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Abstract

Several time discretization schemes for the incompressible Navier-Stokes equations (iNSE) in
moving domains have been proposed. Here we introduce them in a unified fashion, allowing
a common well possedness and time stability analysis. It can be therefore shown that only a
particular choice of the numerical scheme ensures such properties. The analysis is performed
for monolithic and Chorin-Temam schemes. Results are supported by numerical experiments.



1 Introduction

Several works have been reported dealing with the numerical solution of the iNSE in moving
domains within an Arbitrary Lagrangian Eulerian formulation (ALE), primarily in the context
of fluid-solid coupling. In particular different choices of time discretization have been reported
on [2,5,7–9,11–13,15,17]. To the best of the authors knowledge, only a few monolithic schemes
have been thoroughly analyzed, e.g. in [4, 12, 15, 17], while no analysis has been reported for
Chorin-Temam (CT) methods. The goal of this work is therefore to assess well-posedness and
unconditional energy balance of the iNSE-ALE for all reported monolithic and CT discretization
schemes within a single formulation.

The reminder of this paper is structured as follows: Section 2 provides the continuous
problem that will be studied. Section 3 introduces a general monolithic scheme that character-
izes several approaches used in literature, well-posedness and energy stability are studied and
discussed. Section 4 introduces the Chorin-Temam schemes where time stability is analyzed.
Finally, Section 5 provides numerical examples testing our results.

2 The continuous problem

In the following, let us consider a domain Ω0 ⊂ Rd with d = 2, 3 and a deformation mapping
X : Rd × R+ 7→ Rd that defines the time evolving domain Ωt := X (Ω0, t). We assume X a
continuous mapping, 1-to-1 with continuous inverse. We denote X ∈ Rd the cartesian coordinate
system in Ω0 and xt := X (X, t) the one in Ωt, by Ft := ∂xt

∂X the deformation gradient, F−1
t its

inverse and Jt := det(Ft) its jacobian. Similarly, Grad(g) := ∂g
∂X , Div(g) := ∂

∂X · g denote the

gradient and divergence operators, respectively, and εt(g) := 1
2(Grad(g)F−1

t + F−Tt Grad(g)T )
the symmetric gradient, for g a well-defined vector function. We consider the weak form of the
iNSE in ALE form [14, Ch. 5]: Find (u(t), p(t)) ∈ H1

0(Ω0)× L2
0(Ω0) with u(0) = uinit s.t.∫

Ω0

ρJ t∂tu · v + ρJ tGrad(u)F−1
t (u−w) · v + J t2µ εt(u) : εt(v)

−Div(J tF−1
t v)p+Div(J tF−1

t u)q = 0

(1)

for all (v, q) ∈ H1
0(Ω0)×L2

0(Ω0), t > 0, uinit,w(t) ∈ H1
0(Ω0) given initial and domain velocities,

where H1
0(Ω0) is the standard Sobolev space of vector fields u defined on Ω0 with values in Rd

s.t. u = 0 on ∂Ω0, L2
0(Ω0) the standard square integrable space of functions p s.t. p(0) = 0.

Notice that the flow at time t is given by u ◦ X−1(·, t).
Remark 1. Although Dirichlet boundary conditions are used throughout this work, it can be
extended straightforwardly to the Neumann case by including the so called backflow stabiliza-
tions, see e.g. [3]. Moreover, in the discrete case the extension of well-posedness results to the
case with non-zero boundary conditions follow from trace theorem.

Proposition 1. [6, Chap. 9] Provided (u(t), p(t)) a solution of the formulation (1), the follow-
ing energy balance holds:

∂t

∫
Ω0

ρ

2
J t|u|2 = −

∫
Ω0

J t2µ|εt(u)|2 (2)

Remark 2. Proposition 1 makes use of the Geometric Conservation Law (GCL)
∂tJ

t = Div
(
J tF−1

t w
)
.

3 Monolithic schemes (first order in time)

Most of the numerical schemes for Problem (1) reported in the literature are first order and can
be written as follows. Given a conforming finite element space V ×Q of H1

0(Ω0) × L2
0(Ω0) for
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velocity and pressure fields, the discrete problem of interest reads:
Find (un+1, pn+1) ∈ V ×Q s.t.

A(un+1,v)− B(v, pn+1) + B(un+1, q) = F (v) ∀(v, q) ∈ V ×Q (3)

being

A(u,v) :=

∫
Ω0

ρ
J??

τ
u · v +

∫
Ω0

ρJ?Grad(u)F−1
? (u∗ −w∗∗) · v +

∫
Ω0

J?2µε?(u) : ε?(v)

+ α

∫
Ω0

ρ

2

(
Jn+1 − Jn

τ
−Div

(
J?F−1

? w∗∗h
))

u · v + β

∫
Ω0

ρ

2
Div

(
J?F−1

? u∗
)
u · v

(4)
with α, β ∈ {0, 1} given parameters, and

B(u, q) :=

∫
Ω0

Div
(
J?F−1

? u
)
q ∀q ∈ Q, F(v) :=

∫
Ω0

ρ
Jn

τ
un · v ∀v ∈ V (5)

Remark 3. The term multiplying α is the discrete residual of GCL, while the one multiplying
β is a strongly consistent term vanishing for incompressible velocity fields.

Formulation (3) contains a wide family of reported methods:

� Using α = β = 0: (?, ??, ∗, ∗∗) = (n, n, n+ 1, n) is used in [2], (?, ??, ∗, ∗∗) = (n, n, n, n) in
[13] and (?, ??, ∗, ∗∗) = (n+1, n+1, n+1, n+1) in [10], and (?, ??, ∗, ∗∗) = (n, n+1, n, n+1)
in [8].

� Using α = β = 1: (?, ??, ∗, ∗∗) = (n, n+ 1, n, n+ 1) in [12], (?, ??, ∗, ∗∗) = (n, n+ 1, n, n)
in [15] and (?, ??, ∗, ∗∗) = (n+ 1, n, n+ 1, n+ 1) in [17,18].

Remark 4. Other methods such as second order approximations can be found in [11, 16] and
Crank-Nicolson approaches in [5, 7].

Proposition 2. By assuming well-posed, orientation-preserving deformation mappings, i.e.
(Jn)n∈N bounded in L∞(Ω0), Jn > 0 for each n ≥ 0, Problem (3) has unique solution for
inf-sup stable finite element spaces if

(
2J?? + Jn+1 − Jn

)
> 0 and α = β = 1.

Proof. Since all operators are bounded, and inf-sup stable elements are used for velocity and
pressure, it is enough to ensure that the bilinear form A is coercive. Indeed:

A(u,u) =

∫
Ω0

J?

2τ

(
2J??

J?
+ α

Jn+1 − Jn

J?

)
|u|2 + J?2µ|ε?(u)|2

+

∫
Ω0

ρ

2
Div

(
J?F−1

? ((β − 1)u∗ − (α− 1)w∗∗)
)
|u|2

(6)

being the last quantity strictly positive under the stated assumptions.

Corollary 3. Assuming α = β = 1, Problem (3) is well posed when:

� 3Jn+1 − Jn > 0 if ?? = n+ 1, i.e. a restriction on the time step size.

� Jn+1 + Jn > 0 if ?? = n, i.e. no restriction on the time step size.

No restrictions apply to ?, ∗, ∗∗.

Proposition 4. Under assumptions of Proposition 2 and α = β = 1, ?? = n, the scheme (3) is
unconditionally stable.
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Proof. By setting v = un+1 in the bi-linear form (4), q = pn+1 in forms (5) and manipulating
terms as standard in literature, the energy equality follows:

∫
Ω0

ρ
Jn+1

2τ
|un+1|2 −

∫
Ω0

ρ
Jn

2τ
|un|2 =

∫
Ω0

ρ

2τ
(Jn+1 − J??)|un+1|2 +

∫
Ω0

ρ

2τ
(J?? − Jn)|un|2

−
∫

Ω0

2µJ?|ε?(un+1)|2 −
∫

Ω0

ρ

2τ
J??|un+1 − un|2

+

∫
Ω0

ρ

2
Div(J?F−1

? (u∗ −w∗∗))|un+1|2

−
∫

Ω0

ρ

2
α
Jn+1 − Jn

τ
|un+1|2

+

∫
Ω0

ρ

2
Div

(
J?F−1

? (βu∗ − αw∗∗)
)
|un+1|2

(7)

Thus, for α = β = 1 and ?? = n the result follows.

4 Chorin-Temam schemes

In the following, we describe a family of Chorin-Temam (CT) schemes for the iNSE-ALE prob-
lem, as we did for the monolithic case. Given Ṽ a conforming space of H1

0(Ω0) and Q̃ a

conforming space of L2
0(Ω0) ∩H1(Ω0), ũ0 ∈ Ṽ, for n ≥ 0:

1. Pressure-Projection Step (PPS)n Find pn ∈ Q̃ s.t.∫
Ω0

τ

ρ
J◦Grad(pn)F−1

◦ : Grad(q)F−1
◦ = −

∫
Ω0

Div
(
J◦F−1

◦ ũn
)
q ∀q ∈ Q̃ (8)

2. Fluid-Viscous Step (FVS)n+1 Find ũn+1 ∈ Ṽ s.t.∫
Ω0

ρJ?? ũ
n+1 − ũn

τ
· v +

∫
Ω0

ρJ?Grad(ũn+1)F−1
? (ũn −w∗∗) · v

+

∫
Ω0

J?2µε?(ũn+1) : ε?(v)−
∫

Ω0

Div(J◦◦F−1
◦◦ v)pn

+

∫
Ω0

ρ

2

Jn+1 − Jn

τ
ũn+1 · v +

∫
Ω0

ρ

2
Div

(
J?F−1

? (ũn −w∗∗)
)
ũn+1 · v = 0 ∀v ∈ Ṽ

(9)

The following energy estimate can be obtained under suitable conditions:

Proposition 5. Under assumptions ◦ = ◦◦ = ?? = n, the solution to scheme (8)-(9) is
unconditionally stable with∫

Ω0

ρ
Jn+1

2τ
|ũn+1|2 −

∫
Ω0

ρ
Jn

2τ
|ũn|2 ≤−

∫
Ω0

J?2µ|ε?(ũn+1)|2 −
∫

Ω0

Jn τ

2ρ
|Grad(pn)F−1

n |2.

(10)

Proof. As standard in literature, let us take v = ũn+1 in (FVS)n+1, and q = pn in (PPS)n.
Adding both equalities and rewriting expressions, it follows:
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∫
Ω0

ρ
Jn+1

2τ
|ũn+1|2 −

∫
Ω0

ρ
Jn

2τ
|ũn|2 =

∫
Ω0

ρ

2τ
(Jn+1 − J??)|ũn+1|2 +

∫
Ω0

ρ

2τ
(J?? − Jn)|ũn|2

−
∫

Ω0

ρ

2τ
J??|ũn+1 − ũn|2 −

∫
Ω0

J?2µ|ε?(ũn+1)|2

+

∫
Ω0

Div
(
J◦◦F−1

◦◦ (ũn+1 − ũn)
)
pn

+

∫
Ω0

Div
(
(J◦◦F−1

◦◦ − J◦F−1
◦ )ũn

)
pn

−
∫

Ω0

τ

ρ
J◦|F−T◦ Grad(pn)|2 −

∫
Ω0

ρ

2τ
(Jn+1 − Jn)|ũn+1|2

(11)
Bounding the first divergence term using integration by parts and Cauchy-Schwartz inequal-

ity, it follows∫
Ω0

Div
(
J◦◦F−1

◦◦ (ũn+1 − ũn)
)
pn ≤

∫
Ω0

ρ

2τ
J◦◦|ũn+1 − ũn|2 +

∫
Ω0

τ

2ρ
J◦◦|F−T◦◦ Grad(pn)|2

(12)
Thus, the following energy estimate can be obtained:

∫
Ω0

ρ
Jn+1

2τ
|ũn+1|2 −

∫
Ω0

ρ
Jn

2τ
|ũn|2 ≤

∫
Ω0

ρ

2τ
(Jn+1 − J??)|ũn+1|2 +

∫
Ω0

ρ

2τ
(J?? − Jn)|ũn|2

−
∫

Ω0

ρ

2τ
J??|ũn+1 − ũn|2 −

∫
Ω0

J?2µ|ε?(ũn+1)|2

+

∫
Ω0

ρ

2τ
J◦◦|ũn+1 − ũn|2 +

∫
Ω0

τ

2ρ
J◦◦|F−T◦◦ Grad(pn)|2

+

∫
Ω0

Div
(
(J◦◦F−1

◦◦ − J◦F−1
◦ )ũn

)
pn

−
∫

Ω0

τ

ρ
J◦|F−T◦ Grad(pn)|2 −

∫
Ω0

ρ

2τ
(Jn+1 − Jn)|ũn+1|2

(13)
From estimate (13) it follows that whenever ◦ = ◦◦ = ?? = n unconditional energy stability

is attained, where ? remains free of choice.

5 Numerical examples

We consider a rectangular domain with opposite vertices {(0,−1), (6, 1)} where the iNSE-ALE
formulation (1) will be simulated over the interval [0, 2] [s] with non-zero initial condition of
the form u(0) := γ(1 −X2

1)X0(6 −X0), γ = 0.001. The domain is deformed using X (X, t) :=(
(1 + 0.9sin(8πt))X0, X1

)
.

Discretization setup for Formulation (3) and (8)-(9) is done choosing a time step τ = 0.01
and space triangulation with elements diameter h ≈ 0.01, implemented through FEniCS [1]
using Python for interface and postprocessing.

To exemplify the theoretical results from previous sections, four schemes are taken into
account. Monolitic (M) Formulation (3) is taken with linearized convective term and implicit
treatment, i.e., (?, ∗, ∗∗) = (n + 1, n, n + 1) where for ?? we consider two choices, denoted
M ?? = n and M ?? = n+1. For both cases the space discretization is carried out with V/Q =
[P2]d/P1 Lagrange finite elements. Similarly, Chorin-Temam (CT) scheme (9)-(8) is taken with
linearized convective term and implicit treatment, i.e. (?, ∗∗, ◦, ◦◦) = (n + 1, n + 1, n, n) with
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?? as before, denoting each scheme by CT ? ? = n and CT ? ? = n+ 1 with space discretization
done through Ṽ/Q̃ = [P1]d/P1 elements. In all cases α = β = 1.

The results are assessed using time-dependent normalized parameters δ̂M := δM/E
?
st, δ̂CT :=

δCT/E
?
st defined as:

δn+1
M := Dn+1 + E?

st +

∫
Ω0

ρJ??

2τ
|un+1 − un|2, δn+1

CT := Dn+1 + E?
st +

∫
Ω0

τJ◦

2ρ
|F−T◦ Grad(pn)|2

Dn+1 :=

∫
Ω0

ρ

2τ

(
Jn+1|un+1|2 − Jn|un|2

)
, E?

st =

∫
Ω0

2µJ?|ε?(un+1)|2

(14)
Figure 1 shows δ̂M, δ̂CT values for each tested scheme. Propositions 4 and 5 are confirmed

since δ̂M = 0 and δ̂CT ≤ 0 if ?? = n. For ?? = n + 1, peaks appearing throughout the
simulation are defined by the sign change of domain velocity, i.e. in the change from expansion
to contraction. Importantly, the spurious numerical energy rate related to discretization of
the GCL condition appear to be positive in expansion, therefore being a potential source of
numerical instabilities.

Figure 1: Summary of the numerical experiment in terms of energy balance. Left: Monolithic
residual error values δ̂M; Right: Chorin-Temam residual error values δ̂CT.

6 Conclusion

Reported first order time discretization schemes for the iNSE-ALE have been reviewed, theoreti-
cally analyzed and numerically assessed. For the monolithic case, two schemes lead to well-posed
energy-stable problems whenever α = β = 1 with ?? = n as studied by [12, 15, 17, 18]. To the
best of the authors knowledge, the unconditionally stable Chorin-Temam scheme derived in this
work has not been reported yet.
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