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Abstract

Text data are increasingly handled in an au-
tomated fashion by machine learning algo-
rithms. But the models handling these data
are not always well-understood due to their
complexity and are more and more often re-
ferred to as “black-boxes.” Interpretability
methods aim to explain how these models op-
erate. Among them, LIME has become one
of the most popular in recent years. However,
it comes without theoretical guarantees: even
for simple models, we are not sure that LIME
behaves accurately. In this paper, we provide
a first theoretical analysis of LIME for text
data. As a consequence of our theoretical
findings, we show that LIME indeed provides
meaningful explanations for simple models,
namely decision trees and linear models.

1 Introduction

Natural language processing has progressed at an ac-
celerated pace in the last decade. This time period saw
the second coming of artificial neural networks, em-
bodied by the apparition of recurrent neural networks
(RNNs) and more particularly long short-term mem-
ory networks (LSTMs). These new architectures, in
conjunction with large, publicly available datasets and
efficient optimization techniques, have allowed com-
puters to compete with and sometime even beat hu-
mans on specific tasks.

More recently, the paradigm has shifted from recurrent
neural networks to transformers networks (Vaswani
et al., 2017). Instead of training models specifically
for a task, large language models are trained on su-
persized datasets. For instance, Webtext2 contains
the text data associated to 45 millions links (Radford
et al., 2019). The growth in complexity of these mod-
els seems to know no limit, especially with regards

Explaining a prediction with LIME
Update!   Went  back
last    night    for
dinner,  this  place
is still awesome.  I
had  the  Las  Vegas
Rolls,   they   were
pure   deep    fried
goodness.           0.05 0.00 0.05

for
place

is
last

were
awesome

Figure 1: Explaining the prediction of a random forest
classifier on a Yelp review. Left panel: the document
to explain. The words deemed important for the pre-
diction are highlighted, in orange (positive influence)
and blue (negative influence). Right panel: values of
the largest 6 interpretable coefficients, ranked by ab-
solute value.

to their number of parameters. For instance, BERT
(Devlin et al., 2018) has roughly 340 millions of pa-
rameters, a meager number compared to more recent
models such as GTP-2 (Radford et al., 2019, 1.5 bil-
lions) and GPT-3 (Brown et al., 2020, 175 billions).

Faced with such giants, it is becoming more and more
challenging to understand how particular predictions
are made. Yet, interpretability of these algorithms is
an urgent need. This is especially true in some ap-
plications such as healthcare, where natural language
processing is used for instance to obtain summaries
of patients records (Spyns, 1996). In such cases, we
do not want to deploy in the wild an algorithm mak-
ing near perfect predictions on the test set but for the
wrong reasons: the consequences could be tragic.

In this context, a flourishing literature proposing in-
terpretability methods emerged. We refer to the sur-
vey papers of Guidotti et al. (2018) and Adadi and
Berrada (2018) for an overview, and to Danilevsky
et al. (2020) for a focus on natural language process-
ing. With the notable exception of SHAP (Lundberg
and Lee, 2017), these methods do not come with any
guarantees. Namely, given a simple model already in-
terpretable to some extent, we cannot be sure that
these methods provide meaningful explanations. For

ar
X

iv
:2

01
0.

12
48

7v
1 

 [
st

at
.M

L
] 

 2
3 

O
ct

 2
02

0



An Analysis of LIME for Text Data

instance, explaining a model that is based on the pres-
ence of a given word should return an explanation that
gives high weight to this word. Without such guaran-
tees, using these methods on the tremendously more
complex models aforementioned seems like a risky bet.

In this paper, we focus on one of the most popu-
lar interpretability method: Local Interpretable Model-
agnostic Explanations Ribeiro et al. (2016, LIME),
and more precisely its implementation for text data.
LIME’s process to explain the prediction of a model f
for an example ξ can be summarized as follows:

(i). from a corpus of documents C, create a TF-IDF
transformer φ embedding documents into RD;

(ii). create n perturbed documents x1, . . . , xn by delet-
ing words at random in ξ;

(iii). for each new example, get the prediction of the
model yi := f(φ(xi));

(iv). train a (weighted) linear surrogate model with
inputs the absence / presence of words and re-
sponses the yis.

The user is then given the coefficients of the surrogate
model (or rather a subset of the coefficients, corre-
sponding to the largest ones) as depicted in Figure 1.
We call these coefficients the interpretable coefficients.

The model-agnostic approach of LIME has contributed
greatly to its popularity: one does not need to know
the precise architecture of f in order to get explana-
tions, it is sufficient to be able to query f a large num-
ber of times. The explanations provided by the user
are also very intuitive, making it easy to check that a
model is behaving in the appropriate way (or not!) on
a particular example.

Contributions. In this paper, we present the first
theoretical analysis of LIME for text data. In detail,

• we show that, when the number of perturbed
samples is large, the interpretable coefficients
concentrate with high probability around a
fixed vector β that depends only on the model,
the example to explain, and hyperparameters of
the method;

• we provide an explicit expression of β, from
which we gain interesting insights on LIME. In
particular, the explanations provided are lin-
ear in f ;

• for simple decision trees, we go further into
the computations. We show that LIME prov-
ably provides meaningful explanations, giv-
ing large coefficients to words that are pivotal for
the prediction;

• for linear models, we come to the same conclu-
sion by showing that the interpretable coefficient
associate to a given word is approximately equal
to the product of the coefficient in the lin-
ear model and the TF-IDF transform of the
word in the example.

We want to emphasize that all our results apply to
the default implementation of LIME for text data1

(as of October 12, 2020), with the only caveat that
we do not consider any feature selection procedure
in our analysis. All our theoretical claims are sup-
ported by numerical experiments, the code thereof can
be found at https://github.com/dmardaoui/lime_

text_theory.

Related work. The closest related work to the
present paper is Garreau and von Luxburg (2020a), in
which the authors provided a theoretical analysis of
a variant of LIME in the case of tabular data (that
is, unstructured data belonging to RN ) when f is lin-
ear. This line of work was later extended by the same
authors (Garreau and von Luxburg, 2020b), this time
in a setting very close to the default implementation
and for other classes of models (in particular partition-
based classifiers such as CART trees and kernel regres-
sors built on the Gaussian kernel). While uncovering
a number of good properties of LIME, these analyses
also exposed some weaknesses of LIME, notably can-
cellation of interpretable features for some choices of
hyperparameters.

The present work is quite similar in spirit, however we
are concerned with text data. The LIME algorithm op-
erates quite differently in this case. In particular, the
input data goes first through a TF-IDF transform (a
non-linear transformation) and there is no discretiza-
tion step since interpretable features are readily avail-
able (the words of the document). Therefore both the
analysis and our conclusions are quite different, as it
will become clear in the rest of the paper.

2 LIME for text data

In this section, we lay out the general operation of
LIME for text data and introduce our notation in the
process. From now on, we consider a model f and look
at its prediction for a fixed example ξ belonging to a
corpus C of size N , which is built on a dictionary D
of size D. We let ‖·‖ denote the Euclidean norm, and
SD−1 the unit sphere of RD.

Before getting started, let us note that LIME is usu-
ally used in the classification setting: f takes values
in {0, 1} (say), and f(φ(ξ)) represents the class at-

1https://github.com/marcotcr/lime

https://github.com/dmardaoui/lime_text_theory
https://github.com/dmardaoui/lime_text_theory
https://github.com/marcotcr/lime
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tributed to ξ by f . However, behind the scenes, LIME
requires f to be a real-valued function. In the case
of classification, this function is the probability of be-
longing to a certain class according to the model. In
other words, the regression version of LIME is used,
and this is the setting that we consider in this paper.
We now detail each step of the algorithm.

2.1 TF-IDF transform

LIME works with a vector representation of the doc-
uments. The TF-IDF transform (Luhn, 1957; Jones,
1972) is a popular way to obtain such a representa-
tion. The idea underlying the TF-IDF is quite simple:
to any document, associate a vector of size D. If we set
w1, . . . , wD to be our dictionary, the jth component of
this vector represents the importance of word wj . It is
given by the product of two terms: the term frequency
(TF, how frequent the word is in the document), and
the inverse term frequency (IDF, how rare the word
is in our corpus). Intuitively, the TF-IDF of a docu-
ment has a high value for a given word if this word is
frequent in the document and, at the same time, not
so frequent in the corpus. In this way, common words
such as “the” do not receive high weight.

Formally, let us fix δ ∈ C. For each word wj ∈ D,
we set mj the number of times wj appears in δ. We
also set vj := log N+1

Nj+1 + 1, where Nj is the number

of documents in C containing wj . When presented
with C, we can pre-compute all the vjs and at run
time we only need to count the number of occurrences
of wj in δ. We can now define the normalized TF-IDF:

Definition 1 (Normalized TF-IDF). We define the
normalized TF-IDF of δ as the vector φ(δ) ∈ RD de-
fined coordinate-wise by

∀1 ≤ j ≤ D, φ(δ)j :=
mjvj√∑D
j=1m

2
jv

2
j

. (1)

Note that there are many different ways to define the
TF and IDF terms, as well as normalization choices.
We restrict ourselves to the version used in the de-
fault implementation of LIME, with the understand-
ing that different implementation choices would not
change drastically our analysis. For instance, normal-
izing by the `1 norm instead of the `2 norm would lead
to slightly different computations in Proposition 4.

Finally, note that this transformation step does not
take place for tabular data, since the data already be-
long to RD in this case.

2.2 Sampling

Let us now fix a given document ξ and describe the
sampling procedure of LIME. Essentially, the idea is

ξ=

I  love  their
menu!      The
garlic  mashed
potatoes    is
amazing!   The
greek salad is
perfect.      

d=15
         their
menu!         
garlic        
              
amazing!      
greek         
       .      

s1=8

...

I  love  their
menu!      The
garlic  mashed
potatoes      
amazing!   The
greek salad   
perfect.      

sn=1

Figure 2: The sampling scheme of LIME for text data.
To the left, the document to explain ξ, which contains
d = 15 distinct words. The new samples x1, . . . , xn
are obtained by removing si random words from ξ (in
blue). In the nth sample, one word is removed, yield-
ing two deletions in the original document.

to sample new documents similar to ξ in order to see
how f varies in a neighborhood of ξ.

More precisely, let us denote by d the number of
distinct words in ξ and set D` := {w1, . . . , wd} the
local dictionary. For each new sample, LIME first
draws uniformly at random in {1, . . . , d} a number si
of words to remove from ξ. Subsequently, a subset
Si ⊆ {1, . . . , d} of size si is drawn uniformly at ran-
dom: all the words with indices contained in Si are
removed from ξ. Note that the multiplicity of re-
movals is independent from si: if the word “good”
appears 10 times in ξ and its index belongs to S, then
all the instances of “good” are removed from ξ (see
Figure 2). This process is repeated n times, yielding n
new samples x1, . . . , xn. With these new documents
come n new binary vectors z1, . . . , zn ∈ {0, 1}d, mark-
ing the absence or presence of a word in xi. Namely,
zi,j = 1 if wj belongs to xi and 0 otherwise. We call the
zis the interpretable features. Note that we will write
1 := (1, . . . , 1)> for the binary feature associated to ξ:
all the words are present.

Already we see a difficulty appearing in our analysis:
when removing words from ξ at random, φ(ξ) is modi-
fied in a non-trivial manner. In particular, the denom-
inator of Eq. (1) can change drastically if many words
are removed.

In the case of tabular data, the interpretable features
are obtained in a completely different fashion, by dis-
cretizing the dataset.

2.3 Weights

Let us start by defining the cosinus distance:

Definition 2 (Cosinus distance). For any u, v ∈
RD, we define

dcos(u, v) := 1− u · v
‖u‖ · ‖v‖

. (2)

Intuitively, the cosinus distance between u and v is
small if the angle between u and v is small. Each new
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sample xi receives a positive weight πi, defined by

πi := exp

(
−dcos(1, zi)2

2ν2

)
, (3)

where ν is a positive bandwidth parameter. The intu-
ition behind these weights is that xi can be far away
from ξ if many words are removed (in the most ex-
treme case, s = d, all the words from ξ are removed).
In that case, zi has mostly 0 components, and is far
away from 1.

Note that the cosinus distance in Eq. (3) is actually
multiplied by 100 in the current implementation of
LIME. Thus there is the following correspondence be-
tween our notation and the code convention: νLIME =
100ν. For instance, the default choice of bandwidth,
νLIME = 25, corresponds to ν = 0.25.

We now make the following important remark: the
weights only depends on the number of dele-
tions. Indeed, conditionally to Si having exactly s el-
ements, we have zi ·1 = d−s and ‖zi‖ =

√
d− s. Since

‖1‖ =
√
d, using Eq. (3), we deduce that πi = ψ(s/d),

where we defined the mapping

ψ : [0, 1] −→ R (4)

t 7−→ exp

(
−(1−

√
1− t)2

2ν2

)
.

We can see in Figure 3 how the weights are given to
observations: when s is small, then ψ(s/d) ≈ 1 and
when s ≈ d, ψ(s/d) which is a small quantity depend-
ing on ν. Note that the complicated dependency of the
weights in s brings additional difficulty in our analy-
sis, and that we will sometimes restrict ourselves to
the large bandwidth regime (that is, ν → +∞). In
that case, πi ≈ 1 for any 1 ≤ i ≤ n.

Euclidean distance between the interpretable features
is used instead of the cosine distance in the tabular
data version of the algorithm.

2.4 Surrogate model

The next step is to train a surrogate model on the in-
terpretable features z1, . . . , zn, trying to approximate
the responses yi := f(φ(xi)). In the default implemen-
tation of LIME, this model is linear and is obtained by
weighted ridge regression (Hoerl and Kennard, 1970).
Formally, LIME outputs

β̂λn ∈ arg min
β∈Rd+1

{ n∑
i=1

πi(yi − β>zi)2 + λ ‖β‖2
}
, (5)

where λ > 0 is a regularization parameter. We call
the components of β̂λn the interpretable coefficients, the
0th coordinate in our notation is by convention the in-
tercept. Note that some feature selection mechanism

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Evolution of ψ in function of t

ν=0.15
ν=0.25
ν=0.35

Figure 3: The mapping ψ as a function of t for different
bandwidth parameters (ν = 0.25 is default). LIME
gives more weights to documents with few deletions
(s/d ≈ 0 means that ψ(s/d) ≈ 1 regardless of the
bandwidth).

is often used in practice, limiting the number of in-
terpretable features in output from LIME. We do not
consider such mechanism in our analysis.

We now make a fundamental observation. In its de-
fault implementation, LIME uses the default setting
of sklearn for the regularization parameter, that is,
λ = 1. Hence the first term in Eq. (5) is roughly of
order n and the second term of order d. Since we ex-
periment in the large n regime (n = 5000 is default)
and with documents that have a few dozen distinct
words, n� d. To put it plainly, we can consider that
λ = 0 in our analysis and still recover meaningful re-
sults. We will denote by β̂n the solution of Eq. (5)
with λ = 0, that is, ordinary least-squares.

We conclude this presentation of LIME by noting that
the main free parameter of the method is the band-
width ν. As far as we know, there is no principled
way of choosing ν. The default choice, ν = 0.25, does
not seem satisfactory in many respects. In particu-
lar, other choices of bandwidth can lead to different
values for interpretable coefficients. In the most ex-
treme cases, they can even change sign, see Figure 4.
This phenomenon was also noted for tabular data in
Garreau and von Luxburg (2020b).

3 Main result

Without further ado, let us present our main result.
For clarity’s sake, we split it in two parts: Section 3.1
contains the concentration of β̂n around βf whereas
Section 3.2 presents the exact expression of βf .

3.1 Concentration of β̂n

When the number of new samples n is large, we expect
LIME to stabilize and the explanations not to vary too
much. The next result supports this intuition.
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0.0 0.1 0.2 0.3 0.4 0.5
ν

−0.03
−0.02
−0.01

0.00
0.01
0.02
0.03

̂β3

Cancellation of interpretable coefficients

̂β3
ν= 0.25

Figure 4: In this experiment, we plot the interpretable
coefficient associated to the word “came” as a func-
tion of the bandwidth parameter. The red vertical line
marks the default bandwidth choice (ν = 25). We can
see that LIME gives a negative influence for ν ≈ 0.1
and a positive one for ν > 0.2.

Theorem 1 (Concentration of β̂n). Suppose that
the model f is bounded by a positive constant M on
SD−1. Recall that we let d denote the number of dis-
tinct words of ξ, the example to explain. Let 0 < ε <
M and η ∈ (0, 1). Then, there exist a vector βf ∈ Rd
such that, for every

n & max
{
M2d9e

10
ν2 ,Md5e

5
ν2

} log 8d
η

ε2
,

we have P
(
‖β̂n − βf‖ ≥ ε

)
≤ η.

We refer to the supplementary material for a complete
statement (we omitted numerical constants here for
clarity) and a detailed proof. In essence, Theorem 1
tells us that we can focus on βf in order to under-
stand how LIME operates, provided that n is large
enough. The main limitation of Theorem 1 is the de-
pendency of n in d and ν. The control that we achieve
on ‖β̂n−β‖ becomes quite poor for large d or small ν:
we would then need n to be unreasonably large in order
to witness concentration.

We notice that Theorem 1 is very similar in its form
to Theorem 1 in Garreau and von Luxburg (2020b)
except that (i) the dimension is replaced by the num-
ber of distinct words in the document to explain, and
(ii) there is no discretization parameter in our case.
The differences with the analysis in the tabular data
framework will be more visible in the next section.

3.2 Expression of βf

Our next result shows that we can derive an explicit
expression for βf . Before stating our result, we need
to introduce more notation. From now on, we set x a
random variable such that x1, . . . , xn are i.i.d. copies

of x. Similarly, π corresponds to the draw of the πis
and z to that of the zis.

Definition 3 (α coefficients). Define α0 := E [π]
and, for any 1 ≤ p ≤ d,

αp := E [π · z1 · · · zp] . (6)

Intuitively, when ν is large, αp corresponds to the
probability that p distinct words are present in x. The
sampling process of LIME is such that αp does not de-
pend on the exact set of indices considered. In fact, αp
only depends on d and ν. We show in the supple-
mentary material that it is possible to compute the α
coefficients in closed-form as a function of d and ν:

Proposition 1 (Computation of the α coeffi-
cients). Let 0 ≤ p ≤ d. For any d ≥ 1 and ν > 0, it
holds that

αp =
1

d

d∑
s=1

p−1∏
k=0

d− s− k
d− k

ψ
( s
d

)
.

From these coefficients, we form the normalization
constant

cd := (d− 1)α0α2 − dα2
1 + α0α1 . (7)

We will also need the following.

Definition 4 (σ coefficients). For any d ≥ 1 and
ν > 0, define

σ1 := −α1 ,

σ2 :=
(d−2)α0α2−(d−1)α2

1+α0α1

α1−α2
,

σ3 :=
α2

1−α0α2

α1−α2
.

(8)

With these notation in hand, we have:

Proposition 2 (Expression of βf). Under the as-
sumptions of Theorem 1, we have cd > 0 and, for any
1 ≤ j ≤ d,

βfj = c−1d

{
σ1E [πf(φ(x))] + σ2E [πzjf(φ(x))] (9)

+ σ3

d∑
k=1
k 6=j

E [πzkf(φ(x))]

}
.

We also have an expression for the intercept which
can be found in the supplementary material, as well
as the proof of Proposition 2. At first glance, Eq. (9)
is quite similar to Eq. (6) in Garreau and von Luxburg

(2020b), which gives the expression of βfj in the tabular
data case. The main difference is the TF-IDF trans-
form in the expectation, personified by φ, and the ad-
ditional terms (there is no σ3 factor in the tabular data
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case). In addition, the expression of the σ coefficients
is much more complicated than in the tabular data
case. We now present some immediate consequences
of Proposition 2.

Linearity of explanations. Perhaps the most
striking feature of Eq. (9) is that it is linear in f .
More precisely, the mapping f 7→ βf is linear in f : for
any given two functions f and g, we have

βf+g = βf + βg .

Therefore, because of Theorem 1, the explanations β̂n
obtained for a finite sample of new examples are also
approximately linear in the model to explain. We illus-
trate this phenomenon in Figure 5. This is remarkable:
many models used in machine learning can be written
as a linear combination of smaller models (e.g., gen-
eralized linear models, kernel regressors, decision trees
and random forests). In order to understand the ex-
planations provided by these complicated models, one
can try and understand the explanations for the ele-
mentary elements of the models first.

Large bandwidth. It can be difficult to get a good
sense of the values taken by the σ coefficients, and
therefore of β. Let us see how Proposition 2 simplifies
in the large bandwidth regime and what insights we
can gain. We denote by β∞ the limit of β when ν →
+∞. When ν → +∞, we prove in the supplementary
material that, for any 1 ≤ j ≤ d, up to O (1/d) terms
and a numerical constant, the j-th coordinate of β∞
is then approximately equal to(
βf∞
)
j
≈E [f(φ(x))|wj ∈ x]− 1

d

∑
k 6=j

E [f(φ(x))|wk ∈ x] .

Intuitively, the interpretable coefficient associated to
the word wj is high if the expected value of the
model when word wj is present is significantly
higher than the typical expected value when
other words are present. We think that this is
reasonable: if the model predicts much higher val-
ues when wj belongs to the example, it surely means
that wj being present is important for the prediction.

3.3 Sketch of the proof

We conclude this section with a brief sketch of the
proof of Theorem 1, the full proof can be found in the
supplementary material.

Since we set λ = 0 in Eq. (5), β̂n is the solution of
a weighted least-squares problem. Denote by W ∈
Rn×n the diagonal matrix such that Wi,i = πi, and
set Z ∈ {0, 1}n×(d+1) the matrix such that its ith line
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Figure 5: The explanations given by LIME for the sum
of two models (here two random forests regressors) are
the sum of the explanations for each model, up to noise
coming from the sampling procedure.

is (1, z>i ). Then the solution of Eq. (5) is given by

β̂n =
(
Z>WZ

)−1
Z>Wy ,

where we defined y ∈ Rn such that yi = f(φ(xi))
for all 1 ≤ i ≤ n. Let us set Σ̂n := 1

nZ
>WZ and

Γ̂fn := 1
nZ
>Wy. By the law of large numbers, we

know that both Σ̂n and Γ̂fn converge in probability
towards their population counterparts Σ := E[Σ̂n] and
Γf := E[Γ̂n]. Therefore, provided that Σ is invertible,

β̂n is close to βf := Σ−1Γf with high probability.

As we have seen in Section 2, the main differences
with respect to the tabular data implementation are (i)
the interpretable features, and (ii) the TF-IDF trans-
form. The first point lead to a completely different
Σ than the one obtained in Garreau and von Luxburg
(2020b). In particular, it has no zero coefficients, lead-
ing to more complicated expression for βf and addi-
tional challenges when controlling

∥∥Σ−1
∥∥
op

. The sec-

ond point is quite challenging since, as noted in Sec-
tion 2.1, the TF-IDF transform of a document
changes radically when deleting words at ran-
dom in the document. This is the main reason why
we have to resort to approximations when dealing with
linear models.

4 Expression of βf for simple models

In this section, we see how to specialize Proposition 2
to simple models f . Recall that our main goal in doing
so is to investigate whether it makes sense or not to use
LIME in these cases. We will focus on two classes of
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models: decision trees (Section 4.1) and linear models
(Section 4.2).

4.1 Decision trees

In this section we focus on simple decision trees built
on the presence or absence of given words. For in-
stance, let us look at the model returning 1 if the word
“food” is present, or if “about” and “everything” are
present in the document. Ideally, LIME would give
high positive weights to “food,” “about,” and “every-
thing,” if they are present in the document to explain,
and small weight to all other words.

We first notice that such simple decision trees can be
written as sums of products of the binary features. In-
deed, recall that we defined zj = 1wj∈x. For instance,
suppose that the first three words of our dictionary are
“food,” “about,” and “everything.” Then the model
from the previous paragraph can be written

g(x) = z1 + (1− z1) · z2 · z3 . (10)

Now it is clear that the zjs can be written as function
of the TF-IDF transform of a word, since wj ∈ x if,
and only if, φ(x)j > 0. Therefore this class of models
falls into our framework and we can use Theorem 1
and Proposition 2 in order to gain insight on the ex-
planations provided by LIME. For instance, Eq. (10)
can be written as f(φ(x)) with, for any ζ ∈ RD,

f(ζ) := 1ζ1>0 + (1− 1ζ1>0) · 1ζ2>0 · 1ζ3>0 .

By linearity, it is sufficient to know how to compute βf

when f is a product of indicator functions.

We now make an important remark: since the new ex-
ample x1, . . . , xn are created by deleting words at ran-
dom from the text ξ, x only contains words that
are already present in ξ. Therefore, without loss of
generality, we can restrict ourselves to the local dictio-
nary (the distinct words of ξ). Indeed, for any word w
not already in ξ, 1w∈x = 0 almost surely. As before,
we denote by D` the local dictionary associated to ξ,
and we denote its elements by w1, . . . , wd. We can
compute in closed-form the interpretable coefficients
for a product of indicator functions:

Proposition 3 (Computation of βf , product of
indicator functions). Let J ⊆ {1, . . . , d} be a set
of p distinct indices and set f(x) =

∏
j∈J 1xj>0. Then,

for any j ∈ J ,

βfj =c−1d
[
σ1αp + σ2αp + (d−p)σ3αp+1 + (p−1)σ3αp

]
and, for any j ∈ {1, . . . , d} \ J ,

βfj =c−1d
[
σ1αp + σ2αp+1 + (d−p−1)σ3αp+1 + pσ3αp

]
.

In particular, when p = 0, Proposition 3 simplifies
greatly and we find that 1 ≤ k ≤ d, βfk = 1k=j . It
is already a reassuring result: when the model is just
indicating if a given word is present, the explanation
given by LIME is one for this word and zero for
all the other words.

It is slightly more complicated to see what happens
when p ≥ 1. To this extent, let us set j ∈ J and
k /∈ J . Then it follows readily from Proposition 14
that

βfj − β
f
k = c−1d (σ2 + σ3)(αp − αp+1) .

Since αp ≈ 1/(p + 1) and σ2 + σ3 ≈ 6, we deduce

that βfj � βfk . Moreover, from Definition 3 and 4 one

can show that βfk = O (1/d) when ν is large. Thus
Proposition 14 tells us that LIME gives large pos-
itive coefficients to words that are in the sup-
port of f and small coefficients to all the other
words. This is a satisfying property.

Together with the linearity property, Proposition 14
allows us to compute βf for any decision tree that
can be written as in Eq. (10). We give an example of
our theoretical predictions in Figure 6. As predicted,
the words that are pivotal in the prediction
have high interpretable coefficients, whereas
the other words receive near-zero coefficients.
It is interesting to notice that words that are near the
root of the tree receive a greater weight. We present
additional experiments in the supplementary material.

4.2 Linear models

We now focus on linear models, that is, for any docu-
ment x,

f(φ(x)) :=
d∑
j=1

λjφ(x)j , (11)

where λ1, . . . , λd are arbitrary fixed coefficients. We
have to resort to approximate computations in this
case: from now on, we assume that ν = +∞. We
start with the simplest linear function: all coefficients
are zero except one, that is, λk = 1 if k = j and 0
otherwise in Eq. (11), for a fixed index j. We need to
introduce additional notation before stating or result.
For any 1 ≤ j ≤ d, define

ωk :=
m2
jv

2
j∑d

k=1m
2
kv

2
k

,

where the mks and vks were defined in Section 2.1.
For any J that is a strict subset of {1, . . . , d}, define
HS :=

∑
j∈J ωj . Recall that S denotes the random

subset of indices chosen by LIME in the sampling step
(see Section 2.2). Define Ej = E

[
(1−HS)−1/2

∣∣S 63 j]
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Figure 6: Theory vs practice for the tree defined by
Eq. (10). The black whisker boxes correspond to 100
runs of LIME with default settings (n = 5000 new
examples and ν = 0.25) whereas the red crosses corre-
spond to the theoretical predictions given by our anal-
ysis. The example to explain is a Yelp review with
d = 35 distinct words.

and for any k 6= j, Ej,k = E
[
(1−HS)−1/2

∣∣S 63 j, k].
Then we have the following:

Proposition 4 (Computation of βf , linear case).
Let 1 ≤ j ≤ d and assume that f(φ(x)) = φ(x)j.
Then, for any 1 ≤ k ≤ d such that k 6= j,(

βf∞
)
k

=

[
2Ej,1 −

2

d

∑
6̀=k,j

Ej,`

]
φ(ξ)j +O

(
1

d

)
,

and (
βf∞
)
j

=

[
3Ej −

2

d

∑
k 6=j

Ej,k

]
φ(ξ)j +O

(
1

d

)
.

Proposition 4 is proved in the supplementary mate-
rial. The main difficulty is to compute the expected
value of φ(x)j : this is the reason for the Ej terms, for
which we find an approximate expression as a function
of the ωks. Assuming that the ωk are small, we can
further this approximation and show that Ej ≈ 1.22
and Ej,k ≈ 1.15. In particular, these expressions
do not depend on j and k. Thus we can drastically
simplify the statement of Proposition 4: for any k 6= j,(
βf∞
)
k
≈ 0 and

(
βf∞
)
j
≈ 1.36φ(ξ)j . We can now go

back to our original goal, Eq. (11). By linearity, we
deduce that

∀1 ≤ j ≤ d,
(
βf∞
)
j
≈ 1.36 · λj · φ(ξ)j . (12)

In other words, up to a numerical constant and small
error terms depending on d, the explanation for a
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Figure 7: Theory vs practice for an arbitrary linear
model. The black whisker boxes correspond to 100
runs of LIME with default settings (n = 5000 and ν =
0.25). The red crosses correspond to our theoretical
predictions: βj ≈ 1.36λjφ(ξ)j .

linear f is the TF-IDF value of the word mul-
tiplied by the coefficient of the linear model.
We believe that this behavior is desirable for an in-
terpretability method: large coefficients in the linear
model should intuitively be associated to large inter-
pretable coefficients. But at the same time the TF-IDF
of the term is taken into account.

We observe a very good match between theory and
practice (see Figure 7). Surprisingly, this is the case
even though we assume that ν is large in our deriva-
tions, whereas ν is chosen by default in all our experi-
ments. We present experiments with other bandwidths
in the supplementary.

5 Conclusion

In this work we proposed the first theoretical analy-
sis of LIME for text data. In particular, we provided
a closed-form expression for the interpretable coeffi-
cients when the number of perturbed samples is large.
Leveraging this expression, we exhibited some desir-
able behavior of LIME such as the linearity with re-
spect to the model. In specific cases (simple decision
trees and linear models), we derived more precise ex-
pression, showing that LIME outputs meaningful ex-
planations in these cases.

As future work, we want to tackle more complex mod-
els. More precisely, we think that it is possible to ob-
tained approximate statements in the spirit of Eq. (12)
for models that are not linear. In the long run, we also
want to analyze LIME for images, which is a much
more challenging task.
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Supplementary material for the paper:
“An Analysis of LIME for Text Data”

Organization of the supplementary material

In this supplementary material, we collect the proofs of all our theoretical results and additional experiments.
We study the covariance matrix in Section 1 and the responses in Section 2. The proof of our main results
can be found in Section 3. Combinatorial results needed for the approximation formulas obtained in the linear
case are collected in Section 4, while other technical results can be found in Section 5. Finally, we present some
additional experiments in Section 6.

Notation. First, let us quickly recall our notation. We consider x, z, π the generic random variables associated
to the sampling of new examples by LIME. To put it plainly, the new examples x1, . . . , xn are i.i.d. samples from
the random variable x. Also remember that we denote by S ⊆ {1, . . . , d} the random subset of indices removed
by LIME when creating new samples for a text with d distinct words. For any finite set R, we write #R the
cardinality of R. Recall that we denote by S the random set of indices deleted in the sampling. We write Es the
expectation conditionally to #S = s. Since we consider vectors belonging to Rd+1 with the zero-th coordinate
corresponding to an intercept, we will often start the numbering at 0 instead of 1. For any matrix M , we set
‖M‖F the Frobenius norm of M and ‖M‖op the operator norm of M .

1 The study of Σ

We begin by the study of the covariance matrix. We show in Section 1.1 how to compute Σ. We will see how
the α coefficients defined in the main paper appear. In Section 1.2, we show that it is possible to invert Σ in
closed-form: it can be written in function of cd and the σ coefficients. We show how Σ̂n concentrates around Σ
in Section 1.3. Finally, Section 1.4 is dedicated to the control of

∥∥Σ−1
∥∥
op

.

1.1 Computation of Σ

In this section, we derived a closed-form expression for Σ := E[Σ̂n] as a function of d and ν. Recall that we
defined Σ̂ = 1

nZ
>WZ. By definition of Z and W , we have

Σ̂ =


1
n

∑n
i=1 πi

1
n

∑n
i=1 πizi,1 · · · 1

n

∑n
i=1 πizi,d

1
n

∑n
i=1 πizi,1

1
n

∑n
i=1 πizi,1 · · · 1

n

∑n
i=1 πizi,1zi,d

...
...

. . .
...

1
n

∑n
i=1 πizi,d

1
n

∑n
i=1 πizi,1zi,d · · · 1

n

∑n
i=1 πizi,d

 ∈ R(d+1)×(d+1) .

Taking the expectation in the last display with respect to the sampling of new examples yields

Σ =


E [π] E [πz1] · · · E [πzd]
E [πz1] E [πz1] · · · E [πz1zd]

...
...

. . .
...

E [πzd] E [πz1zd] · · · E [πzd]

 ∈ R(d+1)×(d+1) . (13)

An important remark is that E [πzj ] does not depend on j. Indeed, there is no privileged index in the sampling
of S (the subset of removed indices). Thus we only have to look into E [πz1] (say). For the same reason, E [πzjzk]
does not depend on the 2-uple (j, k), and we can limit our investigations to E [πz1z2]. This is the reason why we
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Figure 8: The function ψ defined by Eq. (15) with bandwidth parameter ν = 0.25. In orange (resp. blue), one
can see the upper (resp. lower) bound given by Eq. (16).

defined α0 = E [π] and, for any 1 ≤ p ≤ d,

αp = E [π · z1 · · · zp] (14)

in the main paper. We recognize the definition of the αps in Eq. (13) and we write

Σj,k =


α0 if j = k = 0,

α1 if j = 0 and k > 0 or j > 0 and k = 0 or j = k > 0,

α2 otherwise.

As promised, we can be more explicit regarding the α coefficients. Recall that we defined the mapping

ψ : [0, 1] −→ R (15)

t 7−→ exp
(
−(1−

√
1− t)2/(2ν2)

)
.

It is a decreasing mapping (see Figure 8). With this notation in hand, we have the following expression for the
α coefficients (this is Proposition 1 in the paper):

Proposition 5 (Computation of the α coefficients). For any d ≥ 1, ν > 0, and p ≥ 0, it holds that

αp =
1

d

d∑
s=1

p−1∏
k=0

d− s− k
d− k

ψ
( s
d

)
.

In particular, the first three α coefficients can be written

α0 =
1

d

d∑
s=1

ψ
( s
d

)
, α1 =

1

d

d∑
s=1

(
1− s

d

)
ψ
( s
d

)
, and α2 =

1

d

d∑
s=1

(
1− s

d

)(
1− s

d− 1

)
ψ
( s
d

)
.

Proof. The idea of the proof is to use the law of total expectation with respect to the collection of events
{#S = s} for s ∈ {1, . . . , d}. Since P (#S = s) = 1

d for any 1 ≤ s ≤ d, all that is left to compute is the
expectation of πz1 · · · zp conditionally to #S = s. According to the remark in Section 2.3 of the main paper,
π = ψ(s/d) conditionally to {#S = s}. We can conclude since, according to Lemma 4,

Ps (w1 ∈ x, . . . , wp ∈ x) =
(d− s)(d− s− 1) · · · (d− s− p+ 1)

d(d− 1) · · · (d− p+ 1)
.

It is important to notice that, when ν → +∞, ψ(t) → 0 for any t ∈ (0, 1]. As a consequence, in the large
bandwidth regime, the ψ(s/d) weights are arbitrarily close to one. We demonstrate this effect in Figure 9. In
this situation, the α coefficients take a simpler form.

Corollary 1 (Large bandwidth approximation of α coefficients). For any 0 ≤ p ≤ d, it holds that

lim
ν→+∞

αp =
d− p

(p+ 1)d
.
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Figure 9: Behavior of the first α coefficients with respect to the bandwidth parameter ν. The red vertical lines
mark the default bandwidth choice (ν = 0.25). The green horizontal line denotes the limits for large d given by
Corollary 1.

We report these approximate values in Figure 9. In particular, when both ν and d are large, we can see that
αp ≈ 1/(p+ 1). Thus α0 ≈ 1, α1 ≈ 1

2 , and α2 ≈ 1
3 .

Proof. When ν → +∞, we have ψ(s/d)→ 1 and we can conclude directly by using Lemma 5.

Notice that we can be slightly more precise than Corollary 1. Indeed, ψ is decreasing on [0, 1], thus for any
t ∈ [0, 1], exp

(
−1/(2ν2)

)
≤ ψ(t) ≤ 1. Therefore we can present some efficient bounds for the α coefficients when

ν is large.

Corollary 2 (Bounds on the α coefficients). For any 0 ≤ p ≤ d, it holds that

d− p
(p+ 1)d

e
−1

2ν2 ≤ αp ≤
d− p

(p+ 1)d
.

One can further show that, for any 0 ≤ t ≤ 1,

exp

(
−t2

2ν2

)
≤ ψ(t) ≤ exp

(
−t2

8ν2

)
. (16)

Using Eq. (16) together with the series-integral comparison theorem would yield very accurate bounds for the α
coefficients and related quantities, but we will not follow that road.

1.2 Computation of Σ−1

In this section, we present a closed-form formula for the matrix inverse of Σ as a function of d and ν.

Proposition 6 (Computation of Σ−1). For any d ≥ 1 and ν > 0, recall
that we defined

cd = (d− 1)α0α2 − dα2
1 + α0α1 .

Assume that cd 6= 0 and α1 6= α2. Define σ0 := (d− 1)α2 + α1 and recall that
we set 

σ1 = −α1 ,

σ2 =
(d−2)α0α2−(d−1)α2

1+α0α1

α1−α2
,

σ3 =
α2

1−α0α2

α1−α2
.

Then it holds that

Σ−1 =
1

cd



σ0 σ1 σ1 · · · σ1
σ1 σ2 σ3 · · · σ3

σ1 σ3 σ2
. . .

...
...

...
. . .

. . . σ3
σ1 σ3 · · · σ3 σ2

 ∈ R(d+1)×(d+1) . (17)

0 2 40

1

2
Evolution of cd in function of ν

d2 − 1
12d

0.25

Figure 10: Evolution of the
normalization constant cd as
a function of the bandwidth
for d = 30. In red, the de-
fault bandwidth ν = 0.25,
in green the limit for large
bandwidth given by Corol-
lary 3.

We display the evolution of the σi/cd coefficients with respect to ν in Figure 11.
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Figure 11: Evolution of σi/cd as a function of ν for 1 ≤ i ≤ 4 for d = 30. In red the default value of the
bandwidth. In green the limits given by Corollary 3. We can see that the σ coefficients are close to these limit
values for the default bandwidth.

Proof. From Eq. (13), we can see that Σ is a block matrix. The result follows from the block matrix inversion
formula and one can check directly that Σ · Σ−1 = Id+1.

Our next result shows that the assumptions of Proposition 6 are satisfied: α1−α2 and cd are positive quantities.
In fact, we prove a slightly stronger statement which will be necessary to control the operator norm of Σ−1.

Proposition 7 (Σ is invertible). For any d ≥ 2,

α1 − α2 ≥
e

−1

2ν2

6
> 0 , and cd ≥

e
−2

ν2

40
> 0 .

Proof. By definition of the α coefficients (Eq. (14)), we have

α1 − α2 =
1

d

d∑
s=1

(
1− s

d

) s

d− 1
ψ
( s
d

)
.

Since e
−1

2ν2 ≤ ψ(t) ≤ 1 for any t ∈ [0, 1], we have

e
−1

2ν2 · 1

d

d∑
s=1

(
1− s

d

) s

d− 1
=
d+ 1

6d
· e

−1

2ν2 ≤ α1 − α2 ≤
d+ 1

6d
. (18)

The right-hand side of Eq. (18) yields the promised bound. Note that the same reasoning gives

d+ 1

2d
· e

−1

2ν2 ≤ α0 − α1 ≤
d+ 1

2d
. (19)

Let us now find a lower bound for cd. We first start by noticing that

cd = dα1(α0 − α1)− (d− 1)α0(α1 − α2) (20)

=

d∑
s=1

(
1− s

d

)
ψ
( s
d

)
· 1

d

d∑
s=1

s

d
ψ
( s
d

)
−

d∑
s=1

ψ
( s
d

)
· 1

d

d∑
s=1

(
1− s

d

)
ψ
( s
d

)

cd =
1

d

 d∑
s=1

ψ
( s
d

)
·
d∑
s=1

s2

d2
ψ
( s
d

)
−

(
d∑
s=1

s

d
ψ
( s
d

))2
 .

Therefore, by Cauchy-Schwarz inequality, cd ≥ 0. In fact, cd > 0 since the equality case in Cauchy-Schwarz is
attained for proportional summands, which is not the case here.

However, we need to improve this result if we want to control
∥∥Σ−1

∥∥
op

more precisely. To this extent, we use a

refinement of Cauchy-Schwarz inequality obtained by Filipovski (2019). Let us set, for any 1 ≤ s ≤ d,

as :=

√
ψ
( s
d

)
, bs :=

s

d

√
ψ
( s
d

)
, A :=

√√√√ d∑
s=1

a2s , and B :=

√√√√ d∑
s=1

b2s .
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With these notation,

cd =
1

d

A2B2 −

(
d∑
s=1

asbs

)2
 ,

and Cauchy-Schwarz yields A2B2 ≥
(∑d

s=1 asbs

)2
. Theorem 2.1 in Filipovski (2019) is a stronger result, namely

AB ≥
d∑
s=1

asbs +
1

4

d∑
s=1

(a2sB
2 − b2sA2)2

a4sB
4 + b4sA

4
asbs . (21)

Let us focus on this last term. Since all the terms are non-negative, we can lower bound by the term of order d,
that is,

1

4

d∑
s=1

(a2sB
2 − b2sA2)2

a4sB
4 + b4sA

4
asbs ≥

1

4

(b2dA
2 − a2dB2)2

b4dA
4 + a4dB

4
adbd =

1

4

(A2 −B2)2

A4 +B4
ψ(1) , (22)

since ad = bd =
√
ψ(1). On one side, we notice that

A2 −B2 =

d∑
s=1

(
1− s2

d2

)
ψ
( s
d

)
≥ exp

(
−1

2ν2

)
·
d∑
s=1

(
1− s2

d2

)
(for any t ∈ [0, 1], ψ(t) ≥ e−1/(2ν

2))

= exp

(
−1

2ν2

)
· 1

6

(
4d− 1

d
− 3

)
A2 −B2 ≥

3d · exp
( −1
2ν2

)
8

,

where we used d ≥ 2 in the last display. We deduce that (A2 −B2)2 ≥ 9d2e
−1

2ν2 /64. On the other side, it is clear
that A2 ≤ d, and

B2 ≤
d∑
s=1

s2

d2
=

(d+ 1)(2d+ 1)

6d
.

For any d ≥ 2, we have B2 ≤ 5d/8, and we deduce that A4 +B4 ≤ 89
64d

2. Therefore,

(A2 −B2)2

A4 +B4
≥ 9e

−1

ν2

89
.

Coming back to Eq. (22), we proved that

1

4

d∑
s=1

(a2sB
2 − b2sA2)2

a4sB
4 + b4sA

4
asbs ≥

9e
−3

2ν2

356
.

Plugging into Eq. (21) and taking the square, we deduce that

A2B2 ≥

(
d∑
s=1

asbs

)2

+ 2 ·
d∑
s=1

asbs ·
9e

−3

2ν2

356
+

81e
−3

ν2

126736
.

But
∑
asbs ≥ de

−1

2ν2 /2, therefore, ignoring the last term, we have

A2B2 −

(
d∑
s=1

asbs

)2

≥ 9de
−2

ν2

356
.

We conclude by noticing that 356/9 ≤ 40.
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Remark 1. We suspect that the correct lower bound for cd is actually of order d, but we did not manage to
prove it. Careful inspection of the proof shows that this d factor is lost when considering only the last term of
the summation in Eq. (21). It is however challenging to control the remaining terms, since B2 is roughly half of

A2 and s2

d2B
2 −A2 is close to 0 for some values of s.

We conclude this section by giving an approximation of Σ−1 for large bandwidth. This approximation will be
particularly useful in Section 3.1.

Corollary 3 (Large bandwidth approximation of Σ−1). For any d ≥ 2, when ν → +∞, we have

cd −→
d2 − 1

12d
,

and, as a consequence, 
σ0

cd
→ 2(2d−1)

d+1 = 4− 6
d +O

(
1
d2

)
σ1

cd
→ −6

d+1 = − 6
d +O

(
1
d2

)
σ2

cd
→ 6(d2−2d+3)

(d+1)(d−1) = 6− 12
d +O

(
1
d2

)
σ3

cd
→ −6(d−3)

(d+1)(d−1) = − 6
d +O

(
1
d2

)
.

(23)

Proof. The proof is straightforward from the definition of cd and the σ coefficients, and Corollary 1.

1.3 Concentration of Σ̂n

We now turn to the concentration of Σ̂n around Σ. More precisely, we show that Σ̂n is close to Σ in operator
norm, with high probability. Since the definition of Σ̂n is identical to the one in the Tabular LIME case, we can
use the proof machinery of Garreau and von Luxburg (2020b).

Proposition 8 (Concentration of Σ̂n). For any t ≥ 0,

P
(∥∥∥Σ̂n − Σ

∥∥∥
op
≥ t
)
≤ 4d · exp

(
−nt2

32d2

)
.

Proof. We can write Σ̂ = 1
n

∑
i πiZiZ

>
i . The summands are bounded i.i.d. random variables, thus we can apply

the matrix version of Hoeffding inequality. More precisely, the entries of Σ̂n belong to [0, 1] by construction, and
Corollary 2 guarantees that the entries of Σ also belong to [0, 1]. Therefore, if we set Mi := 1

nπiZiZ
>
i −Σ, then

the Mi satisfy the assumptions of Theorem 21 in Garreau and von Luxburg (2020b) and we can conclude since
1
n

∑
iMi = Σ̂n − Σ.

1.4 Control of
∥∥Σ−1

∥∥
op

We now turn to the control of
∥∥Σ−1

∥∥
op

. Essentially, our strategy is to bound the entries of Σ−1, and then to

derive an upper bound for
∥∥Σ−1

∥∥
op

by noticing that
∥∥Σ−1

∥∥
op
≤
∥∥Σ−1

∥∥
F

. Thus let us start by controlling the σ

coefficients in absolute value.

Lemma 1 (Control of the σ coefficients). Let d ≥ 2 and ν ≥ 1.66. Then it holds that

|σ0| ≤
d

3
, |σ1| ≤ 1 , |σ2| ≤

3d

2
e

1
2ν2 , and |σ3| ≤

3

2
e

1
2ν2 .

Proof. By its definition, we know that σ0 is positive. Moreover, from Corollary 2, we see that

σ0 = (d− 1)α2 + α1

≤ (d− 1)(d− 2)

3d
+
d− 1

2d

=
2d2 − 3d+ 3

6d
.
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One can check that for any d ≥ 2, we have 2d2 − 3d+ 3 ≤ 2d2, which concludes the proof of the first claim.

Since |σ1| = α1, the second claim is straightforward from Corollary 2.

Regarding σ2, we notice that

σ2 =
cd + α2

1 − α0α2

α1 − α2
.

Since α0 ≥ α1 ≥ α2, we have

−α1(α0 − α1) ≤ α2
1 − α0α2 ≤ α0(α1 − α2) .

Using Eqs. (18) and (19) in conjunction with Corollary 2, we find that
∣∣α2

1 − α0α2

∣∣ ≤ 1/4. Moreover, from
Eq. (20), we see that cd ≤ d/4. We deduce that

|σ2| ≤
(
d

4
+

1

4

)
· 6e

1
2ν2 ,

where we used the first statement of Proposition 7 to lower bound α1α2. The results follows, since d ≥ 2.

Finally, we write

|σ3| =
∣∣α2

1 − α0α2

∣∣
α1 − α2

≤ 1/4

d+1
6d · e

−1

2ν2

according to Proposition 7.

We now proceed to bound the operator norm of Σ−1.

Proposition 9 (Control of
∥∥Σ−1

∥∥
op

). For any d ≥ 2 and any ν > 0, it holds that

∥∥Σ−1
∥∥
op
≤ 70d3/2e

5
2ν2 .

Remark 2. We notice that the control obtained worsens as d → +∞ and ν → 0. We conjecture that the
dependency in d is not tight. For instance, showing that cd = Ω(d) (that is, improving Proposition 7) would
yield an upper bound of order d instead of d3/2. The discussion after Proposition 7 indicates that such an
improvement may be possible. Moreover, we see in experiments that the concentration of β̂n does not degrade
that much for large d (see, in particular, Figure 17 in Section 6.2), another sign that Proposition 9 could be
improved.

Proof. We will use the fact that
∥∥Σ−1

∥∥
op
≤
∥∥Σ−1

∥∥
F

. We first write

∥∥Σ−1
∥∥2
F

=
1

c2d

(
σ2
0 + 2dσ2

1 + dσ2
2 + (d2 − d)σ2

3

)
,

by definition of the σ coefficients. On one hand, using Lemma 1, we write

σ2
0 + 2dσ2

1 + dσ2
2 + (d2 − d)σ2

3 ≤
d2

9
+ 2d+ d · (3d/2)2e

1
ν2 + (d2 − d) · 9

4
e

1
ν2

≤ 3d3e
1
ν2 , (24)

where we used cd ≤ d and d ≥ 2 in the last display. On the other hand, a direct consequence of Proposition 7 is
that

1

c2d
≤ 1600e

4
ν2 . (25)

Putting together Eqs. (24) and (25), we obtain the claimed result, since
√

3 · 1600 ≤ 70.
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2 The study of Γf

We now turn to the study of the (weighted) responses. In Section 2.1, we obtain an explicit expression for
the average responses. We show how to obtain closed-form expressions in the case of indicator functions in
Section 2.2. In the case of a linear model, we have to resort to approximations that are detailed in Section 2.3.
Section 2.4 contains the concentration result for Γ̂n.

2.1 Computation of Γf

We start our study by giving an expression for Γf for any f under mild assumptions. Recall that we defined
Γ̂n = 1

nZ
>Wy, where y ∈ Rd+1 is the random vector defined coordinate-wise by yi = f(xi). From the definition

of Γ̂n, it is straightforward that

Γ̂n =


1
n

∑n
i=1 πif(φ(xi))

1
n

∑n
i=1 πizi,1f(φ(xi))

...
1
n

∑n
i=1 πizi,df(φ(xi))

 ∈ Rd+1 .

As a consequence, since we defined Γf = E[Γ̂n], it holds that

Γf =


E [πf(φ(x))]
E [πz1f(φ(x))]

...
E [πzdf(φ(x))]

 . (26)

Of course, Eq. (26) depends on the model f . These computations can be challenging. Nevertheless, it is possible
to obtain exact results in simple situations.

Constant model. As a warm up, let us show how to compute Γf when f is constant. Perhaps the simplest
model of all: f always returns the same value, whatever the value of φ(x) may be. By linearity of Γf (see
Section 3.2 of the main paper), it is sufficient to consider the case f = 1. From Eq. (26), we see that

Γfj =

{
E [π] if j = 0,

E [πzj ] otherwise.

We recognize the definitions of the α coefficients, and, more precisely, Γf0 = α0 and Γfj = α1 if j ≥ 1.

2.2 Indicator functions

Let us turn to a slightly more complicated class of models: indicator functions, or rather products of indicator
functions. As explained in the paper, these functions fall into our framework. We have the following result:

Proposition 10 (Computation of Γf , product of indicator functions). Set J ⊆ {1, . . . , d} a set of p
distinct indices. Define

f(φ(x)) :=
∏
j∈J

1φ(x)j>0 .

Then it holds that

Γf` =

{
αp if ` ∈ {0} ∪ J
αp+1 otherwise.

Proof. As noticed in the paper, f can be written as a product of zjs. Therefore, we only have to compute

E
[
π
∏
j∈J

zj

]
and E

[
πzk

∏
j∈J

zj

]
,

for any 1 ≤ k ≤ d. The first term is αp by definition. For the second term, we notice that if ` ∈ {0}∪J , then two
terms are identical in the product of binary features, and we recognize the definition of αp. In all other cases,
there are no cancellation and we recover the definition of αp+1.
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2.3 Linear model

We now consider a linear model, that is,

f(φ(x)) :=

d∑
j=1

λjφ(x)j , (27)

where λ1, . . . , λd are arbitrary fixed coefficients. In order to simplify the computations, we will consider that
ν → +∞ in this section. In that case, π

a.s.−→ 1. It is clear that f is bounded on SD−1, thus, by dominated
convergence,

Γf −→ Γ∞ :=


E [f(φ(x)]
E [z1f(φ(x)]

...
E [zdf(φ(x)]

 ∈ Rd+1 . (28)

By linearity of f 7→ Γf∞, it is sufficient to compute E [φ(x)j ] and E [zkφ(x)j ] for any 1 ≤ j, k ≤ d.

For any 1 ≤ j ≤ d, recall that we defined

ωk =
m2
jv

2
j∑d

k=1m
2
kv

2
k

,

and HS :=
∑
k∈S ωk, where S is the random subset of indices chosen by LIME. The motivation for the definition

of the random variable HS is the following proposition: it is possible to write the expected TF-IDF as an
expression depending on HS .

Proposition 11 (Expected normalized TF-IDF). Let wj be a fixed word of ξ. Then, it holds that

E [φ(x)j ] = E [zjφ(x)j ] =
d− 1

2d
· φ(ξ)j · E

[
1√

1−HS

∣∣∣∣S 63 j] , (29)

and, for any k 6= j,

E [zkφ(x)j ] =
d− 2

3d
· φ(ξ)j · E

[
1√

1−HS

∣∣∣∣S 63 j, k] . (30)

Proof. We start by proving Eq (29). Let us split the expectation depending on wj ∈ x. Since the term frequency
is 0 if wj /∈ x, we have

E [φ(x)j ] = E [φ(x)j |wj ∈ x]P (wj ∈ x) . (31)

Lemma 5 gives us the value of P (wj ∈ x). Let us focus on the TF-IDF term in Eq. (31). By definition, it is the
product of the term frequency and the inverse document frequency, normalized. Since the latter does not change
when words are removed from ξ, only the norm changes: we have to remove all terms indexed by S. For any
1 ≤ j ≤ d, let us set mj (resp. vj) the term frequency (resp. the inverse term frequency) of wj Conditionally to
{wj ∈ x},

φ(x)j =
mjvj√∑
k/∈Sm

2
kv

2
k

.

Let us factor out φ(ξ)j in the previous display. By definition of HS , we have

φ(x)j = φ(ξ)j ·
1√

1−
∑
k∈S

m2
kv

2
k

‖ϕ(ξ)‖2

= φ(ξ)j ·
1√

1−HS

.

Since {wj ∈ x} is equivalent to {j /∈ S} by construction, we can conclude. The proof of the second statement is
similar; one just has to condition with respect to {wj , wk ∈ x} instead, which is equivalent to {S 63 j, k}.

As a direct consequence of Proposition 11, we can derive Γf∞ = limν→+∞ Γf when f : x 7→ xj . Recall that we
set Ej = E

[
(1−HS)−1/2

∣∣S 63 j] and Ej,k = E
[
(1−HS)−1/2

∣∣S 63 j, k]. Then

(
Γf∞
)
k

=

{(
1
2 −

1
2d

)
· Ej · φ(ξ)j if k = 0 or k = j,(

1
3 −

2
3d

)
· Ej,k · φ(ξ)j otherwise.

(32)
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In practice, the expectation computations required to evaluate Ej and Ej,k are not tractable as soon as d is large.
Indeed, in that case, the law of HS is unknown and approximating the expectation by Monte-Carlo methods
requires is hard since one has to sum over all subsets and there are O

(
2d
)

subsets S such that S ⊆ {1, . . . , d}.
Therefore we resort to approximate expressions for these expected values computations.

We start by writing

E
[

1√
1−X

]
≈ 1√

1− E [X]
. (33)

All that is left to compute will be E [HS |S 63 j] and E [HS |S 63 j, k]. We see in Section 4 that after some
combinatoric considerations, it is possible to obtain these expected values as a function of ωj and ωk. More
precisely, Lemma 3 states that

E [HS |S 63 j] =
1− ωj

3
+O

(
1

d

)
and E [HS |S 63 j, k] =

1− ωj − ωk
4

+O
(

1

d

)
. (34)

When d is large and the ωks are small, using Eq. (33), we obtain the following approximations:

E [φ(x)j ] ≈
1

2
·
√

1

1− 1
3

· φ(ξ)j ≈ 0.61 · φ(ξ)j , (35)

and, for any k 6= j,

E [zkφ(x)j ] ≈
1

3
·
√

1

1− 1
4

· φ(ξ)j ≈ 0.38 · φ(ξ)j . (36)

For all practical purposes, we will use Eq. (35) and (36).

Remark 3. One could obtain better approximations than above in two ways. First, it is possible to take into
account the dependency in ωj and ωk in the expectation of HS . That is, plugging Eq. (34) into Eq. (33) instead
of the numerical values 1/3 and 1/4. This yields more accurate, but more complicated formulas. Without being
so precise, it is also possible to consider an arbitrary distribution for the ωks (for instance, assuming that the
term frequencies follow the Zipf’s law (Powers, 1998)). Second, since the mapping θ : x 7→ 1√

1−x is convex, by

Jensen’s inequality, we are always underestimating by considering θ(E [X]) instead of E [θ(X)]. Going further in
the Taylor expansion of θ is a way to fix this problem, namely using

E
[

1√
1−X

]
≈ 1√

1− E [X]
+

3Var (X)

8
√

1− E [X]
,

instead of Eq. (33). We found that it was not useful to do so from an experimental point of view: our
theoretical predictions match the experimental results while remaining simple enough.

2.4 Concentration of Γ̂n

We now show that Γ̂n is concentrated around Γf . Since the expression of Γ̂n is the same than in the tabular
case, and since f is bounded on the unit sphere SD−1, the same reasoning as in the proof of Proposition 24 in
Garreau and von Luxburg (2020b) can be applied.

Proposition 12 (Concentration of Γ̂n). Assume that f is bounded by M > 0 on SD−1. Then, for any t > 0,
it holds that

P
(
‖Γ̂n − Γf‖ ≥ t

)
≤ 4dexp

(
−nt2

32Md2

)
.

Proof. Recall that ‖φ(x)‖ = 1 almost surely. Since f is bounded by M on SD−1, it holds that |f(φ(x))| ≤ M
almost surely. We can then proceed as in the proof of Proposition 24 in Garreau and von Luxburg (2020b).

3 The study of βf

In this section, we study the interpretable coefficients. We start with the computation of βf in Section 3.1. In
Section 3.2, we show how β̂n concentrates around βf .
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3.1 Computation of βf

Recall that, for any model f , we have defined βf = Σ−1Γf . Directly multiplying the expressions found for Σ−1

(Eq. (17)) and Γf (Eq. (26)) obtained in the previous sections, we obtain the expression of βf in the general
case (this is Proposition 2 in the paper).

Proposition 13 (Computation of βf , general case). Assume that f is bounded on the unit sphere. Then

βf0 = c−1d

{
σ0E [πf(φ(x))] + σ1

d∑
k=1

E [πzkf(φ(x))]

}
, (37)

and, for any 1 ≤ j ≤ d,

βfj = c−1d

{
σ1E [πf(φ(x))] + σ2E [πzjf(φ(x))] + σ3

d∑
k=1
k 6=j

E [πzkf(φ(x))]

}
. (38)

This is Proposition 2 in the paper, with the additional expression of the intercept βf0 . Let us see how to obtain
an approximate, simple expression when both the bandwidth parameter and the size of the local dictionary are
large. When ν → +∞, using Corollary 3, we find that

βf0 −→
(
βf∞
)
0

:=
4d− 2

d+ 1
E [πf(φ(x))]− 6

d+ 1

d∑
k=1

E [πzkf(φ(x))] ,

and, for any 1 ≤ j ≤ d,

βfj −→
(
βf∞
)
j

:=
−6

d+ 1
E [πf(φ(x))] +

6(d2 − 2d+ 3)

d2 − 1
E [πzjf(φ(x))]− 6(d− 3)

d2 − 1

∑
k 6=j

E [πzkf(φ(x))] .

For large d, since f is bounded on SD−1, we find that

(
βf∞
)
0

= 4E [πf(φ(x))]− 6

d

d∑
k=1

E [πzkf(φ(x))] +O
(

1

d

)
,

and, for any 1 ≤ j ≤ d, (
βf∞
)
j

= 6E [πzjf(φ(x))]− 6

d

∑
k 6=j

E [πzkf(φ(x))] +O
(

1

d

)
.

Now, by definition of the interpretable features, for any 1 ≤ j ≤ d,

E [πzjf(φ(x))] = E [πzjf(φ(x))|wj ∈ x] · P (wj ∈ x) + E [πzjf(φ(x))|wj /∈ x] · P (wj /∈ x)

= E [πf(φ(x))|wj ∈ x] · d− 1

2d
+ 0 ,

where we used Lemma 5 in the last display. Therefore, we have the following approximations of the interpretable
coefficients: (

βf∞
)
0

= 2E [πf(φ(x))]− 3

d

∑
k

E [πf(φ(x))|wk ∈ x] +O
(

1

d

)
, (39)

and, for any 1 ≤ j ≤ d,(
βf∞
)
j

= 3E [πf(φ(x))|wj ∈ x]− 3

d

∑
k

E [πf(φ(x))|wk ∈ x] +O
(

1

d

)
. (40)

The last display is the approximation of Proposition 13 presented in the paper.

Remark 4. In Garreau and von Luxburg (2020b), it is noted that LIME for tabular data provably ignores

unused coordinates. In other words, if the model f does not depend on coordinate j, then the explanation βfj is
0. We could not prove such a statement in the case of text data, even for simplified expressions such as Eq. (40).

We now show how to compute βf in specific cases, thus returning to generic ν and d.
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Constant model. As a warm up exercise, let us assume that f is a constant, which we set to 1 without
loss of generality (by linearity). Recall that, in that case, Γf0 = α0 and Γfj = α1 for any 1 ≤ j ≤ d. From the
definition of cd and the σ coefficients (Proposition 6), we find that{

σ0α0 + dσ1α1 = cd ,

σ1α0 + σ2α1 + (d− 1)σ3α1 = 0 .

We deduce from Proposition 13 that βf0 = 1 and βfj = 0 for any 1 ≤ j ≤ d. This is conform to our intuition: if
the model is constant, then no word should receive nonzero weight in the explanation provided by Text LIME.

Indicator functions. We now turn to indicator functions, more precisely products of indicator functions.
We will prove the following (Proposition 3 in the paper):

Proposition 14 (Computation of βf , product of indicator functions). Let j ⊆ {1, . . . , d} be a set of p
distinct indices and set f(x) =

∏
j∈J 1xj>0. Then

βf0 = c−1d (σ0αp + pσ1αp + (d− p)σ1αp+1) ,

βfj = c−1d (σ1αp + σ2αp + (d− p)σ3αp+1 + (p− 1)σ3αp) if j ∈ J ,
βfj = c−1d (σ1αp + σ2αp+1 + (d− p− 1)σ3αp+1 + pσ3αp) otherwise .

Proof. The proof is straightforward from Proposition 10 and Proposition 13.

Linear model. In this last paragraph, we treat the linear case. As noted in Section 2.3, we have to resort
to approximate computations: in this paragraph, we assume that ν = +∞. We start with the simplest linear
function: all coefficients are zero except one (this is Proposition 4 in the paper).

Proposition 15 (Computation of βf , linear case). Let 1 ≤ j ≤ d and assume that f(φ(x)) = φ(x)j. Recall
that we set Ej = E

[
(1−HS)−1/2

∣∣S 63 j] and for any k 6= j, Ej,k = E
[
(1−HS)−1/2

∣∣S 63 j, k]. Then

(
βf∞
)
0

=

5Ej −
2

d

∑
k 6=j

Ej,k

φ(ξ)j +O
(

1

d

)

for any k 6= j, (
βf∞
)
k

=

2Ej,1 −
2

d

∑
` 6=k,j

Ej,`

φ(ξ)j +O
(

1

d

)
,

and (
βf∞
)
j

=

3Ej −
2

d

∑
k 6=j

Ej,k

φ(ξ)j +O
(

1

d

)
.

Proof. Straightforward from Eqs. (23) and (32).

Assuming that the ωk are small, we deduce from Eqs. (35) and (36) that Ej ≈ 1.22 and Ej,k ≈ 1.15. In particular,
they do not depend on j and k. Thus we can drastically simplify the statement of Proposition 15:

∀k 6= j,
(
βf∞
)
k
≈ 0 and

(
βf∞
)
j
≈ 1.36φ(ξ)j . (41)

We can now go back to our original goal: f(x) =
∑d
j=1 λjxj . By linearity, we deduce from Eq. (41) that

∀1 ≤ j ≤ d,
(
βf∞
)
j
≈ 1.36 · λj · φ(ξ)j . (42)

In other words, as noted in the paper, the explanation for a linear f is the TF-IDF of the word multiplied
by the coefficient of the linear model, up to a numerical constant and small error terms depending on d.
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3.2 Concentration of β̂

In this section, we state and prove our main result: the concentration of β̂n around βf with high probability
(this is Theorem 1 in the paper).

Theorem 2 (Concentration of β̂n). Suppose that f is bounded by M > 0 on SD−1. Let ε > 0 be a small
constant, at least smaller than M . Let η ∈ (0, 1). Then, for every

n ≥ max
{

29 · 704M2d9e
10
ν2 , 29 · 702Md5e

5
ν2

} log 8d
η

ε2
,

we have P
(
‖β̂n − βf‖ ≥ ε

)
≤ η.

Proof. We follow the proof scheme of Theorem 28 in Garreau and von Luxburg (2020b). The key point is to
notice that

‖β̂n − βf‖ ≤ 2
∥∥Σ−1

∥∥
op
‖Γ̂− Γf‖+ 2

∥∥Σ−1
∥∥2
op

∥∥Γf
∥∥ ‖Σ̂− Σ‖op , (43)

provided that ‖Σ−1(Σ̂ − Σ)‖op ≤ 0.32 (this is Lemma 27 in Garreau and von Luxburg (2020b). Therefore, in

order to show that ‖β̂n − βf‖ ≤ ε, it suffices to show that each term in Eq. (43) is smaller than ε/4 and that
‖Σ−1(Σ̂−Σ)‖op ≤ 0.32. The concentration results obtained in Section 1 and 2 guarantee that both ‖Σ̂−Σ‖op
and ‖Γ̂ − Γf‖ are small if n is large enough, with high probability. This, combined with the upper bound on
‖Σ−1‖op given by Proposition 9, concludes the proof.

Let us give a bit more details. We start with the control of ‖Σ−1(Σ̂ − Σ)‖op. Set t1 := (220d3/2e
5

2ν2 )−1 and
n1 := 32d2 log 8d

η /t
2
1. Then, according to Proposition 8, for any n ≥ n1,

P
(
‖Σ̂n − Σ‖op ≥ t1

)
≤ 4dexp

(
−nt21
32d2

)
≤ η

2
.

Since ‖Σ−1‖op ≤ 70d3/2e
5

2ν2 (according to Proposition 9), by sub-multiplicativity of the operator norm, it holds
that

‖Σ−1(Σ̂− Σ)‖op ≤ ‖Σ−1‖op‖Σ̂− Σ‖op ≤ 70/220 < 0.32 , (44)

with probability greater than 1− η/2.

Now let us set t2 := (4 · 702Md7/2e
5
ν2 )−1ε and n2 := 32d2 log 8d

η /t
2
2. According to Proposition 8, for any n ≥ n2,

it holds that

‖Σ̂n − Σ‖op ≤
ε

4Md1/2
· (702d3e5/ν

2

)−1 ,

with probability greater than η/2. Since ‖Γf‖ ≤M · d1/2 and ‖Σ−1‖2op ≤ 702d3e5/ν
2

,∥∥Σ−1
∥∥
op
‖Γ̂− Γf‖ ≤ ε

4

with probability grater than 1 − η/2. Notice that, since we assumed ε < M , t2 < t1, and thus Eq. (44) also
holds.

Finally, let us set t3 := ε/(4 · 70d3/2e
5

2ν2 ) and n3 := 32Md2 log 8d
η /t

2
3. According to Proposition 12, for any

n ≥ n3,

P
(
‖Γ̂n − Γf‖ ≥ t3

)
≤ 4dexp

(
−nt23

32Md2

)
≤ η

2
.

Since ‖Σ−1‖op ≤ 70d3/2e
5

2ν2 , we deduce that∥∥Σ−1
∥∥2
op

∥∥Γf
∥∥ ‖Σ̂− Σ‖op ≤

ε

2
,

with probability greater than 1− η/2. We conclude by a union bound argument.
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4 Sums over subsets

In this section, independent from the rest, we collect technical facts about sums over subsets. More particularly,
we now consider arbitrary, fixed positive real numbers ω1, . . . , ωd such that

∑
k ωk = 1. We are interested in

subsets S of {1, . . . , d}. For any such S, we define HS :=
∑
k∈S ωk the sum of the ωk coefficients over S. Our

main goal in this section is to compute the expectation of HS conditionally to S not containing a given index
(or two given indices), which is the key quantity appearing in Proposition 15.

Lemma 2 (First order subset sums). Let 1 ≤ s ≤ d and 1 ≤ j, k ≤ d with j 6= k. Then

∑
#S=s
S 63j

HS =

(
d− 2

s− 1

)
(1− ωj) ,

and ∑
#S=s
S 63j,k

HS =

(
d− 3

s− 1

)
(1− ωj − ωk) .

Proof. The main idea of the proof is to rearrange the sum, summing over all indices and then counting how
many subsets satisfy the condition. That is,

∑
#S=s
S3j

HS =

d∑
k=1

ωk ·#{S s.t. j, k ∈ S}

=
∑
k 6=j

ωk ·
(
d− 2

s− 2

)
+ ωj ·

(
d− 1

s− 1

)

=

(
d− 2

s− 2

)
+

[(
d− 1

s− 1

)
−
(
d− 2

s− 2

)]
ωj .

We conclude by using the binomial identity(
d− 1

s− 1

)
−
(
d− 2

s− 2

)
=

(
d− 2

s− 1

)
.

Notice that, in the previous derivation, we had to split the sum to account for the case j = k. The proof of the
second formula is similar.

Let us turn to expectation computation that are important to derive approximation in Section 2.3. We now see
S and HS as random variables. We will denote by Es [·] the expectation conditionally to the event {#S = s}.
Lemma 3 (Expectation computation). Let j, k be distinct elements of {1, . . . , d}. Then

E [HS |S 63 j] =
(1− ωj)(d+ 1)

3(d− 1)
=

1− ωj
3

+O
(

1

d

)
, (45)

and

E [HS |S 63 j, k] =
(1− ωj − ωk)(d+ 1)

4(d− 2)
=

1− ωj − ωk
4

+O
(

1

d

)
(46)

Proof. By the law of total expectation, we know that

E [HS |S 63 j] =

d∑
s=1

Es [HS |S 63 j] · P (#S = s|S 63 j) .
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We first notice that, for any s < d,

P (#S = s|S 63 j) =
P (S 63 j|#S = s)P (#S = s)

P (j /∈ S)

=

(
d−1
s

)
/
(
d
s

)
· 1d

d−1
2d

P (#S = s|S 63 j) =
2(d− s)
d(d− 1)

.

According to Lemma 2, for any 1 ≤ s < d,∑
#S=s
S 63j

HS =

(
d− 2

s− 1

)
(1− ωj) .

Moreover, there are
(
d−1
s

)
such subsets. Since

(
d−1
s−1
)−1(d−2

s

)
= s

d−1 , we deduce that

Es [HS |S 63 j] =
s

d− 1
(1− ωj) .

Finally, we write

E [HS |S 63 j] =

d−1∑
s=1

s

d− 1
(1− ωj) ·

2(d− s)
d(d− 1)

= (1− ωj) ·
2

d(d− 1)2

d−1∑
s=1

s(d− s)

E [HS |S 63 j] =
(d+ 1)(1− ωj)

3(d− 1)
.

The second case is similar. One just has to note that

P (#S = s|S 63 j, k) =
P (S 63 j, k|#S = s)

P (j, k /∈ S)

=
3(d− s)(d− s− 1)

d(d− 1)(d− 2)
. (Lemma 5)

Then we can conclude since

d−2∑
s=1

s(d− s)(d− s− 1) =
(d− 2)(d− 1)d(d+ 1)

12
.

5 Technical results

In this section, we collect small probability computations that are ubiquitous in our derivations. We start with
the probability for a given word to be present in the new sample x, conditionally to #S = s.

Lemma 4 (Conditional probability to contain given words). Let w1, . . . , wp be p distinct words of D`.
Then, for any 1 ≤ s ≤ d,

Ps (w1 ∈ x, . . . , wp ∈ x) =
(d− s)(d− s− 1) · · · (d− s− p+ 1)

d(d− 1) · · · (d− p+ 1)
=

(d− s)!
(d− s− p)!

· (d− p)!
d!

.

In the proofs, we use extensively Lemma 4 for p = 1 and p = 2, that is,

Ps (wj ∈ x) =
d− s
d

and Ps (wj ∈ x,wk ∈ x) =
(d− s)(d− s− 1)

d(d− 1)
,

for any 1 ≤ j, k ≤ d with j 6= k.
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Proof. We prove the more general statement. Conditionally to #S = s, the choice of S is uniform among all
subsets of {1, . . . , d} of cardinality s. There are

(
d
s

)
such subsets, and only

(
d−p
s

)
of them do not contain the

indices corresponding to w1, . . . , wp.

We have the following result, without conditioning on the cardinality of S:

Lemma 5 (Probability to contain given words). Let w1, . . . , wp be p distinct words of D`. Then

P (w1, . . . , wp ∈ x) =
d− p

(p+ 1)d
.

Proof. By the law of total expectation,

P (w1, . . . , wp ∈ x) =
1

d

d∑
s=1

P (w1, . . . , wp ∈ x|s)

=
1

d

d∑
s=1

(d− s)!
(d− s− p)!

· (d− p)!
d!

,

where we used Lemma 4 in the last display. By the hockey-stick identity (Ross, 1997), we have

d∑
s=1

(
d− s
p

)
=

d−1∑
s=p

(
s

p

)
=

(
d

p+ 1

)
.

We deduce that
d∑
s=1

(d− s)!
(d− s− p)!

=
d!

(p+ 1) · (d− p− 1)!
. (47)

We deduce that

P (w1, . . . , wp ∈ x) =
1

d

(d− p)!
d!

d∑
s=1

(d− s)!
(d− s− p)!

=
1

d

(d− p)!
d!

d!

(p+ 1) · (d− p− 1)!
(by Eq. (47))

P (w1, . . . , wp ∈ x) =
d− p

(p+ 1)d
.

6 Additional experiments

In this section, we present additional experiments. We collect the experiments related to decision trees in
Section 6.1 and those related to linear models in Section 6.2.

Setting. All the experiments presented here and in the paper are done on Yelp reviews (the data are publicly
available at https://www.kaggle.com/omkarsabnis/yelp-reviews-dataset). For a given model f , the general
mechanism of our experiments is the following. For a given document ξ containing d distinct words, we set a
bandwidth parameter ν and a number of new samples n. Then we run LIME nexp times on ξ, with no feature
selection procedure (that is, all words belonging to the local dictionary receive an explanation). We want to
emphasize again that this is the only difference with the default implementation. Unless otherwise specified, the
parameters of LIME are chosen by default, that is, ν = 0.25 and n = 5000. The number of experiments nexp is
set to 100. The whisker boxes are obtained by collecting the empirical values of the nexp runs of LIME: they give
an indication as to the variability in explanations due to the sampling of new examples. Generally, we report a
subset of the interpretable coefficients, the other having near zero values.

Let us explain briefly how to read these whisker boxes: to each word corresponds a whisker box containing all
the nexp values of interpretable coefficients provided by LIME (β̂j in our notation). The horizontal dark lines

https://www.kaggle.com/omkarsabnis/yelp-reviews-dataset
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Figure 12: Influence of the bandwidth on the explanation given for a small decision tree on a Yelp review
(n = 5000, nexp = 100, d = 29). Left panel: ν = 0.05, right panel: ν = 0.35. Our theoretical predictions remain
accurate for non-default bandwidths.

mark the quartiles of these values, and the horizontal blue line is the median. On top of these experimental
results, we report with red crosses the values predicted by our analysis (βfj in our notation).

The Python code for all experiments is available at https://github.com/dmardaoui/lime_text_theory. We
encourage the reader to try and run the experiments on other examples of the dataset and with other parameters.

6.1 Decision trees

In this section, we present additional experiments for small decision trees. We begin by investigating the influence
of ν and n on the quality of our theoretical predictions.

Influence of the bandwidth. Let us consider the same example ξ and decision tree as in the paper. In
particular, the model f is written as

1“food” + (1− 1“food”) · 1“about” · 1“Everything” .

We now consider non-default bandwidths, that is, bandwidths different than 0.25. We present in Figure 12 the
results of these experiments. In the left panel, we took a smaller bandwidth (ν = 0.05) and in the right panel
a larger bandwidth (ν = 0.35). We see that while the numerical value of the coefficients changes slightly, their
relative order is preserved. Moreover, our theoretical predictions remain accurate in that case, which is to be
expected since we did not resort to any approximation in this case. Interestingly, the empirical results for small
ν seem more spread out, as hinted by Theorem 2.

Influence of the number of samples. Keeping the same model and example to explain as above, we looked
into non-default number of samples n. We present in Figure 13 the results of these experiments. We took a very
small n in the left panel (n = 50 is two orders of magnitude smaller than the default n = 5000) and a larger n
in the right panel. As expected, when n is larger, the concentration around our theoretical predictions is even
better. To the opposite, for small n, we see that the explanations vary wildly. This is materialized by much
wider whisker boxes. Nevertheless, to our surprise, it seems that our theoretical predictions still contain some
relevant information in that case.

Influence of depth. Finally, we looked into more complex decision trees. The decision rule used in Figure 14
is given by

1“food” + (1− 1“food”)1“about”1“Everything” + 1“bad” + 1“bad”1“character” .

We see that increasing the depth of the tree is not a problem from a theoretical point of view. It is interesting
to see that words used in several nodes for the decision receive more weight (e.g., “bad” in this example).

https://github.com/dmardaoui/lime_text_theory


Dina Mardaoui and Damien Garreau

Ev
er

yt
hi

ng

Ha
ve

n I It

Th
e

ab
ou

t al
l

ba
d

ch
ar

ac
te

r

cr
am

pe
d

fo
od

words

-0.20

0.00

0.20

0.40

0.60

Interpretable coefficients (n=50)

Ev
er

yt
hi

ng

Ha
ve

n I It

Th
e

ab
ou

t al
l

ba
d

ch
ar

ac
te

r

cr
am

pe
d

fo
od

words

-0.20

0.00

0.20

0.40

0.60

Interpretable coefficients (n=8000)

Figure 13: Influence of the number of perturbed samples on the explanation given for a small decision tree on a
Yelp review (ν = 0.25, nexp = 100, d = 29). Left panel: n = 50, right panel: n = 8000. Empirical values are less
likely to be close to the theoretical predictions for small n.
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Figure 14: Theory meets practice for a more complex decision tree (ν = 0.25, nexp = 100, n = 5000, d = 29).
Here we report all coefficients. The theory still holds for more complex trees.
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Figure 15: Influence of the bandwidth on the explanation for a linear model on a Yelp review (nexp = 100, n =
5000, d = 29). Left panel: ν = 0.05, right panel: ν = 0.35. The approximate theoretical values are less accurate
for smaller bandwidths.

6.2 Linear models

Let us conclude this section with additional experiments for linear models. As in the paper, we consider an
arbitrary linear model

f(φ(x)) =

d∑
j=1

λjφ(x)j .

In practice, the coefficients λj are drawn i.i.d. according to a Gaussian distribution.

Influence of the bandwidth. As in the previous section, we start by investigating the role of the bandwidth
in the accuracy of our theoretical predictions. We see in the right panel of Figure 15 that taking a larger
bandwidth does not change much neither the explanations nor the fit between our theoretical predictions and
the empirical results. This is expected, since our approximation (Eq. (42)) is based on the large bandwidth
approximation. However, the left panel of Figure 15 shows how this approximation becomes dubious when the
bandwidth is small. It is interesting to note that in that case, the theory seems to always overestimate the
empirical results, in absolute value. The large bandwidth approximation is definitely a culprit here, but it could
also be the regularization coming into play. Indeed, the discussion at the end of Section 2.4 in the paper that
lead us to ignore the regularization is no longer valid for a small ν. In that case, the πis can be quite small and
the first term in Eq. (5) of the paper is of order e−1/(2ν

2)n instead of n.

Influence of the number of samples. Now let us look at the influence of the number of perturbed samples.
As in the previous section, we look into very small values of n, e.g., n = 50. We see in the left panel of Figure 16
that, as expected, the variability of the explanations increases drastically. The theoretical predictions seem to
overestimate the empirical results in absolute value, which could again be due to the regularization beginning to
play a role for small n, since the discussion in Section 2.4 of the paper is only valid for large n.

Influence of d. To conclude this section, let us note that d does not seem to be a limiting factor in our analysis.
While Theorem 2 hints that the concentration phenomenon may worsen for large d, as noted before in Remark 2,
we have reason to suspect that it is not the case. All experiments presented on this section so far consider an
example whose local dictionary has size d = 29. In Figure 17 we present an experiment on an example that has
a local dictionary of size d = 52. We observed no visible change in the accuracy of our predictions.
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Figure 16: Influence of the number of perturbed samples on the explanation for a linear model on a Yelp review
(ν = 0.25, nexp = 100, d = 29). Left panel: n = 50, right panel: n = 8000. The empirical explanations are more
spread out for small values of n.

AZ Al
l

Th
ai

ac
tu

al
ly

al
wa

ys
am

az
in

g
an

d as
be

en ca
n

co
ok

ed
cr

av
in

g
cu

rry el
se

en
ou

gh
ev

er ge
t

go
go

od
ne

ss in is it
m

an
y

m
on

th
no

wh
er

e of
pa

d
pa

st
pe

rfe
ct

io
n

re
st

au
ra

nt
s

se
rio

us
ly so

sp
icy th
ai th
e

th
is to

ty
pe ve

wa
nn

a

words

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00 Interpretable coefficients (n=5000,nu=0.25)

Figure 17: Theory meets practice for an example with a larger vocabulary (ν = 0.25, nexp = 100, n = 5000, d =
52). Here we report all the interpretable coefficients. Our theoretical predictions seem to hold for larger local
dictionaries.
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