averaging the results of the different learners. For the Transfer AdaBoost algorithm,
both source and target data are used. For the target data, the evolution of the weights at
each iteration is the same as for AdaBoost. Conversely, for the source data, the weight is
increased if the observation is well predicted and therefore considered useful for learning,
and it is otherwise decreased. At each iteration, the learning is performed on the source
and target data but the error is calculated on the target data only. Another work on
instance transfer uses a method that generates more target data (Salaken et al. (2019)).
The algorithm produces new target observations and can be used when Xs = Xt. Source
domain is abstracted using autoencoder to obtain a new domain with the same number
of features as the target domain. Then, clustering is performed on the source domain
to have as many clusters as the target data. Each cluster center is associated with a
target point and the distribution of data around these centers is reapplied around the
associated target point.

For transfer knowledge of features representation, the problem is similar to multitask
learning, where the aim is to find the common feature representation (Argyriou, Evge-
niou, and Pontil (2007); Argyriou, Pontil, et al. (2008)), which can be applied for transfer
learning. As it looks for a low dimensional representation shared by the different tasks,
this method is more useful when the number of features is large. The proposed algorithm
by Argyriou, Evgeniou, and Pontil (2007); Argyriou, Pontil, et al. (2008) works in two
alternating steps. The first independently learn parameters of different tasks models.
The second aims at keeping the tasks coupled by learning common features across the
tasks in an unsupervised way.

The third method is the transfer knowledge of parameters. For Random Forest mod-
els, two algorithms can be cited (Segev et al. (2016)): Structure Expansion Reduction
(SER) and Structure Transfer (STRUT). They both transform the forest learned on
source data, tree by tree. SER is a two step algorithm: expansion and reduction. Ex-
pansion extends the tree by constructing new sub-trees starting from leaves with target
data that reached them. Reduction runs through all internal nodes and transforms them
into a leaf if the error is reduced compared to the empirical error of its sub-tree. The
STRUT algorithm works on the thresholds by readjusting them on the target data, keep-
ing the feature on which the separation is made. For linear models, one possibility is to
find a link between the source and the target model by assuming that some parameters
are unchanged or subject to the same transformation (Bouveyron and Jacques (2010)).
This makes it possible to reduce the number of parameters to be estimated and maintains
knowledge of the source data. Another approach has been proposed to transfer knowl-
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edge of parameters in Support Vector Machine models (Evgeniou and Pontil (2004)).
The idea is to assume that the weighted vector of source and target tasks can be decom-
posed into two terms, one common to both, the other different.
Independently from the type of model, Bayesian approaches are often considered for
transfer knowledge of parameters. For instance, Raina, Ng, and Koller (2006) con-
structs a Gaussian informative prior to the document classification task using logistic
regression. They construct a non-diagonal covariance matrix for the Gaussian prior us-
ing auxiliary document classification tasks. The objective is to find the correlated words
and thus the correlated parameters instead of assuming their independence. Still with a
Bayesian approach, Launay, Philippe, and Lamarche (2015) use a hierarchical Bayesian
model to forecast electricity load using a small data set. The prior distributions are
constructed using another data set, which is larger, on which the model is known to
be effective. The parametric regression model is non-linear and a Gaussian prior is
chosen. Another paper proposes to solve regression problems in an adaptive way via
the Gaussian Process (B. Cao et al. (2010)). It assumes that the two Gaussian Pro-
cess regression models for the source and target tasks share the same parameters θ in
their kernel functions. The dissimilarity between source and target task is represented
by a parameter that follows a Gamma distribution and thus the model automatically
learns the similarity between the tasks. The covariance function therefore differs by
a coefficient depending on whether the observations come from the same task or not.
This approach, which will be named TGP, is designed for single source problem and
Wei et al. (2017) adapt it to the case of multi-source transfer. They first propose an
approach to express the similarity between different source set with the target set as
in TGP. For this approach, the covariance function differs by a different coefficient for
each pairs of source target set. They show that these coefficients must be equal for the
covariance matrix to be positive semi-definite, and is therefore not suitable because it
does not represent the different similarities between the different source target pairs.
They then propose a stacking method by building a TGP for each source target pairs
and combining their predictions, and show the superiority of this approach compare to
other multi source transfer problems. Da et al. (2019) propose a method to speed up the
learning, by partitioning the source data set in multiple subsets. Then, for each subset
coupled with the full target data set, TGP are fitted in parallel and sharing the same
parameters. Still concerning the Gaussian Processes, Liu, Cai, and Ong (2018) performs
a state of the art on Multi Output Gaussian Processes, and thus on the asymmetric
case which corresponds to transfer learning. For this asymmetric case, they focus on the
multi-fidelity output scenario.

As our features are already selected, the transfer knowledge of feature representation
method is not suitable. We opted for transfer knowledge of model parameters as we
consider it to be well suited to the transformation of models that have proven efficient
on the source data.

1.3. Our data sets
The data sets are composed of data originating from plants in the form of time series,
with measurements being performed daily. For the “old” catalyst set, the data came
from 8 plants for a total of 3,177 observations. For the “new” catalyst, the data came
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Table 1. Description of the features used to learn the model. The last line describes the
variable to be predicted.
Feature Description

PPH2
Hydrogen (H2) partial pressure. Hydrogen is used to break molecules
bonds.

TWABT
Average temperature of hydrocracking reactor (WABT: Weight Average
Bed temperature).

FEED D154
Feedstock relative density measured at 15◦C with respect to density of
water at 4◦C.

FEED DS05
FEED DS50
FEED DS95

Temperature at which a given percentage of the feedstock is evaporated.
Simulated distillation (DS) is an indirect measurement of the distillation
temperatures based on gas phase chromatography. It produces a curve
that we reduce to 3 temperatures at 5, 50 and 95% of evaporation.

FEED NIT
Nitrogen content in feedstock. Nitrogen is a catalyst inhibitor found in
crude oil.

FEED SULF
Sulfur content in feedstock. Sulfur is a pollutant causing acid rains after
its combustion in engines.

DIES DS05
DIES DS50
DIES DS95

Temperature at which 5, 50 and 95% of the diesel output is evaporated
(see FEED DS for details).

X370+
Percentage of conversion of the feedstock 370+ cut. It indicates how
much of hydrocracking was performed.

DIES D154
(To predict)

Relative density of diesel measured at 15◦C with respect to density of
water at 4◦C. The feature to be predicted.

from 2 plants for a total of 1,004 observations.
Experts selected 12 features presented in Table 1 that are defined bellow, starting from
the top. The first two features are process parameters: partial pressure of hydrogen
(PPH2) and temperature (WABT). Next are four properties of the feedstock, namely
density (FEED D154) and temperatures for which 5, 50 and 95% of the feedstocks
are evaporated (FEED DS05, 50 and 95). Each refinery has its own definition for the
diesel distillation cut, some cut higher and some lower, which simply means that the
distillation temperatures are different. This, of course, has an impact of the diesel
density (a higher cut diesel has more molecules that vaporizes at high temperature and
has thus a higher density). Therefore, information on the diesel distillation is included
in the model through the DS features (DIES DS05, 50 and 95). The last feature is
the conversion (X370+) which is the fraction of the heavy products that have been
hydrocracked. Conversion is, of course, a consequence of the process parameters and
feedstock properties. Its prediction is modeling work in itself (see for example Becker,
Celse, et al. (2016)). All of those features are quantitative variables, including the output
to be predicted, and we want to build a regression model:

yi = f(xi) + εi (1)

where yi is the diesel density (DIES D154) and xi = (xi,1, . . . , xi,12) is the vector of
the 12 features presented above for observation i. Observations are here defined as
data points from plant operation track logs and are a series of successive observations
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labeled by date. The temporal aspect is not considered and each point is assumed to be
independent of the others.

The two data sets used in this study are different enough that the feature correlation
matrix are different for the two catalysts (Figure 1). Correlations between input features
and the property to be predicted (DIES D154) are slightly distinct. For the old catalyst

Fig. 1. Correlation matrix for two different catalysts. Left is the “old” catalyst (3,177 observa-
tions) and right is the “new” catalyst (1,004 observations).

(left), the largest correlation is with conversion (X370+), while the others are at least
twice lower. For the new catalyst (right), the correlations are more homogeneous and new
correlations appear as with DIES DSxx. It is interesting to note that the correlation
between input features can be high. For example, feedstock density (FEED D154) is
related to the distillation parameters (FEED DSxx). Feed sulfur content and feed density
are both a consequence of the origin of the crude oil. Similarly, a higher feed density
will probably result in a higher cracked diesel density. It is important to note at this
point that although correlated, those parameters do not carry the same information. It
is also worth noticing that correlation between features depends on the data set. For
example, FEED D154 is correlated with FEED SULF for the first catalyst but not the
second. The same can be said for FEED DS05 and PPH2. This can be explained by
both the unrepresentative data sampling on a small number of plants, and by a different
performance of the catalyst that requires different tuning of the hydrocracking unit, and
thus mathematically changes the relationship between feed, products properties and
process parameters.

1.4. Content of the paper
In the next section, we start by building a good predictive model for the source data
set (Section 2). Different models are tested and two are chosen to be transferred: linear
model for its simplicity and kriging for its good predictive results. For transferring the
linear regression model, two methods are used. The first one is a parametric approach
(Section 3.1.1) directly inspired from Bouveyron and Jacques (2010). The second ap-
proach is Bayesian (Section 3.1.2) and consists in using the source parameter as prior
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information for the target model. For the kriging model, a Bayesian transfer learning
approach is proposed in Section 3.2, which is the main methodological contribution of
the paper. This last method offers excellent results and allows the number of target
observations required to be greatly reduced. Section 4 concludes the paper with some
perspectives.

2. Regression models for the source data

The goal of this paper is to propose transfer learning methods for transferring regression
models from an old catalyst to a new one. Obviously, the transfer method depends on
the type of regression model. The objective in this Section is to find the best performing
model type for our data without thinking about the transfer that will follow. Conse-
quently, several regression models have been tested on the source data: Linear Model
(LM, Seber and Lee (2012)), Random Forest (RF, Breiman (2001)), Gradient Boosting
(GB, Friedman (2001)), Multi-layer Perceptron (MLP, Rumelhart, Hinton, and R. J.
Williams (1985)), Support Vector Regression (SVR, Drucker et al. (1996)) and kriging
(Cressie (1990)). Only two of them will be considered for transfer learning. Kriging is
the model we will mainly focus on, thus we will present it before detailing the results
and retained models.

2.1. Kriging
The kriging model, also known as Gaussian Process regression (Rasmussen and C. K.
Williams (2006)), can be written as follows:

yi = m(xi) + Z(xi) (2)

where m(xi) is the trend of the model and Z(xi) is a second-order Gaussian stationary
process such that:

cov(Z(xi), Z(xi′)) = C(|xi − xi′ |).
Its covariance depends only on the distance between the observations xi and xi′ .

In this work, the shape of the trend is assumed to be known, i.e. m(xi) = Σd
j=0βjfj(xi),

where the functions fj are known, and only βj should be estimated. The fj are chosen
to be the identity function for j > 0, f0(xi) = 1 and d = p the number of features,
which is a common choice corresponding to a linear trend. Let remark that in the field
Gaussian Process regression, the trend is often assumed to be null, m(xi) = 0. This
model with null trend will be referred to as GP in the following, whereas the term kriging
will be use for a GP with a linear trend. It will be seen that using a trend improves
the predictive results for the modeling of the hydrocracking process. Moreover, kriging
model allows to have explicit information about the phenomenon, what is useful for the
process engineers, and to have a better quality of extrapolation.

The shape of the covariance function is also assumed to be known:

C(h1, . . . , hp) = σ2Rθ,τ (h1, . . . , hp) = σ2
p∏
j=1

g(hj , θj) + δ0(h1, ..., hp)τ,

δ0(h1, ..., hp) =

{
1 if (h1, ..., hp) = (0, ..., 0),
0 else.
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with σ2 the variance of the process, τ is a constant introduced to treat discontinuity
known as the nugget effect (Cressie (1988)), and θ = (θj)j=1,...,p the parameters of
the covariance function g, which is chosen to be the Matern 5/2 covariance function:
g(hj , θj) = (1+

√
5|hj |/θj+5h2j/(3θ

2
j )) exp(−

√
5|hj |/θj) (Stein (2012)). These are classic

choices (Roustant, D. Ginsbourger, and Deville (2012)).
Parameter estimation is traditionally done by maximum likelihood, and prediction

for a new observation x0 with the kriging model is achieved by looking for the best
linear unbiased predictor ŷ0. It is obtained by finding λ(x0) = (λ1(x0), . . . , λn(x0))

T

minimizing E[(Z(x0)−Σn
i=1λi(x0)Z(xi))

2]. The solution is given by λ̂(x0) = C−1c(x0)
with C = (C(|xi − xi′ |))1≤i,i′≤n and c(x0) = (C(|x0 − xi|))1≤i≤n.
Finally, the prediction ŷ0 is:

β̂ = (f(X)TC−1f(X))−1f(X)TC−1y,

ŷ0 = f(x0)β̂ + c(x0)TC−1(y − f(X)β̂),

where X is the matrix whose n rows are the xi, y = (yi)i=1,...,n and β̂ estimation of β.
A detailed description of the Kriging model is presented in Roustant, D. Ginsbourger,

and Deville (2012).

2.2. Experimental settings
In order to reduce the impact of outliers, the source data are normalized according to
the median for centering and the interquartile range for reduction. To evaluate model
quality, the source data set is split into a training and test set according to the Kennard
and Stone algorithm (Kennard and L. Stone (1969)). This is an iterative algorithm.
It is initialized with a training data set composed of the two most distant points of
the complete data set and a test set composed of the remaining points. Then, at each
iteration one point xi is moved from the test data set to the training data set such as
xi = argmax

xi∈Test
( min
xi′∈Training

dist(xi,xi′)) until the training data set reaches a pre-defined

size. This ensures a training set with the maximum amount of information. The sizes of
the test and train sets are both 50% of the complete data set size. The training and test
sets are no longer normalized, and a second normalization is performed on the training
set. Parameters of this normalization are then used to normalize the test set. For the
Section 3, the target data set is also normalized according to these parameters. To
complete preprocessing, an outlier detection is achieved on training set using the Local
Outlier Factor method (Breunig et al. (2000)), with 10 nearest neighbors. The threshold
is chosen such that the observations with a distant LOF score compared to the other are
ranked as outlier. This leads to a threshold of 1.5 and about 2.5% of the observations
are classified as outliers.

RF, GB, SVR and MLP have hyperparameters to tune: number of trees and their
depths for RF and GB, number and size of the layers and activation function for MLP,
size of the epsilon-tube and regularization parameter for SVR. A grid search for these
hyperparameters is used with a range specified in Table 2. For each model, the hyper-

parameter combination that minimizes the RMSE score (
√

1
n

∑n
i=1(ŷi − yi)2 where ŷi

is the predicted value) evaluated with 10 fold cross-validation is selected. For all these
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Table 2. Hyperparameters and their values tested by grid search for the different models.
Model Hyperparameter Value

RF
ntree {10k}k=1,...,10

maxdepth {5k}k=1,...,6

GB
ntree {10k}k=1,...,10

maxdepth {5k}k=1,...,6

MLP
nlayers {1, 2, 3}

sizelayer {5, 8, 12, 16}
factiv {relu, tanh}

SVR
ε {10−4, 10−3, 10−2}
C {1, 5, 10, 15, 20, 25, 30}

models (RF, GB, SVR and MLP), the scikit-learn implementation is used (Pedregosa
et al. (2011)).

For the kriging model and GP, the DiceKriging package from R (Roustant, D. Gins-
bourger, and Deville (2012)) is used to fit the model. This package uses the BFGS
algorithm to maximize the likelihood. The chosen hyperparameters are mentioned in
Section 2.1. As a nugget effect is used, it has to be estimated. Universal kriging is
considered, it means that the trend parameters are unknown and are estimated. The
upper bound of the θ parameters is set to twice the difference between the maximum
and minimum values for each feature, as suggested in Roustant, D. Ginsbourger, and
Deville (2012).

2.3. Model comparison
The models are evaluated on the test set according to three criteria: 1) the RMSE score,
2) the percentage of observations for which the prediction error (|yi − ŷi|) is less than
0.005, 3) the percentage of observations for which the prediction error is less than 0.0025.
The limit of 0.005 on the prediction error is commonly used in the field of oil product
density prediction, knowing that experimental measurement accuracy of DIES D154 is
10 times smaller (0.0005).

The results are given in Figure 2 and Table 3. Globally, the results are quite similar
for all the models. For the three studied scores, the kriging model offers the best results
with a RMSE score below 0.00229. With the no trend model (GP), the results are a
little worse with an RMSE score of 0.00236. The RF, MLP, SVR and GB models offer
slightly poorer results and are all similar with RMSE scores between 0.0024 and 0.0026.
The percentage of observations with an error lower than 0.005 is higher than 95% for
these 6 models, which is quite satisfactory indeed. Although satisfactory, the results of
LM are worse than those of the other models and have a bias by plant. However, it has
the advantage of being an easily interpretable and understandable model, allowing the
effects of each variable to be analyzed. Let finally notice that the prediction qualities
per plant are nearly equivalent. This can be seen in Figure 2 where the colored dots
represent the plants, named from A to H.

Since the kriging model provides the best performance, it is chosen as a candidate to
be transferred to a new catalyst. The method presented in Section 1.2 for transferring
some of other models could be effective to answer the problem, but we focus on the
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Fig. 2. Results of the different models fitted on the training source data, applied to test source
data. The colored dots represent different plants.

Table 3. Scores of different models fitted on the training source data, applied to the test source data.
Model LM RF GB MLP SVR kriging GP
RMSE 0.00331 0.00248 0.00243 0.00259 0.00244 0.00229 0.00236

+/- 0.0025 59.9% 76.5% 76.8% 73.0% 78.6% 80.5% 79.0%
+/- 0.005 87.3% 95.1% 95.5% 95.0% 95.5% 96.2% 95.9%

kriging model which offers the best performance on our data.

As the GP is the same model as the kriging but without trend, its transfer will
also be considered. Additionally, we also select the linear model for its simplicity and
interpretability. The next section describes transfer learning methods for the linear and
kriging models.

3. Transfer Learning for regression

In this section, a Bayesian transfer learning method is proposed for the kriging model.
For comparison, two transfer learning methods, Bayesian and parametric, are also con-
sidered for the linear model. The target data set on which the models have to be
transferred is composed of 1,004 observations. Since, in practice, the goal is to be able
to build a model with as few points as possible from the target catalyst, a subset of
size nt is randomly extracted from the whole target data set. Different sizes of nt will
be considered, and for each size, 10 randomly sampled data sets are considered and
average results are presented. The quality of the model is evaluated with the RMSE
score evaluated on an independent test set composed of 804 data points (different from
the nt data used for transfer). In the present industrial context, a model is considered
satisfactory if the RMSE score is lower than 0.005. For memory, the respective RMSE
scores on the source data set for the linear and kriging models are 0.0033 and 0.0023
(Table 3), respectively, which is quite satisfactory.

Variables referring to the source will be indexed by “s” (Xs, ys,. . . ) while those
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referring to the target will be indexed by “t” (Xt, yt,. . . ).

3.1. Transfer learning for the linear model
The model for the source catalyst is

yi = βs0 +

p∑
j=1

βsjxij + εi (3)

with εi ∼ N (0, σs
2) and p = 12. The maximum likelihood estimator on the source data

gives the results in Section 2.3. Our goal is to estimate the same model, but for the
target catalyst

yi = βt0 +

p∑
j=1

βtjxij + εi (4)

with εi ∼ N (0, σt
2) and for which the available training data set is of a smaller size nt.

3.1.1. A parametric approach

The first transfer method for the linear model is a parametric approach inspired from
Bouveyron and Jacques (2010), in which some regression parameters are kept unchanged
for the target model (βsj = βtj for some j), considering the influence doesn’t change
between both models, and then learn only other parameters. The standard deviation
parameter σt is assumed to be equal to σs.

If M is the set of index of parameters to be modified, then βtj = βsj for j ∈
{1, . . . , p}\M and βtj = λjβsj for j ∈ M. Then, only a reduced number of param-
eters have to be estimated for the target model. The challenge with this approach is
how to chose M, in particular the number of parameters and which ones. In the first
step, we will assume #M is known and we will select the best parameters by leave-
one-out cross validation (LOOCV) on the nt target points. When #M = 1, the best
parameter is the one minimizing the RMSE by LOOCV. For #M > 1, we decided not to
test all possible combinations and rather to identify successively the next best parameter
to modify. The final model is obtained by choosing the values of the #M parameters
minimizing the RMSE by LOOCV.

The results are presented in the left panel of Figure 3 for #M ∈ {1, 3, 8, 13}. With
this approach, a performing model can be fitted with less points than if a totally new
model is learned (Figure 3, left). For example, with 10 observations and modifying 1
or 3 parameters, RMSE is smaller than the objective of 0.005. In contrast, to achieve
this result by learning the model from scratch (on all parameters), 30 observations are
needed. Changing a small number of parameters, like one or two, is more efficient for
small training sets but worse when a lot of data is available where a plateau is quickly
reached. When #M is higher, the number of points needed to get a satisfactory score is
higher but the prediction accuracy keeps improving. Another remark is that for a given
#M, the selected parameters change with changing sample size. In other words, we are
not able to define the best parameters to transform with a few points.
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The next step would be to decide on the optimal size of M. Our idea is to select,
among all the values of #M, the one with the best RMSE (LOOCV) for each nt. Thus,
for each nt, we compare the RMSE scores for the different values of #M and we keep
the value of #M offering the best results. The value of #M will potentially be different
for each sample size. As shown in Figure 3 (right), this approach does not give the
lowest RMSE on the test set and is only marginally better than the model learned from
scratch. So far, we did not find an effective method for determining the parameters
and the number of parameters to be modified. For this reason, Bayesian inference is
explored.

Fig. 3. Graphs showing the change of RMSE according to nt. On the left, the parameters to
modify were chosen by cross validation. On the right, cross validation is also used to determine
the number of parameters to be modified. The y-axis has been cut for better readability, as very
high scores do not interest us.

3.1.2. A Bayesian approach

In this section, a Bayesian approach is used to learn parameters for the target linear
model. The linear model for the target is:

y = βtX + ε

where βt = (βt0, βt1, . . . , βtp)
T is a random variable of prior density π(βt), X is the

design matrix into which a first unity column has been added. The Bayes Theorem gives
that the posterior of βt is

π(βt|yt,Xt) =
π(βt)f(yt|βt,Xt)

f(yt|Xt)
,

where (yt,Xt) are the target observations.
Different prior distributions π(βt) are considered. The first one is the well known

Zellner’s prior (Zellner (1986)), also known as g-prior, for the parameters βt:

π(βt) = N (β̂s, gσ
2
t (X

T
t Xt)

−1),
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where β̂s is the maximum likelihood estimator (MLE) learned on the source data. By
using such a prior, only the mean of the prior distribution depends on the source data.
The structure of the prior covariance of βt depends on the target data, and a scalar
parameter g allows the impact of the prior distribution to be tuned. Notice that the
posterior’s mean using such a prior is a weighted average between the MLE for source

data and the MLE for target data: β̂t = 1
g+1(gβ̂MLE,t + β̂s).

Fig. 4. Comparison between an estimation of βt with a Bayesian approach and a g-prior for
different values of g, and a model learned without any prior.

The results are presented in Figure 4. With this prior, the results are not satisfactory
irrespective of the value of g. For a target sample size lower than 15, although the
transferred linear models have a lower RMSE than the model estimated without transfer
(directly from the target data), the source model remains better (blue line on Figure 4).
For a larger sample size, the results are better for the transferred linear model, but the
desired RMSE score of 0.005 is not reached.

With this Zellner’s prior, the source data set acts only on the mean of the prior
distribution. One idea to improve the results is to increase the information transferred
by also acting on prior covariance. Indeed, when nt is small, the covariance structure
cannot be well estimated. We consequently proposed the following prior:

π(βt) = N (β̂s, gσ
2
s(X

T
sXs)

−1),

in which the covariance structure is now estimated from the source data. The mean of
the corresponding posterior distribution is equal to:

β̂t = (XT
t Xt + σ2t g

−1Σ−1s )−1(XT
t yt + σ2t g

−1Σ−1s β̂s),

with Σs = σ2s(X
T
sXs)

−1. We notice that when g →∞ the posterior mean tends to the
MLE learned on target observation. When g → 0 the posterior mean tends to the prior
mean. The RMSE scores are computed for different values of g in Figure 5 (left panel).
With this prior, we pass under the threshold of 0.005 for the RMSE score for all g values
greater than 1. Furthermore, such g values lead to better results than those obtained
when estimated the model directly from the target data without transfer. However, g
value as to be chosen and we propose a pragmatic empirical strategy.
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Fig. 5. Impact of g on the Bayesian linear model. The graph shows the change in RMSE for
different values of g according to nt.

Since data are normalized, elements of parameter βt take values close to [−1, 1]. In
order to allow a parameter to change in this range, the prior variance should be close
to 1. A suitable g value should be around of the inverse of the average of the diagonal
elements of Σs. Following this strategy leads to a g value approximately equal to 800 in
our experiment. The corresponding results are shown in the right panel of Figure 5.

With this approach, the RMSE scores are always lower than those obtained without
transfer. Moreover, only 5 target points are needed to reach the industrial constraint of
a RMSE lower than 0.005. In comparison, estimating the target model without transfer
learning will need at least 50 observations.

3.2. Transfer learning for the kriging Model
Following these encouraging results in the Bayesian transfer of linear model (only 5
points are needed for the target data), we will now focus on transferring the kriging
model using a Bayesian approach. The kriging model (2) is composed of two parts, a
trend part and a Gaussian Process part:

yi = Σd
j=0βjxij + Z(xi).

Inspired from the Bayesian transfer for the linear model, a first Bayesian kriging model
is considered with a prior on the trend part only (Section 3.2.1). In a second step,
we additionally consider a prior distribution for the covariance of the Gaussian process
(Section 3.2.2).

3.2.1. A Bayesian transfer on trend parameters only

Here, the covariance function C is assumed to be known and identical to the covariance
function of the source model. Consequently, its parameters θt, σt and τt are equal to
θ̂s, σ̂s and τ̂s, respectively. The covariance of the Gaussian Process used for prediction
is calculated only for observations from the target data set:
Ct = (C(|xti − xti′ |))1≤i,i′≤nt .
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As in the Bayesian transfer of the linear model, a Gaussian prior distribution is
considered for βt, with mean β̂s and variance Σs modified by a factor g:

π(βt) = N (β̂s, gΣs),

where Σs = (XT
s C
−1
s Xs)

−1, Cs = (σ̂2sRθ̂s,τ̂s(|xsi − xsi′ |))1≤i,i′≤ns .
This prior leads to the following posterior distribution for βt (as used in Helbert,

Dupuy, and Carraro (2009)):

π(βt|y,X) = N (β̂s + gΣsX
T (gXΣsX

T +Cs)
−1(y −Xβ̂s),

gΣs − gΣsX
T (gXΣsX

T +Cs)
−1gXΣs)

Figure 6 presents the corresponding RMSE scores, for different values of g. Irre-
spective of the value of g, the transferred kriging models outperform the kriging model
estimated on the target data only.

Similar to the linear model, g is chosen to be equal to the inverse of the average of the
diagonal of Σs (g ' 200). We notice that other choices for g could lead to even better
results, but the choice of g is difficult when using a small target sample, and we advise
on considering our heuristic value for g rather than trying to tune it by cross-validation.

Fig. 6. Impact of g on the Bayesian kriging model. The graph shows the change in RMSE for
different values of g according to nt.

With Bayesian transfer on the trend, 5 target observations are enough to reach a
RMSE score of 0.005 instead of about 25 for a kriging model learned on the target
data only. The best RMSE score reached with the transferred linear model with 50
points (0.003, Figure 5), is obtained with only 25 points only and is outperformed when
increasing the number of points. In addition to reducing the number of points required
to learn a model that meets the performance criteria, the Bayesian transfer of the trend
of a kriging model also improves the performance of the model for a larger number of
points.

3.2.2. A fully Bayesian approach
In this section, we add a prior distribution on the covariance function parameters θt, σt
and τt.
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Prior distribution The choice of prior for βt is still a Gaussian distribution, and the
prior for the other parameters are Gamma distributions. The Gamma distributions are
such that the mean and variance are those of the source parameters. The mean and
variance of a random variable following a Gamma distribution G(a, b) of parameter of
shape a and parameter of scale b are respectively ab and ab2. This leads to the following
prior:

π(βt,θt, σt, τt) = π(βt|θt, σt, τt)π(θt, σt, τt),

π(βt|θt, σt, τt) = N (β̂s, gΣs),

π(θt, σt, τt) =
∏
j

π(θtj)× π(σt)× π(τt),

π(θtj) = G

(
θ̂2sj

V ar(θ̂sj)
,
V ar(θ̂sj)

θ̂sj

)
,

π(σt) = G
(

σ̂2s
V ar(σ̂s)

,
V ar(σ̂s)

σ̂s

)
,

π(τt) = G
(

τ̂2s
V ar(τ̂s)

,
V ar(τ̂s)

τ̂s

)
.

With these priors, no closed form exists for the posterior distribution and a MCMC
algorithm is used to estimate the posterior distributions. Parameter g and matrix Σs

are chosen in the same manner as in the previous section.

Markov Chain Monte Carlo (MCMC) algorithm The goal is to approximate the pos-
terior distribution of (βt,θt, σt, τt). The MCMC algorithm is an iterative algorithm that
generates a Markov chain whose stationary distribution is the desired posterior. At each
iteration, new values for the parameters are generated and we note the values of pa-

rameters β
(q)
t ,θ

(q)
t , σ

(q)
t , τ

(q)
t at iteration (q). The MCMC algorithm used is a Metropolis

Hastings within Gibbs algorithm (Tierney (1994)), which is detailed below.

At each iteration, the parameters are updated sequentially. For any scalar parameter
ρ, a new value ρnew is proposed such that ρnew = ρ(q) + r where r is randomly drawn
according to a centered Gaussian distribution of variance specific to each parameter. The
idea of Metropolis-Hastings is to accept ρnew as the new value if its posterior is better
than that of ρ(q), and randomly otherwise. We compute the ratios of the posterior as
the ratio of the product between the likelihood and the prior, with all other parameters
remaining unchanged and ρ(q+1) chosen to be ρnew with probability min(1, ratio) and
ρ(q) otherwise. The variance of r is chosen empirically so that the acceptance rates are
between 20% and 60% for each parameter during all the iterations. Consequently, there
is a need to run the algorithm a few times in order to tune these standard deviations.
In our application, the following standard deviation was considered: ξβtj = 0.2, ξθtj = 1
and ξσt = ξτt = 0.03.

The inputs of the algorithm are the target data Xt,yt and the prior distribution
π(βt,θt, σt, τt) defined above. Let N (·;µ,Σ) be the multivariate Gaussian probability
density function (p.d.f) of parameter (µ,Σ). Let G(θtj)(·),G(σt)(·),G(τt)(·) be the Gamma
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p.d.f. used as prior π(θtj), π(σt), π(τt) for j ∈ 1, . . . , p. Let ρ(q) be (θ
(q)
t1 , . . . , θ

(q)
tp , σ

(q)
t , τ

(q)
t )

and C(h1, ..., hp;ρ
(q)) = σ

(q)2
t Rθ(q)

t ,τ
(q)
t

(h1, ..., hp).

Initialization of parameters, (β
(0)
t ,θ

(0)
t , σ

(0)
t , τ

(0)
t ), is performed using the mean of

the prior distribution. The algorithm for updating the parameters is slightly different
for βt that follows a Gaussian distribution and {θtj}j , σt and τt that follow a Gamma

distribution. The update of β
(q)
t is detailed in Algorithm 1. The update of {θtj}j , σt and

τt is detailed in Algorithm 2. The main difference is that, for the βt case, the covariance
of the Gaussian Process is not a function of the parameters and can be computed outside

of the βt update loop as C = σ
(q)2
t Rθ(q)

t ,τ
(q)
t

(|xti − xti′ |))1≤i,i′≤nt with the values of the

previous iteration θ
(q)
t , σ

(q)
t , τ

(q)
t .

Algorithm 1 Update of the parameter {βtj}j at iteration (q + 1).

βcurt ← β
(q)
t

for j = 0 to p do
βnewt ← βcurt

βnewtj ← β
(q)
tj + r with r ∼ N (0, ξβtj )

compute ratio = N (yt;β
new
t Xt,C) N (βnewt ;β̂s,gΣs)

N (yt;β
cur
t Xt,C) N (βcurt ;β̂s,gΣs)

;

generate u ∼ U([0, 1])
if u < min(1, ratio) then
βcurt ← βnewt

end if
end for
β
(q+1)
t ← βcurt

Algorithm 2 Update of the parameters {θtj}j , σt and τt at iteration (q + 1).

ρcur ← ρ(q)

for ρ(q) ∈ ρ(q) do
ρnew ← ρcur

ρnew ← ρ(q) + r with r ∼ N (0, ξρ)
compute
Cnew = (C(|xti − xti′ |;ρnew))1≤i,i′≤nt
Ccur = (C(|xti − xti′ |;ρcur))1≤i,i′≤nt

compute ratio = N (yt;β
(q+1)
t Xt,C

new) G(ρ)(ρnew)

N (yt;β
(q+1)
t Xt,C

cur) G(ρ)(ρcur)

generate u ∼ U([0, 1])
if u < min(1, ratio) then
ρcur ← ρnew

end if
end for
ρ(q+1) ← ρcur
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The number of iterations of the MCMC algorithm must be large enough so that
the Markov chain converges to its stationary distribution. In practice, this number is
fixed by observing the evolution of the Markov chain over the iterations and must have
reached its stationary distribution for thousands of observations. Since the generated
Markov chain needs a given time to reach its stationary distribution, the first iterations

are dropped. The size of this burn-in period depends on how far (β
(0)
t ,θ

(0)
t , σ

(0)
t , τ

(0)
t ) is

from the mean of the posterior distribution. It is also fixed by observing the evolution
of the Markov chain. In our application, 5,000 MCMC iterations with a burn-in period
of 500 is considered. Finally, estimation of (β̂t, θ̂t, σ̂t, τ̂t) is obtained by computing the
empirical mean of the marginal posterior distribution.

Transfer Gaussian Process regression In the particular case of a kriging model with null
trend, i.e. the classical Gaussian Process regression framework, some transfer techniques
exists. B. Cao et al. (2010) propose an approach based on the following assumption for
the covariance function:

C ′(|xi − xi′ |) =

{
C(|xi − xi′ |) if (xi,xi′) ∈ X2

s or (xi,xi′) ∈ X2
t

λC(|xi − xi′ |) else

With such an approach, the data from the source data set are not only used to fit
the parameters but also for the prediction. This method is noted TGP hereafter. In
comparison, the Bayesian approach we proposed, which is also applicable for GP since
it is a particular kriging model, use for prediction only the target data. When applying
our Bayesian transfer approach to transfer the GP, since there is no trend, only the
parameters θ must be estimated using the MCMC algorithm. In the sequel, both transfer
methods (TGP and the Bayesian one) are compared for the Gaussian Process regression
with zero mean.

Experimental results The results for kriging model with trend are presented in Figure
7. For a reduced number of target observations, and up to about 50 points, adding
a prior on the covariance function parameter does not improve the results. But when
the number of points is greater than 50, it slightly improves the results compared to
the Bayesian kriging on trend parameters. This allows us to obtain particularly good
predictions.

The results for the GP model (kriging without trend) are presented in Figure 8. First
of all, in this application, without using transfer learning the GP is slightly better than
the kriging model. Secondly, and as expected, the transferred GP model is more efficient
than its non-transferred version. Finally, concerning the two approaches to achieve the
transfer, Bayesian or TGP, they offer quite similar results.

In this application, the transferred GP and the kriging model lead to quite similar
results. Consequently, we are tempted to conclude that the non null trend is not useful.
However, from an industrial point of view, one of the objective is to build a model that
can be extrapolated on a range of feature values relatively different from those observed
in the training data set. In that sense, considering a model with a trend is generally
more efficient (David Ginsbourger et al. (2009)) and kriging is preferred to GP without
trend. Moreover, the trend contains explicit information on the phenomenon, which is an
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Fig. 7. Comparison of the different kriging approaches tested.

Fig. 8. Comparison of kriging and GP.

important point for the process engineers who will use the model. Therefore, the kriging
model is of better interest for the industrial application under study in the present work.

3.2.3. Conclusion for Bayesian transfer of the kriging model

To conclude, transfer learning for the kriging method is very efficient. To obtain an
RMSE score of 0.004, one needs about 5 points instead of about 25 without transfer
learning. For scores of 0.004 and 0.003, it is 12 versus 45 and 25 versus 110, respectively.
An RMSE score of 0.0019 is obtained with 200 points, which is better than the model
learned from scratch and probably not possible without transfer learning.

Concerning the computational time, the time consuming part is the calculation and
the inversion of the covariance matrix which has complexity O(n3t ). For the Section
3.2.1, this needs to be done only once per sample, which is quite fast with small data
set and takes less than a second for one sample on a 2,6 GHz Intel Core i7 with 16 Go
RAM. But for the Section 3.2.2, an MCMC algorithm is used and for a given sample,
this is done for each iteration and for each modification of θtj , σt and τt, which means
5000× 14 times in this case and takes around 20 minutes for one sample of size 200.
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Fig. 9. Comparison of Linear Model and kriging results.

3.3. Comparison of linear model and kriging model transfer learning
The Bayesian approach carried out for the two models, the kriging and linear model,
gives us a real improvement in terms of the number of observations needed to learn a
performing model (Figure 9). With only 5 new points, the linear model transferred with
the Bayesian approach give us an RMSE score that requires about 50 points for a model
learned without knowledge of the source data set. This represents a cost of 50k euros
instead of 500k euros. For the kriging model transferred with the Bayesian approach,
12 new points are required. For a small size of nt, lower than 15, the transferred linear
model is slightly better than the transferred kriging model. This can be explained by the
fact that the linear model is a simpler model, with fewer parameters, thus requiring less
observation to be fitted. Moreover, the quality of the kriging model depends directly on
the number of observations whose real values are known, since these values are directly
used for the prediction. It seems that when the number of observations is lower than
the number of features, the linear model performs better.

With more target points, however, the transferred kriging model improves and the gap
widens when the number of points becomes larger. Our score objective is reached with
5 points and Bayesian linear model, but if one wants to get an even better score, kriging
provides a solution. Moreover, even when the number of new observations is relatively
large, the use of this method improves the prediction performance of the model.

4. Conclusion and future work

The objective was to build an efficient predictive model for a new catalyst with few
new data. To do this, we used a second data set from an old catalyst for which many
observations were available. Different models were tested on this second data set in order
to build an efficient predictive model. Transfer learning approaches were then tested on
the linear and kriging models to build the new model for the new catalyst. The Bayesian
approach carried out for the two models, the kriging and linear model, gives us a real
improvement in terms of the number of observations needed to learn a performing model.

The Bayesian transfer approach is therefore recommended, regardless of the number
of points available. If a reduced number of points is available, less than 15, it is advisable
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to use a simple model such as the linear model for Bayesian transfer. The RMSE score
is below the target of 0.005 with only 3 new points and quickly goes below 0.004. If
more points are available, it would then be advisable to use the full Bayesian kriging
model, which would lead to better results. It is really efficient on our data sets due to
their proximity. However, this is the industrial reality and it is a common case where we
try to model a phenomenon that has changed slightly and needs to be modeled again.
In our challenge, the chemical processes are the same and only the catalyst steers the
reaction differently, but the features necessarily have similar influences on the reaction.
If the source and target data sets are too different, this approach may not be effective.

We have applied this method for the case of diesel density prediction, but it can
be applied for any type of problem for which the kriging or linear models are effi-
cient, and therefore for any type of product quality. A possibility is to extend this
Bayesian approach to kinetic models, consisting of solving a differential equation sys-
tem, which are widely used to simulate the hydrocracking process (Ancheyta, Sánchez,
and Rodŕıguez (2005); Becker, Serrand, et al. (2017); N. Y. P. Cao et al. (2020)). Further
work will also focus on the design of experiments. In this paper, the data points from
the target set were selected randomly. The results can certainly be improved by choos-
ing the points to be measured to build the new model. The Kennard-Stone’s algorithm
(Kennard and L. Stone (1969)) is a possibility that will be explored. Other approaches
such as D-optimality or A-optimality have proven their worth in experimental design
(Celse, J. J. D. Costa, and V. Costa (2016); De Aguiar et al. (1995); Nikolov, Singh,
and Tantipongpipat (2019)) and will be tested.
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