
HAL Id: hal-02935162
https://hal.science/hal-02935162

Submitted on 10 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the power of template attacks in highly multivariate
context

Maamar Ouladj, Nadia El Mrabet, Sylvain Guilley, Philippe Guillot, Gilles
Millérioux

To cite this version:
Maamar Ouladj, Nadia El Mrabet, Sylvain Guilley, Philippe Guillot, Gilles Millérioux. On the power
of template attacks in highly multivariate context. Journal of Cryptographic Engineering, 2020, 10
(4), pp.337-354. �10.1007/s13389-020-00239-2�. �hal-02935162�

https://hal.science/hal-02935162
https://hal.archives-ouvertes.fr


Journal of Cryptographic Engineering manuscript No.
(will be inserted by the editor)

On the Power of Template Attacks in Highly Multivariate Context

Maamar Ouladj · Nadia El Mrabet · Sylvain Guilley
· Philippe Guillot · Gilles Millérioux

Received: date / Accepted: date

Abstract When implemented in software (or hardware), a
cryptographic protocol can leak sensitive information during
its execution. Side-channel attacks can use those leakages
in order to reveal some information about the secret used
by the algorithm. The leaking side-channel information can
take place in many time samples. Measurement appliances
can cope with the acquisition of multiple samples. From an
adversarial point of view, it is therefore beneficial to attempt
to make the most of highly multivariate traces.

On the one hand, template attacks have been introduced
to deal with multivariate leakages, with as few assumptions
as possible on the leakage model. On the other hand, many
works have underlined the need for dimensionality reduc-
tion. In this paper, we clarify the relationship between tem-
plate attacks in full space and in linear subspaces, in terms
of success rate.

In particular, we exhibit a clear mathematical expression
for template attacks, which enables an efficient computa-
tion even on large dimensions such as several hundred of
samples. It is noteworthy that both of PoI-based and PCA-
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based template attacks can straightforwardly benefit from
our approach. Furthermore, we extend the approach to the
masking-based protected implementations. Our approach is
validated both by simulated and real-world traces.
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1 Introduction

1.1 Context: the side channel threat

Side-channel traces collected from software code are ex-
tremely rich, since a same variable can leak at different places.
Typically, leakage can spread over several samples within
one clock cycle, and in addition, software implementations
typically move variables in several registers or memory lo-
cations, causing leakage at many clock cycles.

1.2 Problem: making the most of high dimensionality

Modern oscilloscopes sample their input at a very high fre-
quency, hence it is possible to get more than one leakage
sample per leaking sensitive variable. How to exploit such
abundance of leakage measurements? Few non-supervised
side-channel distinguishers manage such situation. Indeed,
the samples usually leak differently, therefore it is complex
without prior knowledge to know how to best combine them
constructively.
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1.3 State-of-the-art

Clearly, in the past, some strategies have been put forward.
For instance, Clavier et al. [11, §3] suggested (albeit in an-
other context, namely that of so-called shuffling counter-
measures) to take as monovariate signal the average of the
signal over the D samples. As another example, Hajra and
Mukhopadhyay [24] investigate non-profiling side-channel
analysis. However, for their analysis to work, some a priori
structure is injected in the model, which is learned online
on the attacking traces. However, in reality, the information
contents of the whole trace is larger than that soaked from
the projection on one single support vector, but it depends
on the multivariate trace distribution. Notice that template
attacks (which are profiled attacks) achieve this goal. Tem-
plate attacks on multivariate data have been described accu-
rately as a “process” in state-of-the-art papers [30, §5.3.3].
However, those attacks are still perceived as a recipe (see
Sec. 2.1 of [9]), so there is no (except from experimental
cases) way to study which parameters impact the success of
a template attack. Therefore, some folklore surrounds them.
In particular, because the recipe is not formalized, some pa-
pers have tried to clarify the different steps and assump-
tions, in particular Choudary and Kuhn [10] wrote on mak-
ing many details about template attacks more explicit, such
as the notion of “pooled covariance matrix”. The inversion
of the traces covariance matrix Σ is feared, and for this rea-
son, a first pass of dimensionality reduction has been sug-
gested right away in the seminal paper by [9]; the authors
selected a few tens of so-called “Points of Interest” (PoIs),
resulting in a smaller Σ which is easy to inverse. Still, we
notice a theoretical contradiction, because the data process-
ing inequality states that application of any function on the
data reduces their informative contents. Subsequently, many
researches have been carried out to improve on the heuris-
tic method to identify PoIs in the traces. Archambeau et al.
motivated the usefulness of Principal Component Analysis
(PCA) in [1] in this respect. Bär et al. improved on this PCA
in [2] by actually hand-picking PoIs within PCA vectors.
Elaabid et al. [18] observed that choosing PoIs as all samples
of PCA larger than a threshold actually retain most informa-
tive samples without the need of manual selection. Fan et al.
suggest to select PoIs as those where the noise is the most
Gaussian [20]. Still, even deciding which selection of PoIs is
optimal is questioned [45]. Zhang et al. noticed recently that
there is still margin for improvement in PoIs selection al-
gorithms [43]. So, to summarize, many papers have focused
on reducing the traces dimensionality while retaining in the
constructed subset most of the information, with a view to
optimize the success rate. A secondary objective is to keep
an acceptable computational load for the template attack.
Indeed, template attacks, as presented originally, include in
the attack phase the evaluation of computationally challeng-

ing functions, such as: exponential, matrix inversion, square
roots, etc. (see Eqn. (1) in Sec. 2.1 of [9]).

Eventually, we notice that many papers study trace de-
noising, using typically wavelets [16], Independent Com-
ponent Analysis (ICA) [29], etc. In our work, we exploit
traces “raw”, so as to highlight the sole impact of multi-
variate analysis on attack efficiency. But, it is noteworthy
that both of PoI-based and PCA-based template attacks [20]
can also straightforwardly benefit from our approach, both
in term of processing time and in term of the needed space
memory.

1.4 Contributions

In this paper, we analyze template attacks from a theoreti-
cal perspective, and derive the mathematical expressions for
template building and attack phases. In the context of mul-
tivariate normal noise, the two phases are easily simplified
(Alg. 1 and 2) as mere linear operations. In particular, there
is no need for exponential and square roots, and only one
matrix inversion is required at the end of the template build-
ing phase. These formal expressions allow us to drastically
improve on the clarity of the actual computations carried out
by template attacks and as a result, the formal expression
also improves on the computational aspects related to tem-
plate attacks.

Our noteworthy contributions are detailed below:

– we factor code between training and matching algorithms,
– we optimize further the computation and needed mem-

ory space by grouping traces by classes, resulting in a
computation on a so called “coalesced” data,

– we have the training phase delivers only one matrix, thereby
saving repeated computations in the attack phase (see
Alg. 3 and 4).

– As a consequence, we manage to perform template at-
tacks on highly multivariate traces. Contrary to belief,
we show that the more samples are taken (i.e., no di-
mensionality reduction is needed), the more successful
is the template attack. But our approach is also compat-
ible with reduced dimensionality data.

– Said differently, we are able to analyze full-width traces
without any preprocessing (which destroys information)
and show that this is the best attack strategy, in terms of
number of traces, to recover the key.

– in the sequel, we extend our approach to the masking-
based protected implementations.

– Finally, we highlight a spectral approach which allows
for a near exponential computational improvement in the
attack phase (an attack factor in 2n is reduced to n, where
n is the bitwidth of the sensitive variable).

Furthermore, those findings allow us to observe practically
the effect of the dimensionality (the number of samples in
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a trace) on the success rate. Namely, we show that the suc-
cess rate increases when traces of higher dimensionality are
used. We also show that template attacks (without initial
dimensionality reduction using PCA, for instance) is more
efficient than monovariate attacks (such as the Correlation
Power Analysis, also known as CPA [5]) applied on the first
direction of the PCA leakage reduction. Such practical deriva-
tions are, to the best of our knowledge, new, and we here
provide some numerical values about the actual gain con-
veyed by attacks of increased dimensionality.

1.5 Outline

In order to present our contributions, we follow the scientific
approach described here-after. In Section 2, we present a
mathematical modelization of the problem. In Section 3, we
provide our first contribution, namely the formalization of
template attacks. In Section 4, efficient algorithms to com-
pute template attacks are given. In Section 5, we validate
our contributions on real traces taken from an AES running
on an ATMega 163 smart card. In particular, we exhibit a
spectral approach to speed up the computation of template
attacks. Finally, in Section 6, we conclude our study.

2 Mathematical modelization of the problem and
notations

2.1 Side-channel problem

We model the side-channel problem as follows:

T,k→ Z→ Y (Z) = Y → X = Y +N. (1)

In this equation, we have that:

– T is the digital part known by the attacker, typically
some text (either plaintext or ciphertext),

– k is the digital part unknown by the attacker, typically
some part of key, which is fixed and will be guessed,

– Z is an intermediate value within the targeted crypto-
graphic algorithm, e.g., Z = SubBytes(T ⊕ k) in AES;
formally, Z is the sensitive variable which consists in a
vectorial Boolean function of T and k,

– Y is the leakage corresponding to Z — the link between
Y and Z is deterministic,

– X is the side-channel leakage measured by the attacker,
which consists in Y plus some independent noise N,

– N is the noise.

We assume all those variables are measured many times
(Q times). Therefore the random variables have a dimen-
sionality Q, with the particularity that k is the same for all
Q, and that noise random variables Nq are all i.i.d.

In addition, we assume that the measurements are multi-
dimensional of dimensionality D. This can represent the fact
that:

– oscilloscopes capture windows of D samples, typically
at high sampling rates, resulting in traces of many sam-
ples per clock period,

– simultaneous captures by various probes (e.g., power and
electromagnetic, or also multiple electromagnetic probes
placed at various locations).

2.2 Additional notations

We adopt the following notations:

– S: the cardinality of the space where Z belongs to, that
is if Z ∈ {0,1}n, then S = 2n; to ease notations, we also
assume (without loss of generality though) that the num-
ber of T values is S. For instance, Z typically arises from
a bijective substitution box applied on T ⊕ k.

– Σ : the D×D covariance matrix of the noise, such that
Nq ∼N (0,Σ) (0≤ q < Q).

Moreover, we will use the reordering trick put forward in [28],
which consists in trading ∑q for ∑t ∑q:tq=t , where ∑q:tq=t is
a shortcut notation for ∑ q∈{1,...,Q},

such that: tq=t
.

Therefore, we have the following “types” for variables
defined in Sec. 2.1:

– T and k are bitvectors (of second dimension Q), not nec-
essarily of the same length,

– Z is a matrix of Booleans {0,1}n×Q,
– Y and X are matrices of D×Q real numbers.

The peculiarity of Y , is that we have Y (Zq) = Y (Zq′) if Tq =

Tq′ (under the same key k).
We introduce the notion of coalesced matrices. This no-

tion has been introduced in [28, §3.3], but was not named
there. Therefore, we qualify this notion (averaging traces
corresponding to the same sensitive variable) as “coales-
cence”. It arises from the fact that Y and X , random vari-
ables in (1), depend only on values from Z (except from X
which also depends on the noise, which is independent from
other random variables), and therefore their matrices can be
coalesced from size D×Q to D×S.

Definition 1 (Coalesced matrices) Coalesced model Ỹ (k)
is the D×S matrix(

Ỹt=0,k, . . . ,Ỹt=S−1,k
)
,

i.e., where t is enumerated in lexicographical order. This ma-
trix is a property of the leakage from the device under test,
i.e., it is not a random variable, but a constant value. For any
measurement q, we denote Yq = Ỹtq,k.
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Coalesced measurement X̃ is the matrix

(
X̃0, . . . X̃S−1

)
=

(
∑q:tq=0 Xq

∑q:tq=0 1
, . . . ,

∑q:tq=S−1 Xq

∑q:tq=S−1 1

)
.

In this equation, we denote by nt the number of plain-
texts such that tq equals to t. If for some t the number nt it is
equal to zero, then, by convention X̃t = 0. Alternatively, the
empty classes can be pruned. Both choices are equivalent.
The advantage of Definition 1 is twofold. First, as long as
Q ≥ #T = 2n, the matrix X (of size D×Q) is reduced to a
matrix X̃ (of size D× 2n). Second, when nt is not equal to
zero, X̃t as defined here is the empirical average of E(X |T =

t) over nt values. Thus, for any t and q, Xq (for tq = t) and
X̃t have same expectation, but X̃t has an empirical standard
deviation divided by

√
nt relatively to that of Xq.

It shall also be noted that, in our model, the D×Q matrix
Y (and the D×S coalesced matrix Ỹ ) are general. In partic-
ular, we do not assume any structure, such as Ỹ being the
product of a D×1 column by a 1×S row, as done in [24,6].

Examples of Z functions are given hereafter:

– in the software case, T,k ∈ {0,1}n, and Z = T ⊕ k;
– in the hardware case, for the case of AES (n = 8) at-

tacked on the last round:
– T,k ∈ {0,1}n, and Z = (InvSubBytes(T ⊕ k),T ) for

the bytes of the first row, and
– T = (T1,T2) ∈ {0,1}n×{0,1}n,

and Z =(InvSubBytes(T1⊕k),T2) for the other three
rows.

Those two cases refer to the two models expressed in [14]:

– Only manipulated Data Leak (ODL): only the manipu-
lated value influences the leakage.

– Memory Transitions Leak (MTL): two values (the pre-
vious one and the new one) of a memory unit (e.g., a
register) influence the power consumption and also the
device leaks some combination of the two consecutively
manipulated values.

We also introduce other useful notations for matrices:

– Let A be a square matrix, then its trace is the sum of
elements along its diagonal tr(A) = ∑i Ai,i; let A and B
two rectangular matrices such that AB and BA are square.
Then the trace has the property that tr(AB) = tr(BA).

– Covariance matrices are symmetrical and all their eigen-
values are positive. When some eigen-values are zero, it
means that rows are redundant, and those are implicitly
removed until all eigen-values are strictly positive. Al-
ternatively, more measurements shall be captured. There-
fore, we will consider covariance matrices are invertible.
For example, the noise covariance matrix Σ has an in-
verse, denoted Σ−1. We will also make use of the nota-

tion Σ−1/2 for the (unique1) matrix such that,
Σ−1/2Σ−1/2 = Σ−1.

Eventually, let us define the following operator:

Definition 2 (The k-th trace operator trk) Let k ∈ Fn
2. The

k-th trace operator trk of a 2n×2n square matrix M is

trk(M) = ∑
t

Mt,t⊕k.

The regular trace of a square matrix M is simply tr = tr0.

2.3 Characterization of traces

The traces can be characterized according to their Signal-
to-Noise Ratio (SNR) as defined in [30, § 4.3.2, page 73]).
Referring to Eqn. (1), the monovariate SNR is defined as the
SNR at each sample of the trace. Specifically, the monovari-
ate SNR trace is defined as:

Definition 3 (Monovariate SNR trace)

SNR =
VAR(E(X |T ))
E(VAR(X |T )) , (2)

where E denotes the expectation and VAR the variance op-
erators.

We notice that this notion of SNR is useful to predict
the approximated number of traces Q80% to recover the key,
with 80% confidence. Indeed, Q80% is proportional to the
inverse of SNR, as demonstrated in [4].

In some cases, such as in software implementations, the
monovariate leakage can feature a strong SNR. However,
this gives no intuition regarding the proportion of signal
which is informative within the trace. Typically, could the
SNR be improved more by reducing further the noise? The
Normalized Inter-Class Variance (NICV [3]) allows to an-
swer this question. The NICV is the proportion of the traces
variance which can be explained by:

Definition 4 (Monovariate NICV trace)

NICV =
VAR(E(X |T ))

VAR(X)
. (3)

Owing to the law of total variance, that is

VAR(X) = VAR(E(X |T ))+E(VAR(X |T )),
1 Recall that Σ is a symmetric matrix. Therefore, there exists one

invertible matrix P such that Σ = PDP−1, where D is a diagonal ma-
trix whose diagonal coefficients are all positive. It is customary to
call the diagonal coefficients of D the eigen-values of Σ and P the
matrix of eigen-vectors of Σ . Let us denote D1/2 the diagonal ma-
trix where diagonal coefficients are the square root of those of D.
Then, Σ 1/2 := PD1/2P−1 matches the definition, since Σ 1/2Σ 1/2 =
PD1/2P−1PD1/2P−1 = PD1/2D1/2P−1 = PDP−1 = Σ .
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it can be seen that NICV is bounded between 0 and 1, and
that NICV = 1/(1+1/SNR). This implies that

∂ NICV
∂ SNR

=
1

(1+SNR)2 > 0,

i.e., NICV is an increasing function of SNR. The attack suc-
cess rate is thus improved by increasing either the SNR or
the NICV.

3 Formalisation of template attacks

In this section, we present our main result. We formalize the
two phases of the template attack, namely learning and at-
tacking. Their algorithms reveal a very simple mathematical
expression for building the template model and for match-
ing never seen traces (expression which happens to be very
similar). In particular, this leads us to simplify the compu-
tation for the two phases: the mathematical expressions in-
volve only linear algebra (neither logarithms nor exponential
functions need to be evaluated); only one matrix inversion
is required (namely once in the end of the profiling stage).
Moreover, we show that the Q traces used either for profil-
ing or matching can be regrouped in S = 2n classes. In the
sequel, we use 2n (e.g., 2n = 256 for the AES) in lieu of S for
the paper to be concrete. The attack two phases can in turn
be computed using 2n-dimensional vectors and matrices of
dimension 2n × 2n. We will say that the number of traces
Q is coalesced into 2n classes, which further simplifies the
computations.

We start by analyzing the classical template attacks (with-
out coalescence) in Sec. 3.1. We then see the gain of consid-
ering template attacks with coalesced traces and models in
Sec. 3.2. Eventually, we compare results with attacks mak-
ing use of dimensionality reduction in Sec. 3.3.

3.1 Template attack (without coalescence)

3.1.1 Template building = profiling stage

In the profiling stage, the attacker computes Ỹ , a D×2n ma-
trix, and Σ . An experimental method to profile is the follow-
ing:

– In the estimation of Ỹ , the attacker fixes Z to some all
possible values (the column index of Ỹ ), and averages
many measurements, so as cancel out the noise; in order
to explore all the possible values of Z, the attacker can
enumerate all values of T and k. However, due to sym-
metries, it might be possible that some values of Z be
encountered by many different pairs (T,k), hence there
is an opportunity to save some profiling effort.

– Regarding the estimation of Σ , the attacker fixes Z to
an arbitrary value, say 0, and then estimates Σ as the
covariance matrix of the traces.

Therefore, in the sequel, we consider that the averages of the
traces (Ỹ ) and the noise covariance matrix (Σ ) are known.
Notice that N ∼N (0,Σ) has zero mean, because the data
(data = text and key) dependent part of the traces constitutes
the expectation of the noise.

Also notice that we implicitly opted for a leakage de-
composition basis known as the canonical basis [21]. How-
ever, any other choice of bases suits perfectly, insofar as the
change to another basis is a multiplication by an invertible
2n×2n matrix, which can be applied on coalesced matrices
(the noise is not impacted by the basis change, which con-
cerns only the data). Such basis change could be interesting
if the leakage happens to be concentrated on a smaller ba-
sis than the canonical one: the uninteresting dimensions can
thus safely be dropped, thereby simplifying the equations.

3.1.2 Template attack

After the identification stage (profiling, as described in Sec.
3.1.1), the attacker can perform the exploitation stage. We
have the following result:

Theorem 1 (Theorem 1 of [7]) Template attacks guess the
key as:

k̂ = argmin
k

tr((X−Yk)
T

Σ
−1(X−Yk)). (4)

3.1.3 Standardization of traces

Theorem 2 (Template attack with standardized traces)
It is possible to standardize the templates (and the traces),
by trading:

– Yk for Y ′k = Σ−1/2Yk, and
– X for X ′ = Σ−1/2X.

Accordingly, the template attack simplifies as:

k̂ = argmin
k

tr((X ′−Y ′k)
T
(X ′−Y ′k)) = argmin

k
||X ′−Y ′k ||2F ,

(5)

where || · ||2F is the square Frobenius norm of a matrix, that
is the sum of all its elements raised to the power two.

Proof Notice that, owing to the symmetry of Σ , one also has
the following property

(
Σ−1/2

)T
= Σ−1/2. Hence:

(X−Yk)
T

Σ
−1(X−Yk) = (X−Yk)

T
Σ
−1/2

Σ
−1/2(X−Yk)

= (Σ−1/2(X−Yk))
T

Σ
−1/2(X−Yk)

= (X ′−Y ′k)
T
(X ′−Y ′k).
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Besides,

tr((X ′−Y ′k)
T
(X ′−Y ′k))

= ∑
q
(X ′q−Y ′q,k)

T
(X ′q−Y ′q,k)

= ∑
q
||X ′q−Y ′q,k||22 (norm-2 of a D-dimensional vector)

= ||X ′−Y ′k ||2F (Frobenius norm of a D×Q matrix).

Notice that the standardized noise N′ = Σ−1/2N has distri-
bution N (0, I), where I is the D×D identity matrix.

Remark 1 In the expression of the template attack of Eqn. (5),
the covariance matrix Σ disappears: it is hidden half in the
model (Y ′ is Σ−1/2Y ) and half in the matching traces (X ′ is
Σ−1/2X). Alternatively, we will show in Alg. 3 that Σ can be
completely hidden in the templates, and that there is no need
to use Σ in the corresponding matching phase (Alg. 4). This
way of using Σ allows to minimize the computation time,
in particular because Σ will need to be inversed only once,
namely when building the model.

3.2 Template attack (with coalescence)

The trace operator in Theorem 1 is applied to a Q×Q matrix
(resulted from the product of the raw matrices, without co-
alescence), which poses a problem of scaling as the number
of traces grow. Therefore, we show that template attacks can
be rewritten in a coalesced form:

Proposition 1 (Coalesced template attack) Template at-
tacks (as per (4)) guess the key as:

k̂ = argmin
k

∑
t

nt(X̃t − Ỹt,k)
T

Σ
−1(X̃t − Ỹt,k), (6)

where nt = ∑q:tq=t 1 is the number of traces corresponding
to plaintext value t.

Proof By developing the argument to minimize in Theo-
rem 1, there remain only two terms which depend on the
key k:

∑
q

YT
tq,kΣ

−1Xq = XT
q Σ
−1Ytq,k (7)

and

∑
q

YT
tq,kΣ

−1Ytq,k, (8)

because ∑q XT
q Σ−1Xq is independent from the key k.

Now,

∑
q

YT
tq,kΣ

−1Xq

= ∑
t

∑
q:tq=t

YT
tq,kΣ

−1Xq

= ∑
t

(
∑

q:tq=t
YT

tq,kΣ
−1Xq

)

= ∑
t

(
∑

q:tq=t
ỸT

t,kΣ
−1Xq

)

= ∑
t

ỸT
t,kΣ

−1

(
∑

q:tq=t
Xq

)

= ∑
t

ntỸT
t,kΣ

−1
(

∑q:tq=t Xq

nt

)
= ∑

t
ntỸT

t,kΣ
−1X̃t

and

∑
q

YT
tq,kΣ

−1Ytq,k

= ∑
t

∑
q:tq=t

YT
tq,kΣ

−1Ytq,k

= ∑
t

∑
q:tq=t

ỸT
t,kΣ

−1Ỹt,k

= ∑
t

ỸT
t,kΣ

−1Ỹt,k

(
∑

q:tq=t
1

)
= ∑

t
ntỸT

t,kΣ
−1Ỹt,k.

All in one, up to a key-independent term ∑t nt X̃T
t Σ−1X̃t , we

can rewrite the argument to minimize in Theorem 1 as:

∑
t

nt(X̃t − Ỹt,k)
T

Σ
−1(X̃t − Ỹt,k).

Remark 2 The equation (6) reads as a trace on the plaintext
space, weighted by the values nt . Regarding nt , they are the
empirical estimators of QP(T = t).

Remark 3 The attack presented in Proposition 1 is exactly
the same as that of Theorem 1: it will succeed with the same
number of traces. However, the attack in Proposition 1 is
computationally more efficient than that of Theorem 1 as
soon as the number of traces Q is larger than the number
of plaintexts involved in leakage model 2n (for 2n = 256
for AES). The gain holds both for training and matching
phases. However, we underline that training requires much
more traces than matching, hence most of the gain of using
coalesced data arises from the template building phase.
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3.3 State-of-the-art dimensionality reduction

It has been suggested in [1] that template attacks can be
made more practical by:

1. first start with a dimensionality reduction,
2. then perform a template attack in a reduced space.

This approach deserves to be confronted with the innate
dimensionality reduction power of template attacks, as ex-
pressed in Sec. 3.2 (where the complexity is related to cryp-
tographic parameter S = 2n and not to the traces dimension-
ality D).

To be more accurate, two dimensionality reduction tech-
niques have been put forward: principal components analy-
sis (PCA [1]) and linear discriminant analysis (LDA [39]).

In this section, we contrast template attacks with and
without such pre-processing (especially the PCA).

3.3.1 PCA

The PCA is a technique aiming at identifying linear pro-
jections which concentrate information in few directions,
namely principal directions. In this respect, it is already point-
ed out in [1] that any set of training traces of high dimension-
ality D can always be reduced to lower dimensionality 2n, as
we have also noted in Sec. 3.2.

The PCA appears in two variants: classical and class-
based, as tailored by Archambeau et al. in [1]. Both tech-
niques require the definition of a covariance matrix. We an-
alyze in the following lemma both techniques, which resort
to the concept of coalesced matrices (Def. 1):

Definition 5 (Variance of a vectorial random variable)
The variance of X ∈RD is: VAR(X)=E((X−EX)(X−EX)T).

Lemma 1 (Law of total variance)

VAR(X) = E(VAR(X |T ))+VAR(E(X |T )).

Proof Adaptation of the law of total variance to the multi-
variate case.

Applied to X = Y +N, where Y depends on T (but N does
not), we have:

VAR(X) = VAR(Y )+Σ .

Besides, as Y |T is deterministic, we can apply Lemma 1:

VAR(Y ) = VAR(E(Y |T )).

Let us assume Y is centered, namely E(Y ) = 0. Hence:

VAR(Y ) = ∑
t
P(T = t)E(Y |T )E(Y |T )T.

Lemma 2 (PCA) We resort to the Law of Large Numbers
(LLN). The classical PCA is based on the estimation of the
following D×D covariance matrix:

1
Q

Q

∑
q=1

(
Xq−

1
Q ∑

q′
Xq′

)(
Xq−

1
Q ∑

q′
Xq′

)T

LLN−−−−→
Q→+∞

VAR(Y )+Σ . (9)

The PCA of Archambeau et al. is based on the estimation of
the following D×D covariance matrix:

1
Q

Q

∑
q=1

(
X̃q−

1
Q ∑

q′
X̃q′

)(
X̃q−

1
Q ∑

q′
X̃q′

)T

LLN−−−−→
Q→+∞

VAR(Y ). (10)

Regarding the PCA, we only consider the second case.
As the traces are first averaged, the covariance arising from
the noise disappears; therefore, the only contribution is the
intra-class variability. As the matrix is a covariance matrix,
it has only positive eigen-values. We consider the set of cor-
responding eigen-vectors as a matrix V (matrix of eigen-
vectors), which is such that:

Ỹk(Ỹk)
TV =V ∆ ,

where the matrix ∆ = diag(λ1,λ2, . . . ,λ2n) is the diagonal
matrix of eigen-values. Besides, it is known [25] that VVT =

I, the D×D identity matrix.

Lemma 3 Template attack with PCA is always less efficient
(in terms of success probability) than the template attack.

Proof The reason is simply because the maximum likeli-
hood is the best attack in terms of success probability. As
the PCA is a preprocessing, it is less efficient.

Notice that, in practice, it is hard to estimate models and
noise accurately, therefore reducing the dimensionality be-
fore attacking is a winning strategy. However, assuming that
a perfect profiling is possible, any preprocessing reduces the
information (recall the “data processing theorem”), there-
fore one may wonder how different efficiencies of template
attacks with and without PCA are.

In the case D < 2n, Ỹk(Ỹk)
T is almost of full rank (with

very high probability). However, as traces are centered, there
is one relationship amongst all rows of Ỹk, namely their sum
is null. Hence V is not invertible. There is actually no di-
mensionality reduction: the projection on any eigen-vector
carries information.

The PCA therefore consists in transforming the traces
the following way:

– Ỹ becomes VTỸ and X becomes VTX (projection),
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– the covariance matrix Σ becomes VTΣV . Indeed, the
covariance matrix of the projected (centered) noise is
E((VTN)(VTN)

T
) = E(VTNNTV ) = VTE(NNT)V =

VTΣV.

The argument to maximize over k in the optimal distinguisher (4)
becomes:

tr
(((

VTX−VTYk

)T(
VT

ΣV
)−1(

VTX−VTYk

)))
=

tr
((

(X−Yk)
TV
(

VT
ΣV
)−1

VT (X−Yk)

))
=

tr
((

(X−Yk)
T

(
V
(

VT
ΣV
)−1

VT

)
(X−Yk)

))
. (11)

Assume that V is invertible. Using the property that (AB)−1 =

B−1A−1, one has:

V
(

VT
ΣV
)−1

VT =VV−1
Σ
−1(VT)−1VT = Σ

−1,

which is the same covariance matrix as for the optimal dis-
tinguisher (matrix V disappears). But V is not invertible, and
therefore the Eqn. (11) cannot be simplified.

Finally, It is noticeable that all the improvements intro-
duced in the current paper are compatible with any dimen-
sionality reduction technique.

4 Efficiently computing templates with coalescence

4.1 Simplification by the LLN

As will be shown, when a high number of traces is needed
(where SNR is less), an efficient computation of an LLN-
based approximation of the optimal template attack can be
carried out. Hence, when using the LLN the number of traces
to recover the key is generally more than the exact template
attack. But (i) this is less and less a concern in situations
where the SNR decreases (that is, the “real world” challeng-
ing scenarios) , (ii) we don’t need an efficient computation
when number of traces is less (when the SNR is high).

In this section, we come back to genuine template at-
tacks, as described in Sec. 3.

Definition 6 (Equal Images under different Subkeys
(EIS) [37, Def. 2]) In this case, we have that for each pair
(k,k′), k 6= k′, there exists a pair (t, t ′), t 6= t ′, such that Yt,k =

Yt ′,k′ .

In the case of the EIS, and in the specific case when Yt,k
depends only on t⊕k, we can drop the ỸT

t,kΣ−1Ỹt,k term. The
effect is represented in Fig. 1: notwithstanding that the value
of the distinguisher (Eqn. (7)) is always the largest for the
correct key k = k∗, one can see “oscillations” occurring ev-
ery 2n = 16 traces (here n = 4), where indeed the dropped

Fig. 1 Values of the distinguisher (Eqn. (7)), where the ỸT
t,kΣ−1Ỹt,k

term (Eqn. (8)) is dropped.

Table 1 Dimensions of traces and models, seen as matrices in this pa-
per.

Raw Coalesced
Traces X : D×Q X̃ : D×2n

Models Y : D×Q Ỹ : D×2n

(Eqn. (8)) term is the same for all key hypotheses. We recall
the dimension of matrices in Tab. 1.

The max-likelihood attack minimizes over k:

– either: tr
(
(X−Yk)

T
Σ−1(X−Yk)

)
– or equivalently ∑t∈Fn

2
nt(X̃t − Ỹt,k)

T
Σ−1(X̃t − Ỹt,k).

Using the law of large numbers, for large Q, we have:

1
Q ∑

t∈Fn
2

nt(Ỹt,k)
T

Σ
−1Ỹt,k −−−−→

Q→+∞
∑

t
P(t)(Ỹt⊕k)

T
Σ
−1Ỹt⊕k

which does not depend on k if T is uniformly distributed,
that is P(t) = 2−n. This is a mathematical justification for
the observation made in Fig. 1. As already noted in Sec. 3.2,
there is therefore only one key-dependent term which re-
mains:

∑
t

nt X̃T
t Σ
−1Ỹt⊕k = trk(X̃

T
Σ
−1Ỹ ), (12)

where we recall that trk is the k-th trace operator introduced
in Definition 2.

The templates are estimated as represented in Alg. 1.
In this formulation, it clearly appears that there is a unique
noise covariance matrix Σ , which justifies the technique of
“pooled covariance matrix” presented in [10]. Indeed, by the
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law of large numbers, we have that, for all t ∈ Fn
2:

lim
Q→+∞

1
Q ∑

q:tq=t
Xq = lim

Q→+∞

1
Q ∑

q:tq=t
Ỹtq

= lim
Q→+∞

1
Q ∑

q:tq=t
Ỹt

= lim
Q→+∞

Ỹt

Q ∑
q:tq=t

1

= lim
Q→+∞

nt

Q
Ỹt ≈

1
2n Ỹt ,

since nt ≈ Q/2n when Q is large. Besides, as Xq = Ỹtq +N,
we have that:

Σ =
1
Q

Q

∑
q=1

(Xq− Ỹtq)(Xq− Ỹtq)
T

=
1
Q

Q

∑
q=1

XqXq
T

− 1
Q

Q

∑
q=1

XqỸT
tq −

1
Q

Q

∑
q=1

ỸtqXq
T+

1
Q

Q

∑
q=1

ỸtqỸT
tq

−−−−→
Q→+∞

1
Q

XXT− 1
2n ỸỸT,

assuming nt/Q → 1/2n when Q → +∞ (plaintext unifor-
mity). This justifies line 9 of Alg. 1.

Input : Set of training traces X and corresponding plaintexts
T for the estimation of the templates, for a known
key k

Output : Templates:

– Ỹ , the matrix of the templates, and
– Σ , its homoscedastic covariance matrix.

1 for t ∈ Fn
2 do // Initialization

2 ỹt ← 0 // Mean trace per class

3 nt ← 0 // Number of traces per class

4 for q ∈ {1, . . . ,Q} do // Accumulation, as in [28]

5 ỹtq⊕k← ỹtq⊕k +Xq

6 ntq⊕k← ntq⊕k +1

7 for t ∈ Fn
2 do // Normalization

8 ỹt ← ỹt/nt

9 return
(

Ỹ = (ỹ0, · · · , ỹ2n−1),Σ = 1
Q XXT− 1

2n ỸỸT
)

Algorithm 1: Estimation of templates.

4.2 Profiling and attack algorithms

The correct key is recovered using Alg. 2. In this algorithm,
the matrices X̃ and Ỹ are respectively X̃ = (x̃0, · · · , x̃2n−1)

and Ỹ = (ỹ0, · · · , ỹ2n−1). Premise of formal presentation of

template attacks, including the notion of Mahalanobis mea-
sure is presented in a paper by Zhang et al. [44].

When the templates (Ỹ ,Σ) are obtained from Alg. 1,
then the attack is no longer optimal [15], but is termed tem-
plate attack. However, template attacks tend to optimal at-
tack when the profiling is carried out on a number of traces
which tends to infinity.

Input : Set of matching traces X , corresponding plaintexts T
and the templates (Ỹ ,Σ) obtained from Alg. 1

Output : Key guess k recovered by the optimal distinguisher

// . . . . . . . . . . . . . . . . . . . . . . . . . Accumulation, as in lines 1-8 of Alg. 1

1 for t ∈ Fn
2 do // Initialization

2 x̃t ← 0 // Mean trace per class

3 nt ← 0 // Number of traces per class

4 for q ∈ {1, . . . ,Q} do // Accumulation

5 x̃tq ← x̃tq +Xq

6 ntq ← ntq +1

7 for t ∈ Fn
2 do // Normalization

8 x̃t ← x̃t/nt

// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attack proper

9 return argmaxk trk
(
X̃TΣ−1Ỹ

)
// Eqn. (12)

Algorithm 2: Key recovery using optimal distinguisher, ap-
plied on profiling generated by Alg. 1.

4.3 Improved profiling and attack algorithms

In practice the profiling (Alg. 1) should be carried out only
once, whereas the matching (Alg. 2) should be carried out
every time when the attack outcome is needed. So the ad-
versary can compute Σ−1Ỹ once in the end of the first stage
(Alg. 3 instead of Alg. 1), and he can use this result ev-
ery times the attack needs to be estimated (Alg. 4 instead of
Alg. 2). Finally it is possible to regroup the accumulations
(lines 1-8) of Alg. 1, 2, 3 and 4 in the same function.

4.4 Extension of our approach to masked implementations

Let d be a strictly positive integer. The protection by a mask-
ing of order d consists in dividing each sensitive variable
Z into (d + 1) shares Z(0), . . ., Z(d). In order to reveal this
secret value, an adversary must carry out a so-called high-
order SCA. It consists in combining the leakage correspond-
ing to all the (d +1) shares. For such high-order attack, we
leverage same notations as in Sec. 2, with the following ex-
tensions:

– (X (i))0≤i≤d denote the measured leakage corresponding
respectively to the (d +1) shares;

– (Y (i))0≤i≤d denote the leakage model corresponding re-
spectively to the (d +1) shares.
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Input : Set of training traces X and corresponding plaintexts
T for the estimation of the templates, for a known
key k

Output : The matrix of templates left multiplied by the
inverse of the covariance matrix Ỹ= Σ−1Ỹ

1 for t ∈ Fn
2 do // Initialization

2 ỹt ← 0 // Mean trace per class

3 nt ← 0 // Number of traces per class

4 for q ∈ {1, . . . ,Q} do // Accumulation, as in [28]

5 ỹtq⊕k← ỹtq⊕k +Xq

6 ntq⊕k← ntq⊕k +1

7 for t ∈ Fn
2 do // Normalization

8 ỹt ← ỹt/nt

9 Ỹ ← (ỹ0, · · · , ỹ2n−1) // Same as in Alg. 1

10 Σ ← 1
Q XXT− 1

2n ỸỸT // Same as in Alg. 1

11 Ỹ← Σ−1Ỹ // Costly operation, factored here for all subsequent

uses in Alg. 4

12 return Ỹ

Algorithm 3: Estimation of templates, improved by caching
matrix Σ inversion at the end.

Input : Set of matching traces X , corresponding plaintexts T
and the templates (Ỹ= Σ−1Ỹ ) obtained from Alg. 3

Output : Key guess k recovered by the optimal distinguisher

// . . . . . . . . . . . . . . . . . . . . . . . . . Accumulation, as in lines 1-8 of Alg. 3

1 for t ∈ Fn
2 do // Initialization

2 x̃t ← 0 // Mean trace per class

3 nt ← 0 // Number of traces per class

4 for q ∈ {1, . . . ,Q} do // Accumulation

5 x̃tq ← x̃tq +Xq

6 ntq ← ntq +1

7 for t ∈ Fn
2 do // Normalization

8 x̃t ← x̃t/nt

// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attack proper

9 return argmaxk trk
(
X̃TỸ

)
// Eqn. (12)

Algorithm 4: Improved key recovery using optimal distin-
guisher, applied on profiling as obtained from Alg. 3.

4.4.1 State-of-the-art of high-order attacks

Let us first review the high-order attacks state-of-the-art in
the case where the adversary uses only one time-sample per
share during the attack. To conduct higher-order attacks, many
combination functions were proposed in literature, such as
product combination [38], absolute difference combination
(possibly raised to some power) [26] and sine-based com-
bination [35]. According to [40], even if the combination
functions loose the information, this loss vanishes in prac-
tice for high noise. In such case, the second-order CPA with
the normalized product function becomes (nearly) equiva-
lent to the maximum likelihood distinguisher applied to the
joint distribution. According to [36] the optimal combina-
tion technique against the first-order Boolean masking is the
normalized product ((X (0)−E(X (0)))(X (1)−E(X (1)))). The

1 D0· · ·

1 D· · ·

1 D· · · 1 D· · · 1 D· · ·

1 D· · ·

Dd1 · · ·1D1· · ·

(b) Same window case:

(a) General case:

Real
sub-traces:

Artificial
trace:

Real
sub-traces:

Artificial
trace:

Fig. 2 Different methods to combine samples from (d+1) sub-traces,
in the case of dth-order masking countermeasure. Attack is carried out
on the multivariate combination shown in the artificial trace. Each sam-
ple amongst the D making up the artificial trace is a centered product
of (d +1) samples taken each from a different sub-trace.

authors of this paper ( [36]) show that this combination func-
tion should be accompanied with E[(Y (0)−E(Y (0)))(Y (1)−
E(Y (1)))|Z] as an optimal model. A High-Order Optimal
Distinguisher is introduced in [8]. This paper proves that the
CPA with normalized product combination is optimal for
high noise, independently from the masking technique and
its order (whether d = 1,2, . . .). Let us now show how we can
use these results in order to consider several time-sample per
share.

4.4.2 Extension of our approach to higher-order masking

To extend our template approach to masking-based protected
implementations, we take as a starting point the normalized
product combination [36]. In fact one can see the measured
trace as a set of (d +1) sub-traces, such that each sub-trace
corresponds to one of the (d +1) shares. According to [36],
an adversary which combines (d + 1) relevant PoIs (one
from each sub-trace) should be successful in his attack by
carrying out a normalized product combination and by ac-
companying it with E[Π d

i=0(Y
(i)−E(Y (i))) |Z] as an optimal

model. In fact, for combining, the adversary can choose any
relevant PoI of the first share, with any relevant PoI of the
second share... with any relevant PoI of the (d +1)th share.

Following this idea, to extend the template attack on a
masked implementation, one can construct an artificial trace,
such that any sample in the artificial trace is a normalized
product combination of (d + 1) PoIs (one from each sub-
trace). This is illustrated in Fig. 2(a). In this figure, only one
PoI is selected from the first sub-trace, and it is combined to
samples of the other d sub-traces, using evaluator’s expertise
to get the best choice.

A simple way of combining is to take the same number
of PoIs from each sub-trace and combine them in the same
order (i.e. the ith sample, for 1≤ i≤D, of the artificial trace
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is the combination of all the PoI of the sub-traces that are
in the ith position). The figure 2(b) describes the combina-
tion to create the artificial trace by such concatenation of
D normalized products between (d +1) sub-traces. Finally,
the adversary can profile the leakage model of this artifi-
cial leakage and carry out the template attack by matching
the combination of current leakage (also by the normalized
product) to the profiled model.

Thanks to this combination idea, one can carry out the
template attack against high-order masking schemes, in the
general way or following our particular approach (coales-
cence followed by the spectral approach in order to be sig-
nificantly more efficient both in terms of processing time
and of memory space complexities). One can see the experi-
mental results of this technique, against a first-order Boolean
masking [31], in the Subsection 5.5 (at scenarios 3 and 4).

4.4.3 Extension of our approach to disaligned traces

In fact the traces could not be aligned at the begging, due
to random delays (jittering) or any other raison [13]. The
impact of this countermeasure in performance has already
been quantified in a Formal Framework for the Evaluation
of Waveform Resynchronization Algorithms [22]. To carry
out a template attack using such disaligned traces, one can
use several techniques to first realign them [34,41,17,19].
All these techniques shall be applied before coalescence.

4.5 Computational performance analysis

4.5.1 Straightforward complexity analysis

Let us comment on the complexity of the algorithms. The
body of Alg. 1, that is lines 1-8, operates on vectors of size
D. The same remark applies to the body, that is lines 1-8,
of Alg. 2. Hence the overall complexity of these parts of the
algorithm is D×Q additions.

The complex part of Alg. 1, namely line 9, is computed
only once. The overall complexity of this part equals to that
of XXT computation. So, that is equals to D2×Q multipli-
cations.

The complex part of Alg. 2, namely line 9, is also com-
puted only once. Firstly, since the profiling stage should be
done only one time, we can compute Σ−1Ỹ once, as shown
in Alg. 3. The overall complexity of this multiplication equals
D2 × 2n. For inverting Σ efficiently one can use the opti-
mized Coppersmith–Winograd-like algorithm, that has a com-
plexity of O(d2.373) [42].

Another advantage of our template analysis is that the
overall complexity of the attack phase, namely Alg. 4, does
not depend on Q, no matter how large Q is. Indeed the over-
all complexity of X̃T

(
Σ−1Ỹ

)
computation is equal to 22n×

D multiplications. Table 2 shows the computing time of Alg. 3

according to D. It can be seen that compute matrix produces
to derive Σ takes more time than to the inverse of Σ . Since
the time computation of Alg. 3 depends only to lines 10 and
11 (asymptotically), we provide its duration in Table 2. Of
course the overall time of Alg. 3 is about the the sum of that
of lines 10 and 11.

In order to save memory space, we compute Σ in line 10
of Alg. 3 from X and Ỹ without using any temporary matrix.
Finally we can factor the code of lines 1-8 of Alg. 1, 2, 3 and
4 in the same function.

4.5.2 Complexity improvement with spectral analysis

We improve the complexity of the template attack using re-
sults from [23]. To compute trk

(
X̃T
(
Σ−1Ỹ

))
more efficiently,

let us first denote
(
Σ−1Ỹ

)
as Ỹ, such that:

trk

(
X̃T
(
Σ
−1Ỹ

))
= trk

(
X̃TỸ

)
.

Recall the dimension of X̃T is 2n×D and that of Ỹ is
D×2n. The (i, j) element of the matrix X̃TỸ is thus:

X̃TỸ[i][ j] =
D−1

∑
l=0

X̃T[i][l]Ỹ[l][ j].

Consequently,

trk

(
X̃TỸ

)
=

2n−1

∑
i=0

D−1

∑
l=0

X̃T[i][l]Ỹ[l][i⊕ k]

=
D−1

∑
l=0

2n−1

∑
i=0

X̃T[i][l]Ỹ[l][i⊕ k]

=
D−1

∑
l=0

X̃T[.][l]⊗ Ỹ[l][.](k)

=
D−1

∑
l=0

WHT−1
(

WHT
(
X̃T[.][l]

)
•WHT

(
Ỹ[l][.]

))
(k)

So,

trk

(
X̃TỸ

)
=

WHT−1
(D−1

∑
l=0

WHT
(
X̃T[.][l]

)
•WHT

(
Ỹ[l][.]

))
(k), (13)

– X̃T[.][l] denotes the lth column of the matrix X̃T,
– Ỹ[l][.] denotes the lth line of the matrix Ỹ, and
– ⊗ denotes the convolution product between them.
– • denotes the coordinate wise product between them.
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Table 2 Computing time (in seconds) of Alg. 3 according to D.

100 200 300 400 500 600 700 800 900 1000
Line 10 0.252 0.869 1.904 3.354 5.197 7.488 10.147 13.259 16.769 20.740
Line 11 0.031 0.177 0.528 1.155 2.103 3.486 5.362 7.794 10.903 16.021

Inversion (Σ−1) 0.012 0.093 0.314 0.751 1.472 2.575 4.133 6.183 8.814 12.112
Product (Σ−1Ỹ ) 0.019 0.084 0.214 0.404 0.631 0.911 1.229 1.611 2.089 3.909

Thanks to the (normalized) Walsh-Hadamard Transform
(WHT) that allows us to compute, for all l = 0, . . . ,D− 1,
the convolution product X̃T[.][l]⊗ Ỹ[l][.] with a complex-
ity of n2n instead of 22n. Thereby the overall complexity
of trk

(
X̃T
(
Σ−1Ỹ

))
computation becomes n2n×D instead

of 22n×D. In applications such as key extraction from the
AES (n = 8), the computation time of the attack phase is
indeed divided by 2n/n = 32, which is a significant gain.
Table 3 shows the computing time of the line 9 of the Alg. 4
according to D, with and without the spectral analysis (resp.
Equation. 13 and Equation. 12).

Is noteworthy that this result that assume the group oper-
ation ⊕ over the set {0,1}n (i.e. Z = F(t⊕ k)) hold true for
any other group operation � as long as Walsh-Hadamard
Transform is replaced by Fourier Transform (FFT) on this
group ({0,1}n,�). For example, since in TEA (a Tiny En-
cryption Algorithm) and several AES candidates [12], the
operation is +( mod (2n)), so Cyclical Fourier Transform
must replace Walsh-Hadamard Transform (WHT).

5 Experiments

In this section, we assess the efficiency of this template at-
tack. We first analyze its success rate with variable numbers
of samples per trace. We compare it with the success rate of
the traditional CPA. In the sequel a comparison between this
template attack and the monovariate CPA attack over PCA
is done.

5.1 Traces used for the case study

An ATMega 163 smart card, involving an 8-bit AVR type
processor, has been programmed to process a software AES.
The analysis consists in measuring the power consumption
of the smart card, when the AES is running. The power mea-
surements are done with a PicoScope 3204A on the first
round. The sampling rate equals 256 MSamples/second.

We first characterize the traces managed in the following
experiments. The average trace, SNR (Definition 3), NICV
(Definition 4), and the principal direction of PCA (recall
Sec. 3.3.1) are computed in all possible samples of these
traces. The figure 3 shows those characterizations over D =

700 samples.

Fig. 3 Average trace, SNR, NICV and first principal direction of PCA,
according to the index of samples.

In the following template attacks a set of traces is col-
lected for templates building, whilst another set is collected
for the attack phase. As the two sets of traces are measured
from the same smart card, the results are optimistic in terms
of attacker potential. We analyze the success rate of the tem-
plate attack according to the size of a chosen samples win-
dow.
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Table 3 Computing time (in seconds) of the line 9 of Alg. 4 according to D, with and without the spectral analysis (WHT).

100 200 300 400 500 600 700 800 900 1000
Without WHT 0.0619 0.1242 0.2030 0.2858 0.3447 0.4126 0.4763 0.5453 0.6151 0.6854

With WHT 0.0022 0.0042 0.0065 0.0091 0.0116 0.0135 0.0154 0.0165 0.0176 0.0201
Improvement (ratio) 28.625 29.752 30.969 31.373 29.652 30.534 30.849 32.969 34.891 34.183

Fig. 4 Values of success rate, according to the number of samples.

5.2 Template attacks with windows of increasing size

We analyzed the success rate with different numbers of sam-
ples (from D = 1 to D = 700 samples). The samples are
selected around a chosen central point I0. This point is the
sample time where the traditional CPA yields the highest
peak. The window of growing size D gathers samples be-
longing to the interval [I0−D/2, I0 +D/2).

The figure 4 shows the success rate according to the
number of measurements for different sizes of the window
(from D = 200 to D = 700). From these results, one can de-
duce that the larger the dimensionality, the fewer the number
of traces to recover the secret key. Asymptotically, for very
large dimensionalities D→+∞, only a limited few number
of traces suffices to extract the key.

For reference, Fig. 4 also shows the success rate of uni-
variate CPA (which corresponds to the maximum value of
the correlation coefficient along all D = 700 samples). The
CPA uses Hamming weight model. It can be seen that (model-
agnostic) template attack becomes more efficient than CPA
starting from about D ∈ [250,300], and keeps being better
for larger dimensionality.

Indeed as shown in Figure 5, this monotony of the suc-
cess rate is approximately respected above D = 300 sam-
ples/trace. But, as shown in Figure 6, this monotony in not
respected below D = 300. One can deduce that in this inter-
val the success rate depends of the signal wave form; in the
interval D ∈ [1,300], it can happen that when increasing the
window size, more noise than signal is injected in the tem-
plate attack, thereby making it less efficient. In order to lead
this attack more efficiently one can choose only the samples
where the curve in Figure 6 decreases, because these sam-
ples really depend on T ⊕ k contrary to the samples where
the curve increases.

Fig. 5 Number of measurements at 80% of success rate, according to
the number of samples (zoom for D > 300).

Fig. 6 Number of measurements at 80% of success rate, according to
the number of samples (full scale, that is D ∈ [1,700]).

As shown in Figure 4, from around 280 samples/trace
this multivariate analysis will be more efficient than the tra-
ditional CPA. So one can conclude that there is a venue to
capture more information using part or all of the samples
rather than conducting a monovariate attack.

In order to validate our study independently from the tar-
geted device, the same experiment is carried out on a more
recent smartcard, namely TI MSP430G2553. The figure 7
shows similar results on this device, comparing to the right
part of figure 6 (D ≥ 300). One can see that the more sam-
ples are taken into account, the faster the attack. This figure
shows also that it is very important to choose the relevant
PoIs, and that template attacks benefit from the great multi-
plicity of PoI. The gain is huge: more then 100× less traces
to recover the key when using D = 1 vs D = 700.

It is noticeable that the using sampling frequency dur-
ing the MSP430G2553’s (resp. the Atmega163’s) attack is
512MHz (resp. 256MHz), where the operating frequency is
16MHz (resp. 8MHz). So the two campaigns are compara-
ble in terms of number of samples per clock cycle. The dif-
ference is in the noise, since the two circuits have not been
designed in the same technology and the side-channel ac-
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Fig. 7 Number of measurements at 80% of success rate, according
to the number of samples (full scale, that is D ∈ [1,700]) for the TI
MSP430G2553 card.

Fig. 8 Values of success rate, according to the number of samples.

quisition system differ (MSP430 LaunchPad and Smartcard
reader respectively).

It is also noteworthy that both of PoI-based and PCA-
based template attacks [20] can straightforwardly benefit from
our approach.

5.3 Comparison with PCA

In order to compare the efficiency of this method with other
multivariate analyses, the PCA analysis is carried out on the
same device with the same number of samples (700 sam-
ples/trace). The figure 8 shows that the template attack is
more efficient in practice than both the PCA and the tradi-
tional CPA. Recall that Fig. 3 shows the average trace, SNR,
NICV and the first principal direction of PCA, according to
the index of samples.

5.4 Template attack after dimensionality reduction (over
first eigen-components)

In this stage we assess the effect of PCA over the success
rate of our template attack. Instead of assessing the effi-
ciency of our attack according to the number of samples per
trace it is assessed according to the number of directions of
PCA ordered by decreasing eigen-value. The figure 9 shows

Fig. 9 PCA with multiple directions (from 1 to 2n−1 directions). Top:
scree plot of eigenvalues (log scale). Bottom: number of measurements
at 80% of success rate (log scale).

the number of measurements required to reach 80% of suc-
cess rate, according to the number of eigen-components con-
sidered per measurement. This figure shows also the ordered
eigen-values according to their corresponding eigen-components.
It is clear that a quasi-linear relation exists between them:
the success rate increases about as fast as the cumulative
eigen-values.

5.5 Study of our approach with simulated traces

In order to do a fair comparison under different aspects (PoIs,
noise levels and masking) one can resort to simulated traces.
In this paper we present four scenarios with different noise
levels. In each scenario we increase a window size around a
central PoI and we show the number of the required traces to
reach 80% of success rate. So, we carry out, at once, a study
with different PoI numbers, different noise levels and using
the masking technique or not. The four scenarios are:

1. In the first scenario, we simulate a leakage that follows
a half cycle of a sine function, during 700 samples (or
equivalently any 700 PoIs that follows the same law).
More exactly, if the sensitive variable is Z, then the leak-
age at the sth time sample is:

Xz(s) = wH(z)sin
(
2π

s
2×700

)
+N,

such that N denotes a Gaussian noise and the leakage
model is Yz(s)=wH(z)sin

(
2π

s
2×700

)
. In those equations,

wH(z) is the Hamming weight of z ∈ Fn
2, that is wH(z) =

∑
n
i=1 zi. We used such leakage simulation in order to be

close to the real leakage (for example, see the real leak-
age of a smart card as shown in [33, Fig.4]). During this
experiment we vary the window size around the central
PoI (s = 350). Fig. 10 shows the number of the required
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Fig. 10 Number of measurements at 80% of success rate (log scale),
according to the number of samples, in scenario 1.

Fig. 11 Number of measurements at 80% of success rate (log scale),
according to the number of samples, in scenario 2.

traces to reach 80% of success rate according to the num-
ber of samples, for different standard deviations (σ ) of
the noise, in the first scenario.

2. In the second scenario, we simulate a leakage that fol-
lows the same leakage function as the first scenario but
only for the even values of s. For the odd values of s we
simulate non-relevant points (non-informative points [27])
by random values. Fig. 11 shows the number of required
traces to reach 80% of success rate according to the num-
ber of samples, for different noise standard deviations
(σ ), in the second scenario. One can show the inconve-
nient of considering non-relevant points as PoIs.

3. In the third scenario, we simulate the leakage of a pro-
tected device by first-order Boolean masking [32, §4].
For each share (masked sensitive value and the mask)
the leakage is simulated by a sine function as in the first
scenario. Before carrying out our approach, we combine
the sub-traces in one artificial trace as described in sub-
section 4.4. Fig. 12 shows the number of required traces
to reach 80% of success rate according to the number of
samples, for two different standard deviations (σ ) of the
noise, in the third scenario. One can see that it is possi-

Fig. 12 Number of measurements at 80% of success rate (log scale),
according to the number of samples, in scenario 3.

Fig. 13 Number of measurements at 80% of success rate (log scale),
according to the number of samples, in scenario 4.

ble to reveal the secret by applying our approach even
against masking.

4. In the fourth scenario, we simulate a leakage that fol-
lows the same leakage function than the third scenario
but only for the even values of s. For the odd values
of s we simulate non-relevant points (non-informative
points) by random values. This alternation between rel-
evant and dummy samples holds for both shares. Fig. 13
shows the number of the required traces to reach 80%
of success rate according to the number of samples, for
two different standard deviations (σ ) of the noise, in
the last scenario. This figure shows the same trend as
Fig. 12. The convergence rate with respect to dimen-
sionality (#samples) is similar. But the asymptotic value
(#samples to recover the key with 80% of success) is of
course higher, especially for high noise.

6 Conclusion and perspectives

In this paper, we have provided an analytical formula for the
template attack in a multivariate Gaussian setting. We have
applied it to highly multivariate traces, and we have shown
that template attacks outperform state-of-the-art heuristics,



16 M. Ouladj et al.

such as traces dimensionality reduction followed by mono-
variate distinguishers. Template attacks without prior dimen-
sionality reduction can be applied to traces of dimensional-
ity D of several hundreds without any effectiveness loss: the
success rate increases as D increases. Therefore this study
reveals that the high sampling rate of oscilloscopes can help
increase the success rate of the attacks.

Furthermore, we extend the approach to the masking-
based protected implementations. We also exhibit a spectral
approach for template attack which allows an exponential
computational improvement in the attack phase (with re-
spect to data bitwidth), which turns out to be a speed-up
by 32× in the case of AES. Recall that both of PoI-based
and PCA-based template attacks can straightforwardly ben-
efit from our approach, both in term of processing time and
in term of the needed space memory. Our approach is vali-
dated both by simulated and real-world traces.
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