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Abstract

The objective is to improve the learning of a regression model of the hydrocracking
process using a reduced number of observations. When a new catalyst is used for the
hydrocracking process, a new model must be fitted. Generating new data is expensive
and therefore it is advantageous to limit the amount of new data generation. Our idea
is to use a second dataset of measurements made on a process using an old catalyst.
This second dataset is large enough to fit performing models for the old catalyst. In
this work, we use the knowledge from this old catalyst to learn a model on the new
catalyst. This task is a transfer learning task. We show that the results are greatly
improved with a Bayesian approach to transfer linear model and kriging model.
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1 Introduction

1.1 Industrial Challenge

Refineries convert crude oil into usable products, mostly fuels for the transport industry like
gasoline, kerosene for planes or diesel, and high purity chemicals that will be used to produce
plastics including propylene, butadiene and aromatics. Commercial refining products must
adhere to strict quality norms, ensuring proper performance. For example, diesel must have
a high enough cetane number and almost no residual sulfur (< 10ppmS) in order to prevent
acid rain, have a suitable viscosity, and to not freeze in winter. Each product requires a
succession of specific treatments. The most important unit operations are distillations
to separate the chemical constituents according to their boiling points, and two types of
chemical reaction: 1) purification that aims at removing impurities like sulfur, nitrogen,
and 2) conversion that changes the chemical structure of the molecules and improve their
commercial value. A refinery is thus a complex network of interconnected units. A modern
refinery costs in the order of several billion euros, and there is a great financial interest
to optimize design and operation. A refinery operation is constantly adapted to maximize
revenues depending on the products’ market prices, under the constraints of feedstock
availability and unit downtime for maintenance or repair.

Reactions take place in presence of a catalyst whose aim is to reduce temperature,
pressure and time required to achieve the performance as well as to orientate the reactions
toward the desired products (selectivity). For each reaction, several vendors offer their
own catalysts. When offering a new catalyst, a vendor must guarantee its performance:
a lot of effort of the catalyst development cycle is to be able to predict, as accurately
as possible, its performance in the customer’s refinery. Performance prediction is based
on both experimental data and models. Experiments are very expensive as they must be
performed in conditions mimicking those of refineries on a variety of feedstocks that are not
commercial and difficult to obtain. The cost for one point is around 10,000 euros. Modeling
can be based on either physical approaches or statistical approaches. Physical approaches
are possible for simple molecules and when the scientific knowledge is sufficient enough to
predict all properties of interest from the chemical composition. In most cases, this is not
possible and correlations are built and used. New catalysts are constantly being developed
so that each new generation of a catalyst requires a new model that is built from scratch
from new experiments. In this paper, we are interested in using previous knowledge on an
old catalyst to build a model for a new catalyst with fewer new data points.

This work focuses on the hydrocracking process that converts heavy products from vac-
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uum distillation into diesel and lubricants, which are more valuable products. Chemically
speaking, it breaks long hydrocarbon chains into smaller bits in the presence of high tem-
perature (> 380◦C) and hydrogen under high pressure (∼ 150 bars). The catalyst is a solid
porous media shaped into rice grain sized pellets that are stacked into quite large reactors
(∼ 20 m in heigh by ∼ 6 m in diameter). The hydrocracking catalyst is sensitive to im-
purities like sulfur and nitrogen, and thus a purification pre-treatment in another reactor
(with another catalyst) is required. Downstream of the hydrocracking reactor, a distillation
column splits the products into several cuts, one being the diesel cut, another one heavier
that will be directed to an upgrading unit to produce lubricants. More specifically, we want
to predict the density of the diesel cut (DIES D154 in Table 1) based on information about
the feedstock, the operating conditions and some information on the diesel cut.

The challenge in this paper is to build the best predictive model for a new catalyst with
the fewest observations on that new catalyst (“new”) and having access to many observa-
tions on a previous generation catalyst (“old”). For this reason, we will be working on two
data sets, one corresponding to the old catalyst, large in size, and the other corresponding
to a new generation of catalyst. We want the latter to be as small as possible. This task
is known as transfer learning (Pan and Yang 2010).

1.2 Related work on Transfer Learning

Let’s define a domain as D = (X , P (X )) with X a feature space and P (X ) its probability
distribution, and an associated task T = (Y, f) with f the function used to predict y ∈ Y
given x ∈ X . We name Ds and Ts the domain and task of source data and Dt and Tt the
domain and task of the target data. There are two distinct areas in Transfer Learning,
the Transductive Transfer Learning when Ds 6= Dt and the Inductive Transfer Learning
when Ts 6= Tt. For this work, the source data are those from the old catalyst, while the
target data are those from the new one. Xs = Xt is the space of the 12 features previously
presented while Ys = Yt is DIES D154, the variable to be predicted. The values of these 12
features are determined by the refiner, and we can therefore assume that P (Xs) = P (Xt).
Thus, Ds = Dt and Ts 6= Tt which means it is an Inductive Transfer Learning problem.
Inductive Transfer Learning is classically split into three categories: transfer knowledge of
instances, transfer of features representation and transfer of parameters. The distinction is,
as their name suggests, the way in which information is transferred. Literature on transfer
learning is abundant and we will only present some of them here. Those interested can
read reviews (Pan and Yang 2010 and Tsung et al. 2018), the latter presenting a more
statistical point of view.
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Table 1: Features description.

Feature Description

PPH2
Hydrogen (H2) partial pressure. Hydrogen is used to break
molecules bonds.

TWABT
Average temperature of hydrocracking reactor (WABT: Weight Av-
erage Bed temperature).

FEED D154
Feedstock relative density measured at 15◦C with respect to density
of water at 4◦C.

FEED DS05
FEED DS50
FEED DS95

Temperature at which a given percentage of the feedstock is evap-
orated. Simulated distillation (DS) is an indirect measurement of
the distillation temperatures based on gas phase chromatography.
It produces a curve that we reduce to 3 temperatures at 5, 50 and
95% of evaporation.

FEED NIT
Nitrogen content in feedstock. Nitrogen is a catalyst inhibitor found
in crude oil.

FEED SULF
Sulfur content in feedstock. Sulfur is a pollutant causing acid rains
after its combustion in engines.

DIES DS05
DIES DS50
DIES DS95

Temperature at which 5, 50 and 95% of the diesel output is evap-
orated (see FEED DS for details).

X370+
Percentage of conversion of the feedstock 370+ cut. It indicates
how much of hydrocracking was performed.

DIES D154
Relative density of diesel measured at 15◦C with respect to density
of water at 4◦C. The feature to be predicted.
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The transfer knowledge of instances is based on the direct reuse of observations from the
source dataset. To quote some works of this method, we can mention Transfer Adaptative
Boosting (Dai et al. 2007), which adapts the Adaptative Boosting algorithm for Transfer
Learning in classification or its adaptation for regression (Pardoe and P. Stone 2010). As
with the AdaBoost algorithm, the observations are weighted. Both source and target data
are used. For the target data, the evolution of the weights at each iteration is the same as
for AdaBoost. Conversely, for the source data, the weight is increased if the observation is
well predicted and therefore considered useful for learning, and it is otherwise decreased.
At each iteration, the learning is performed on the source and target data but the error
is calculated on the target data only. Another work on instance transfer uses a method
that generates more target data (Salaken et al. 2019). The algorithm produces new target
observations and can be used when Xs = Xt. Source domain is abstracted using autoencoder
to obtain a new domain with the same number of features as the target domain. Then,
clustering is performed on the source domain to have as many clusters as the target data.
Each cluster center is associated with a target point and the distribution of data around
these centers is reapplied around the associated target point.

For transfer knowledge of features representation, the problem is similar to multitask
learning, where the aim is to find the common feature representation (Argyriou, Evgeniou,
and Pontil 2007; Argyriou, Pontil, et al. 2008), which can be applied for transfer learning.
As it looks for a low dimensional representation shared by the different tasks, this method
is more useful when the number of features is large. The proposed algorithm by Argyriou,
Evgeniou, and Pontil 2007; Argyriou, Pontil, et al. 2008 works in two alternating steps.
The first independently learn parameters of different tasks models. The second aims at
keeping the tasks coupled by learning common features across the tasks in an unsupervised
way.

The third method is the transfer knowledge of parameters. For Random Forest models,
two algorithms can be cited (Segev et al. 2016): Structure Expansion Reduction (SER) and
Structure Transfer (STRUT). They both transform the forest learned on source data, tree
by tree. SER is a two step algorithm: expansion and reduction. Expansion extends the
tree by constructing new sub-trees starting from leaves with target data that reached them.
Reduction runs through all internal nodes and transforms them into a leaf if the error is
reduced compared to the empirical error of its sub-tree. The STRUT algorithm works on
the thresholds by readjusting them on the target data, keeping the feature on which the
separation is made. For linear models, one possibility is to find a link between the source
and the target model by assuming that some parameters are unchanged or subject to the
same transformation (Bouveyron and Jacques 2010). This makes it possible to reduce the
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number of parameters to be estimated and maintains knowledge of the source data. An-
other approach has been proposed to transfer knowledege of parameters in Support Vector
Machine models (Evgeniou and Pontil 2004). The idea is to assume that the weighted
vector of source and target tasks can be decomposed into two terms, one common to both,
the other different.
Independently from the type of model, Bayesian approaches are often considered for transfer
knowledge of parameters. For instance, Raina, Ng, and Koller 2006 constructs a Gaussian
informative prior to the document classification task using logistic regression. They con-
struct a non-diagonal covariance matrix for the Gaussian prior using auxiliary document
classification tasks. The objective is to find the correlated words and thus the correlated
parameters instead of assuming their independence. Still with a Bayesian approach, Lau-
nay, Philippe, and Lamarche 2015 use a hierarchical Bayesian model to forecast electricity
load using a small dataset. The prior distributions are constructed using another dataset,
which is larger, on which the model is known to be effective. The parametric regression
model is non-linear and a Gaussian prior is chosen. Another paper proposes to solve re-
gression problems in an adaptative way via the Gaussian Process (B. Cao et al. 2010). It
assumes that the two Gaussian Process regression models for the source and target tasks
share the same parameters θ in their kernel functions. The dissimilarity between source
and target task is represented by a parameter that follows a Gamma distribution and thus
the model automatically learns the similarity between the tasks.

As our features are already selected, the transfer knowledge of feature representation
method is not suitable. We opted for transfer knowledge of model parameters as we consider
it to be well suited to the transformation of models that have proven efficient on the source
data.

1.3 Our datasets

The datasets are composed of data originating from plants in the form of time series, with
measurements being performed daily. For the “old” catalyst set, the data came from 8
plants for a total of 3,177 observations. For the “new” catalyst, the data came from 2
plants for a total of 1,004 observations.
Experts selected 12 features presented in Table 1 that are defined bellow, starting from
the top. The first two features are process parameters: partial pressure of hydrogen
(PPH2) and temperature (WABT). Next are four properties of the feedstock, namely
density (FEED D154) and temperatures for which 5, 50 and 95% of the feedstocks are
evaporated (FEED DS05, 50 and 95). Each refinery has its own definition for the diesel
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distillation cut, some cut higher and some lower, which simply means that the distillation
temperatures are different. This, of course, has an impact of the diesel density (a higher
cut diesel has more molecules that vaporizes at high temperature and has thus a higher
density). Therefore, information on the diesel distillation is included in the model through
the DS features (DIES DS05, 50 and 95). The last feature is the conversion (X370+)
which is the fraction of the heavy products that have been hydrocracked. Conversion is, of
course, a consequence of the process parameters and feedstock properties. Its prediction is
modeling work in itself (see for example Becker, Celse, et al. 2016). All of those features
are quantitative variables, including the output to be predicted, and we want to build a
regression model:

yi = f(xi) + εi (1)

where yi is the diesel density (DIES D154) and xi = (xi,1, . . . , xi,12) is the vector of the 12
features presented above for observation i. Observations are here defined as data points
from plant operation track logs and are a series of successive observations labeled by date.
The temporal aspect is not considered and each point is assumed to be independent of the
others.

The two datasets used in this study are different enough that the feature correlation
matrix are different for the two catalysts (Figure 1). Correlations between input features
and the property to be predicted (DIES D154) are slightly distinct. For the old catalyst

Figure 1: Correlation matrix for two different catalysts. Left is the “old” catalyst (3,177
observations) and right is the “new” catalyst (1,004 observations).

(left), the largest correlation is with conversion (X370+), while the others are at least
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twice lower. For the new catalyst (right), the correlations are more homogeneous and
new correlations appear as with DIES DSxx. It is interesting to note that the correlation
between input features can be high. For example, feedstock density (FEED D154) is related
to the distillation parameters (FEED DSxx). Feed sulfur content and feed density are both
a consequence of the origin of the crude oil. Similarly, a higher feed density will probably
result in a higher cracked diesel density. It is important to note at this point that although
correlated, those parameters do not carry the same information. It is also worth noticing
that correlation between features depends on the dataset. For example, FEED D154 is
correlated with FEED SULF for the first catalyst but not the second. The same can be
said for FEED DS05 and PPH2. This can be explained by both the unrepresentative data
sampling on a small number of plants, and by a different performance of the catalyst that
requires different tuning of the hydrocracking unit, and thus mathematically changes the
relationship between feed, products properties and process parameters.

1.4 Content of the paper

In the next section, we start by building a good predictive model for the source dataset
(Section 2). Different models are tested and two are chosen to be transferred: linear
model for its simplicity and kriging for its good predictive results. For transferring the
linear regression model, two methods are used. The first one is a parametric approach
(Section 3.1.1) directly inspired from Bouveyron and Jacques 2010. The second approach
is Bayesian (Section 3.1.2) and consists in using the source parameter as prior information
for the target model. For the kriging model, a Bayesian transfer learning approach is
proposed in Section 3.2, which is the main methodological contribution of the paper. This
last method offers excellent results and allows the number of target observations required
to be greatly reduced. Section 4 concludes the paper with some perspectives.

2 Regression models for the source data

The goal of this paper is to propose transfer learning methods for transferring regression
models from an old catalyst to a new one. Obviously, the transfer method depends on the
type of regression model. Consequently, several regression models have been tested on the
source data: Linear Model (LM), Random Forest (RF), Gradient Boosting (GB), Multi-
layer Perceptron (MLP), Support Vector Regression (SVR) and Kriging (Cressie 1990).
Only two of them will be considered for transfer learning. While most of these models are
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well known, Kriging may be the least known and we will present it before detailing the
results and retained models.

2.1 Kriging

The Kriging model can be written as follows:

yi = m(xi) + δ(xi) (2)

where m(xi) = Σd
j=0βjfj(xi) is the trend of the model and δ(xi) is a second-order Gaussian

stationary process such that:

cov(δ(xi), δ(xi′)) = C(|xi − xi′|).

Its covariance depends only on the distance between the observations xi and xi′ .
The shape of the trend is assumed to be known, i.e. the fj are known, and only βj

should be estimated. In this work, fj are chosen to be the identity function for j > 0,
f0(xi) = 1 and d = p the number of features, which is a common choice corresponding to
a linear trend. The shape of the covariance function is also assumed to be known:

C(h1, . . . , hp) = σ2Rθ,τ (h1, . . . , hp) = σ2

p∏
j=1

g(hj, θj) + δ0(h1, ..., hp)τ,

δ0(h1, ..., hp) =

{
1 if (h1, ..., hp) = (0, ..., 0),
0 else.

with σ2 the variance of the process, τ is a constant introduced to treat discontinuity known
as the nugget effect (Cressie 1988), and θ = (θj)j=1,...,p the parameters of the covariance
function g, which is chosen to be the Matern 5/2 covariance function: g(hj, θj) = (1 +√

5|hj|/θj + 5h2j/(3θ
2
j )) exp(−

√
5|hj|/θj) (Stein 2012). These are classic choices (Roustant,

Ginsbourger, and Deville 2012).
Parameter estimation is traditionally done by maximum likelihood, and prediction for

a new observation x0 with the kriging model is achieved by looking for the best linear
unbiased predictor ŷ0. It is obtained by finding λ(x0) = (λ1(x0), . . . , λn(x0))

T minimizing

E[(δ(x0) − Σn
i=1λi(x0)δ(xi))

2]. The solution is given by λ̂(x0) = C−1c(x0) with C =
(C(|xi − xi′ |))1≤i,i′≤n and c(x0) = (C(|x0 − xi|))1≤i≤n.
Finally, the prediction is:

β̂ = (f(X)TC−1f(X))−1f(X)TC−1y,

ŷ0 = f(x0)β̂ + c(x0)TC−1(y − f(X)β̂),
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where X is the matrix whose n rows are the xi and y = (yi)i=1,...,n.

2.2 Experimental settings

In order to reduce the impact of outliers, the source data are normalized according to the
median for centering and the interquartile range for reduction. To evaluate model quality,
the source dataset is split into a training and test set according to the Kennard and Stone
algorithm (Kennard and L. Stone 1969). This is an iterative algorithm. It is initialized with
a training dataset composed of the two most distant points of the complete dataset and a
test set composed of the remaining points. Then, at each iteration one point xi is moved
from the test dataset to the training dataset such as xi = argmax

xi∈Test
( min
xi′∈Training

dist(xi,xi′))

until the training dataset reaches a pre-defined size. This ensures a training set with the
maximum amount of information. The sizes of the test and train sets are both 50% of the
complete dataset size. The training and test sets are no longer normalized, and a second
normalization is performed on the training set. Parameters of this normalization are then
used to normalize the test set. For the section 3, the target dataset is also normalized
according to these parameters. To complete preprocessing, an outlier detection is achieved
on training set using the Local Outlier Factor method (Breunig et al. 2000), with 10 nearest
neighbors. The threshold is chosen such that the observations with a distant LOF score
compared to the other are ranked as outlier. This leads to a threshold of 1.5 and about
2.5% of the observations are classified as outliers.

RF, GB, SVR and MLP have hyperparameters to tune: number of trees and their
depths for RF and GB, number and size of the layers and activation function for MLP, size
of the epsilon-tube and regularization parameter for SVR. A grid search for these hyper-
parameters is used with a range specified in Table 2. For each model, the hyperparameter

combination that minimizes the RMSE score (
√

1
n

∑n
i=1(ŷi − yi)2 where ŷi is the predicted

value) evaluated with 10 fold cross-validation is selected. For all these models (RF, GB,
SVR and MLP), the scikit-learn implementation is used (Pedregosa et al. 2011).

For the kriging model, the DiceKriging package from R (Roustant, Ginsbourger, and
Deville 2012) is used to fit the model. This package uses the BFGS algorithm to maximize
the likelihood. The chosen hyperparameters are mentioned in section 2.1. As a nugget
effect is used, it has to be estimated. Universal kriging is considered, it means that the
trend parameters are unknown and are estimated. The upper bound of the θ parameters
is set to twice the difference between the maximum and minimum values for each feature,
as suggested in Roustant, Ginsbourger, and Deville 2012.
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Table 2: Hyperparameters and their values tested by grid search for the different models.

Model Hyperparameter Value

RF
ntree {10k}k=1,...,10

maxdepth {5k}k=1,...,6

GB
ntree {10k}k=1,...,10

maxdepth {5k}k=1,...,6

MLP
nlayers {1, 2, 3}

sizelayer {5, 8, 12, 16}
factiv {relu, tanh}

SVR
ε {10−4, 10−3, 10−2}
C {1, 5, 10, 15, 20, 25, 30}

2.3 Model comparison

The models are evaluated on the test set according to three criteria: RMSE score, per-
centage of observations for which the prediction error is less than 0.005 and 0.0025. The
limit of 0.005 on the prediction error is commonly used in the field of oil product density
prediction, knowing that experimental measurement accuracy of DIES D154 is 10 times
smaller (0.0005).

The results are given in Figure 2 and Table 3. Globally, the results are quite similar
for all the models. For the three studied scores, the kriging model offers the best results
with a RMSE score below 0.0023. The RF, MLP, SVR and GB models offer slightly poorer
results and are all similar with RMSE scores between 0.0024 and 0.0026. The percentage
of observations with an error lower than 0.005 is higher than 95% for these 5 models, which
is quite satisfactory indeed. Although satisfactory, the results of LM are worse than those
of the other models and have a bias by plant. However, it has the advantage of being an
easily interpretable and understandable model, allowing the effects of each variable to be
analyzed. Let finally notice that the prediction qualities per plant are nearly equivalent.
This can be seen in Figure 2 where the colored dots represent the plants, named from A to
H.

Since the kriging model provides the best performance, it is chosen as a candidate to be
transferred to a new catalyst. Additionally, we also select the linear model for its simplicity
and interpretability. The next section describes transfer learning methods for the linear
and kriging models.
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Figure 2: Results of the different models fitted on the training source data, applied to test
source data. The colored dots represent different plants.

3 Transfer Learning for regression

In this section, a Bayesian transfer learning method is proposed for the kriging model. For
comparison, two transfer learning methods, Bayesian and parametric, are also considered
for the linear model. The target dataset on which the models have to be transferred is
composed of 1,004 observations. Since, in practice, the goal is to be able to build a model
with as few points as possible from the target catalyst, a subset of size nt is randomly
extracted from the whole target dataset. Different sizes of nt will be considered, and for
each size, 10 randomly sampled datasets are considered and average results are presented.
The quality of the model is evaluated with the RMSE score evaluated on an independent
test set composed of 804 data points (different from the nt data used for transfer). In the
present industrial context, a model is considered satisfactory if the RMSE score is lower
than 0.005. For memory, the respective RMSE scores on the source dataset for the linear
and kriging models are 0.0033 and 0.0023 (Table 3), respectively, which is quite satisfactory.

Variables referring to the source will be indexed by “s” (Xs, ys,. . . ) while those referring
to the target will be indexed by “t” (X t, yt,. . . ).
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Table 3: Scores of different models fitted on the training source data, applied to the test
source data.

Model LM RF GB MLP SVR Kriging
RMSE 0.00331 0.00248 0.00243 0.00259 0.00244 0.00229

+/- 0.0025 59.9% 76.5% 76.8% 73.0% 78.6% 80.5%
+/- 0.005 87.3% 95.1% 95.5% 95.0% 95.5% 96.2%

3.1 Transfer learning for the linear model

The model for the source catalyst is

yi = βs0 +

p∑
j=1

βsjxij + εi (3)

with εi ∼ N (0, σs
2) and p = 12. The maximum likelihood estimator on the source data

give the results in Section 2.3. Our goal is to estimate the same model, but for the target
catalyst

yi = βt0 +

p∑
j=1

βtjxij + εi (4)

with εi ∼ N (0, σt
2) and for which the available training data set is of a smaller size nt.

3.1.1 A parametric approach

The first transfer method for the linear model is a parametric approach inspired from
Bouveyron and Jacques 2010, in which some regression parameters are kept unchanged for
the target model (βsj = βtj for some j), considering the influence doesn’t change between
both models, and then learn only other parameters. The standard deviation parameter σt
is assumed to be equal to σs.

IfM is the set of index of parameters to be modified, then βtj = βsj for j ∈ {1, . . . , p}\M
and βtj = λjβsj for j ∈ M. Then, only a reduced number of parameters have to be es-
timated for the target model. The challenge with this approach is how to chose M, in
particular the number of parameters and which ones. In the first step, we will assume
#M is known and we will select the best parameters by leave-one-out cross validation
(LOOCV) on the nt target points. When #M = 1, the best parameter is the one minimiz-
ing the RMSE by LOOCV. For #M > 1, we decided not to test all possible combinations
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and rather to identify successively the next best parameter to modify. The final model is
obtained by choosing the values of the #M parameters minimizing the RMSE by LOOCV.

The results are presented in the left panel of Figure 3 for #M ∈ {1, 3, 8, 13}. With
this approach, a performing model can be fitted with less points than if a totally new
model is learned (Figure 3, left). For example, with 10 observations and modifying 1 or
3 parameters, RMSE is smaller than the objective of 0.005. In contrast, to achieve this
result by learning the model from scratch (on all parameters), 30 observations are needed.
Changing a small number of parameters, like one or two, is more efficient for small training
sets but worse when a lot of data is available where a plateau is quickly reached. When
#M is higher, the number of points needed to get a satisfactory score is higher but the
prediction accuracy keeps improving. Another remark is that for a given #M, the selected
parameters change with changing sample size. In other words, we are not able to define
the best parameters to transform with a few points.

The next step would be to decide on the optimal size ofM. Our idea is to select, among
all the values of #M, the one with the best RMSE (LOOCV) for each nt. As shown in
Figure 3 (right), this approach does not give the lowest RMSE on the test set and is only
marginally better than the model learned from scratch. So far, we did not find an effective
method for determining the parameters and the number of parameters to be modified. For
this reason, Bayesian inference is explored.

Figure 3: Graphs showing the change of RMSE according to nt. On the left, the parameters
to modify were chosen by cross validation. On the right, cross validation is also used to
determine the number of parameters to be modified. The y-axis has been cut for better
readability, as very high scores do not interest us.
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3.1.2 A Bayesian approach

In this section, a Bayesian approach is used to learn parameters for the target linear model.
The linear model for the target is:

y = βtX + εi

where βt = (βt0, βt1, . . . , βtp)
T is a random variable of prior density π(βt), X is the design

matrix into which a first unity column has been added. The Bayes Theorem gives that the
posterior of βt is

π(βt|yt,X t) =
π(βt)f(yt|βt,X t)

f(yt|X t)
,

where (yt,X t) are the target observations.
Different prior distributions π(βt) are considered. The first one is the well known

Zellner’s prior (Zellner 1986), also known as g-prior, for the parameters βt:

π(βt) = N (β̂s, gσ
2
t (X

T
t X t)

−1),

where β̂s is the maximum likelihood estimator (MLE) learned on the source data. By using
such a prior, only the mean of the prior distribution depends on the source data. The
structure of the prior covariance of βt depends on the target data, and a scalar parameter
g allows the impact of the prior distribution to be tuned. Notice that the posterior’s mean
using such a prior is a weighted average between the MLE for source data and the MLE
for target data: β̂t = 1

g+1
(gβ̂MLE,t + β̂s).

The results are presented in Figure 4. With this prior, the results are not satisfactory
irrespective of the value of g. For a target sample size lower than 15, the linear model
estimated without transfer (directly from the target data) has a lower RMSE (blue line on
Figure 4). For a larger sample size, the results are better for the transferred linear model,
but the desired RMSE score of 0.005 is not reached.

With this Zellner’s prior, the source dataset acts only on the mean of the prior distri-
bution. One idea to improve the results is to increase the information transferred by also
acting on prior covariance. Indeed, when nt is small, the covariance structure cannot be
well estimated. We consequently proposed the following prior:

π(βt) = N (β̂s, gσ
2
s(X

T
sXs)

−1),
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Figure 4: Comparison between an estimation of βt with a Bayesian approach and a g-prior
for different values of g, and a model learned without any prior.

in which the covariance structure is now estimated from the source data. The mean of the
corresponding posterior distribution is equal to:

β̂t = (XT
t X t + σ2

t g
−1Σ−1s )−1(XT

t yt + σ2
t g
−1Σ−1s β̂s),

with Σs = σ2
s(X

T
sXs)

−1. We notice that when g → ∞ the posterior mean tends to the
MLE learned on target observation. When g → 0 the posterior mean tends to the prior
mean. The RMSE scores are computed for different values of g in Figure 5 (left panel).
With this prior, we pass under the threshold of 0.005 for the RMSE score for all g values
greater than 1. Furthermore, g values between 100 and 1,000 lead to better results than
those obtained when estimated the model directly from the target data without transfer.
However, g value as to be chosen and we propose a pragmatic empirical strategy.

Since data are normalized, elements of parameter βt take values close to [−1, 1]. In
order to allow a parameter to change in this range, the prior variance should be close
to 1. A suitable g value should be around of the inverse of the average of the diagonal
elements of Σs. Following this strategy leads to a g value approximately equal to 800 in
our experiment. The corresponding results are shown in the right panel of Figure 5.

With this approach, the RMSE scores are always lower than those obtained without
transfer. Moreover, only 5 target points are needed to reach the industrial constraint of
a RMSE lower than 0.005. In comparison, estimating the target model without transfer
learning will need at least 50 observations.
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Figure 5: Impact of g on the Bayesian linear model. The graph shows the change in RMSE
for different values of g according to nt.

3.2 Transfer learning for the Kriging Model

Following these encouraging results in the Bayesian transfer of linear model (only 5 points
are needed for the target data), we will now focus on transferring the kriging model using
a Bayesian approach. The kriging model (2) is composed of two parts, a trend part and a
Gaussian Process part:

yi = Σd
j=0βjxij + δ(xi).

Inspired from the Bayesian transfer for the linear model, a first Bayesian kriging model
is considered with a prior on the trend part only (Section 3.2.1). In a second step, we
additionally consider a prior distribution for the covariance of the Gaussian process (Section
3.2.2).

3.2.1 A Bayesian transfer on trend parameters only

Here, the covariance function C is assumed to be known and identical to the covariance
function of the source model. Consequently, its parameters θt, σt and τt are equal to
θ̂s, σ̂s and τ̂s, respectively. The covariance of the Gaussian Process used for prediction is
calculated only for observations from the target dataset:
Ct = (C(|xti − xti′|))1≤i,i′≤nt .

As in the Bayesian transfer of the linear model, a Gaussian prior distribution is consid-
ered for βt, with mean β̂s and variance Σs modified by a factor g:

π(βt) = N (β̂s, gΣs),
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where Σs = (XT
sC

−1
s Xs)

−1, Cs = (σ̂2
sRθ̂s,τ̂s(|xsi − xsi′ |))1≤i,i′≤ns .

This prior leads to the following posterior distribution for βt (as used in Helbert, Dupuy,
and Carraro 2009):

π(βt|y,X) = N (β̂s + gΣsX
T (gXΣsX

T +Cs)
−1(y −Xβ̂s),

gΣs − gΣsX
T (gXΣsX

T +Cs)
−1gXΣs)

Figure 6 presents the corresponding RMSE scores, for different values of g. Irrespective
of the value of g, the transferred kriging models overperform the kriging model estimated
on the target data only.

Similar to the linear model, g is chosen to be equal to the inverse of the average of the
diagonal of Σs (g ' 200). We notice that other choices for g could lead to even better
results, but the choice of g is difficult when using a small target sample, and we advise on
considering our heuristic value for g rather than trying to tune it by cross-validation.

Figure 6: Impact of g on the Bayesian kriging model. The graph shows the change in
RMSE for different values of g according to nt.

With Bayesian transfer on the trend, 5 target observations are enough to reach a RMSE
score of 0.005 instead of about 25 for a kriging model learned on the target data only. The
best RMSE score reached with the transferred linear model with 50 points (0.003, Figure
5), is obtained with only 25 points only and is outperformed when increasing the number
of points. In addition to reducing the number of points required to learn a model that
meets the performance criteria, the Bayesian transfer of the trend of a kriging model also
improves the performance of the model for a larger number of points.
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3.2.2 A fully Bayesian approach

In this section, we add a prior distribution on the covariance function parameters θt, σt
and τt.

Prior distribution The choice of prior for βt is still a Gaussian distribution, and the
prior for the other parameters are Gamma distributions. The Gamma distributions are
such that the mean and variance are those of the source parameters:

π(βt,θt, σt, τt) = π(βt|θt, σt, τt)π(θt, σt, τt),

π(βt|θt, σt, τt) = N (β̂s, gΣs),

π(θt, σt, τt) =
∏
j

π(θtj)× π(σt)× π(τt),

π(θtj) = G(·, ·) with hyperparameter s.t. E(θtj) = θ̂sj and V ar(θtj) = V ar(θ̂sj),

π(σt) = G(·, ·) with hyperparameter s.t. E(σt) = σ̂s and V ar(σt) = V ar(σ̂s),

π(τt) = G(·, ·) with hyperparameter s.t. E(τt) = τ̂s and V ar(τt) = V ar(τ̂s),

With these priors, no closed form exists for the posterior distribution and a MCMC
algorithm is used to estimate the posterior distributions. Parameter g and matrix Σs are
chosen in the same manner as in the previous section.

Markov Chain Monte Carlo (MCMC) algorithm The goal is to approximate the
posterior distribution of (βt,θt, σt, τt). The MCMC algorithm is an iterative algorithm that
generates a Markov chain whose stationary distribution is the desired posterior. At each
iteration, new values for the parameters are generated and we note the values of parameters
β

(q)
t ,θ

(q)
t , σ

(q)
t , τ

(q)
t at iteration (q). The MCMC algorithm used is a Metropolis Hastings

within Gibbs algorithm (Tierney 1994), which is detailed below.
At each iteration, the parameters are updated sequentially. For any scalar parameter

ρ, a new value ρnew is proposed such that ρnew = ρ(q) + r where r is randomly drawn
according to a centered Gaussian distribution of variance specific to each parameter. The
idea of Metropolis-Hastings is to accept ρnew as the new value if its posterior is better than
that of ρ(q), and randomly otherwise. We compute the ratios of the posterior as the ratio
of the product between the likelihood and the prior, with all other parameters remaining
unchanged and ρ(q+1) chosen to be ρnew with probability min(1, ratio) and ρ(q) otherwise.
The variance of r is chosen empirically so that the acceptance rates are between 20% and
60% for each parameter during all the iterations. Consequently, there is a need to run the
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algorithm a few times in order to tune these standard deviations. In our application, the
following standard deviation was considered: ξβtj = 0.2, ξθtj = 1 and ξσt = ξτt = 0.03.

The inputs of the algorithm are the target data X t,yt and the prior distribution
π(βt,θt, σt, τt) defined above. Let N (·;µ,Σ) be the multivariate Gaussian probability
density function (p.d.f) of parameter (µ,Σ). Let G(θtj)(·),G(σt)(·),G(τt)(·) be the Gamma

p.d.f. used as prior π(θtj), π(σt), π(τt) for j ∈ 1, . . . , p. Let ρ(q) be (θ
(q)
t1 , . . . , θ

(q)
tp , σ

(q)
t , τ

(q)
t )

and C(h1, ..., hp;ρ
(q)) = σ

(q)2
t R

θ
(q)
t ,τ

(q)
t

(h1, ..., hp).

Initialization of parameters, (β
(0)
t ,θ

(0)
t , σ

(0)
t , τ

(0)
t ), is performed using the mean of the

prior distribution. The algorithm for updating the parameters is slightly different for βt
that follows a Gaussian distribution and {θtj}j, σt and τt that follow a Gamma distribution.

The update of β
(q)
t is detailed in Algorithm 1. The update of {θtj}j, σt and τt is detailed in

Algorithm 2. The main difference is that, for the βt case, the covariance of the Gaussian
Process is not a function of the parameters and can be computed outside of the βt update

loop as C = σ
(q)2
t R

θ
(q)
t ,τ

(q)
t

(|xti − xti′ |))1≤i,i′≤nt with the values of the previous iteration

θ
(q)
t , σ

(q)
t , τ

(q)
t .

Algorithm 1 Update of the parameter {βtj}j at iteration (q + 1).

βcurt ← β
(q)
t

for j = 0 to p do
βnewt ← βcurt

βnewtj ← β
(q)
tj + r with r ∼ N (0, ξβtj)

compute ratio = N (yt;β
new
t Xt,C) N (βnewt ;β̂s,gΣs)

N (yt;β
cur
t Xt,C) N (βcurt ;β̂s,gΣs)

;

generate u ∼ U([0, 1])
if u < min(1, ratio) then
βcurt ← βnewt

end if
end for
β

(q+1)
t ← βcurt

The number of iterations of the MCMC algorithm must be large enough so that the
Markov chain converges to its stationary distribution. In practice, this number is fixed by
observing the evolution of the Markov chain over the iterations and must have reached its
stationary distribution for thousands of observations. Since the generated Markov chain
needs a given time to reach its stationary distribution, the first iterations are dropped. The
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Algorithm 2 Update of the parameters {θtj}j, σt and τt at iteration (q + 1).

ρcur ← ρ(q)

for ρ(q) ∈ ρ(q) do
ρnew ← ρcur

ρnew ← ρ(q) + r with r ∼ N (0, ξρ)
compute
Cnew = (C(|xti − xti′|;ρnew))1≤i,i′≤nt
Ccur = (C(|xti − xti′ |;ρcur))1≤i,i′≤nt

compute ratio =
N (yt;β

(q+1)
t Xt,C

new) G(ρ)(ρnew)
N (yt;β

(q+1)
t Xt,C

cur) G(ρ)(ρcur)
generate u ∼ U([0, 1])
if u < min(1, ratio) then
ρcur ← ρnew

end if
end for
ρ(q+1) ← ρcur

size of this burn-in period depends on how far (β
(0)
t ,θ

(0)
t , σ

(0)
t , τ

(0)
t ) is from the mean of the

posterior distribution. It is also fixed by observing the evolution of the Markov chain. In
our application, 5,000 MCMC iterations with a burn-in period of 500 is considered. Finally,
estimation of (β̂t, θ̂t, σ̂t, τ̂t) is obtained by computing the empirical mean of the marginal
posterior distribution.

Experimental results The results are presented in Figure 7. For a reduced number of
target observations, and up to about 50 points, adding a prior on the covariance function
parameter does not improve the results. But when the number of points is greater than
50, it slightly improves the results compared to the Bayesian kriging on trend parameters.
This allows us to obtain particularly good predictions.

3.2.3 Conclusion for Bayesian transfer of the kriging model

To conclude, transfer learning for the kriging method is very efficient. To obtain an RMSE
score of 0.004, one needs about 5 points instead of about 25 without transfer learning. For
scores of 0.004 and 0.003, it is 12 versus 45 and 25 versus 110, respectively. An RMSE
score of 0.0019 is obtained with 200 points, which is better than the model learned from
scratch and probably not possible without transfer learning.
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Figure 7: Comparison of the different kriging approaches tested.

Figure 8: Comparison of Linear Model and Kriging results.

4 Conclusion and future work

The objective was to build an efficient predictive model for a new catalyst with few new
data. To do this, we used a second dataset from an old catalyst for which many observations
were available. Different models were tested on this second dataset in order to build an
efficient predictive model. Transfer learning approaches were then tested on the linear and
kriging models to build the new model for the new catalyst. The Bayesian approach carried
out for the two models, the kriging and linear model, gives us a real improvement in terms
of the number of observations needed to learn a performing model (Figure 8). With only
5 new points, the linear model transferred with the Bayesian approach give us an RMSE
score that requires about 50 points for a model learned without knowledge of the source
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dataset. This represents a cost of 50k euros instead of 500k euros. For the kriging model
transferred with the Bayesian approach, 12 new points are required. For a small size of nt,
lower than 15, the transferred linear model is slightly better than the transferred kriging
model. With more target points, however, the transferred kriging model improves and the
gap widens when the number of points becomes larger. Our score objective is reached with
5 points and Bayesian linear model, but if one wants to get an even better score, kriging
provides a solution. Moreover, even when the number of new observations is relatively
large, the use of this method improves the prediction performance of the model.

The Bayesian transfer approach is therefore recommended, regardless of the number of
points available. If a reduced number of points is available, less than 15, it is advisable
to use a simple model such as the linear model for Bayesian transfer. The RMSE score is
below the target of 0.005 with only 3 new points and quickly goes below 0.004. If more
points are available, it would then be advisable to use the full Bayesian kriging model,
which would lead to better results.

We have applied this method for the case of diesel density prediction, but it can be
applied for any type of problem for which the kriging or linear models are efficient, and
therefore for any type of product quality. A possibility is to extend this Bayesian approach
to kinetic models, consisting of solving a differential equation system, which are widely used
to simulate the hydrocracking process (Ancheyta, Sánchez, and Rodŕıguez 2005; Becker,
Serrand, et al. 2017; N. Y. P. Cao et al. 2020). Further work will also focus on the design
of experiments. In this paper, the data points from the target set were selected randomly.
The results can certainly be improved by choosing the points to be measured to build the
new model. The Kennard-Stone’s algorithm (Kennard and L. Stone 1969) is a possibility
that will be explored. Other approaches such as D-optimality or A-optimality have proven
their worth in experimental design (Celse, J. J. D. Costa, and V. Costa 2016; De Aguiar
et al. 1995; Nikolov, Singh, and Tantipongpipat 2019) and will be tested.
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