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Abstract 

Gaussian deformation in graphene structures exhibits an interesting effect in which flower-

shaped confinement states are observed in the deformed region [Carrillo-Bastos et al., Phys. 

Rev. B 90 041411 (2014)]. To exploit such a deformation for various applications, tunable 

electronic features including a bandgap opening for semi-metallic structures are expected. 

Besides, the effects of disorders and external excitations also need to be considered. In this 

work, we present a systematic study on quantum transport of graphene ribbons with Gaussian 

deformation. Different levels of deformation are explored to find a universal behavior of the 

electron transmission. Using a tight-binding model in combination with Non-Equilibrium 

Green’s Functions formalism, we show that the first plateau of the transmission of semi-metallic 

armchair ribbons is just weakly affected in the case of small Gaussian deformations. However, 

significant large Gaussian bumps can induce a strong drop of this plateau and a transport gap is 

formed. The transmission at the zero energy is found to decrease exponentially with increasing 

the size of the Gaussian bump. Moreover, the gap of semi-conducting ribbons is enlarged with 

large deformations. The opening or the widening of the transport gap in large deformed 

armchair structures is interpreted by a formation of a spatially three-zone behavior of the 

hopping profile. On the other hand, a transport gap is not observed in zigzag ribbons regardless 

of the size of Gaussian bumps. This behavior is due to the strong localization of edge states at 

the energy point E = 0. Furthermore, it unveils the opposite effect of vertical electric fields +Ez 

and -Ez, stemmed by the breaking of the mirror symmetry. Additionally, it is also pointed out 

that the electronic behavior of a Gaussian deformed ribbon including edge roughness is 

dominated by the characteristics of the edge-roughness effect with strong Anderson-type 

localized states reflected by sharp peaks in the transmission profile.  
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I. Introduction 

Graphene has been recognized as a material for the future of electronics due to its exceptional 

electronic properties with the extremely high electron mobility and a form of a thin layer 

structure. All these intriguing features could lead to compact and efficient electronic devices[1]. 

However, 2D graphene is a semi-metallic material[2] and exhibits an almost zero-bandgap that 

limits its possible applications in electronics. Interestingly, it has been demonstrated that narrow 

ribbons of graphene possess a finite bandgap[3,4] and promise to be suitable for different 

applications such as transistors[5,6], thermoelectric generators[7–9].   

To push graphene ribbons closer to real applications, further studies of more realistic structures 

of ribbons containing defects such as vacancies[9–12] and edge roughness[10,13–16] have been 

taken up. It has been shown that such defects strongly influence the natural electronic properties 

of ribbons. Defects lead to a suppression of the electrical conductance depending on the vacancy 

position[9] and the level of vacancies[11]. Besides, edge roughness may lead to strong 

Anderson localization in areas of edge roughness[14]. 

Another type of disorder has been also paid attention which is deformation.  

In-plane deformation in ribbon structures was first studied by Chang et al. in 2007[17] and, 

subsequently, additional works[18–22] have been carried out by other groups to provide a more 

comprehensive understanding of this effect. It has been unveiled that under a uniaxial strain, 

the electronic properties of zigzag graphene nanoribbons (ZGNRs) are almost unchanged while 

the bandgaps of armchair graphene nanoribbons (AGNRs) are observed to fluctuate with the 

applied uniaxial strain[18]. Grain boundary can also be considered as a local in-plane 

deformation[23,24] with a significant impact on the electronic transport properties[24]. 

On the other hand, the presence of out-of-plane deformation has been evidenced in many 

structures[25]. This kind of disorder has been examined recently on both 2D graphene[25–29] 

and ribbons [30–34]. It has been shown that graphene deposited on a low-quality substrate can 

contain out-of-plane deformations, and Gaussian deformations are frequently observed[25]. A 

Gaussian bump can also be generated during a Scanning Tunneling Microscope (STM) process 

when the STM tip can interact with the graphene layer via Van der Waals interactions[35]. 

The presence of deformation leads to a change in the mechanical properties of ribbons and also 

in the electronic ones. Recent studies have shown an interesting phenomenon in which flower-

shaped confinement states are observed in centro-symmetric Gaussian deformed regions[31]. 
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Additionally, a local sub-lattice breaking symmetry is found, i.e., an unequal distribution of 

charge density between the two nonequivalent sub-lattices A and B in the deformed region has 

been observed even for small deformations[26,36]. Valley-electronic filtering depending on 

geometrical deformation[37] and current-flow paths in the deformed region[27] have also been 

discussed for 2D graphene with Gaussian deformation. 

Although several works have been carried out to unveil the changes in the electronic properties 

of graphene in the presence of Gaussian deformation, the number of studies in this topic remains 

modest. In particular, previous studies of quantum effects in Gaussian-deformed ribbon 

structures have been still limited to consideration of confinement states[31,32] and charge 

distribution at sub-lattice sites[31]. Moreover, only Gaussian bumps with the size smaller than 

the width of considered ribbons have been investigated. Thus, further studies are needed to 

understand more comprehensively the impact of the shape of Gaussian bumps on the electronic 

properties according to the size of ribbons. Furthermore, the impacts on electron transport in a 

Gaussian deformed ribbon of an external electric field and edge roughness have not yet been 

considered.   

In this work, we aim at investigating systematically the impact of Gaussian deformation on 

electron transport in both armchair and zigzag graphene ribbons. The correlation between the 

shape of a Gaussian bump and the size of a studied ribbon will be explored. In particular, we 

pay attention to energy gap opening in semi-metallic ribbons in order to optimize graphene-

based atomistic designs suitable for a broad range of applications. In addition, the effects of an 

external electric field and edge roughness are also considered.  

The rest of the paper is organized as follows: in Sec. II we first present the concept of Gaussian 

deformation in a ribbon structure and the parameters used to define the Gaussian shape and the 

size of a ribbon, then a tight-binding (TB) model and Non-Equilibrium Green’s Functions 

(NEGF) formalism are detailed for methodology. Sec. III is devoted to results and discussions. 

In Sec. III A, a comprehensive study of the electron transport in graphene ribbons with Gaussian 

deformation is discussed. In Sec. III B, the effect of an external electric field on the electronic 

properties of Gaussian deformed ribbons is investigated. In Sec. III C, the individual and mutual 

impacts of Gaussian deformation and edge roughness are presented. Finally, Sec. V concludes 

this paper.    
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II. Model and methodology 

A. Model 

A graphene ribbon with Gaussian deformation is illustrated in Fig. 1 for two typical sizes of 

Gaussian bumps: small (Fig. 1(a)) and large (Fig. 1(b)), with respect to the size of the ribbon. 

The bump position is illustrated with a color gradient. These two distinct Gaussian bumps may 

impact differently the physical properties of the ribbon including the electron transport 

properties. 

The height of atoms within a centro-symmetric Gaussian deformed region is defined as 

follows[38] 

  
   

2 2

0 0

22, ,

x x y y

Gz x y h e 

  


  (1) 

where 0x , 0y  are the x, y coordinates of the central point of the bump. In all cases, we set the 

peak of the bump to be on top of the center of the considered ribbon. The shape of the Gaussian 

bump is generally characterized by two geometrical parameters Gh  and   which are the height 

and the standard deviation of the Gaussian shape as illustrated in Fig. 1(c)[38]. Sometimes, the 

parameter 2b   is also used to characterize the width of a Gaussian bump[31,36,37]. To 

compare the width of the Gaussian bump with that of the ribbon, it may be more relevant to 

determine the diameter of the bottom circle of the Gaussian shape on the plane of the ribbon. It 

is well known that the circle of radius 3 / 2 3R b   contains 99.7% of the Gaussian 

bump[32]. The diameter of this circle is thus 2 6GW R    and can be used as the bump width 

to be compared with the width of the ribbon. 

Besides, the geometrical definition of the width of a ribbon depends on the edge orientation of 

the ribbon. The width of an AGNR is defined as 
0( 1) 3 / 2RW M a    , while that of a 

ZGNR is calculated as 0(3 2) / 2RW M a   , where 0 1.42a  Å is the distance between two 

neighboring atoms in perfect graphene structures and M is the number of dimer (chain) lines 

along the ribbon width of an AGNR (ZGNR)[39].   

It should be noted that in the area of a Gaussian bump, the mechanical strain is non-uniform 

and the strain intensity inside the deformed region is defined as  2 2/ 2Gh  [36]. On the 

other hand, it has been shown in previous studies[40] that for a strain intensity above 25%, 
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graphene enters into the inelastic regime where both the mechanical and electronic properties 

are unpredictable. Therefore, in this work, we consider only Gaussian bumps with strain 

intensity less than or equal to 15%.   

It is also worth mentioning that Gaussian bumps generated by rough substrates may be of a few 

nm size[25]. The diameter of an STM tip being in the range of a few nm to 50 nm[41–43], 

Gaussian bumps generated by an STM process can have a width ranging from less than 1 nm 

to a few tens of nm. So, in this work we consider only Gaussian deformation of such width, to 

be consistent with experiments. Additionally, ribbons having the width of a few nm are now 

feasible by means of the latest technology[44,45]. 

 

(a) 

 

(b) 

 

(c) 

 

Fig 1: Sketch of a ribbon with Gaussian deformation. Two typical deformations are illustrated: 

(a) small and (b) large Gaussian bumps. (c) Parameters defining the shape of a Gaussian bump. 

 

B. Methodology 

To investigate the electronic properties of non-uniform strain graphene structures, we employed 

the simple first nearest neighbors (1NN) TB model that has been widely used in previous 

works[27,31,32,36,38]. A term related to a non-zero external electric field was also added. 

Thus, our Hamiltonian yields: 

x 
y 

z 
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1NN

ij i

ij i

H t i j U i i


     (2) 

The hoping energy between two lattice sites i-th and j-th is defined as  

 0

1

0

ijd

a

ijt t e

 

   
  , (3) 

where the coefficient 3.37   is defined by the strain theory[46], 0 2.8t   eV is the hopping 

energy between the two nearest sites in the unstrained region, 

     
2 2 2

ij i j i j i jd x x y y z z       is the distance between the i-th and j-th sites. 

 O.E*i iU e r r    is the electrostatic potential at the i-th lattice site under an external field 

E  and 
Or  is the origin of the potential. 

The quantum transport properties of structures were examined by coupling the TB Hamiltonian 

with the NEGF technique[47]. All structures were divided into three parts: the left and right 

leads and the device region (central region). The leads were considered as semi-infinite regions. 

The device (central) region contains the left lead extension, the active region, and the right lead 

extension and these parts have NL, NA, NR primary unit cells, respectively. The length of the 

device is characterized by the total number of unit cells N = NL + NA + NR. Disorders were 

introduced only in the active region. It is worth noting that a primary unit cell of a ribbon 

contains two slices with a total of 2M atoms.  

The Green's function of the device region was calculated as follows 

 
1

. ,s s

D L RG E I H


       (4) 

where .E E i    with   is an infinitesimal positive number, DH is the Hamiltonian of the 

device and  

 

0

0

s

L DL L LD

s

R DR R RD

H G H

H G H

 

 
 (5) 

define the surface self-energies contributed from the left and right leads. 
 

0

L R
G  represents the3 

surface Green’s function of the isolated left (right) lead and was computed by Sancho's 

technique[48]. The size of the device Green's function in Eq. (4) was reduced using the 

recursive technique[49]. Then electron transmission was computed as[47,50] 
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   † †

11 11 11 11 ,s s

e L LT Trace i G G G G     
 

 (6) 

where  †

( ) ( ) ( )

s s s

L R L R L Ri     denotes the surface injection rate at the left (right) lead. The 

local density of states (LDOSs) at the i-th lattice site were calculated by[49] 

  
 Im

,
ii

i

G E
D r E



     (7) 

III. Results and discussions 

In this section, first the impact of Gaussian deformation on the electron transport properties of 

different groups of ribbons is analyzed in detail. Then the variation of the electronic properties 

of deformed ribbons under an external electric field and the presence of edge roughness is 

discussed. 

A. Impact of Gaussian deformation on the electronic properties of ribbons 

It is well known that based on the electronic features, perfect AGNRs are classified into three 

groups M = 3p + 2, 3p + 1 and 3p with p is an integer number[4]. Thus, to understand precisely 

the impact of Gaussian deformation on the electronic properties of different types of ribbons, it 

is necessary to examine the effect of deformation for each of these groups.  

First, we investigate AGNRs of the semi-metallic group M = 3p + 2. In Fig. 2, the electron 

transmission of a device made of a semi-metallic AGNR of width M = 41 (WR    49.19 Å) and 

length N = 150 unit cells (L   637.58 Å) is shown for the perfect (undeformed) structure (black 

curve) and for deformed ones with several configurations of Gaussian bumps: very small (

G R/ 0.67W W  , red curve), small ( G R/ 0.95W W  , violet curve), medium ( G R/ 1.50W W  , blue 

curve) and large ( G R/ 5.63W W  , green curve) bumps. In all cases, strain intensity is fixed at 

15%. As can be observed, the electron transmission is altered even for small Gaussian bumps 

(red and violet curves) where G RW W . The degradation is more pronounced in the high energy 

regions than in the low energy region. Notably, the first step of the transmission remains almost 

unchanged. The effect is stronger with larger bumps. This result is in agreement with what was 

observed in a previous study[31]. Interestingly, when Gaussian deformation is large enough 

(blue, green lines) with G RW W , the transmission at high energy is found to weakly change. 

However, the first plateau drops strongly around E = 0 and a transport gap is formed when the 

Gaussian bump is sufficiently large (green line). At the energy point E = 0, the transmission of 
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the strongly deformed ribbon remains at only 1.6% (Te = 0.016) compared to the value of 1.0 

in the perfect and weakly deformed structures.  

 

 

Fig. 2: Electron transmission in an AGNR without and with Gaussian deformation (GD): M = 

41 (WR    49.19 Å), N = 150 (L   637.58 Å). Different levels of deformation are considered 

and strain intensity is fixed at 15%. 

The change of the transmission at low and high energies could be, phenomenologically, 

understood in terms of scattering wavelength. Gaussian bumps can be considered as local 

defects which lead to scattering of electronic states with typical wavelengths of the size of the 

local defect. Therefore, small deformations corresponding to short wavelengths affect mainly 

high energy electronic states which explains the strong robustness of the first plateau of the 

transmission against small Gaussian deformations. Similarly, larger deformations can scatter 

lower energy states of longer wavelengths. To understand better the variation of the electron 

properties due to the Gaussian deformation, the LDOS is plotted in Fig. 3 as a function of energy 

and the transport direction (ox) in real space. Figs. 3(a) and 3(b) respectively present the results 

of the medium (Config. 3) and large (Config. 4) deformed structures are shown in Fig. 2. In 

Fig. 3(b), i.e., in the case of large deformation, we observe that the LDOS near the peak of the 

Gaussian bump (central position) around the energy E = 0 is strongly reduced (dark blue area) 

with respect to the case of small deformation presented in Fig. 3(a) (blue area).  
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(a) 

 

(b) 

 

Fig. 3:  LDOS (in arb. unit) as a function of energy and transport direction (ox) for two 

deformations: hG = 6.67 Å,   = 12.33 Å (Config. 3) and hG = 25.27 Å,   = 46.15 Å (Config. 

4). M = 41 (WR    49.19 Å), N = 150 (L   637.58 Å). 

 

The low LDOS in the central region can be understood as a consequence of a larger area of the 

deformed region. It induces more effective scattering than in the case of weakly-deformed 

structures and therefore smaller electrical conduction in the deformed region. This is consistent 

with the transmission drop around the zero-energy shown in Fig. 2.  

To clarify this point, we studied the bonding lengths in each considered structure. The bonding 

maps for the centro-symmetric Gaussian deformations configs. 3 and 4 are respectively shown 

in Figs. 4(a) and 4(b). The color gradient presents the changes in nearest bonds (1NN) with 

atom distance ranging from 1.42 Å to 1.5 Å. From these panels, it manifests that the strongest 

deformation occurs at the middle height of the Gaussian bumps, while the areas at the top and 

the leg of the bumps are weakly tensile. It is worth noting that the profile of bonds in Fig. 4(a) 

leads to a six-folds region with low LDOSs which is similar to the flower shape observed in the 

previous study[31].  

From the calculated bonding length, the nearest hopping energy of each bond was deduced by 

using Eq. (3). In Figs. 4(c) and 4(d) the profile of the hopping energies of all bonds at their 

bonding positions along the transport direction is shown for the two considered structures. The 

coordinates of a bond between the i-th and j-th atoms were simply defined as   / 2
ijt i jr r r 

. Interestingly, the shape of these two hopping profiles is remarkably different and can be used 
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to interpret the physics involved in the behavior of the corresponding transmissions shown in 

Fig. 2. Fig. 4(c) indicates that in the weakly deformed structure, a single non-uniformed region 

is formed around the top of the Gaussian bump where the hopping energies are reduced. Similar 

hopping profiles are obtained for Configs. 1 and 2. Differently, in the case of strong 

deformation, three non-uniformed regions are formed inside the Gaussian bump as the standard 

hoping energy region near the peak is sandwiched in between two low hoping energy regions. 

The electron transport between regions of different hoping energies is limited and even blocked 

in the case of strong deformation. Indeed, in such a three-region system which is similar to a 

double-barrier potential profile, the presence of scatterings at each region interface and also 

quantum trapping in the pseudo “well” limit the electron transport. That explains the low 

transmission in the low energy region for the Config. 4 observed in Fig. 2. Moreover, the 

difference between the hopping profiles of Configs. 3 and 4 stems from the correlation between 

the shape of the Gaussian bump and the size of the ribbon. In Config. 3, the hopping profile 

along transport direction (Fig. 4(c)) shows that hopping energies in the region around the peak 

of the Gaussian bumps are similar to the those of the regions on the two sides of the peak and 

there is a significant increase of some bonding lengths along the y-direction in this region (Fig. 

4(a)). In contrast, if the Gaussian bump along the y-direction covers the full width of the ribbon 

(Fig. 4(b)), the region around the peak of the large deformed structure contains only weakly 

stressed bonds and thus hopping energies are remarkably different from those in the two regions 

on the sides on the peak (Fig. 4(d)).  

In summary, when the deformation is distributed over the entire width of the ribbon, the low 

energy electrons cannot cross the slightly deformed regions near the edges as in Config. 3 (see 

Fig. 4(a)). And thus a transport gap is observed when the Gaussian bump is large enough so 

that the hopping profile of the deformed region clearly shows a three-zone characteristic. 

To further analyze the dependence of the transmission on the level of deformation, and 

particularly to find out the crucial condition to observe a transport gap around zero-energy 

point, we investigated the variation of the transmission at E = 0 for different configurations of 

Gaussian deformation. As the shape of a Gaussian bump depends not only on the height Gh

but also the width   or GW , it is relevant to consider these two parameters. Additionally, the 

transport properties also depend on the ribbon width RW , so it can be more relevant to consider 

the correlation between the shape of the Gaussian bump and that of the ribbon. We found that 

the ratio G G R/h W W  is the most relevant parameter to be used to establish a correlation between 
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the sizes of the ribbon and the bump. In Fig. 5, Te(E = 0 ) is plotted as a function of the ratio 

G G R/h W W  for different ribbon sizes and also different levels of strain induced by Gaussian 

deformation.  

 

(a) 

 

 

 

(b) 

 

 

(c) 

 

(d) 

 

Fig. 4:  Bonding length map and hopping profile in the ribbon with two different centro-

symmetric Gaussian deformed configurations: (a) & (c) hG = 6.67 Å,   = 12.33 Å (Config. 3) 

and (b) & (d) hG = 25.27 Å,   = 46.15 Å (Config. 4). Here M = 41 (WR    49.19 Å), N = 150 

(L   637.58 Å). 

 

 

Å 

 

top view 

3D view 

side view 

3D view 
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Fig. 5: Correlation between Te at E = 0 and the ratio G G R/h W W . Left inset is the result that Te 

is in the logarithmic scale and the horizontal dash line in this inset indicates that 97% 

transmission is suppressed. Right inset shows the cut-off ratio G G R/h W W at Te = 0.03 of each 

curve shown in the main panel. 

 

As can be observed in the left inset of Fig. 5, all the transmission curves drop almost 

exponentially. Interestingly, these curves tend to converge at a large value of the ratio 

G G R/h W W . It is shown in the left inset that below the horizontal dash line, the transmission is 

reduced by 97% confirming that an effective transport gap is formed when the shape of the 

Gaussian bump is large enough. For each configuration, the ratio G G R/h W W  leading to this 

transmission reduction of 97% (i.e. at Te = 0.03*Te
0) was determined by performing a spline 

fitting. The results are shown in the right inset of Fig. 5. It can be observed that the ratio to 

reach the transmission threshold of 0.03*Te
0 depends on both the ribbon width and the level of 

strain while the latter is associated directly with the shape of the Gaussian bump. Besides, when 

ribbons are large enough and the strain is significant (equal to or larger than 15%), the required 

ratio seems to converge to a value of about 80 Å. 

(a) (b) 
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(c) 

 

(d) 

 

Fig. 6: Gaussian folds (GF): (a) Te as a function of energy for several GF configurations in the 

ribbon of width M = 41 (WR    49.19 Å), and length N = 150 (L   637.58 Å). (b) Correlation 

between Te (at E = 0) and the ratio G G R/h W W . (c) & (d) Hopping profiles in the ribbon with 

the GF Configs. 3 & 4 presented in Fig. 6(a). Inset in Fig. 6(b) presents the cut-off ratio 

G G R/h W W at Te = 0.03 as a function of strain for different ribbon widths. Inset in Fig. 6(c) is 

the bonding map of the GF Config. 3, the color bar is from 1.42 Å to 1.5 Å as in Fig. 4. 

 

 

It is worth noting that the large centro-symmetric Gaussian deformed structure (bump) shown 

in Fig. 4(b) is similar to a ribbon with a Gaussian fold where the height of an atom in the 

deformed region is defined as  
 

2

0

22,

x x

Gz x y h e 




 . This type of Gaussian deformation generates 

a fold along the y-direction. Such a deformation has been discussed recently about valley 

filtering properties[37] and Kondo effect under a magnetic impurity in 2D graphene 

structures[29]. To understand if the formation of a transport gap is also observed in graphene 
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ribbons with this kind of Gaussian deformation, we examined the electronic properties of 

several Gaussian fold deformed ribbons. The obtained results are displayed in Fig. 6. Fig. 6(a) 

presents the transmission of a ribbon of width M = 41 (WR    49.19 Å) and length N = 150 (L 

  637.58 Å) for four different Gaussian fold configurations as displayed in this panel. As can 

be observed in Fig. 6(a), with the same Gaussian shape parameters, the transmission of a 

Gaussian fold deformed structure is degraded more strongly compare to that of its Gaussian 

bump counterpart (shown in Fig. 2). This can be understood as the Gaussian fold with the same 

Gaussian parameters has a larger deformed surface compared to the similar Gaussian bump (see 

insets of Fig. 6(c) and Fig. 4(a)). Transmission at E = 0 is also found to drop exponentially as 

in the case of the Gaussian bumps as shown in Fig. 6(b). However, to achieve a transmission 

reduction of 97% in the case of Gaussian folds, weaker deformation than that in the case of 

bumps is required. Indeed, for instance in the case of 10% of strain and a ribbon of width M = 

41, the crucial ratios G G R/h W W  are equal to 67 for the fold and 93 for the bump. An analysis 

of the hopping profiles in these structures with Gaussian fold seen in Figs. 6(c) and 6(d) gives 

behavior similar to those related to the Gaussian bumps, i.e., a transport gap is observed when 

the hopping profile exhibits clearly a three-zone characteristic. It should be noted that the 

hopping profile of a Gaussian fold ribbon is different from that of a Gaussian bump ribbon 

because at a given x coordinate, the deformation along the y-direction is uniform in this type of 

deformed structures as can be seen in the inset of Fig. 6(c). Such difference also leads to the 

three-zone behavior in the hopping profile of the small folds (Fig. 6(c)), although, it is still less 

visible. 

Thus, qualitatively the impact of Gaussian bumps and folds on the electron transport properties 

of graphene ribbons is similar. Therefore, only deformations with Gaussian bumps are 

discussed further hereafter.  
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Fig. 7: Semiconducting Armchair with several configurations of centro-symmetric Gaussian 

deformation (GD): Te versus E. Here M = 39 (WR    46.73 Å), N = 150 (L   637.58 Å). 

 

To understand the effect of Gaussian deformation on the electronic properties of 

semiconducting AGNRs (groups 3p + 1 and 3p), we examined a ribbon of width M = 39 (WR 

  46.73 Å) which belongs to the 3p group. The results are shown in Fig. 7 for different shapes 

of Gaussian deformation (Gaussian bumps). Similar results were obtained for the 3p + 1 group 

(not shown).  

As can be seen in Fig. 7, around the first step of the “perfect” transmission (black line), in the 

presence of Gaussian deformation, transmission decreases and the reduction is stronger with 

larger Gaussian bumps. Interestingly, with the largest Gaussian deformation considered here, 

the bandgap seems to be enlarged (green line). For transmission at higher transmission steps, 

we also observe a strong reduction for all studied cases. Additionally, the behavior is similar to 

that of semi-metallic ribbons in which the high-energy transmission of the deformed structures 

is less dependent on the level of deformation. Our analyses showed that the variation of 

transmission at the low energy region around E = 0 is similar to that of the semi-metallic group 

(M = 3p + 2) as discussed above, i.e., the transport gap is only widened when the hopping profile 

presents three non-uniformed zones along the transport direction in the deformed region. 

 

(a) 

 

(b) 

 

Fig. 8: (a) Transmission and (b) TDOS of a device made of a ZGNR of width M = 20  (WR   

41.18 Å), N = 150 (L   367.69 Å). 
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To complete the examination of the different types of ribbons, we now consider Gaussian 

deformation in ZGNRs. In Fig. 8, the results of the electron transmission of a zigzag structure 

of width M = 20 chain lines (WR   41.18 Å) are shown. Similar results were obtained for other 

ZGNRs. As can be seen in Fig. 8(a), the transmission without and with Gaussian deformation 

displays a reduction of the electron transport near the first step of the transmission. However, 

the first plateau remains unchanged even with a strong deformation (dot blue line). Thus there 

is no bandgap opening in ZGNRs under Gaussian deformation. This phenomenon can be 

understood by looking at the total density of states (TDOSs) in the device. The TDOSs without 

and with deformations are shown in Fig. 8(b). It can be seen that the middle peak of the TDOSs 

localizes at the energy E = 0 and it is unchanged with the deformation. This peak actually 

corresponds to the strongly localized edge states in the zigzag ribbon[3]. Due to the presence 

of edge states in the low energy region, even for strong deformations a transport gap cannot be 

opened. It is also worth mentioning that a transport gap around E = 0 can be opened in the 

zigzag-edge graphene systems with multiple terminals due to the quantum interference in the 

central region[51]. 

B. The asymmetrical effect of a vertical electric field on Gaussian deformed ribbons 

It has been demonstrated that external electric fields can be used to modulate the electronic 

properties of materials and devices[2,52,53]. It has been shown in previous studies[52,54,55] 

that a transverse (positive or negative) electric field modulates symmetrically the conduction 

and valence bands. This phenomenon stems from the mirror symmetry of ribbons about an axis 

located in the middle of ribbons. A similar effect has also been observed in bilayer structures 

with a vertical electric field[2,56]. 

In the presence of a Gaussian deformation, the mirror symmetry in the transverse plane (xy 

plane) is not affected but this symmetry in the vertical planes is broken. Thus some 

asymmetrical effects could be observed if a vertical electric field was applied. 

To verify this prediction, we first examined the effect of a transverse electric field E E .y ye  in 

a Gaussian deformed AGNR of width M = 41 (group 3p + 2), length N = 150. It is worth 

mentioning that a transverse electric field can be generated by two side gates at the edges of the 

system. The fabrication of such gates could be done by using electron beam lithography and 

thermal evaporation[57]. For different external fields, the transmission is plotted as a function 

of the energy in Fig. 9(a). The results without any external field for the perfect and deformed 

structures are also displayed for comparison. As can be seen, the transverse electric field 
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remarkably impacts on the electron transport, particularly in the low energy region around E = 

0. This electric field acts symmetrically on the conduction and valence bands. Additionally, as 

observed in standard ribbons[58], the sign of the field is not relevant, only the norm of the field 

matters.  

 

(a) 

 

(b) 

 

Fig. 9:  An AGNR of width  M = 41 (WR    49.19 Å) and length N = 150 (L   637.58 Å) with 

a large Gaussian deformation (GD) hG = 25.27 Å,   = 46.15 Å under the effect of (a) a 

transverse electric field E E .y ye  and (b) a vertical electric field E E .z ze . 

 

It is worth noting that within a more sophisticated TB model up to third nearest neighbors and 

with overlap factors, the conduction and valence bands are not perfectly symmetrical[39]. 

However, in TB models an external field modifies only the onsite energy of atoms and it induces 

an effect on both conduction and valence bands, thus the change attributed to the external fields 

does not depend on the chosen TB model. Also, as the studied device sizes are significantly 

large (from a few thousand to more than ten thousands of atoms), to avoid a computationally-

demanding self-consistent process, fields lower than 20 mV/Å were considered and charge 

redistribution in such large ribbons was neglected. 

To check the effect of a vertical electric field E E .z ze , the transmissions computed for both 

+Ez and -Ez are shown in Fig. 9(b). Interestingly, as predicted, an asymmetrical effect on the 

conduction and valence bands is observed with both +Ez (orange curve) and -Ez (violet curve). 

Under a +Ez field, the electron transport in the conduction range is significantly enhanced 
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(compared to the case without electric fields). In contrast, the transmission in the valence band 

is reduced. It is also worth noting that the transport gap is shifted to the position below the 

energy point E = 0. Furthermore, the effect of the -Ez field is reverse, i.e., an enhancement of 

the transmission in the valence band and a reduction in the conduction band, as seen in Fig. 

9(b).  

This asymmetrical effect of the vertical electric field on the electron transmission may be 

interesting for several applications such as energy filters, rectification devices, or sensors.  

 

(a) 

 

(b) 

 

Fig. 10: LDOS versus E-ox for opposite fields (a) Ez=-0.02 V/Å and (b) Ez=0.02 V/Å. Red lines 

are electrostatic potential profiles induced by the electric fields. Here M = 41 (WR    49.19 Å), 

N = 150 (L   637.58 Å) and the Gaussian bump  hG = 21.36 Å,   = 39.01 Å. In both panels, 

LDOS is in arb. unit. 

 

To better understand the effect of opposite vertical electric fields, we plotted in Fig. 10 the 

LDOS as a function of energy and the transport direction. The red lines in Fig. 10 display the 

electrostatic potential at each lattice site along the transport direction. As can be seen in Fig. 

10(a), under the effect of the -Ez field, a barrier potential (red line) is established and it causes 

additional scattering in the region of positive energies. As a consequence, the transmission in 

the positive energy region drops, as indicated by the violet curve in Fig. 9(b). Besides, this 

potential profile shifts up states below the barrier, leading to an enhancement of the LDOS in 

the negative energy region, in particular at high energies in this region (Fig. 10(a)). This 
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explains the enhancement of the electron transport in the negative energy region, as indicated 

by the violet arrow in Fig. 9(b). It is worth noting that also due to the presence of the potential 

barrier, there are some strong confinement states within the barrier as seen in Fig. 10(a) and it 

leads to additional sharp peaks in the transmission near the original two central peaks around E 

= 0 as seen on the violet curve in Fig. 9(b). When the field has the opposite direction (+Ez), a 

quantum well is formed, as shown by the red curve in Fig. 10(b), and the phenomenon is reverse 

compared to the case of the field -Ez. 

Similar results were also observed for other groups of armchair ribbons M = 3p + 1, 3p. 

 

(a) 

 

(b) 

 

Fig. 11: Transmission of ZGNRs without and with a vertical field. (a) Results for odd M = 21 

(WR   43.31 Å), N = 150 (L   367.69 Å). (b) Results for even M = 20 (WR   41.18 Å), N = 

150 (L   367.69 Å). Both ZGNRs have Gaussian deformation (GD) with the same size hG = 

25.28 Å,   = 46.15 Å.  

 

We also considered the effect of a vertical electric field on the electronic properties of deformed 

zigzag ribbons.  

Similar to the case of armchair ribbons, an enhancement of the electron transmission was also 

observed in the conduction region when applying a +Ez field (red line) compared to the case 

without the field (blue line) as indicated by arrows in Figs. 11(a) and 11(b). And we also 

observed an inverse effect for the field -Ez. 

Interestingly, a transport gap in the zigzag structure appears with an even number of chain lines 

M as shown from the red line in Fig. 11(b). But such a result is not obtained for the odd M 
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zigzag ribbon in Fig. 11(a). In fact, this even-odd effect originates from the well-known parity 

effect of wave functions in ZGNRs in which the electron transmission is blocked if the right 

(left) going states k ( k ) of different channels at the same energy level have a different 

parity[59,60]. The potential induced by the external field leads to a shift of the energy bands in 

the active region, which results in opposite parities of wave functions and causes a drop of 

transmission in even M zigzag ribbons[59,60]. 

C. Edge roughness in Gaussian deformed ribbons 

In fabricated ribbons, the edges are commonly not perfect in particular in ribbons made by top-

down techniques[6]. It has been also demonstrated that edge roughness strongly impacts on the 

electronic properties of ribbons[10,15]. In this section, we examine the variation of the electron 

transport of deformed ribbons in the presence of edge roughness. 

To generate edge roughness in a ribbon, vacN atoms were randomly removed from edges, i.e., 

vacN  interactions were processed in which in each one a random atom at an (random) edge is 

chosen to be removed. It is noting that the random process can remove atoms in the second line 

or even in other internal lines from the edges if some border atoms were removed in previous 

random steps. The level of edge roughness can be defined by the probability to remove atoms 

at the two edges  ER vac A/ 4P N N . The coefficient 4 is because each unit cell of the perfect 

structure has 4 atoms at the two edges.  
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Fig. 12: Transmission of a AGNR M = 20 (WR   23.37 Å), N = 60 (L   254.18 Å). Individual 

and mutual effects of Gaussian deformation (GD) and edge roughness (ER) are considered. The 

structure with (a) small Gaussian bump hG = 6.76 Å,   = 12.33 Å, (b) large Gaussian bump hG 

= 16.55 Å,   = 30.21 Å. In both panels, 5% of ER was considered. (c) The LDOS (in arb. unit) 

at E = -0.25 eV corresponding to the peak (indicated by a green arrow) in the green line in Fig. 

12(b). 

 

 

The electron transmission in different structures is shown in Fig. 12: one with a Gaussian bump, 

one with edge roughness and a structure with both Gaussian deformation and edge roughness. 

Two cases of Gaussian deformation where a small (Fig. 12(a)) and a large (Fig. 12(b)) Gaussian 

bumps were considered. In both cases, 5% of edge roughness was considered.  

It is worth mentioning that the detailed profile of the transmission of rough ribbons depends on 

the specific edge-roughness configuration that is stochastic. Thus the transmission should be 

averaged over many edge configurations. However, as the overall behavior is the same, the 

results of only one configuration are shown here. 

In both panels (a) and (b) of Fig. 12, it can be observed that the edge disorder (blue lines) 

suppresses the electronic transmission more strongly than the Gaussian deformation (red lines). 

When these two effects are combined, the obtained transmission is dominated by the edge-

roughness effect (see green lines). Interestingly, the mutual effect leads to a stronger reduction 

of the transmission at high energy regions. In contrast, the transport of electrons in the low 

energy region near E = 0 is better than in the case where edge roughness is included, with 
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additional transmission peaks appearing near the zero-energy point (see green lines). Such a 

phenomenon is due to the formation of some strong Anderson-type localized states at the 

locations of edge defects[14]. In Fig. 12(c), the LDOS in real space of the state at E = - 0.25 eV 

corresponding to the peak near E = 0 in the green line in Fig. 12(b) and indicated by a green 

arrow. The result clearly shows that the positions with the highest LDOS (the brightest color) 

are localized at the areas of edge defects.    

It should be mentioned that similar results were observed for other groups 3p, 3p + 1 of armchair 

and also zigzag ribbons (not shown). 

D. Off-center and imperfect Gaussian bumps 

In practice, Gaussian bumps may not be at the center of the considered ribbon and also not 

perfectly in a Gaussian shape due to some possible distortion on the surface of the ribbon. 

Therefore, it could be relevant to consider these factors in this investigation of the effect of 

Gaussian deformations on the electron transport in graphene ribbons. 

Off-center Gaussian bumps 

We first considered the impact of the off-center Gaussian bumps. Three possible scenarios were 

explored where the bump is shifted from the ribbon center, (i) towards an edge; (ii) along the 

ribbon axis; (iii) to a general point. The off-center position of the bump from the center of the 

ribbon can be defined by a vector  off , ,0G GV x y   . 

Figs. 13(a), (b) and (c) show the results of the transmission for two typical centro-symmetrical 

bumps of either small (solid lines) or large (dot lines) size for an armchair ribbon structure of 

width M = 41 with three off-centered bump configurations  off 00.2 ,0,0V x , 

 off 00,0.2 ,0V y  and  off 0 00.2 ,0.2 ,0V x y , respectively. As can be observed in Fig. 13(a), 

the transmissions of the off-centered bumps shifted along the ribbon axis, for both small and 

large deformation, are almost the same as the ones of the ribbon with the central Gaussian 

bump, as shown in Fig. 2. When the bump is positioned near an edge of the ribbon, the small 

deformation has the same impact as the one at the center as can be seen from the solid blue line 

in Fig. 13(b). Even if the small deformation covers the edge that it is nearby, a transport gap is 

not observed. This result reinforces the argument that a transport is opened only when the 

deformation is large enough to cover the full width of the ribbon. 

For the large deformation considered in Fig. 13(b) the transmission is overall similar to that in 
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the case of the central or off-centered bump along the ribbon axis, however, with some more 

pronounced peaks around E = 0. These peaks correspond to some confined states in the 

deformed region as shown in Fig. 13(b). When the peak of the Gaussian bump is shifted along 

both x and y coordinates, the transmission is similar to that of the cases of bump shifted towards 

an edge (Fig. 13(b)), as seen in Fig. 13(c). Similar results are obtained for other AGNRs. It is 

also worth mentioning that further investigations (not shown here) indicated that the hopping 

profiles of small and large deformed structures are similar to that shown in Figs. 4 and 6.     

In Fig. 13(d), the results for the even-M (M = 20) ZGNR are displayed. As can be seen, the off-

center bumps also do not induce a transport gap as in the case of the central bump. The same 

behavior is observed for odd-M ZGNRs. This implies that edge states at E = 0 strongly localized 

at the edges of ZGNRs regardless of the position of deformation. 

(a)  

 

(b) 

 

(c) 

 

(d) 

 

Fig. 13: Electron transmission with different positions of Gaussian bumps: results for an AGNR 

of width M = 41 with the bump is shifted (a) towards an edge, (b) along the ribbon axis and (c) 
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off-center for both x and y coordinates. (d) Results of a ZGNRs of width M = 20. In all the 

panels, solid and dot lines present results of the small and large deformations, respectively. 

 

Imperfect Gaussian bumps 

To investigate the impact of imperfect Gaussian bumps, we generated deformations with two 

close Gaussian bumps. The combination of the different bumps break the centro-symmetry of 

a perfect Gaussian and induces some distortion on the surface. Bumps with a slight difference 

in the size were used to ensure a smoothness on the surface. Such deformation is illustrated in 

Fig. 14 (a) with the color gradient corresponding to the height of atoms. The results for weak 

and strong imperfect Gaussian deformation are shown in Fig. 14(b) and the overall 

characteristics of the transmission profiles are similar to that of the perfect Gaussian bumps 

shown in Fig. 2.  

 

(a) 

 

(b) 

 

Fig. 14: (a) Illustration of an imperfect Gaussian deformation made by a mixing of two close 

Gaussian bumps, one is at the ribbon center and the other is off-center at 

 off 0 0/15, /15,0V x y . The color gradient presents the height of atoms. (b) Electron 

transmission of two configurations of deformation: small (Config1): hG1 = 5.48 Å, 1  = 10 Å; 

hG2 = 5.59 Å, 2  = 11 Å and large (Config2): hG1 = 27.39 Å, 1  = 50 Å; hG2 = 27.66 Å, 2  = 

51 Å. 
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In summary, off-center and imperfect-Gaussian factors only cause minor effects: the electron 

transmission of structures containing off-center and imperfect Gaussian bumps is essentially 

similar to that of structures with central and perfect Gaussian bumps. This result suggests that 

the shape of an out-of-plane deformation might not matter but its size correlated to the ribbon 

width is more essential. Hence, a study based on perfect Gaussian functions could be applied 

for other types of out-of-plane deformations. 

IV. Conclusion 

We have studied the electron transport properties in graphene nanoribbons with Gaussian 

deformation. Both small and large Gaussian bumps with respect to the size of studied ribbons 

have been considered. It has shown that Gaussian deformation strongly modifies the electronic 

properties of all types of ribbon structures. It leads to a strong reduction of electron transmission 

in high energy regions. In the low energy region and at the first plateau of transmission in semi-

metallic armchair ribbons, the transmission is just weakly affected by small Gaussian 

deformations, however, it drops significantly in the presence of large Gaussian bumps. Besides, 

the electron transmission can be reduced by 97% in structures exhibiting a sufficiently high 

ratio G G R/h W W  considering the shape of the Gaussian bump over the size of the ribbon. 

Regarding semi-conducting ribbons, the gap is enlarged when large deformations are applied. 

The origin of the opening or the widening of the transport gap in large deformed armchair 

structures has been correlated with the hopping energy profile, i.e., a formation of a three-zone 

behavior in the hopping profile along the transport direction. Similar electronic characteristics 

have been observed in the Gaussian folded ribbons. No transport gap is found in deformed 

zigzag ribbons due to the strong localization of edge states at the energy point E = 0. 

Furthermore, when applying a vertical electric field +Ez, the presence of a Gaussian bump 

breaks the mirror symmetry in vertical planes leading to an enhancement of the electron 

transport in the conduction region and a degradation in the valence zone. The effect is reverse 

when employing an opposite field -Ez.  The study also unveils that the electronic behavior of 

the deformed ribbon including edge roughness is dominated by the characteristics of edge 

roughness in which strong sharp peaks in the transmission profile character strong Anderson 

localization. All these features are preserved when Gaussian bumps are not positioned at the 

ribbon center or have an imperfect Gaussian shape. 
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