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We show an equality between the analytic torsion and the absolute value at the zero point of the Ruelle dynamical zeta function on a closed odd dimensional locally symmetric space twisted by an acyclic flat vector bundle obtained by the restriction of a representation of the underlying Lie group. This generalises author's previous result for unitarily flat vector bundles, and the results of Bröcker, Müller, and Wotzke on closed hyperbolic manifolds.

INTRODUCTION

The purpose of this article is to study the relation between the analytic torsion and the value at the zero point of the Ruelle dynamical zeta function associated to a flat vector bundle, which is not necessarily unitary, on a closed odd dimensional locally symmetric space of reductive type.

Let Z be a smooth closed manifold. Let F be a complex flat vector bundle on Z. Let H • (Z, F) be the cohomology of sheaf of locally constant sections of F. We assume H • (Z, F) = 0.

Let g T Z , g F be metrics on T Z and F. The analytic torsion T(F) of Ray-Singer [START_REF] Ray | R-torsion and the Laplacian on Riemannian manifolds[END_REF] is a spectral invariant defined by a weighted product of zeta regularised determinants the Hodge Laplacian associated with g T Z , g F . When dim Z is odd, they showed that T(F) does not depend on the metric data.

Ray and Singer [START_REF] Ray | R-torsion and the Laplacian on Riemannian manifolds[END_REF] conjectured, which was proved later by Cheeger [START_REF] Cheeger | Analytic torsion and the heat equation[END_REF] and Müller [START_REF] Müller | Analytic torsion and R-torsion of Riemannian manifolds[END_REF], that if F is unitarily flat (i.e., the holonomy representation of F is unitary) the analytic torsion coincides with its topological counterpart, the Reidemeister torsion [START_REF] Reidemeister | Homotopieringe und Linsenräume[END_REF][START_REF] Franz | Über die Torsion einer Überdeckung[END_REF][START_REF] De Rham | Complexes à automorphismes et homéomorphie différentiable[END_REF]. Bismut-Zhang [START_REF] Bismut | An extension of a theorem by Cheeger and Müller[END_REF] and Müller [START_REF] Müller | Analytic torsion and R-torsion for unimodular representations[END_REF] simultaneously considered generalisations of this result. Müller [START_REF] Müller | Analytic torsion and R-torsion for unimodular representations[END_REF] extended his result to odd dimensional oriented manifolds where only det F is required to be unitary. Bismut and Zhang [START_REF] Bismut | An extension of a theorem by Cheeger and Müller[END_REF] generalised the original Cheeger-Müller theorem to arbitrary flat vector bundles with arbitrary Hermitian metrics on a manifold with arbitrary dimension orientable or not.

Milnor [START_REF] Milnor | Infinite cyclic coverings[END_REF] initiated the study of the relation between the torsion invariant and a dynamical system. When Z is an orientable hyperbolic manifold, Fried [F86a, F86b] showed an identity between the analytic torsion of an acyclic unitarily flat vector bundle and the value at the zero point of the Ruelle dynamical zeta function of the geodesic flow of Z. He conjectured [F87, p. 66, Conjecture] that similar results should hold true for more general flows. In [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF], following previous contributions by , using Bismut's orbital integral formula [B11], the author affirmed the Fried conjecture for geodesic flows on closed odd dimensional 1 locally symmetric manifolds equipped with an acyclic unitarily flat vector bundle. In [START_REF] Shen | Flat vector bundles and analytic torsion on orbifolds[END_REF], the authors made a further generalisation to closed locally symmetric orbifolds. We refer the reader to [START_REF] Ma | Geometric hypoelliptic Laplacian and orbital integrals [after Bismut[END_REF] for an introduction to the technique used in [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF]. 1 The case of even dimension is trivial [Sh19, Remark 5.12] (c.f. Remark 4.5).

When the flat vector bundle is not unitary, Müller [START_REF] Müller | On Fried's conjecture for compact hyperbolic manifolds[END_REF] and Spilioti [START_REF] Spilioti | Selberg and Ruelle zeta functions for non-unitary twists[END_REF][START_REF] Spilioti | Functional equations of Selberg and Ruelle zeta functions for non-unitary twists[END_REF][START_REF] Spilioti | Twisted ruelle zeta function and complex-valued analytic torsion[END_REF] related the leading coefficients of the Laurent series of the Ruelle dynamical zeta function at the zero point to a weighted product of zeta regularised determinants of the flat Laplacian of on orientable odd dimensional hyperbolic manifolds. When the flat vector bundle is near to an acyclic and unitary one, the authors have shown that the Ruelle dynamical zeta function is regular at the zero point and its value is equal to the complexed valued analytic torsion of . In [Sh20], we generalised the above results to odd dimensional locally symmetric spaces.

In this article, we prove the Fried conjecture on odd dimensional locally symmetric spaces for a class2 of flat vector bundles, which is not necessarily close to a unitary one, and whose holonomy representations are the restrictions of representations of the underlying reductive groups. This generalises the previous results of Bröcker [START_REF] Bröcker | Die Ruellesche Zetafunktion für G-induzierte Anosov-Flüsse[END_REF], Müller [START_REF] Müller | The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds[END_REF], and Wotzke [START_REF] Wotzke | Die Ruellsche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten[END_REF] on orientable odd dimensional hyperbolic manifolds.

We refer the reader to [START_REF] Shen | Morse-Smale flow, Milnor metric, and dynamical zeta function[END_REF][START_REF] Dang | The Fried conjecture in small dimensions[END_REF] for the Fried conjecture for the Morse-Smale flow and the Anosov flow, to [START_REF] Shen | Analytic torsion and dynamical flow: a survey on the Fried conjecture[END_REF] for a survey on the Fried conjecture.

Now, we will describe our results in more detail, and explain the techniques used in their proofs. 0.1. The analytic torsion. Let Z be a smooth closed manifold, and let F be a complex flat vector bundle on Z.

Let g T Z be a Riemannian metric on T Z, and let g F be a Hermitian metric on F. To g T Z and g F , we can associate an L 2 -metric on Ω • (Z, F), the space of differential forms with values in F. Let Z be the Hodge Laplacian acting on Ω • (Z, F). By Hodge theory, we have a canonical isomorphism ker Z H • (Z, F). (0.1)

The analytic torsion T(F) is a positive real number defined by the following weighted product of the zeta regularised determinants (see Section 1)

T(F) = dim Z i=1 det Z | Ω i (Z,F)∩ ( ker Z ) ⊥ (-1) i i/2 . (0.2)
By [START_REF] Ray | R-torsion and the Laplacian on Riemannian manifolds[END_REF] and [BZ92, Theorem 0.1], if dim Z is odd and if H • (Z, F) = 0, then T(F) is independent of g T Z and g F . Therefore, it is a topological invariant.

When Z is a closed orbifold, the analytic torsion is still well defined [START_REF] Ma | Orbifolds and analytic torsions[END_REF][START_REF] Dai | Comparison between two analytic torsions on orbifolds[END_REF]. In [START_REF] Shen | Flat vector bundles and analytic torsion on orbifolds[END_REF]Corollary 4.9], the authors show that if Z as well as all the singular strata have odd dimension, then the analytic torsion of an acyclic orbifold flat vector bundle is still a topological invariant. 0.2. The Ruelle dynamical zeta function. Let us recall the definition of the Ruelle dynamical zeta function associated to a geodesic flow introduced by Fried [F87, Section 5] (see also [START_REF] Shen | Analytic torsion and dynamical flow: a survey on the Fried conjecture[END_REF] Section 2]).

Let (Z, g T Z ) be a connected manifold with nonpositive sectional curvature. Let Γ be the fundamental group of Z, and let [Γ] be the set of the conjugacy classes of Γ. For [γ] ∈ [Γ] , let B [γ] be the set of closed geodesics in the free homotopy class associated to [γ]. It is easy to see that all the elements in B [γ] have the same length [γ] .

For simplicity, assume that all the B [γ] are smooth finite dimensional submanifolds of the loop space of Z. This is the case if (Z, g T Z ) has a negative sectional curvature or if Z is locally symmetric. If γ = 1, the group S 1 acts locally freely on B [γ] by rotation, so that B [γ] /S 1 is an orbifold. Let χ orb (B [γ] /S 1 ) ∈ Q be the orbifold Euler characteristic [START_REF] Satake | The Gauss-Bonnet theorem for V -manifolds[END_REF]. Denote by

m [γ] = ker S 1 → Diff(B [γ] ) ∈ N * (0.3) the multiplicity of a generic element in B [γ] . Let [γ] = ±1
be the Lefschetz index of the Poincaré return map induced by the geodesic flow (see [START_REF] Shen | Analytic torsion and dynamical flow: a survey on the Fried conjecture[END_REF](2.17)] for a precise definition). If Z is locally symmetric, then

[γ] = 1. If r ∈ N, let ρ : Γ → GL r (C) be a representation of Γ. The formal dynamical zeta function is defined for σ ∈ C by R ρ (σ) = exp [γ]∈[Γ + ] [γ] Tr[ρ(γ)] χ orb (B [γ] /S 1 ) m [γ] e -σ [γ] , (0.4) where [Γ + ] = [Γ]-{1}
is the set of the non trivial conjugacy classes of Γ. We will say that the formal dynamical zeta function is well defined if R ρ (σ) is holomorphic for Re (σ) 1 and extends meromorphically to σ ∈ C.

If (Z, g T Z ) has negative sectional curvature, the geodesic flow on the sphere bundle of (Z, g T Z ) is Anosov. In this case, if ρ is a trivial representation, R ρ (σ) has been shown to be well defined by Giulietti-Liverani-Pollicott [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF] and Dyatlov-Zworski [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF]. For general ρ, the proof of the meromorphic extension of R ρ is not particularly difficult. For behaviour of the Ruelle zeta function near σ = 0, we refer the reader to the work of Dyatlov and Zworski [START_REF] Dyatlov | Ruelle zeta function at zero for surfaces[END_REF], Dang, Guillarmou, Rivière, and Shen [START_REF] Dang | The Fried conjecture in small dimensions[END_REF], as well as Borns-Weil and Shen [START_REF] Borns-Weil | Dynamical zeta functions in the nonorientable case[END_REF]. 0.3. Results of Fried, Bröcker, Wotzke, and Müller on hyperbolic manifolds. Assume that Z is an odd dimensional connected orientable closed hyperbolic manifold. Let F be the unitarily flat vector bundle on Z with holonomy ρ : Γ → U(r).

Using the Selberg trace formula, Fried [F86a, Theorem 3] showed that there exist explicit constants C ρ ∈ R * and r ρ ∈ Z such that as σ → 0,

R ρ (σ) = C ρ T(F) 2 σ r ρ + O (σ r ρ +1 ). (0.5) Moreover, if H • (Z, F) = 0, then C ρ = 1, r ρ = 0, (0.6) so that R ρ (0) = T(F) 2 . (0.7)
When ρ is not unitary but a restriction of a representation of the orientation preserving isometric group of Z, similar results (see Theorem 0.1) have been shown by Bröcker [Brö98] and Wotzke [START_REF] Wotzke | Die Ruellsche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten[END_REF], as well as Müller [Mü12, Theorem 1.5]. 0.4. The main result of the article. Let G be a linear connected real reductive group [Kn86, p. 3], and let θ be the Cartan involution. Let K be the maximal compact subgroup of G of the points of G that are fixed by θ. Let k and g be the Lie algebras of K and G, and let g = p ⊕ k be the Cartan decomposition. Let B be a nondegenerate bilinear symmetric form on g which is invariant under G and θ. Assume that B is positive on p and negative on k. Set X = G/K. Then B| p induces a Riemannian metric on X , which has nonpositive sectional curvature.

Let Γ ⊂ G be a discrete torsion free cocompact subgroup of G. Let Z = Γ\X be the associated locally symmetric manifold, which is equipped with the induced Riemannian metric g T Z . Let ρ : Γ → GL(E) be a finite dimensional complex representation of Γ. Let F be the associated flat vector bundle on Z. In [Sh20, Theorem 0.1 i)], we have shown that if dim Z is odd, the Ruelle zeta function R ρ has a meromorphic extension to C.

Suppose now that ρ extends to a representation of G, which is still denoted by ρ. We assume also that E has an admissible metric3 〈, 〉 E , i.e., p acts symmetrically and k acts antisymmetrically on (E, 〈, 〉 E ). By a construction due to Matsushima-Murakami [START_REF] Matsushima | On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds[END_REF], 〈, 〉 E induces canonically a Hermitian metric g F on F (see also Section 4.1). Let T(F) be the analytic torsion of F associated to (g T Z , g F ). The following theorem generalises [Sh18, Theorem 0.1] where ρ is assumed to be unitary, and Bröcker [START_REF] Bröcker | Die Ruellesche Zetafunktion für G-induzierte Anosov-Flüsse[END_REF], Müller [START_REF] Müller | The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds[END_REF], and Wotzke [START_REF] Wotzke | Die Ruellsche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten[END_REF] where Z is hyperbolic. Theorem 0.1. Assume that dim Z is odd and that ρ : G → GL(E) is a finite dimensional complex representation of G with an admissible metric. Let (F, g F ) be the associated Hermitian flat vector bundle. Then there exist constants C ρ ∈ C * and r ρ ∈ Z such that when σ → 0, we have

R ρ (σ) = C ρ T(F) 2 σ r ρ + O (σ r ρ +1 ). (0.8) Moreover, if H • (Z, F) = 0, then C ρ = 1, r ρ = 0, (0.9) so that R ρ (0) = T(F) 2 . (0.10) Set ρ θ = ρ•θ.
Then ρ θ is still a representation of G with an admissible metric. If ρ ρ θ , we will show in Theorem 4.4 that the constant C ρ ∈ R * and we can remove the absolute value in (0.9) and (0.10). For general ρ, by [Sh20, Theorem 0.1 ii) iii)], the argument of C ρ is determined by the argument of a (0.2)-like product of zeta regularised determinants of the flat Laplacian of Cappell and Miller, which is related to the complex valued analytic torsion of Cappell and Miller [START_REF] Cappell | Complex-valued analytic torsion for flat bundles and for holomorphic bundles with (1, 1) connections[END_REF].

When ρ is irreducible and ρ ρ θ , thanks to the vanishing of the cohomology H • (Z, F) [BoW00, Theorem VII.6.7], we have the following corollary. Corollary 0.2. Assume that dim Z is odd and that ρ : G → GL(E) is a finite dimensional complex representation of G with an admissible metric. Let (F, g F ) be the associated Hermitian flat vector bundle. Suppose that ρ is irreducible and ρ ρ θ . Then, R ρ (σ) is holomorphic at σ = 0 so that R ρ (0) = T(F) 2 . (0.11) In Section 4.5, we will show that the unitarily flat vector bundle is contained in the class specified above. Indeed, let ρ 0 : Γ → U(r) be the holonomy representation of a unitarily flat vector bundle (F 0 ,

g F 0 ). If G = G × U(r), K = K × U(r), and if Γ ⊂ Γ × U(r) is the graph of ρ 0 , then we have the identification Z = Γ\G/K. If ρ 0 : G → U(r)
is the projection onto the second component, it is easy to see that ρ 0 has an admissible metric and the associated Hermitian flat vector bundle is just (F 0 , g F 0 ). In this way, we show : Corollary 0.3. Assume that dim Z is odd. If (F 0 , g F 0 ) is a unitarily flat vector bundle, and if (F, g F ) is the Hermitian flat vector bundle as in Theorem 0.1, then the statements of Theorem 0.1 and Corollary 0.2 hold for F 0 ⊗ F. Remark 0.4. The flat vector bundle F 0 ⊗ F in Corollary 0.3 is of particular interest in study of hyperbolic volumes (see e.g. [START_REF] Bénard | Asymptotics of twisted Alexander polynomials and hyperbolic volume[END_REF]).

In Section 7, we will extend all the above results to the case where Γ is not torsion free. Then Z is an orbifold and F is a flat orbifold vector bundle.

Theorem 0.5. The statement of Theorem 0.1 and Corollaries 0.2 and 0.3 hold for orbifolds. 0.5. Proof of Theorem 0.1. We will first show Theorem 0.1 in the case ρ θ ρ, i.e., Theorem 4.4. Using an easy relation R ρ θ (σ) = R ρ (σ) (Proposition 3.4) and applying Theorem 4.4 to ρ⊕ρ θ , we obtain Corollary 0.2. Since ρ has an admissible metric, ρ can be decomposed as a direct sum of irreducible representations which are either ρ θ ρ or ρ θ ρ. In this way, we get Theorem 0.1 in full generality.

Our proof of Theorem 0.1 in the case ρ θ ρ is inspired by [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF] and [START_REF] Müller | The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds[END_REF]. Let us explain main steps. 0.5.1. Moscovici-Stanton's vanishing theorem. Let δ(G) ∈ N be the fundamental rank of G, i.e., the difference between the complex ranks of G and K. Note that δ(G) and dim Z have the same parity.

When F is unitary, by [MoSt91, Corollary 2.2, Remark 3.7], if δ(G) 3, we have

T(F) = 1, R ρ (σ) ≡ 1. (0.12)
In the current situation, similar results still hold (e.g. [START_REF] Bismut | Opérateurs de Toeplitz et torsion analytique asymptotique[END_REF] [BMaZ17, Theorem 8.6, Remark 8.7], [Ma19, Theorem 5.5], [Sh20, Remark 4.2]). Therefore, we can reduce the proof to the case δ(G) = 1. 0.5.2. Selberg zeta functions. Assume now δ(G) = 1 and ρ θ ρ. The proof of Theorem 0.1 in this case is based on the introduction of the Selberg zeta functions. Let us recall its definition and basic properties.

Let t ⊂ k be a Cartan subalgebra of k. Let h ⊂ g be the stabiliser of t in g. By [Kn86, p. 129], h ⊂ g is a θ-invariant fundamental Cartan subalgebra of g. Let η = η + -η -be a virtual representation of M acting on the finite dimensional complex vector spaces E η = E + η -E - η such that i) the Casimir of M acts on η ± by the same scalar; ii) the restriction of η to K M = K ∩ M lifts uniquely to a virtual representation of K.

The Selberg zeta function associated to η is defined formally for σ ∈ C by

Z η (σ) = exp - [γ]∈[Γ + ] γ∼e a k -1 ∈H χ orb B [γ] /S 1 m [γ] Tr E η s [k -1 ] det 1 -Ad(e a k -1 ) | z ⊥ (b) 1/2 e -σ [γ] , (0.14)
where the sum is taken over the non elliptic conjugacy classes [γ] of Γ such that γ can be conjugate by element of G into the Cartan subgroup H.

In [Sh18, Section 6] and [Sh20, Section 3.4], we have shown that the adjoint action of K M on p m,C lifts uniquely to a virtual representation of K. Let η = η + -η - be the unique virtual representation of K such that

η| K M = Λ • (p * m,C ) ⊗η |K M . (0.15)
The Casimir operator of g acts as a generalised Laplacian C g,Z, η ± on the smooth sections over Z of the locally homogenous vector bundle induced by η ± (see (3.6)). By the general theory on elliptic differential operators, the regularised determinant det C g,Z, η ± + σ is holomorphic on σ ∈ C.

In [Sh18, Section 7] and [Sh20, Section 5], we show that Z η (σ) has a meromorphic extension to σ ∈ C. Moreover, up to a multiplication by a non zero entire function, Z η (σ) is just the graded regularised determinant det C g,Z, η + + σ η + σ 2 det C g,Z, η -+ σ η + σ 2 , (0.16) where σ η ∈ R is some constant.

One of main steps in our proof of Theorem 0.1 is to construct a family of virtual M-representations η β satisfying the above assumptions i) ii), parametrised by finite elements β ∈ b * , such that

β∈b * e 〈β,a〉 Tr s η β k -1 det 1 -Ad(e a k -1 ) | z ⊥ (b)
1/2 = Tr ρ e a k -1 , (0.17) and such that the following identity of virtual K-representations holds,

β∈b * η β = m i=1 (-1) i-1 iΛ i p * C ⊗ ρ |K . (0.18)
Using (0.17), we can write R ρ as an alternating product of Z η β . Thanks to (0.16), we get a relation between the Ruelle zeta function and the Casimir operator, which is the Hodge Laplacian of (g T Z , g F ) by (0.18) (c.f. Proposition 4.2). In this way, we get (0.8). 0.5.3. Dirac cohomology. The construction of η β is based on the Dirac cohomology [START_REF] Huang | Dirac operators in representation theory[END_REF]. Recall that in [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF], we have shown that (g, z(b)) is a symmetric pair. Let (u, u(b)) be the associated compact symmetric pair. The Dirac cohomology

H ± D (ρ) of the u-representation ρ with respect to the symmetric pair (u, u(b)) is a (b C ⊕ m C , K M )-modules. We define η ± β to be the (m C , K M )-modules such that H ± D (ρ) β∈b * C β η ± β , (0.19)
where C β is the one dimensional representation of b such that a ∈ b acts as 〈β, a〉 ∈ R. The virtual M-representation of η β is defined by η + β -η - β . Now, the assumption i)4 , (0.17), and (0.18) are easy consequences of properties of the Dirac cohomology. In Section 5.3, we show the assumption ii) as well, so that the Selberg zeta function of η β is well defined.

Let us remark that the Dirac cohomology is more or less equivalent to the ncohomology used in [START_REF] Müller | The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds[END_REF]. However, Dirac cohomology is closer to the spin construction used in [Sh18, Section 6]. 0.5.4. Infinitesimal character and the vanishing of (g, K)-cohomology. The proof of (0.9) is based on a relation between the infinitesimal character and the vanishing of (g, K)-cohomology of a unitary Harish-Chandra (g C , K)-module, which is due to Vogan-Zuckermann [START_REF] Vogan | Unitary representations with nonzero cohomology[END_REF], Vogan [V84], and Salamanca-Riba [START_REF] Salamanca-Riba | On the unitary dual of real reductive Lie groups and the A q (λ) modules: the strongly regular case[END_REF]. The idea of the proof is very similar to the one given in [Sh18, Section 8]. We refer the reader to [Sh18, Section 1H] for an introduction. 0.5.5. Final remark. In the case where G have a noncompact centre, we have n = 0. It is unnecessary to use the Dirac cohomology and the results Vogan, Zuckermann, and Salamanca-Riba. For greater clarity, we single out this case in Section 4.6. 0.6. The organisation of the article. This article is organised as follows. In Section 1, we recall the definition of the Ray-Singer analytic torsion of a flat vector bundle.

In Section 2, we introduce the real reductive group G and the admissible metrics on finite dimension representations of G.

In Section 3, we recall the definition and the proprieties of the zeta functions of Ruelle and Selberg established in [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF]Sh20].

In Section 4, we state our main Theorem 4.4, from which we deduce Theorem 0.1, Corollaries 0.2 and 0.3. Also, we prove Theorem 4.4 when δ(G) = 1 or Z G is non compact.

In Sections 5 and 6, we establish Theorem 4.4 when δ(G) = 1 and Z G is compact. Finally, in Section 7, we extends the previous results to orbifolds and we show Theorem 0.5. 

E = E + ⊕E -is a Z 2 -graded vector space, the algebra End(E) is Z 2 -graded. If τ = ±1 on E ± and if a ∈ End(E), the supertrace Tr s [a] is defined by Tr[τa].
If M is a topological group, we will denote by M 0 the connected component of the identity in M. If V is a real vector space, we will use the notation V C = V ⊗ R C for its complexification. We make the convention that N = {0, 1, 2, . . .}, N * = {1, 2, . . .}, R * + = (0, ∞).

THE ANALYTIC TORSION

Let Z be a closed smooth manifold of dimension m. Let (F, ∇ F ) be a flat complex vector bundle on Z with flat connection ∇ F . Let (Ω • (Z, F), d Z ) be the de Rham complex of smooth sections of Λ

• (T * Z) ⊗ R F on Z. Let H • (Z, F) be the de Rham cohomology.
We define the Euler characteristic number χ(Z, F) and the derived Euler characteristic number χ (Z, F) by

χ(Z, F) = m i=0 (-1) i dim H i (Z, F), χ (Z, F) = m i=1 (-1) i i dim H i (Z, F). (1.1)
If F is trivial, we write χ(Z) and χ (Z).

Let g T Z be a Riemannian metric on Z. Let g F be a Hermitian metric on F. The metrics g T Z , g F induce a scalar product 〈, 〉 Λ

• (T * Z)⊗ R F on Λ • (T * Z) ⊗ R F. Let 〈, 〉 L 2 be an L 2 -product on Ω • (Z, F) defined for s 1 , s 2 ∈ Ω • (Z, F) by 〈s 1 , s 2 〉 L 2 = z∈Z 〈s 1 (z), s 2 (z)〉 Λ • (T * Z)⊗ R F dv Z , (1.2)
where dv Z is the Riemannian volume form of (Z, g T Z ).

Let d Z, * be the formal adjoint of d Z . Set

Z = d Z , d Z, * . (1.3)
Then, Z is a second order self-adjoint elliptic differential operator acting on Ω • (Z, F). By Hodge theory, we have

ker Z = H • (Z, F). (1.4)
Let ker Z ⊥ be the orthogonal vector space to ker Z in Ω • (X , F). Then Z acts as an invertible operator on ker Z ⊥ . Let Z -1 denote the inverse of Z acting on ker Z ⊥ . If 0 i m, for s ∈ C and Re (s) > m 2 , set

θ i (s) = Tr s Z -s |Ω i (Z,F) . (1.5)
By [START_REF] Seeley | Complex powers of an elliptic operator, Singular Integrals[END_REF] and [BeGeVe04, Proposition 9.35], θ i (s) extends to a meromorphic function of s ∈ C, which is holomorphic at s = 0. The regularised determinant is defined by

det * Z |Ω i (Z,F) = exp -θ i (0) . (1.6)
Formally, it is the product of non zero eigenvalues counted with multiplicities.

Definition 1.1. The Ray-Singer analytic torsion [START_REF] Ray | R-torsion and the Laplacian on Riemannian manifolds[END_REF] of F is defined by

T(F) = m i=1 det * Z |Ω i (Z,F) (-1) i i/2 ∈ R * + . (1.7)
By [START_REF] Ray | R-torsion and the Laplacian on Riemannian manifolds[END_REF] and [BZ92, Theorem 0.1], if dim Z is odd and if H • (Z, F) = 0, then T(F) does not depend on the metrics g T Z , g F . It becomes a topological invariant.

For 0 i m, if σ > 0, the operator σ + Z |Ω i (Z,F) does not contain the zero spectrum, we denote its regularised determinant by det σ + Z |Ω i (Z,F) . By [START_REF] Voros | Spectral functions, special functions and the Selberg zeta function[END_REF] and [Sh20, Theorem 1.5], the function det σ + Z |Ω i (Z,F) extends to a holomorphic function of σ ∈ C, whose zeros are located at σ = -λ with order dim ker

Z |Ω i (Z,F) -λ , where λ ∈ Sp Z |Ω i (Z,F) . Set T(σ) = m i=1 det σ + Z |Ω i (Z,F) (-1) i i . (1.8)
Then, T(σ) is meromorphic. By (1.1), (1.7), and (1.8), as σ → 0, we have

T(σ) = T(F) 2 σ χ (Z,F) + O (σ χ (Z,F)+1 ).
(1.9)

REDUCTIVE GROUPS AND FINITE DIMENSIONAL REPRESENTATIONS

The purpose of this section is to recall some basic facts about real reductive groups and their finite dimensional representations.

This section is organised as follows. In Sections 2.1-2.4, we introduce the real reductive group G, its Lie algebra g, the enveloping algebra U (g), the Casimir operator, the Dirac operator, as well as the semisimple elements.

In Sections 2.5 and 2.6, we introduce the fundamental Cartan subalgebra of g and some related constructions. We recall a key lifting proprieties established in [Sh20, Section 3.4]. In Section 2.7, we recall the definition of admissible metrics on finite dimensional representations of G introduced by [START_REF] Matsushima | On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds[END_REF]. We show that if G has a compact centre, then all the finite dimensional representations have admissible metrics.

2.1. Real reductive groups. Let G be a linear connected real reductive group [Kn86, p. 3], and let θ ∈ Aut(G) be the Cartan involution. That means G is a closed connected group of real matrices that is stable under transpose, and θ is the composition of transpose and inverse of matrices. If g is the Lie algebra of G, then θ acts as an automorphism on g.

Let K ⊂ G be the fixed point set of θ in G. Then K is a compact connected subgroup of G, which is a maximal compact subgroup. If k is the Lie algebra of K, then k is the eigenspace of θ associated with the eigenvalue 1. Let p be the eigenspace of θ associated with the eigenvalue -1, so that we have the Cartan decomposition

g = p ⊕ k. (2.1) Set m = dim p, n = dim k. (2.2) By [Kn86, Proposition 1.2], we have the diffeomorphism (Y , k) ∈ p × K → e Y k ∈ G.
(2.3)

Let B be a nondegenerate bilinear real symmetric form on g which is invariant under the adjoint action Ad of G, and also under θ. Then (2.1) is an orthogonal splitting of g with respect to B. We assume B to be positive-definite on p, and negative-definite on k. Then, 〈•, •〉 = -B(•, θ•) defines an Ad(K)-invariant scalar product on g such that the splitting (2.1) is still orthogonal. We denote by

| • | the corresponding norm. Let Z G ⊂ G be the centre of G with Lie algebra z g ⊂ g. By [Kn86, Corollary 1.3],
Z G is a (possibly non connected) reductive group with maximal compact subgroup Z G ∩ K with the Cartan decomposition

z g = z p ⊕ z k .
(2.4)

Since z p commutes with Z G ∩ K, by (2.3), we have an identification of the groups

Z G = exp(z p ) × (Z G ∩ K). (2.5) Let g C = g ⊗ R C
be the complexification of g and let u = -1p ⊕ k be the compact form of g. By C-linearity, the bilinear form B extends to a complex symmetric bilinear form on g C . The restriction B| u to u is real and negative-definite.

Let U (g) and U (g C ) be the enveloping algebras of g and g C . Let Z (g) and Z (g C ) be respectively the centres of U (g) and U (g C ). Clearly,

U (g C ) = U (g) ⊗ R C, Z (g C ) = Z (g) ⊗ R C.
(2.6)

If V is a complex vector space, and if ρ : g → End(V ) is a representation of g, then the map ρ extends to a morphism ρ : U (g C ) → End(V ) of algebras.

If ρ : G → GL(V ) is a finite dimensional complex representation of G, then the induced morphism ρ : U (g C ) → End(V ) of algebras is K-equivalent. In this way, V is a finite dimensional (g C , K)-module, i.e., a U (g C )-module, equipped with a compatible K-action. By [KnV95, Proposition 4.46], it is equivalent to consider finite dimensional representations of G and finite dimensional (g C , K)-modules.

In the sequel, we will not distinguish these two objets.

Remark 2.1. If ρ : G → GL(V ) is a finite dimensional complex representation of G, and if W ⊂ V is a g-invariant subspace, by taking the exponential of the action of g, we see that the group G preserves W. In particular, the set of gsubrepresentations of ρ coincides with the set of G-subrepresentations of ρ.

2.2. The Casimir operator. Let C g ∈ Z (g) be the Casimir element associated to B. If e 1 , • • • , e m is an orthonormal basis of (p, B| p ), and if e m+1 , • • • , e m+n is an orthonormal basis of (k, -B| k ), then

C g = - m i=1 e 2 i + n+m i=m+1 e 2 i . (2.7) If ρ : g → End(V ) is a complex representation of g, we denote by C g,V or C g,ρ ∈
End(V ) the corresponding Casimir operator acting on V , i.e.,

C g,V = C g,ρ = ρ(C g ). (2.8)
Similarly, the Casimir of u (with respect to B) acts on V , so that

C u,V = C g,V .
(2.9) 2.3. The Dirac operator. Let c(p) be the Clifford algebra of (p, B| p ). That is an algebra over R generated by 1 ∈ R, a ∈ p with the commutation relation for a 1 , a 2 ∈ p,

a 1 a 2 + a 2 a 1 = -2B(a 1 , a 2 ).
(2.10) Let S p be the spinor of (p, B| p ). If a ∈ p, the action of a on S p is denoted by c(a). (2.12) Recall that k acts on p by adjoint action. The operator C k,p is defined in (2.8).

Proposition 2.2. The following identity of operators on S p ⊗ V holds,

D S p ⊗V 2 = C g,V + 1 8 Tr C k,p -C k,S p ⊗V . (2.13)
Proof. This is a consequence of [BoW00, Lemma II.6.11] and of Kostant's strange formula [START_REF] Kostant | On Macdonald's η-function formula, the Laplacian and generalized exponents[END_REF] (see also [B11, (2.6.11), (7.5.

4)]).

There is another way proving this result, by imitating the proof of [B11, Theorem 7.2.1] which uses Kostant's cubic Dirac operator [START_REF] Kostant | On Macdonald's η-function formula, the Laplacian and generalized exponents[END_REF][START_REF] Kostant | Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρdecomposition C(g) = End V ρ ⊗ C(P), and the g-module structure of g[END_REF].

In the sequel, we will also consider the Dirac operator associated to the compact symmetric pair (u, k) with respect to the positive bilinear form -B| u . Using the identification a ∈ p → -1a ∈ -1p, we can identify c(p) with the Clifford algebra of the Euclidean space ( -1p, -B). Also, S p can be identified with the spinor S -1p of ( -1p, -B). Then, the Dirac operator D S -1p ⊗V is just -1D S p ⊗V . By (2.9) and (2.13), we have

-D S -1p ⊗V 2 = C u,V + 1 8 Tr C k, -1p -C k,S -1p ⊗V . (2.14) 2.4. Semisimple elements. If γ ∈ G, we denote by Z(γ) ⊂ G the centraliser of γ
in G, and by z(γ) ⊂ g its Lie algebra. If a ∈ g, let Z(a) ⊂ G be the stabiliser of a in G, and let z(a) ⊂ g be its Lie algebra. If a ⊂ g is a subset, we define Z(a) and z(a)

similarly.

Let γ ∈ G be a semisimple element, i.e., there is

g γ ∈ G such that γ = g γ e a k -1 g -1 γ and a ∈ p, k ∈ K, Ad(k)a = a. (2.15)
The norm |a| depends only on the conjugacy class of γ in G.

Write [γ] = |a|. (2.16) A semisimple element γ is called elliptic, if [γ] = 0.
If γ is semisimple, by [Kn02, Proposition 7.25], Z(γ) is a (possibly non connected) reductive group with Cartan involution 5 g γ θ g -1 γ . Let K(γ) ⊂ Z(γ) be the associated maximal compact subgroup of Z(γ).

2.5. The fundamental Cartan subalgebra. Let T ⊂ K be a maximal torus of

K. Let t ⊂ k be the Lie algebra of T. If N K (T) is the normaliser of T in K, let W(T : K) = N K (T)/T be associated Weyl group. Set b = {a ∈ p : [a, t] = 0} , h = b ⊕ t.
(2.17)

By [Kn86, p. 129], h is a Cartan subalgebra of g. Let H = Z(h) be the associ- ated Cartan subgroup of G. By [Kn86, Theorem 5.22],
H is a connected abelian reductive subgroup of G, so that

H = exp(b) × T. (2.18)
We will call h and H respectively the fundamental Cartan subalgebra of g and the fundamental Cartan subgroup of G.

Recall that complex ranks of G and K are defined respectively by the dimensions of Cartan subalgebras of g C and k C .

5 By [BSh19, Theorem 2.3], this is indeed independent of the choice of g γ .

Definition 2.3. The fundamental rank δ(G) of G is defined by the difference of complex ranks of G and K, i.e.,

δ(G) = dim b.
(2.19)

Note that m and δ(G) have the same parity. 

K M = M ∩ K. (2.22) Moreover, we have Z 0 (b) = exp(b) × M, z(b) = b ⊕ m, p(b) = b ⊕ p m , k(b) = k m .
(2.23)

Since h is also a Cartan subalgebra for z(b), we have (2.25) And also

δ(M) = 0. (2.
p = b ⊕ p m ⊕ p ⊥ (b), k = k m ⊕ k ⊥ (b), g = b ⊕ m ⊕ z ⊥ (b).
(2.26)

The Remark 2.4. We can define similar objects associated to the action of -1b ⊂ u on u. Let u m and u(b) be the compact forms of m and z(b). Then,

u(b) = -1b ⊕ u m .
(2.27) Let u ⊥ (b) be the orthogonal space of u(b) in u. Then,

u ⊥ (b) = -1p ⊥ (b) ⊕ k ⊥ (b), u = -1b ⊕ u m ⊕ u ⊥ (b).
(2.28)

Elements of b act on z ⊥ (b) with semisimple real eigenvalues. We fix an element (2.29)

f b ∈ b, called positive, such that ad( f b )| z ⊥ (b) is invertible. The choice of f b is ir- relevant. Let n ⊂ z ⊥ (b) (resp. n ⊂ z ⊥ (b)) be the direct
Clearly, Z 0 (b) acts on n, n and preserves the first decomposition in (2.29).

Proposition 2.5. The following statements hold.

i) The vector spaces n,n ⊂ g are Lie subalgebras of g, which have the same even dimension.

ii) The bilinear form B vanishes on n,n and induces a Z 0 (b)-isomorphism,

n * n.
(2.30)

iii) The actions of M on n,n,n * , n * are equivalent. For 0 j dim n, we have isomorphisms of representations of M,

Λ j (n * ) Λ dim n-j (n * ). (2.31) iv) The projections on p,k map n,n into p ⊥ m , k ⊥ m isomorphically. v) The actions of K M on n,n,p ⊥ m , k ⊥ m are equivalent.
Proof. This is [Sh20, Proposition 3.2, Corollary 3.3] (see also [BSh19, Proposition 3.10]).

Let R(K) be the representation ring of K. We can identify R(K) with the subring of the Ad(K)-invariant smooth functions on K which is generated by the characters of finite dimensional complex representations of K.

Similarly, we can define R(T). The Weyl group W(T : K) = N K (T)/T acts on R(T). By [BrDi85, Proposition VI.2.1], the restriction induces an isomorphism of rings R(K) R(T) W(T:K) . (2.32) Since K M and K have the same maximal torus T, the restriction induces an injective morphism R(K) → R(K M ) of rings. Recall a key result established in [Sh20, Theorem 3.5, Corollary 3.6] (see also [Sh18, Theorem 6.1, Corollary 6.12]).

Theorem 2.6. For i, j ∈ N, the adjoint representations of K M on Λ i (p * m,C ) and Λ j (n * C ) have unique lifts in R(K).

Admissible metrics.

Let ρ : G → GL(V ) be a finite dimensional complex representation of G. Set

ρ θ = ρ • θ. (2.33) Then ρ θ : G → GL(V ) is still a representation of G. Proposition 2.7. If δ(G) = 0, we have an isomorphism of representations of G, ρ ρ θ . (2.34)
Proof. When δ(G) = 0, by [Kn86, Problem XII.10.14], there is k 0 ∈ K, such that Ad(k 0 ) = -1 on p and Ad(k 0 ) = 1 on k. By (2.3), for g ∈ G, we have θ(g) = k 0 gk -1 0 . Therefore, ρ(k 0 ) : V → V is the required isomorphism (2.34).

Definition 2.8. A Hermitian metric

〈, 〉 V on V is called admissible, if for u, v ∈ V , Y 1 ∈ p, Y 2 ∈ k, we have ρ(Y 1 )u, v V = u, ρ(Y 1 )v V , ρ(Y 2 )u, v V = -u, ρ(Y 2 )v V . (2.35)
Assume that V has an admissible metric. If ρ * denotes the anti-dual representation of ρ, the admissible metric induces an isomorphism of G-representations,

ρ θ ρ * . (2.36) If W ⊂ V is a (g C , K)-submodule of V , then the orthogonal space W ⊥ ⊂ V is still a (g C , K)-submodule.
Moreover, by restrictions, W and W ⊥ still have admissible metrics. In this way, we see that any finite dimensional G-representation with an admissible metric is completely reducible, i.e., it can be decomposed as a direct sum of irreducible G-representations.

By [MatMu63, Lemma 3.1], if G is semisimple, any finite dimensional representation of G has an admissible Hermitian metric. When G is reductive and has a compact centre, we have a similar result. G . Let U ss be the compact form of G ss . By Weyl's Theorem [Kn02, Theorem 4.69], the universal cover U ss of U ss is still compact. Since U ss is simply connected, by Weyl's unitary trick, the group U ss acts on V which is compatible with the action of [g, g]. Moreover, the U ss -action commutes with the Z 0 G -action. Thus, the group

U ss × Z 0 G acts on V . Since U ss × Z 0 G is compact, there is a U ss × Z 0
G -invariant Hermitian metric on V , which is the desired admissible Hermitian metric.

Remark 2.10. If G has a noncompact centre, Proposition 2.9 does not hold. For example, when G = R, the representation x ∈ R → 1 x 0 1 ∈ GL 2 (C) is not completely reducible, so it does not have an admissible metric.

THE ZETA FUNCTIONS OF RUELLE AND SELBERG

The purpose of this section is to introduce the zeta functions of Ruelle and of Selberg on locally symmetric spaces.

This section is organised as follows. In Section 3.1, we introduce the symmetric space X = G/K, the K-principal bundle p : G → X , and a Hermitian vector bundle associated to a finite dimensional unitary representation of K.

In Section 3.2, we introduce a discrete cocompact subgroup Γ ⊂ G of G, the corresponding locally symmetric space Z = Γ\X , and a flat vector bundle associated to a finite dimensional representation of Γ.

Finally, in Sections 3.3 and 3.4, we introduce the zeta functions of Ruelle and of Selberg. We recall their properties established in [Sh18, Section 7] and [Sh20, Section 5].

We use the notation in Section 2.

3.1. Symmetric spaces. Set X = G/K. Let p : G → X be the natural projection. Then p : G → X is a K-principal bundle.

The group K acts isometrically on p. The tangent bundle of X is given by

T X = G × K p.
(3.1) By (3.1), the scalar product B| p on p induces a Riemannian metric g T X on X .

Classically, (X , g T X ) has a parallel and nonpositive sectional curvature.

Let τ be an orthogonal (resp. unitary) representation of K acting on a finite dimensional Euclidean (resp. Hermitian) space E τ . Set

E τ = G × K E τ . (3.2)
Then E τ is a Euclidean (resp. Hermitian) vector bundle on X .

By (3.2), we have an identification

C ∞ (X , E τ ) = C ∞ (G, E τ ) K . (3.3)
The group G acts on the left on C ∞ (X , E τ ). Denote by C g,X ,τ the Casimir element of G on C ∞ (X , E τ ). By (2.7), C g,X ,τ is a generalised Laplacian on X in the sense of [BeGeVe04, Definition 2.2], which is self adjoint with respect to the standard L 2 -product (c.f. (1.2)).

Locally symmetric spaces.

Let Γ ⊂ G be a discrete cocompact subgroup of G. By [S60, Lemma 1] (see also [Ma19, Proposition 3.9]), Γ contains only semisimple elements. Let Γ e ⊂ Γ be the subset of elliptic elements, and let Γ + = Γ -Γ e be the subset of nonelliptic elements.

The group Γ acts isometrically on the left on X . Take

Z = Γ\X = Γ\G/K. (3.4)
Then, Z is a compact orbifold with Riemannian metric g T Z . We denote by p : Γ\G → Z and π : X → Z the natural projections, so that the diagram

G p / / Γ\G p X π / / Z (3.5) commutes.
From now on until Section 6, we assume that Γ is torsion free, i.e., Γ e = {id}. Then Z is a connected closed orientable Riemannian locally symmetric manifold with nonpositive sectional curvature. Since X is contractible, π 1 (Z) = Γ and X is the universal cover of Z. In Section 7, we will consider the case where Γ is not torsion free.

The Γ-action on X lifts to all the homogeneous Euclidean or Hermitian vector bundles E τ on X constructed in (3.2). Then E τ descends to a Euclidean or Hermitian vector bundle on Z,

F τ = Γ\E τ = Γ\G × K E τ . (3.6)
If r ∈ N * , and if ρ : Γ → GL r (C) is a representation of Γ, let F be the associated flat vector bundle on Z,

F = Γ\(X × C r ). (3.7)
The group Γ acts on C ∞ (G, E τ ) K , as well as on C r by ρ. We have the identification

C ∞ (Z, F τ ⊗ F) = C ∞ (X , E τ ) ⊗ C r Γ . (3.8)
The Casimir operator C g,X ,τ ⊗ id preserves the above invariant space. Its action on C ∞ (Z, F τ ⊗ F) will be denoted by C g,Z,τ,ρ . If ρ is unitary, C g,Z,τ,ρ is self-adjoint with respect to the L 2 -product on C ∞ (Z, F τ ⊗ F) induced by the Hermitian metric on E τ , the standard Hermitian metric on C r , as well as the Riemannian volume of (Z, g T Z ) (c.f. (1.2)). When ρ is the trivial representation, we denote it by C g,Z,τ . If [γ] ∈ [Γ + ], the geodesic flow induces a locally free action of S 1 on B [γ] , so that B [γ] /S 1 is a closed orbifold. Let χ orb B [γ] /S 1 ∈ Q be the orbifold Euler characteristic number [START_REF] Satake | The Gauss-Bonnet theorem for V -manifolds[END_REF]. We refer the reader to [Sh18, Proposition 5.1] for an explicit formula for χ orb B [γ] /S 1 . In particular, if δ(G) 2, or if δ(G) = 1 and γ can not be conjugate by an element of G into the fundamental Cartan subgroup H, then

χ orb B [γ] /S 1 = 0. (3.12)
The S 1 -action on B [γ] is not necessarily effective. Let

m [γ] = ker S 1 → Diff(B [γ] ) ∈ N * (3.13)
be the generic multiplicity.

Recall that ρ : Γ → GL r (C) is a representation of Γ. By [Sh20, (4.4)], there is

σ 0 > 0 such that [γ]∈[Γ + ] χ orb B [γ] /S 1 m [γ]
Tr ρ(γ) e -σ 0 [γ] < ∞. (3.14) Definition 3.1. For Re (σ) σ 0 , the Ruelle dynamical zeta function is defined by

R ρ (σ) = exp [γ]∈[Γ + ] χ orb B [γ] /S 1 m [γ]
Tr ρ(γ) e -σ [γ] . (3.15) Remark 3.2. By (3.12), if δ(G) 2, the Ruelle zeta function R ρ (σ) is the constant function 1. Moreover, if δ(G) = 1, then the sum on the right-hand side of (3.15) can be reduced to a sum over [γ] ∈ [Γ + ] such that γ can be conjugate into H. 

R ρ * = R ρ , R ρ = R ρ . (3.17)
If ρ is a finite dimensional complex representation of G, the restriction ρ |Γ is a representation of Γ. We write R ρ = R ρ |Γ to ease the notation. Proposition 3.4. If ρ is a finite dimensional complex representation of G with an admissible metric, then the following identity of meromorphic functions on C holds,

R ρ θ = R ρ . (3.18)
Proof. This is a consequence of (2.36) and (3.17).

The Selberg zeta function.

In this subsection, we assume δ(G) = 1 and we use the notation in Section 2.6. Recall that K M is defined in (2.22). We have seen that the morphism R(K) → R(K M ) of rings is injective. Assumption 3.5. Assume that η = η + -η -is a virtual M-representation on the finite dimensional complex vector space E

+ η -E - η such that (1) η |K M = η + |K M -η - |K M ∈ R(K M ) has a unique lift in R(K).
(2) the Casimir C u m of u m acts on η ± by the same scalar C u m ,η ∈ R.

Following [Sh18, Definition 7.4] and [Sh20, Defintion 5.7], let us define the Selberg zeta function associated7 to η. Recall that H = exp(b) × T is the fundamental Cartan subgroup of G. For e a k -1 ∈ H, we write γ ∼ e a k -1 ∈ H if there is g γ ∈ G such that γ = g γ e a k -1 g -1 γ . By [Sh18, (7-62)], there is

σ 1 > 0 such that [γ]∈[Γ + ] γ∼e a k -1 ∈H χ orb B [γ] /S 1 m [γ] e -σ 1 [γ] det 1 -Ad(e a k -1 ) | z ⊥ (b) 1/2 < ∞. (3.19) Definition 3.6. For Re (σ) σ 1 , set Z η (σ) = exp - [γ]∈[Γ + ] γ∼e a k -1 ∈H χ orb B [γ] /S 1 m [γ] Tr E η s [k -1 ] det 1 -Ad(e a k -1 ) | z ⊥ (b) 1/2 e -σ [γ] . (3.20)
Recall that by Corollary 2.6, Λ • (p * m,C ) has a unique lift in R(K).

Definition 3.7. Let η ∈ R(K) be the unique virtual representation of K on E η = E + η -E - η such that the following identity in R(K M ) holds,

E η|K M = Λ • (p * m,C ) ⊗E η|K M ∈ R(K M ). (3.21) Let C g,Z, η be the self adjoint generalised Laplacian acting on C ∞ (Z, F η ) intro- duced below (3.8). For λ ∈ C, set m η (λ) = dim ker C g,Z, η + -λ -dim ker C g,Z, η - -λ . (3.22) Let det gr C g,Z, η + σ = det C g,Z, η + + σ det C g,Z, η -+ σ (3.23)
be a graded determinant of C g,Z, η + σ. As in (1.8), by [START_REF] Voros | Spectral functions, special functions and the Selberg zeta function[END_REF] (see also [Sh20, Theorem 1.5]), the function (3.23) is meromorphic on σ ∈ C. Moreover, its zeros and poles belong to the set -λ : λ ∈ Sp C g,Z, η . If λ ∈ Sp C g,Z, η , the order of the zero at σ = -λ is m η (λ).

Following [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF]] and [Sh20, (5.18), (5.19)], we set Theorem 3.9. The Selberg zeta function Z η (σ) has a meromorphic extension to σ ∈ C such that the following identity of meromorphic functions on C holds, Z η (σ) = det gr C g,Z, η + σ η + σ 2 exp vol(Z)P η (σ) .

(3.27)

The zeros and poles of Z η (σ) belong to the set ±i λ + σ η : λ ∈ Sp C g,Z, η . If λ ∈ Sp C g,Z, η and λ = -σ η , the order of zero at σ = ±i λ + σ η is m η (λ). The order of zero at σ = 0 is 2m η (-σ η ). Also, Z η (σ) = Z η (-σ) exp 2 vol(Z)P η (σ) . (3.28) Proof. This is [Sh20, Theorem 5.10] for the trivial twist (c.f. Footnote 7).

THE FRIED CONJECTURE AND ADMISSIBLE METRICS

In this section, we introduce a class of Hermitian flat vector bundles on locally symmetric spaces associated to representations of G with an admissible metrics. We state the main result (Theorem 4.4) of this article, which confirms the Fried conjecture for this class of Hermitian flat vector bundles.

This section is organised as follows. In Section 4.1, we introduce a Hermitian metric on a flat vector bundle whose holonomy representation is the restriction ρ |Γ of a representation ρ of G with an admissible metric.

In Section 4.2, we state Theorem 4.4. In Sections 4.3-4.5, we deduce Theorem 0.1, Corollaries 0.2 and 0.3 from Theorem 4.4.

Finally, in Section 4.6, we show Theorem 4.4 when δ(G) = 1 and Z G is compact.

4.1. Hermitian metrics on flat vector bundles. Let ρ : G → GL(E) be a finite dimensional complex representation of G with admissible Hermitian metric 〈, 〉 E . Let F be the flat vector bundle associated to ρ |Γ defined in (3.7). Let us construct a Hermitian metric g F on F following [Mü12, Section 2.5] and [BMaZ17, Section 8.1]. By the second identity of (2.35), the restriction ρ |K of ρ to K is unitary. Let

E ρ |K = G × K E (4.1)
be the Hermitian vector bundle on X defined in (3.2). We have a canonical Gequivariant identification

[g, v] ∈ G × K E → (p g, gv) ∈ X × E. (4.2)
In this way, the G-invariant Hermitian metric on E ρ |K induces a G-invariant Hermitian metric g π * F on the trivial vector bundle π * F = X × E. It descends to a Hermitian metric g F on F = Γ\(X × E). Definition 4.1. We will call such (F, g F ) an admissible Hermitian flat vector bundle. The g F will be called an admissible Hermitian metric on F. By (4.2), as in (3.3) and (3.8), we have the identifications

Ω • X , π * F = C ∞ G, Λ • (p * ) ⊗ R E K , Ω • (Z, F) = C ∞ Γ\G, Λ • (p * ) ⊗ R E K . (4.3)
Let X be the Hodge Laplacian on X acting on Ω • (X , π * F) with respect to the metrics (g T X , g π * F ). Let Z be the Hodge Laplacian on Z acting on Ω • (Z, F) with respect to the metrics (g T Z , g F ). Recall that C u,ρ ∈ End(E) is the Casimir operator of u acting on E (see (2.9)). The following proposition is classical (see [START_REF] Bismut | Asymptotic torsion and Toeplitz operators[END_REF]Proposition 8.4]). Proposition 4.2. Under the identifications (4.3), we have

X = C g,X ,Λ • (p * )⊗ R E |K -C u,ρ , Z = C g,Z,Λ • (p * )⊗ R E |K -C u,ρ . (4.4)
Let T(F) be the analytic torsion of F associated to (g T Z , g F ). Let N Λ • (T * Z) be the number operator, i.e. N Λ • (T * Z) acts by multiplication by k on Ω k (Z, F). Theorem 4.3. Assume δ(G) = 1. For any t > 0, we have

Tr s N Λ • (T * Z) - m 2 exp -t Z = 0. (4.5)
In particular,

T(F) = 1. (4.6)
Proof. This is [START_REF] Bismut | Opérateurs de Toeplitz et torsion analytique asymptotique[END_REF] and [BMaZ17, Theorem 8.6, Remark 8.7] (see also [START_REF] Ma | Geometric hypoelliptic Laplacian and orbital integrals [after Bismut[END_REF]Theorem 5.5]), which generalises a vanishing theorem originally due to [MoSt91, Corollary 2.2] (see also [B11, Theorem 7.9.3]) where F is assumed to be unitarily flat.

Recall that ρ θ = ρ • θ. Clearly, 〈, 〉 E is still an admissible metric for ρ θ . Let (F θ , g F θ ) be the associated admissible Hermitian flat vector bundle on Z. Since ρ |K = ρ θ |K , by (4.3), the Hodge Laplacians of (F, g F ) and (F θ , g F θ ) act on the same space. By (4.4) and by C u,ρ = C u,ρ θ , these two Laplacians coincide. In particular,

H • (Z, F) H • Z, F θ , T(F) = T F θ . (4.7)
4.2. The statement of the main result. The main result of this article is the following.

Theorem 4.4. Assume that dim Z is odd and that ρ : G → GL(E) is a finite dimensional complex representation of G with an admissible metric. Let (F, g F ) be the associated admissible Hermitian flat vector bundle. If ρ ρ θ , then there exist explicit constants C ρ ∈ R * and r ρ ∈ Z (see (4.36) and Remark 5.11) such that when σ → 0, we have 

R ρ (σ) = C ρ T(F) 2 σ r ρ + O (σ r ρ +1 ). (4.8) Moreover, if H • (Z, F) = 0, then C ρ = 1, r ρ = 0, (4.9) so that R ρ (0) = T(F) 2 . (4.10) Proof. Since dim Z is odd, δ(G) is odd. If δ(G) 3,
χ(Z, F) = dim E • χ(Z) = 0. (4.11)
In particular, there are no acyclic flat vector bundles. Theorem 4.6. Assume that dim Z is odd and that ρ : G → GL(E) is a finite dimensional complex representation of G with an admissible metric. Let (F, g F ) be the associated admissible Hermitian flat vector bundle. If ρ is irreducible and ρ ρ θ , then H • (Z, F) = 0, (4.12) and R ρ is regular at σ = 0, so that R ρ (0) = T(F) 2 . (4.13)

Proof. The vanishing of the cohomology H • (Z, F) is a consequence of [BoW00, Theorem VII.6.7] (see (6.20) for a proof). Take 

R ρ = R ρ R ρ . (4.15)
Note that ρ has an admissible metric. Let F be the admissible Hermitian flat vector bundle associated to ρ . By (4.7) and (4.12), we have

H • Z, F = H • (Z, F) ⊕ H • Z, F θ = 0, T(F ) = T(F)T F θ = T(F) 2 . (4.16)
Since ρ = ρ ⊕ ρ θ is invariant by θ, we can apply Theorem 4.4 to ρ . Therefore, R ρ is regular at σ = 0 and R ρ (0) = T(F ) 2 . (4.17) By (4.15)-(4.17), we get (4.13).

4.4. Proof of Theorem 0.1. Since any G-representation with an admissible metric can be decomposed as a direct sum of irreducible G-representations, which still have admissible metrics, by Theorems 4.4 and 4.6, we get Theorem 0.1. 4.5. Proof of Corollary 0.3. Let ρ 0 : Γ → U(r) be a unitary representation of Γ. Let F 0 be the associated flat vector bundle . Since ρ 0 is unitary, F 0 admits a flat metric g F 0 . We will show that (F 0 , g F 0 ) is indeed an admissible Hermitian flat vector bundle associated to a larger reductive group.

Let

G = G × U(r), K = K × U(r). (4.18)
Then, G is a connected real reductive group with maximal compact subgroup K.

We have an identification

G/K X . (4.19)
Let Γ be the graph of ρ 0 , i.e.,

Γ = (γ, ρ 0 (γ)) ∈ G : γ ∈ Γ . (4.20)
Then Γ is a discrete torsion free and cocompact subgroup of G, so that Γ\G/K Z. In particular, (F 0 , g F 0 ) is an admissible Hermitian flat vector bundle associated to the representation ρ 0 of G.

More generally, the admissible Hermitian flat vector bundle (F, g F ) associated to the G-representation ρ is also an admissible Hermitian flat vector bundle associated to the G-representation ρ = ρ 1. Therefore, F 0 ⊗ F with the induced Hermitian metric is an admissible Hermitian flat vector bundle associated to ρ 0 ⊗ ρ. By these considerations, Corollary 0.3 follows from Theorem 0.1 and Corollary 0.2. 4.6. Proof of Theorem 4.4 when δ(G) = 1 and Z G is noncompact. Suppose now δ(G) = 1 and Z G is non compact. Let ρ be a representation of G with an admissible metric such that ρ ρ θ . We can and we will assume that the Casimir C u acts on ρ as a scalar C u,ρ ∈ R. 

Z η β -σ 2 + |β| 2 Z η β σ 2 + |β| 2 = det gr C g,Z, η β -C u,ρ + σ 2 2 (4.30)
is a meromorphic function on C. We have a generalisation of [Sh18, Theorem 5.6]. Recall that T(σ) is defined in (1.8).

Theorem 4.9. The following identity of meromorphic functions on C holds,

R ρ (σ) = T σ 2 exp -vol(Z)P η 0 (σ) β∈b * + Z η β -σ 2 + |β| 2 Z η β σ 2 + |β| 2 Z η β σ + |β| Z η β σ -|β| . (4.31)
Proof. By (3.25), we have p = p m ⊕ b. By (3.21), we have an identity in R(K),

η β = m i=1 (-1) i-1 iΛ i (p * C ) ⊗ η β|K . (4.32)
By (4.4), (4.27), and (4.32), we have an identity of meromorphic functions,

T(σ) = det gr C g,Z, η 0 -C u,ρ + σ -1 β∈b * + det gr C g,Z, η β -C u,ρ + σ -2
. (4.33) By (3.26), (3.27), (4.25), (4.30), (4.33), we have

(4.34) T σ 2 = Z η 0 (σ) -1 exp vol(Z)P η 0 (σ) × β∈b * + Z η β -σ 2 + |β| 2 Z η β σ 2 + |β| 2 -1
.

By (4.28) and (4.34), we get (4.31).

Set

r η β = dim ker C g,Z, η + β -C u,ρ -dim ker C g,Z, η - β -C u,ρ . (4.35)
Following [Sh18, (7-75)], put

C ρ = β∈b * + -4|β| 2 -r η β , r ρ = -2 β∈{0}∪b * + r η β . (4.36)
Proceeding as [Sh18, (7-76)-(7-78)], using Theorem 4.9 instead of [Sh18, Theorem 7.8], we get (4.8).

Let F β be the admissible Hermitian flat subbundle of F associated to the Grepresentation C β η β . By (1.1), (4.4), (4.32), and (4.35), we have

r η β = -χ (Z, F β ). (4.37) If H • (Z, F) = 0, then for all β ∈ b * , H • (Z, F β ) = 0,
so r η β = 0. By (4.36), we get (4.9).

The proof of Theorem 4.4 in the case when δ(G) = 1 and Z G is non compact is completed.

THE PROOF OF (4.8) WHEN δ(G) = 1 AND Z G IS COMPACT

The purpose of this section is to show (4.8) when δ(G) = 1 and Z G is compact by generalising the arguments given in Section 4.6. One of the difficulties is to construct virtual representations η β of M satisfying Assumption 3.5 such that an analogue of (4.28) holds. In the case of hyperbolic manifolds, such representations are constructed using n-cohomology [START_REF] Müller | The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds[END_REF]. Here, we construct η β via Dirac cohomology. These two methods are equivalent. We adopt the latter since it is closer to certain constructions given in [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF]Section 6].

This section is organised as follows. In Section 5.1, we recall some facts on the structure of real reductive groups with δ(G) = 1 established in [Sh18, Section 6].

In Section 5.2, we decompose ρ according to the action of b. We show certain representations of K M obtained in this way can be lifted in R(K).

In Section 5.3, we introduce virtual representations η β of M satisfying Assumption 3.5.

Finally, in Section 5.4, we establish analogues of Proposition 4.8 and Theorem 4.9, and we show (4.8).

In this section, we assume that δ(G) = 1 and Z G is compact. Suppose also that the G-representation (ρ, E) has an admissible metric and is such that ρ ρ θ . As in Section 4.6, we can and we will assume that Casimir operator C u acts as a scalar C u,ρ ∈ R. (5.1) Proposition 5.1. Elements of b act on n and n as a scalar, i.e., there is

α 0 ∈ b * such that for a ∈ b, f ∈ n, f ∈ n, we have [a, f ] = 〈α 0 , a〉 f , a, f = -〈α 0 , a〉 f . (5.2) In particular, n,n ⊂ z(b), [n, n] = n,n = 0, (5.3) 
and

[z(b), z(b)] ⊂ z(b), z(b),z ⊥ (b) ⊂ z ⊥ (b), z ⊥ (b), z ⊥ (b) ⊂ z(b), (5.4) [u(b), u(b)] ⊂ u(b), u(b),u ⊥ (b) ⊂ u ⊥ (b), u ⊥ (b), u ⊥ (b) ⊂ u(b).
Proof. This is [Sh18, Propositions 6.2, 6.3, and (6-29)].

Let a 0 ∈ b be such that In [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF]], we have shown that J = ad -1a 0 ∈ End(u ⊥ (b)) defines a U(b)-invariant complex structure on u ⊥ (b). Moreover, the associated holomorphic and anti-holomorphic subspaces are n C and n C , so that we have a U(b)-

equivariant splitting u ⊥ (b) ⊗ R C = n C ⊕ n C .
(5.6) Let S u ⊥ (b) be the spinor of (u ⊥ (b), -B| u ⊥ (b) ). Classically ( [START_REF] Hitchin | Harmonic spinors[END_REF], see also [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF] and (6-34)]), we have an isomorphism of U(b)-representations,

S u ⊥ (b) ± Λ even/odd n * C ⊗ det (n C ) -1/2 . (5.7)
In the sequel, there are representations which do not always lift to U(b). Therefore, it is more convenient to consider

S u ⊥ (b) as a (b C ⊕ m C , K M )-module.
For 0 j 2 , let η j be the (m C , K M )-module Λ j (n * C ). By (2.31), we have an isomorphism of (m C , K M )-modules,

η -j η + j . (5.8) Proposition 5.2. We have an isomorphism of (b C ⊕ m C , K M )-modules, S u ⊥ (b) j=- C jα 0 η -j .
(5.9) For e a k -1 ∈ H, we have

Tr S u ⊥ (b) s e a k -1 = det 1 -Ad(e a k -1 ) | z ⊥ (b)
1/2 . (5.10) Proof. By (5.2), (5.7), and (5.8), we get (5.9). By (5.9) and [Sh18, Proposition 6.5], we get (5.10). Let B * be the bilinear form on g * induced by B. Proposition 5.3. We have

1 8 Tr C u(b),u ⊥ (b) = -2 B * (α 0 , α 0 ) . (5.11)
Proof. This is [Sh18, Proposition 6.13] with j = 0. A direct proof of this result can be obtained by applying Kostant's stranger formula (see also [B11, (2.6.11), (7.5.4)]), which is left to reader.

A splitting of ρ according to the

b-action. Recall that Z 0 (b) = exp(b)× M.
Since ρ has an admissible metric and since ρ ρ θ , as in (4.23) and (4.27), we can write

ρ | exp(b)×M = β∈b * C β ρ β = 1 ρ 0 ⊕ β∈b * + C β ⊕ C -β ρ β . (5.12)
where ρ β are representations of M such that ρ -β ρ β .

Recall that the restriction induces an injective morphism R(K) → R(K M ) of rings.

Theorem 5.4. For all β ∈ b * , the restriction ρ β|K M has a unique lift in R(K).

Proof. By (2.32), it is enough to show that the character of ρ β|T is invariant under the Weyl group W(T : K).

For e a k -1 ∈ H, by in (5.12), as (4.29), we have

Tr ρ e a k -1 = Tr ρ 0 k -1 + β∈b * + e |β||a| + e -|β||a| Tr ρ β k -1 . (5.13) Let w ∈ N K (T). Since ρ is a G representation, for e a k -1 ∈ H, we have
Tr ρ e a k -1 = Tr ρ we a k -1 w -1 = Tr ρ e Ad(w)a wk -1 w -1 .

(5.14) By (2.17), Ad(w) preserves t and b (see [Sh20, Proposition 3.4]). Since K preserves B| p , and since dim b = 1, we see that Ad(w)a = a or -a. By (5.13), we get (5.15) Tr ρ e Ad(w)a wk -1 w -1 = Tr ρ 0 wk -1 w -1 i.e., the character of ρ β|T is invariant under the Weyl group W(T : K).

The representation η β .

In [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF], we have shown that η j satisfies Assumption 3.5 and we consider the Selberg zeta function associated to η j . A naive way to generalise the arguments in Section 4.6 is to consider the Selberg zeta function associated to η j ⊗ρ β . However, η j ⊗ρ β satisfies Assumption 3.5 (1), while Assumption 3.5 (2) fails in general. We need consider all the j together to produce a virtual representation η β .

Recall that ρ : G → GL(E) is a representation of G, and that S u ii) The virtual (m C , K M )-modules η β satisfy Assumption 3.5, so that the Casimir of u m acts on η ± β by the same scalar

C u m ,η β = |β| 2 + C u,ρ + 1 8 Tr u ⊥ (b) C u(b),u ⊥ (b) ∈ R. (5.22)
Proof. By (5.17)-(5.19), on C β η ± β , we have

C u,ρ + 1 8 Tr C u(b),u ⊥ (b) -C u(b),S u ⊥ (b) ⊗E = 0. (5.23) On C β η ± β , we have C u(b),S u ⊥ (b) ⊗E = -|β| 2 + C u m ,η ± β .
(5.24) By (5.23) and (5.24), we see that C u m ,η ± β coincide and are given by (5.22). By (5.8), (5.9), and (5.12), we see that S u ⊥ (b) ± ⊗ E admits a decomposition like (5.12). By (5.17 Tr ρ e a k -1 . (5.28) By Theorems 2.6, 5.4, (5.9), (5.12), the right-hand side of (5.28) is a sum of products of e 〈β,a〉 with elements in R(K) R(T) W(T:K) . Thus, η β has a lift in R(K).

The following two propositions are analogues of [Sh18, Propositions 6.5, 6.10].

Proposition 5.7. We have an isomorphism of virtual (b C ⊕ m C , K M )-modules,

S u ⊥ (b) + -S u ⊥ (b) - ⊗ ρ | exp(b)×M = β∈b * C β η β = 1 η 0 ⊕ β∈b * + C β ⊕ C -β η β . (5.29)
For e a k -1 ∈ H, we have Proof. This is a consequence of (5.10), (5.21), and (5.28).

Proposition 5.8. The following identity in R(K) holds,

β∈b * η β = m i=1 (-1) i-1 iΛ i p * C ⊗ ρ |K . (5.31)
Proof. By (5.7) and (5.29), we have an identity in R(K M ),

β∈b * η β|K M = Λ • n * C |K M ⊗ ρ |K M .
(5.32) By (2.26), (3.21), (5.32) and Proposition 2.5 v), we get

β∈b * η β|K M = β∈b * Λ • p * m,C ⊗η β = m i=1 (-1) i-1 iΛ i p * C |K M ⊗ ρ |K M .
(5.33) Since the restriction R(K) → R(K M ) is injective, from (5.33), we get (5.31). 5.4. The Selberg zeta function Z η β . By Proposition 5.6 ii), η β satisfies Assumption 3.5. Let Z η β be the associated Selberg zeta function. We have an analogue of [Sh18, Theorem 7.7] and of Proposition 4.8.

Proposition 5.9. The following identity of meromorphic function on C holds,

R ρ (σ) = Z η 0 (σ) -1 β∈b * + Z η β σ + |β| Z η β σ -|β| -1 . (5.34)
Proof. This is a consequence of (3.15), (3.20), and (5.30).

As in (4.30), by (3.24), (3.27), and (5.22),

Z η β -σ 2 + |β| 2 Z η β σ 2 + |β| 2 = det gr C g,Z, η β -C u,ρ + σ 2 2 . (5.35)
is a meromorphic function on C. The following proposition is an analogue of [Sh18, Theorem 7.8] and of Theorem 4.9.

Theorem 5.10. The following identity of meromorphic functions on C holds, R ρ (σ) = T σ 2 expvol(Z)P η 0 (σ)

β∈b * + Z η β -σ 2 + |β| 2 Z η β σ 2 + |β| 2 Z η β σ + |β| Z η β σ -|β| . (5.36)
Proof. By (1.8), (4.4), (5.21), and (5.31), the statement of (4.33) still holds in the current situation. The rest part of the proof is exactly the same as in the proof of Theorem 4.9.

Remark 5.11. Define r η β , C ρ , and r ρ by the same formula as in (4.35) and (4.36). Proceeding as [Sh18, (7-76)-(7-78)], using Theorem 5.10 instead of [Sh18, Theorem 7.8], we get (4.8) when δ(G) = 1 and Z G is compact.

A COHOMOLOGICAL FORMULA FOR r η β

The purpose of this section is to show (4.9) when δ(G) = 1 and Z G is compact. Its proof relies on some deep results from the classification of unitary representations of real reductive groups.

This section is organised as follows. In Section 6.1, we recall the definition of the infinitesimal characters of a U (g C )-modules, the Harish-Chandra (g C , K)modules, and a relation between the infinitesimal character and the vanishing of (g, K)-cohomology of a unitary Harish-Chandra (g C , K)-module, which is due to Vogan-Zuckermann [START_REF] Vogan | Unitary representations with nonzero cohomology[END_REF], Vogan [V84], and Salamanca-Riba [START_REF] Salamanca-Riba | On the unitary dual of real reductive Lie groups and the A q (λ) modules: the strongly regular case[END_REF]. The latter is our essential algebraic input in the proof of (4.9). In Section 6.2, we obtain a formula relating H • (Z, F) and the (g, K)-cohomology of certain Harish-Chandra (g C , K)-modules.

Finally, in Section 6.3, we deduce a similar formula for r η β and we prove (4.9). We use the notation in Sections 2 and 3. In Sections 6.1 and 6.2, we assume neither δ(G) = 1 nor Z G is compact. 6.1. Some results from representation theory. We recall some basic facts on the representation theory of real reductive groups.

6.1.1. Infinitesimal characters. A morphism of algebras χ : Z (g C ) → C will be called a character of Z (g C ). Clearly, for a ∈ C, we have χ(a) = a. (6.1) By (2.6), Z (g C ) is equipped with a complex conjugation. Moreover, the Cartan involution θ extends to complex automorphism on Z (g C ). Also, the antiautomorphism z → z tr of U (g C ) [Kn02, Proposition 3.7], induced by a ∈ g → -a ∈ g, descends to a complex automorphisms of Z (g C ). For z ∈ Z (g C ), set

χ(z) = χ (z), χ θ (z) = χ(θz), χ tr (z) = χ z tr . (6.2)
Then, χ, χ θ , and χ tr are characters of Z (g C ).

Definition 6.1. A complex representation of g C is said to have infinitesimal character χ, if z ∈ Z (g C ) acts as a scalar χ(z) ∈ C.

A complex representation of g C is said to have generalised infinitesimal character χ, if for there is i 1 such that for all z ∈ Z (g C ), (zχ(z)) i acts like 0.

If W is a complex representation of g with infinitesimal character χ W , then W, W θ (defined in an obvious way as (2.33)), and W * have infinitesimal characters χ W , χ W θ , and χ W * , so that

χ W = χ W , χ W θ = χ θ W , χ W * = χ tr W . (6.3)
Therefore, if W is a unitary representation of g, we have

χ tr W = χ W . (6.4)
If W is a representation of g which is equipped with an admissible Hermitian metric, then W * W θ , so that

χ tr W = χ θ W . (6.5)
Let us recall the definition of the Harsh-Chandra parameter for a character of

Z (g C ). Let h C ⊂ g C be a Cartan subalgebra of g C . Let S(h C ) be the symmetric algebra of h C . If W(h C : g C ) denotes the algebraic Weyl group, let S(h C ) W(h C :g C ) ⊂ S(h C ) be the W(h C : g C )-invariant subalgebra of S(h C ). Let φ HC : Z (g C ) S(h C ) W(h C :g C ) (6.6) be the Harish-Chandra isomorphism [Kn02, Section V.5]. For Λ ∈ h * C , we can associate to it a character χ Λ of Z (g C ) as follows: for z ∈ Z (g C ), χ Λ (z) = 〈φ HC (z), Λ〉. (6.7)
By [Kn02, Theorem 5.62], every character of Z (g C ) is of the form χ Λ , for some Λ ∈ h * C . Also, Λ is uniquely determined up to an action of W(h C : g C ). Such an element Λ ∈ h * C is called the Harish-Chandra parameter of the character. 6.1.2. Harish-Chandra (g C , K)-module and its (g, K)-cohomology. Definition 6.2. A complex U (g C )-module V , equipped with an action of K, is called a Harish-Chandra (g C , K)-module, if

(1) the space V is a finitely generated U (g C )-module;

(2) every v ∈ V is K-finite, i.e., {k • v} k∈K spans a finite dimensional vector space;

(3) the actions of g C and K are compatible;

(4) each irreducible K-module occurs only for a finite number of times in V .

Let G u be the unitary dual of G, that is the set of equivalence classes of complex irreducible unitary representations π of G on Hilbert spaces V π . For (π, V π ) ∈ G u , let V π,K be the space of K-finite vectors. By [Kn86, Theorem 8.1, Proposition 8.5],

g C acts on V π,K such that V π,K is a Harish-Chandra (g C , K)-module. If V is a Harish-Chandra (g C , K)-module, let H • (g, K; V ) be the (g, K)-cohomology of V [BoW00, Section I.1.2]. Theorem 6.3. Let V be a Harish-Chandra (g C , K)-module with generalised infin- itesimal character χ. Let W be a finite dimensional (g C , K)-module with infinitesi- mal character χ W . If χ = χ tr W , then H • (g, K; V ⊗ W) = 0. (6.8)
Proof. If V has an infinitesimal character, the theorem is due to [BoW00, Theorem I.5.3(ii)]. If V has a generalised infinitesimal character, a proof can be found in [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF]Theorem 8.8].

The converse of (6.8) is not true in general. But it still holds if V is unitary. Theorem 6.4. Let W be a finite dimensional (g C , K)-module with infinitesimal character

χ W . If (π, V π ) ∈ G u , then χ π = χ tr W ⇐⇒ H • (g, K; V π,K ⊗ W) = 0. (6.9)
Proof. The direction =⇒ of (6.9) is (6.8). The direction ⇐= of (6.9) is a consequence of Vogan-Zuckerman [START_REF] Vogan | Unitary representations with nonzero cohomology[END_REF], Vogan [V84], and Salamanca-Riba [START_REF] Salamanca-Riba | On the unitary dual of real reductive Lie groups and the A q (λ) modules: the strongly regular case[END_REF]. Indeed, if χ π = χ tr W , then the Harish-Chandra parameter of χ π is stronger regular in the sense of [START_REF] Salamanca-Riba | On the unitary dual of real reductive Lie groups and the A q (λ) modules: the strongly regular case[END_REF]p. 525]. Such representation π is classified in [START_REF] Salamanca-Riba | On the unitary dual of real reductive Lie groups and the A q (λ) modules: the strongly regular case[END_REF], which has non vanishing (g, K)-cohomology by [START_REF] Vogan | Unitary representations with nonzero cohomology[END_REF][START_REF] Vogan | Unitarizability of certain series of representations[END_REF]. 6.1.3. Root system and n-homology. We use the notation in Section 2.5. Let h = b ⊕ t be the fundamental Cartan subalgebra of g. Let R ⊂ b * ⊕ -1t * be a root system of (h, g). By [Kn02, Proposition 11.16] (see also [BSh19, Proposition 3.7]), there are no real roots in R. Let R im and R c be the systems of imaginary roots and complex roots, so that

R = R im R c . (6.10)
Then, R im is a root system of (h, z(b)). Also, R im | t is a root system of (t, m).

We fix a positive root system R + ⊂ R. Set

R im + = R im ∩ R + , R c + = R c ∩ R + . (6.11)
As explained in [BSh19, Section 3.5], we can choose R + such that R c + is stable under complex conjugation. Set for some w ∈ W(h C : g C ).

u(b) = 0, u m , u |t = u m . (6.14) If V is a Harish-Chandra (g C , K)-module, denote by H • (n, V ) its n-homology. By [HeSc83, Proposition 2.24], H • (n, V ) is a Harish-Chandra (m C ⊕ b C , K M )-module.
6.2. The cohomology of H • (Z, F). We use the notation in Section 4.1. Recall that Γ ⊂ G is a discrete cocompact torsion free subgroup of G and that ρ : G → GL(E) is a representation of G with an admissible metric. Let (F, g F ) be the associated Hermitian flat vector bundle.

By [START_REF] Gel | Representation theory and automorphic functions[END_REF]p. 23, Theorem], we can decompose L 2 (Γ\G) into a direct Hilbert sum of countable irreducible unitary representations of G,

L 2 (Γ\G) = Hil π∈ G u n(π)V π , (6.16) with n(π) < ∞.
For any unitary representation (τ, E τ ) of K, since C g,Z,τ is elliptic and selfadjoint and since Z is compact, we have a finite sum ker

C g,Z,τ -λ = π∈ G u ,χ π (C g )=λ n(π) V π,K ⊗ E τ K . (6.17)
Let X (ρ * ) be set of the infinitesimal characters of all irreducible subrepresentations of ρ * . Note that by Remark 2.1, the sets of all irreducible subrepresentations of ρ * of the group G and of the Lie algebra g coincide. Theorem 6.5. We have

H • (Z, F) = π∈ G u ,χ π ∈X (ρ * ) n(π)H • g, K; V π,K ⊗ E . (6.18) If H • (Z, F) = 0, then for any π ∈ G u such that χ π ∈ X (ρ * ), we have n(π) = 0. (6.19) If ρ is irreducible such that ρ θ = ρ, then H • (Z, F) = 0. (6.20)
Proof. Since the G-representation with an admissible metric is completely reducible, we can assume that ρ is irreducible with the infinitesimal character χ ρ .

By (6.3), we have χ tr ρ (C g ) = χ ρ (C g ) = C g,ρ . By (1.4), (4.4) and (6.17 ) ⊗ E K = H • (g, K; V π,K ⊗ E). (6.22) By (6.8), (6.21), and (6.22), we get (6.18). By (6.9) and (6.18), we get (6.19).

To show (6.20), it is enough to show that if ρ θ = ρ, then for all π ∈ G u , we have χ π = χ tr ρ . (6.23) Otherwise there is π ∈ G π such that χ π = χ tr ρ . Using π * π and ρ * ρ θ , by (6.4) and (6.5), we have χ ρ = χ tr π = χ π = χ tr ρ = χ θ ρ . (6.24) Since ρ and ρ θ are irreducible and have finite dimensions, Equation (6.24) implies ρ ρ θ , which is a contradiction with our assumption. Remark 6.6. Equations (6.18) and (6.20) are [BoW00, Theorems VII.6.1 and VII.6.7]. Equation (6.18) is originally due to Matsushima [START_REF] Matsushima | A formula for the Betti numbers of compact locally symmetric Riemannian manifolds[END_REF] where ρ is supposed to be trivial. 6.3. A formula for r η β . Assume now that δ(G) = 1 and Z G is compact, and that ρ : G → GL(E) is a G-representation with an admissible metric such that ρ ρ θ and that C u,ρ ∈ R is a scalar.

By [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the Fried conjecture[END_REF]Corollary 8.15], we have (6.25) r η β = 1 χ(K/K M ) π∈ G u ,χ π (C g )=C u,ρ 0 i dim p m 0 j 2 (-1) i+ j n(π) dim H i m, K M ; H j (n, V π,K ) ⊗ E + η β dim H i m, K M ; H j (n, V π,K ) ⊗ E - By (6.32)-(6.34), we get (6.28). Corollary 6.8. For β ∈ b * , we have

(6.35) r η β = 1 χ(K/K M ) π∈ G u ,χ π ∈X (ρ * ) 0 i dim p m 0 j 2 (-1) i+ j n(π) dim H i m, K M ; H j (n, V π,K ) ⊗ E + η β -dim H i m, K M ; H j (n, V π,K ) ⊗ E - η β .
In particular, if H • (Z, F) = 0, then for all β ∈ b * , we have r η β = 0. (6.36) Proof. By (6.25) and Proposition 6.7, we get (6.35). From (6.19) and (6.35), we get (6.36). Remark 6.9. By (4.36), (6.36), and by Remark 5.11, we get (4.9) in the case where δ(G) = 1 and Z G is compact. We finish the proof of Theorem 4.4 in full generality.

AN EXTENSION TO ORBIFOLDS

In this section, we no longer assume Γ ⊂ G is torsion free. Then Z = Γ\G/K is a closed Riemannian orbifold with Riemannian metric g T Z . Let us indicate the essential steps in generalising the previous results to orbifolds.

If γ ∈ Γ, Γ(γ) is not always torsion free. The cardinality ker Γ(γ) → Diffeo(Z(γ)/K(γ)) (7.1) depends only on the conjugacy class [γ] and will be denoted by n Let ρ : G → GL(E) be a finite dimensional complex representation of G with an admissible metric. Let F be the orbifold flat vector bundle on Z associated to ρ |Γ . As in Section 4.1, F is equipped canonically with a Hermitian metric g F . The analytic torsion of F associated to (g T Z , g F ) is defined in [START_REF] Dai | Comparison between two analytic torsions on orbifolds[END_REF], [ShY17, Section 4.2] (see also [START_REF] Ma | Orbifolds and analytic torsions[END_REF]). The proof of Theorem 4.4 in the case of orbifold is similar as before and we need only consider the case δ(G) = 1. We can define the Selberg zeta function by the same formula (3.20) with m [γ] defined by (7.4). By [Sh20, Section 7.2], the statement of Theorem 3.9 still holds for orbifolds. By exactly the same method, the statements of Proposition 4.8, Theorem 4.9, Proposition 5.9, and Theorem 5.10 hold for orbifold. Using the orbifold Hodge theory (c.f. [ShY17, Theorem 4.1]), we can deduce that the statements of Theorem 6.5 and Corollary 6.8 hold as well. In this way, we get Theorem 4.4 for orbifolds.

As in the proof of Theorem 4.6 given in Section 4.3, the orbifold version of Theorem 4.6 is a consequence of the orbifold version of Theorem 4.4. The proof of our Theorem is completed.
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  Let h = b ⊕ t be the Cartan decomposition of h. Note that dim b = δ(G) = 1. Let H ⊂ G be the associated Cartan subgroup of G. Let Z(b) ⊂ G be the stabiliser of b in G with Lie algebra z(b). Let Z 0 (b) be the connected component of the identity in Z(b). Then z(b), Z 0 (b) split z(b) = b ⊕ m, Z 0 (b) = exp(b) × M, (0.13) where M is a connected reductive subgroup of G with Lie algebra m. Let m = p m ⊕ k m be the Cartan decomposition of m. Let z ⊥ (b) ⊂ g be the orthogonal space of z ⊥ (b) with respect to B.

0. 7 .

 7 Notation. Throughout the paper, we use the superconnection formalism of [Q85] and [BeGeVe04, Section 1.3]. If A is a Z 2 -graded algebra and if a, b ∈ A, the supercommutator [a, b] is given by ab -(-1) deg a deg b ba. (0.20) If B is another Z 2 -graded algebra, we denote by A ⊗B the super tensor product algebra of A and B. If

  If a ∈ k, ad(a)| p acts as an antisymmetric endomorphism on p. It acts on S p by c ad(a)| p = 1 4 m i, j=1 〈[a, e i ], e j 〉c(e i )c(e j ). (2.11) Let ρ : g → End(V ) be a complex representation of g. Let D S p ⊗V be the Dirac operator acting on S p ⊗ V , i.e., D S p ⊗V = m i=1 c(e i )ρ(e i ).

2. 6 .

 6 A splitting of g according to the b-action. By [Kn02, Proposition 7.25], Z(b) is a (possibly non connected) reductive subgroup of G, so that we have the Cartan decomposition z(b) = p(b) ⊕ k(b).

(2. 20 )

 20 Let m ⊂ z(b) be the orthogonal space (with respect to B) of b in z(b). Then m is a Lie subalgebra of g, and θ acts on m so that we have the Cartan decomposition m = p m ⊕ k m . (2.21) Let M ⊂ G be the connected Lie subgroup associated to the Lie algebra m. By [B11, (3.3.11) and Theorem 3.3.1], M is closed in G and is a connected reductive subgroup of G with maximal compact subgroup

  24) Let p ⊥ (b), k ⊥ (b), z ⊥ (b) be respectively the orthogonal spaces (with respect to B) of p(b),k(b),z(b) in p,k,g. Clearly, z ⊥ (b) = p ⊥ (b) ⊕ k ⊥ (b).

  group K M acts trivially on b. It also acts on p m , p ⊥ (b), k m and k ⊥ (b), and preserves the splittings (2.26). Similarly, the groups M and Z 0 (b) act trivially on b, act on m,z ⊥ (b), and preserves the third splitting in (2.26).

  sum of the eigenspaces of ad( f b )| z ⊥ (b) associated to the positive (resp. negative) eigenvalues. Then, z ⊥ (b) = n ⊕ n, n = θn.

Proposition 2. 9 .

 9 If G has a compact centre Z G , then any finite dimensional complex representation ρ : G → GL(V ) has an admissible Hermitian metric. Proof. Let G ss ⊂ G be the connected Lie subgroup of G associated to the Lie algebra [g, g] ⊂ g. By [Kn02, Corollary 7.11], G ss is a closed subgroup of G, which is semisimple and G = G ss • Z 0

3. 3 .

 3 The Ruelle zeta function. Let us recall the definition of the Ruelle dynamical zeta function introduced by Fried [F87, Section 5].For γ ∈ Γ, setΓ(γ) = Z(γ) ∩ Γ. (3.9) By [S60, Lemma2] (see also [Sh18, Proposition 4.9], [Ma19, Proposition 3.9]), Γ(γ) is cocompact in Z(γ). Let [Γ + ]and [Γ] be the sets of conjugacy classes in Γ + and Γ. If γ ∈ Γ, the associated conjugacy class in Γ is denoted by [γ] ∈ [Γ]. 6 If [γ] ∈ [Γ], for all γ ∈ [γ], the locally symmetric spaces Γ(γ )\Z(γ )/K(γ ) (3.10) are canonically diffeomorphic, and will be denoted by B [γ] . By [DuKVa79, Proposition 5.15], the set of nontrivial closed geodesics on Z consists of a disjoint union [γ]∈[Γ + ] B [γ] . (3.11) If [γ] ∈ [Γ + ], all the elements of B [γ] have the same length [γ] > 0.

Theorem 3. 3 .

 3 If dim Z is odd, the Ruelle zeta function R ρ has a meromorphic extension to σ ∈ C. Proof. This is [Sh20, Theorem 0.1 i)]. Let R ρ be the meromorphic function defined for σ ∈ C by R ρ (σ) = R ρ (σ). (3.16) By [Sh20, Proposition 4.4], we have

  u ⊥ (b) C u(b),u ⊥ (b) -C u m ,η . (3.24) Remark 3.8. When Z G is non compact, by [Sh18, (4-52)], we have G = exp(b) × M. (3.25) Therefore, u ⊥ (b) = 0. By (3.24), we have σ η = -C u m ,η . (3.26) Let P η (σ) be the odd polynomial defined in [Sh18, (7-61)] and [Sh20, (5.20), Remark 5.9].

  by Remark 3.2 and Theorem 4.3, our theorem follows easily. If δ(G) = 1, we will consider the case where Z G is non compact in Section 4.6 and the case where Z G is compact in Sections 5 and 6. Remark 4.5. Assume dim Z is even. Then δ(G) is even as well. If δ(G) 2, then by Remark 3.2 and Theorem 4.3, we have R ρ (0) = T(F) 2 = 1. If δ(G) = 0, by the Theorem of Gauss-Bonnet-Chern and by [Sh18, Proposition 4.1], we have

4. 3 .

 3 Proof of Corollary 0.2. Let us restate Corollary 0.2.

ρ

  = ρ ⊕ ρ θ . (4.14) By (3.18) and (4.14), we have

:

  G → U(r) be the representation of G defined by the projection onto the second component. The standard Hermitian metric on C r is admissible for the representation ρ 0 . Also, we have an identification of Hermitian flat vector bundles Γ\(G/K × C r ) F 0 . (4.22)

For β ∈ b * C+

 * , denote by C β the one dimensional representation of exp(b) such that a ∈ b acts as the scalar 〈β, a〉 ∈ C. Clearly, C β has an admissible metric if and only if β ∈ b * . Recall that since Z G is not compact, we have G = exp(b) × M (see (3.25)). Since a representation with an admissible metric is completely reducible, we can write ρ = β∈b * C β η β , (4.23) where η β is a representation of M. Proposition 4.7. The following statements hold. i) For β ∈ b * , we have isomorphisms of representations of M, η -β η β . (4.24) ii) For β ∈ b * , the representation η β of M satisfies Assumption 3.5, so that C u m ,η β = C u,ρ + |β| 2 ∈ R, (4.25) Proof. Since ρ θ ρ, by (4.23), we have isomorphisms of representations of M, η θ β η -β . Since δ(M) = 0, by Proposition 2.7, we have isomorphisms of representations of M, η θ β η β . From these considerations, (4.24) follows. By (3.25), we have K M = K, so Assumption 3.5 (1) is trivial. Since C u,ρ is a scalar, by (3.25) and (4.23), the Casimir of u m acts on η β as a scalar given in (4.25). In particular, η β satisfies also Assumption 3.5 (2). Recall that in Section 2.6, we have fixed a positive element f b ∈ b in b. Set b * + = {α ∈ b * : 〈α, f b 〉 > 0}. (4.26) By (4.24), we can rewrite (4.23) as ρ = 1 η 0 ⊕ β∈b * + C β ⊕ C -β η β . (4.27) Note that η 0 can be zero. Let Z η β (σ) be Selberg zeta function associated to η β . Proposition 4.8. The following identity of meromorphic functions on C holds, R ρ (σ) = Z η 0 (σ) Proof. By (4.27), for e a k -1 ∈ H, we have Tr ρ e a k -1 = Tr η 0 k -1 + β∈b * Tr η β k -1 e |β||a| + e -|β||a| . (4.29) By (3.25), we have z ⊥ (b) = 0, so that the denominator det(1 -Ad(γ))| z ⊥ (b) 1/2 in (3.20) disappears. By (3.15), (3.20), and (4.29), we get (4.28). By (3.26), (3.27), and (4.25), we see that

5. 1 .

 1 The structure of the reductive group G with δ(G) = 1. Since G has a compact centre and dim b = 1, we have b ⊂ z g , so n = 0. By Proposition 2.5 i), dim n is a positive even number. Set = 1 2 dim n ∈ N * .

  〈α 0 , a 0 〉 = 1. (5.5) By (5.4), (u, u(b)) is a compact symmetric pair. Recall that G has a compact centre. Let U be the compact form of G [Kn86, Proposition 5.3]. Let U(b) be the centraliser of b in U. Then, U(b) is a connected Lie group [Kn02, Corollary 4.51] with Lie algebra u(b).

e

  |β||a| + e -|β||a| Tr ρ β wk -1 w -1 . By (5.13)-(5.15), since dim b = 1, for β ∈ b * , we have Tr ρ β wk -1 w -1 = Tr ρ β k -1 , (5.16)

  ⊥ (b) is the spinor of u ⊥ (b), -B| u ⊥ (b) . Let D S u ⊥ (b) ⊗E be the Dirac operator defined in Section 2.3. LetD S u ⊥ (b) ⊗E ± be the restriction of D S u ⊥ (b) ⊗E to S u ⊥ (b) ± ⊗ E. By (2.14), we have -D S u ⊥ (b) ⊗E 2 = C u,ρ + 1 8 Tr C u(b),u ⊥ (b) -C u(b),S u ⊥ (b) ⊗E . (5.17) Since u acts unitarily on (E, 〈, 〉 E ) , we have ker D S u ⊥ (b) ⊗E = ker D S u ⊥ (b) ⊗E 2 . (5.18) If the u(b)-action on E lifts to U(b), then ker D S u ⊥ (b) ⊗E ± are representations 8 of U(b). In general, ker D S u ⊥ (b) ⊗E ± are (b C ⊕m C , K M )-modules. Note that by (5.9) and (5.12), b acts semisimplely on ker D S u ⊥ (b) ⊗E ± .8 They are called Dirac cohomology of E (see[START_REF] Huang | Dirac operators in representation theory[END_REF]).Definition 5.5. Define the (m C , K M )-modules η + β and η - β , so that ker D S u ⊥ (b) that C u,ρ ∈ R is a scalar.Proposition 5.6. The following statements hold.i) We have isomorphisms of (m C , K M )-modules,

  ) and (5.18), ker D S u ⊥ (b)⊗E ± consists of the components on which (5.22) holds. Form these two considerations, i) follows.It remains to show each η β|K M lifts to R(K). By (5.19), for e a k -1 ∈ H, we have β∈b * e 〈a,β〉 Tr s η β (k -1 ) = Tr ker D S u ⊥ (b) ⊗E s e a k -1 . (5.25) We claim that for e a k -1 ∈ H, we have Tr ker D S u ⊥ (b) ⊗E s e a k -1 = Tr S u ⊥ (b) ⊗E s e a k -1 . (5.26) Indeed, since D S u ⊥ (b) ⊗E commutes with e a k -1 , using the fact that the super trace varnishes on the super commutator, we see that Tr S u ⊥ (b) ⊗E s e a k -1 exp -t D S u ⊥ (b) ⊗E 2 (5.27) does not depend on t ∈ R, from which we get (5.26). From (5.25) and (5.26), for e a k -1 ∈ H, we have β∈b * e 〈β,a〉 Tr s η β (k -1 ) = Tr S u ⊥ (b) s e a k -1

( 5 .

 5 30) Tr s η 0 k -1 + β∈b * + e |a||β| + e -|a||β| Tr s η β k -1 = det 1 -Ad(e a k -1 ) | z ⊥ (b) 1/2Tr ρ e a k -1

  s strange formula [Ko76] or [B11, Proposition 7.5.1], we have u 2 = -1 24 Tr u C u,u . (6.13) Define u(b) ∈ b * ⊕ -1t * and u m ∈ -1t * in the same way, which are associated to R im + and R im +|t . Then,

If

  V possesses an infinitesimal character with Harish-Chandra parameter Λ ∈ h * C , by [HeSc83, Corollary 3.32], H • (n, V ) can be decomposed into a finite direct sum of Harish-Chandra (m C ⊕ b C , K M )-modules whose generalised infinitesimal characters are given by χ wΛ+ uu(b) , (6.15)

  ), we haveH • (Z, F) = π∈ G u ,χ π (C g )=χ tr ρ (C g ) n(π) V π,K ⊗ Λ • (p * C ) ⊗ E K . (6.21) When χ π (C g ) = χ tr ρ (C g ),by Hodge theory for Lie algebras [BoW00, Proposition II.3.1], we have V π,K ⊗ Λ • (p * C

  Let (π, V π ) ∈ G u . Assume that χ π (C g ) = C u,ρ and 0 i dim p m 0 j 2 s∈{±} H i m, K M ; H j (n, V π,K ) ⊗ E s η β = 0. (6.26) Then, χ π ∈ X (ρ * ). (6.27)Proof. We use the notation in Section 6.1.3. Let Λ(π * ) ∈ h * C be a Harish-Chandra parameter of V π * , K . We need to show that there is w ∈ W(h C : g C ) and a Harish-Chandra parameter Λ(ρ) ∈ b * ⊕ -1t * of an irreducible g-submodule of ρ, such that wΛ(π * ) = Λ(ρ). (6.28) Recall that B * is the bilinear form on g * induced by B. It extends to g * C in an obvious way. Since χ π (C g ) = C u,ρ , using Harish-Chandra isomorphism (see[START_REF] Knapp | Lie groups beyond an introduction[END_REF] Example 5.64]), we haveB * Λ(π * ), Λ(π * ) -B * u , u = C u,ρ . (6.29)By (6.8), (6.14), (6.15), and (6.26), there existw ∈ W(h C : g C ), w ∈ W(t C : m C ) ⊂ W(h C : g C ) and the highest weight µ β ∈ -1t * of an irreducible (m C , K M )-submodule of η + β ⊕ η - β such that wΛ(π * ) |t C = w µ β + ρ u m . (6.30)By Proposition 5.1 and (6.12), we have u = u(b) + ( α 0 , 0) . (6.31) By (5.11), (5.22), (6.14), (6.29)-(6.31), there existsw ∈ W(h C : g C ) such that w Λ(π * ) = ±β, µ β + ρ u m = ±β, µ β + ρ u(b) . (6.32) In particular, Λ(π * ) ∈ b * ⊕ -1t * . By (5.19), β, µ β ∈ b * ⊕ -1t *is a highest weight of an irreducible (m C ⊕b C , K M )submodule of ker D S u ⊥ (b) ⊗E . By [HuPa06, Theorem 4.2.2], there exists w 1 ∈ W(h C : g C ) and a Harish-Chandra parameter Λ(ρ) ∈ h * C of an irreducible g-submodule of ρ, such that β, µ β = w 1 Λ(ρ) -ρ u(b) . (6.33) By (5.19) and (5.21), (-β, µ β ) ∈ b * ⊕ -1t * is also the highest weight of an irreducible (m C ⊕ b C , K M )-submodule of ker D S u ⊥ (b) ⊗E . As before, there exists w 2 ∈ W(h C : g C ) and a Harish-Chandra parameter Λ(ρ) ∈ h * C of an irreducible g-submodule of ρ, such that -β, µ β = w 2 Λ(ρ) -ρ u(b) . (6.34)

  [γ] . We define B [γ] by the same formula as in (3.10). By [ShY17, Proposition 5.3], we havevol(Γ(γ)\Z(γ)) vol(K(γ)) = vol B [γ] ,Remark 5.6, (5.59)], as in (3.11), the closed geodesics (see[START_REF] Guruprasad | Closed geodesics on orbifolds[END_REF] or [ShY17, Remark 2.26]) on the orbifold Z with positive length are given by[γ]∈[Γ + ] B [γ] . (7.3) For [γ] ∈ [Γ + ], all the elements of B [γ] have the same length [γ] > 0.For [γ] ∈ [Γ + ], the group S 1 acts locally freely on the orbifold B [γ] by rotation, so that B [γ] /S 1 is still a closed orbifold. Setm [γ] = n [γ] ker S 1 → Diffeo(B [γ] ) ∈ N * . (7.4) If ρ : Γ → GL r (C)is a representation of Γ, for Re (σ) 1 large enough, we define Ruelle's dynamical zeta function R ρ (σ) by the same formula (3.15) with m [γ] defined by (7.4). As before, when δ(G) 2, R ρ (σ) ≡ 1. (7.5) By [Sh20, Theorem 7.3], if dim Z is odd, R ρ (σ) has a meromorphic extension to σ ∈ C.

Theorem 7. 1 .

 1 The statements of Theorems 4.3, 4.4, and 4.6 still hold for orbifolds. In particular, we get Theorem 0.5.Proof. Using the orbifold trace formula [ShY17, Theorem 5.4] and [Ma19, Theorem 5.4], we get the orbifold version of Theorem 4.3.

By Margulis' super-rigidity [M91, Section VII.5] (see also [BoW00, Section XIII.4.6]), this is the most interesting case, when the real rank of the locally symmetric space is ≥ 2.

If G is semisimple or more generally if G has a compact centre, then all the representations of G has an admissible metric ([MatMu63, Lemma 3.1], Proposition 2.9).

More precisely, we need assume that the Casimir of g acts on ρ as a scalar.

The quantity[γ] depends only on the conjugacy class of γ in G. So they are well defined on the conjugacy classes of Γ.

A more general construction for the Selberg zeta function is given in [Sh20], which is associated to η and to an arbitrary representation of ρ : Γ → GL r (C).