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ANALYTIC TORSION, DYNAMICAL ZETA FUNCTION, AND THE
FRIED CONJECTURE FOR ADMISSIBLE TWISTS

SHU SHEN

ABSTRACT. We show an equality between the analytic torsion and the absolute
value at the zero point of the Ruelle dynamical zeta function on a closed odd
dimensional locally symmetric space twisted by an acyclic flat vector bundle ob-
tained by the restriction of a representation of the underlying Lie group. This
generalises author’s previous result for unitarily flat vector bundles, and the re-
sults of Bröcker, Müller, and Wotzke on closed hyperbolic manifolds.
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INTRODUCTION

The purpose of this article is to study the relation between the analytic torsion
and the value at the zero point of the Ruelle dynamical zeta function associated to
a flat vector bundle, which is not necessarily unitary, on a closed odd dimensional
locally symmetric space of reductive type.

Let Z be a smooth closed manifold. Let F be a complex flat vector bundle on
Z. Let H•(Z,F) be the cohomology of sheaf of locally constant sections of F. We
assume H•(Z,F)= 0.

Let gTZ , gF be metrics on TZ and F. The analytic torsion T(F) of Ray-Singer
[RaSi71] is a spectral invariant defined by a weighted product of zeta regularised
determinants the Hodge Laplacian associated with gTZ , gF . When dim Z is odd,
they showed that T(F) does not depend on the metric data.

Ray and Singer [RaSi71] conjectured, which was proved later by Cheeger [Ch79]
and Müller [Mü78], that if F is unitarily flat (i.e., the holonomy representation
of F is unitary) the analytic torsion coincides with its topological counterpart,
the Reidemeister torsion [Re35, Fr35, dR50]. Bismut-Zhang [BZ92] and Müller
[Mü93] simultaneously considered generalisations of this result. Müller [Mü93]
extended his result to odd dimensional oriented manifolds where only detF is re-
quired to be unitary. Bismut and Zhang [BZ92] generalised the original Cheeger-
Müller theorem to arbitrary flat vector bundles with arbitrary Hermitian metrics
on a manifold with arbitrary dimension orientable or not.

Milnor [Mi68] initiated the study of the relation between the torsion invariant
and a dynamical system. When Z is an orientable hyperbolic manifold, Fried
[F86a, F86b] showed an identity between the analytic torsion of an acyclic uni-
tarily flat vector bundle and the value at the zero point of the Ruelle dynamical
zeta function of the geodesic flow of Z. He conjectured [F87, p. 66, Conjecture]
that similar results should hold true for more general flows. In [Sh18], following
previous contributions by Moscovici-Stanton [MoSt91], using Bismut’s orbital in-
tegral formula [B11], the author affirmed the Fried conjecture for geodesic flows
on closed odd dimensional1 locally symmetric manifolds equipped with an acyclic
unitarily flat vector bundle. In [ShY17], the authors made a further generalisa-
tion to closed locally symmetric orbifolds. We refer the reader to [Ma19] for an
introduction to the technique used in [Sh18].

1The case of even dimension is trivial [Sh19, Remark 5.12] (c.f. Remark 4.5).



ANALYTIC TORSION AND DYNAMICAL ZETA FUNCTION 3

When the flat vector bundle is not unitary, Müller [Mü20] and Spilioti [Sp18,
Sp20a, Sp20b] related the leading coefficients of the Laurent series of the Ruelle
dynamical zeta function at the zero point to a weighted product of zeta regularised
determinants of the flat Laplacian of Cappell-Miller [CMi10] on orientable odd di-
mensional hyperbolic manifolds. When the flat vector bundle is near to an acyclic
and unitary one, the authors have shown that the Ruelle dynamical zeta function
is regular at the zero point and its value is equal to the complexed valued analytic
torsion of Cappell-Miller [CMi10]. In [Sh20], we generalised the above results to
odd dimensional locally symmetric spaces.

In this article, we prove the Fried conjecture on odd dimensional locally sym-
metric spaces for a class2 of flat vector bundles, which is not necessarily close to
a unitary one, and whose holonomy representations are the restrictions of rep-
resentations of the underlying reductive groups. This generalises the previous
results of Bröcker [Brö98], Müller [Mü12], and Wotzke [Wo08] on orientable odd
dimensional hyperbolic manifolds.

We refer the reader to [ShY18, DaGRSh20] for the Fried conjecture for the
Morse-Smale flow and the Anosov flow, to [Sh19] for a survey on the Fried conjec-
ture.

Now, we will describe our results in more detail, and explain the techniques
used in their proofs.

0.1. The analytic torsion. Let Z be a smooth closed manifold, and let F be a
complex flat vector bundle on Z.

Let gTZ be a Riemannian metric on TZ, and let gF be a Hermitian metric on F.
To gTZ and gF , we can associate an L2-metric onΩ•(Z,F), the space of differential
forms with values in F. Let �Z be the Hodge Laplacian acting on Ω•(Z,F). By
Hodge theory, we have a canonical isomorphism

ker�Z ' H•(Z,F).(0.1)

The analytic torsion T(F) is a positive real number defined by the following
weighted product of the zeta regularised determinants (see Section 1)

T(F)=
dim Z∏
i=1

det
(
�Z |

Ωi(Z,F)∩(ker�Z)⊥
)(−1)i i/2

.(0.2)

By [RaSi71] and [BZ92, Theorem 0.1], if dim Z is odd and if H•(Z,F) = 0, then
T(F) is independent of gTZ and gF . Therefore, it is a topological invariant.

When Z is a closed orbifold, the analytic torsion is still well defined [Ma05,
DaiY17]. In [ShY17, Corollary 4.9], the authors show that if Z as well as all the
singular strata have odd dimension, then the analytic torsion of an acyclic orbifold
flat vector bundle is still a topological invariant.

0.2. The Ruelle dynamical zeta function. Let us recall the definition of the
Ruelle dynamical zeta function associated to a geodesic flow introduced by Fried
[F87, Section 5] (see also [Sh19, Section 2]).

2By Margulis’ super-rigidity [M91, Section VII.5] (see also [BoW00, Section XIII.4.6]), this is
the most interesting case, when the real rank of the locally symmetric space is ≥ 2.
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Let (Z, gTZ) be a connected manifold with nonpositive sectional curvature. Let
Γ be the fundamental group of Z, and let [Γ] be the set of the conjugacy classes of
Γ. For [γ] ∈ [Γ] , let B[γ] be the set of closed geodesics in the free homotopy class
associated to [γ]. It is easy to see that all the elements in B[γ] have the same
length `[γ].

For simplicity, assume that all the B[γ] are smooth finite dimensional subman-
ifolds of the loop space of Z. This is the case if (Z, gTZ) has a negative sectional
curvature or if Z is locally symmetric. If γ 6= 1, the group S1 acts locally freely on
B[γ] by rotation, so that B[γ]/S1 is an orbifold. Let χorb(B[γ]/S1) ∈Q be the orbifold
Euler characteristic [Sa57]. Denote by

m[γ] =
∣∣ker

(
S1 →Diff(B[γ])

)∣∣ ∈N∗(0.3)

the multiplicity of a generic element in B[γ]. Let ε[γ] =±1 be the Lefschetz index
of the Poincaré return map induced by the geodesic flow (see [Sh19, (2.17)] for a
precise definition). If Z is locally symmetric, then ε[γ] = 1.

If r ∈N, let ρ : Γ→GLr(C) be a representation of Γ. The formal dynamical zeta
function is defined for σ ∈C by

Rρ(σ)= exp

( ∑
[γ]∈[Γ+]

ε[γ] Tr[ρ(γ)]
χorb(B[γ]/S1)

m[γ]
e−σ`[γ]

)
,(0.4)

where [Γ+]= [Γ]−{1} is the set of the non trivial conjugacy classes of Γ. We will say
that the formal dynamical zeta function is well defined if Rρ(σ) is holomorphic for
Re(σ)À 1 and extends meromorphically to σ ∈C.

If (Z, gTZ) has negative sectional curvature, the geodesic flow on the sphere
bundle of (Z, gTZ) is Anosov. In this case, if ρ is a trivial representation, Rρ(σ)
has been shown to be well defined by Giulietti-Liverani-Pollicott [GiLPo13] and
Dyatlov-Zworski [DyZ16]. For general ρ, the proof of the meromorphic extension
of Rρ is not particularly difficult. For behaviour of the Ruelle zeta function near
σ = 0, we refer the reader to the work of Dyatlov and Zworski [DyZ17], Dang,
Guillarmou, Rivière, and Shen [DaGRSh20], as well as Borns-Weil and Shen
[BWSh20].

0.3. Results of Fried, Bröcker, Wotzke, and Müller on hyperbolic mani-
folds. Assume that Z is an odd dimensional connected orientable closed hyper-
bolic manifold. Let F be the unitarily flat vector bundle on Z with holonomy
ρ :Γ→U(r).

Using the Selberg trace formula, Fried [F86a, Theorem 3] showed that there
exist explicit constants Cρ ∈R∗ and rρ ∈Z such that as σ→ 0,

Rρ(σ)= CρT(F)2σrρ +O (σrρ+1).(0.5)

Moreover, if H•(Z,F)= 0, then

Cρ = 1, rρ = 0,(0.6)

so that

Rρ(0)= T(F)2.(0.7)
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When ρ is not unitary but a restriction of a representation of the orientation
preserving isometric group of Z, similar results (see Theorem 0.1) have been
shown by Bröcker [Brö98] and Wotzke [Wo08], as well as Müller [Mü12, Theo-
rem 1.5].

0.4. The main result of the article. Let G be a linear connected real reductive
group [Kn86, p. 3], and let θ be the Cartan involution. Let K be the maximal
compact subgroup of G of the points of G that are fixed by θ. Let k and g be the
Lie algebras of K and G, and let g= p⊕ k be the Cartan decomposition. Let B be
a nondegenerate bilinear symmetric form on g which is invariant under G and θ.
Assume that B is positive on p and negative on k. Set X =G/K . Then B|p induces
a Riemannian metric on X , which has nonpositive sectional curvature.

Let Γ ⊂ G be a discrete torsion free cocompact subgroup of G. Let Z = Γ\X be
the associated locally symmetric manifold, which is equipped with the induced
Riemannian metric gTZ . Let ρ :Γ→GL(E) be a finite dimensional complex repre-
sentation of Γ. Let F be the associated flat vector bundle on Z. In [Sh20, Theorem
0.1 i)], we have shown that if dim Z is odd, the Ruelle zeta function Rρ has a
meromorphic extension to C.

Suppose now that ρ extends to a representation of G, which is still denoted by
ρ. We assume also that E has an admissible metric3 〈,〉E, i.e., p acts symmetrically
and k acts antisymmetrically on (E,〈,〉E). By a construction due to Matsushima-
Murakami [MatMu63], 〈,〉E induces canonically a Hermitian metric gF on F (see
also Section 4.1).

Let T(F) be the analytic torsion of F associated to (gTZ , gF ). The following
theorem generalises [Sh18, Theorem 0.1] where ρ is assumed to be unitary, and
Bröcker [Brö98], Müller [Mü12], and Wotzke [Wo08] where Z is hyperbolic.

Theorem 0.1. Assume that dim Z is odd and that ρ : G →GL(E) is a finite dimen-
sional complex representation of G with an admissible metric. Let (F, gF ) be the
associated Hermitian flat vector bundle. Then there exist constants Cρ ∈ C∗ and
rρ ∈Z such that when σ→ 0, we have

Rρ(σ)= CρT(F)2σrρ +O (σrρ+1).(0.8)

Moreover, if H•(Z,F)= 0, then∣∣Cρ

∣∣= 1, rρ = 0,(0.9)

so that ∣∣Rρ(0)
∣∣= T(F)2.(0.10)

Set ρθ = ρ◦θ. Then ρθ is still a representation of G with an admissible metric. If
ρ ' ρθ, we will show in Theorem 4.4 that the constant Cρ ∈R∗ and we can remove
the absolute value in (0.9) and (0.10). For general ρ, by [Sh20, Theorem 0.1 ii)
iii)], the argument of Cρ is determined by the argument of a (0.2)-like product of
zeta regularised determinants of the flat Laplacian of Cappell and Miller, which
is related to the complex valued analytic torsion of Cappell and Miller [CMi10].

3If G is semisimple or more generally if G has a compact centre, then all the representations of
G has an admissible metric ([MatMu63, Lemma 3.1], Proposition 2.9).
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When ρ is irreducible and ρ 6' ρθ, thanks to the vanishing of the cohomology
H•(Z,F) [BoW00, Theorem VII.6.7], we have the following corollary.

Corollary 0.2. Assume that dim Z is odd and that ρ : G →GL(E) is a finite dimen-
sional complex representation of G with an admissible metric. Let (F, gF ) be the
associated Hermitian flat vector bundle. Suppose that ρ is irreducible and ρ 6' ρθ.
Then, Rρ(σ) is holomorphic at σ= 0 so that∣∣Rρ(0)

∣∣= T(F)2.(0.11)

In Section 4.5, we will show that the unitarily flat vector bundle is contained in
the class specified above. Indeed, let ρ0 :Γ→U(r) be the holonomy representation
of a unitarily flat vector bundle (F0, gF0). If G = G ×U(r), K = K ×U(r), and if
Γ ⊂ Γ×U(r) is the graph of ρ0, then we have the identification Z = Γ\G/K . If
ρ

0
: G →U(r) is the projection onto the second component, it is easy to see that ρ

0
has an admissible metric and the associated Hermitian flat vector bundle is just
(F0, gF0). In this way, we show :

Corollary 0.3. Assume that dim Z is odd. If (F0, gF0) is a unitarily flat vector
bundle, and if (F, gF ) is the Hermitian flat vector bundle as in Theorem 0.1, then
the statements of Theorem 0.1 and Corollary 0.2 hold for F0 ⊗F.

Remark 0.4. The flat vector bundle F0⊗F in Corollary 0.3 is of particular interest
in study of hyperbolic volumes (see e.g. [BéDHP19]).

In Section 7, we will extend all the above results to the case where Γ is not
torsion free. Then Z is an orbifold and F is a flat orbifold vector bundle.

Theorem 0.5. The statement of Theorem 0.1 and Corollaries 0.2 and 0.3 hold for
orbifolds.

0.5. Proof of Theorem 0.1. We will first show Theorem 0.1 in the case ρθ ' ρ,
i.e., Theorem 4.4. Using an easy relation Rρθ (σ) = Rρ(σ) (Proposition 3.4) and
applying Theorem 4.4 to ρ⊕ρθ, we obtain Corollary 0.2. Since ρ has an admissible
metric, ρ can be decomposed as a direct sum of irreducible representations which
are either ρθ ' ρ or ρθ 6' ρ. In this way, we get Theorem 0.1 in full generality.

Our proof of Theorem 0.1 in the case ρθ ' ρ is inspired by [Sh18] and [Mü12].
Let us explain main steps.

0.5.1. Moscovici-Stanton’s vanishing theorem. Let δ(G) ∈ N be the fundamental
rank of G, i.e., the difference between the complex ranks of G and K . Note that
δ(G) and dim Z have the same parity.

When F is unitary, by [MoSt91, Corollary 2.2, Remark 3.7], if δ(G)Ê 3, we have

T(F)= 1, Rρ(σ)≡ 1.(0.12)

In the current situation, similar results still hold (e.g. [BMaZ11] [BMaZ17, The-
orem 8.6, Remark 8.7], [Ma19, Theorem 5.5], [Sh20, Remark 4.2]). Therefore, we
can reduce the proof to the case δ(G)= 1.
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0.5.2. Selberg zeta functions. Assume now δ(G) = 1 and ρθ ' ρ. The proof of The-
orem 0.1 in this case is based on the introduction of the Selberg zeta functions.
Let us recall its definition and basic properties.

Let t ⊂ k be a Cartan subalgebra of k. Let h ⊂ g be the stabiliser of t in g. By
[Kn86, p. 129], h ⊂ g is a θ-invariant fundamental Cartan subalgebra of g. Let
h= b⊕ t be the Cartan decomposition of h. Note that dimb= δ(G) = 1. Let H ⊂ G
be the associated Cartan subgroup of G.

Let Z(b) ⊂ G be the stabiliser of b in G with Lie algebra z(b). Let Z0(b) be the
connected component of the identity in Z(b). Then z(b), Z0(b) split

z(b)= b⊕m, Z0(b)= exp(b)×M,(0.13)

where M is a connected reductive subgroup of G with Lie algebra m. Let m =
pm⊕km be the Cartan decomposition of m. Let z⊥(b)⊂ g be the orthogonal space of
z⊥(b) with respect to B.

Let η= η+−η− be a virtual representation of M acting on the finite dimensional
complex vector spaces Eη = E+

η −E−
η such that

i) the Casimir of M acts on η± by the same scalar;
ii) the restriction of η to KM = K ∩M lifts uniquely to a virtual representation of

K .

The Selberg zeta function associated to η is defined formally for σ ∈C by

Zη(σ)= exp
(
− ∑

[γ]∈[Γ+]
γ∼eak−1∈H

χorb
(
B[γ]/S1)

m[γ]

TrEη

s [k−1]∣∣det
(
1−Ad(eak−1)

) |z⊥(b)
∣∣1/2 e−σ`[γ]

)
,(0.14)

where the sum is taken over the non elliptic conjugacy classes [γ] of Γ such that γ
can be conjugate by element of G into the Cartan subgroup H.

In [Sh18, Section 6] and [Sh20, Section 3.4], we have shown that the adjoint
action of KM on pm,C lifts uniquely to a virtual representation of K . Let η̂= η̂+−η̂−
be the unique virtual representation of K such that

η̂|KM =Λ•(p∗m,C)⊗̂η|KM .(0.15)

The Casimir operator of g acts as a generalised Laplacian Cg,Z,η̂± on the smooth
sections over Z of the locally homogenous vector bundle induced by η̂± (see (3.6)).
By the general theory on elliptic differential operators, the regularised determi-
nant det

(
Cg,Z,η̂± +σ)

is holomorphic on σ ∈C.
In [Sh18, Section 7] and [Sh20, Section 5], we show that Zη(σ) has a meromor-

phic extension to σ ∈ C. Moreover, up to a multiplication by a non zero entire
function, Zη(σ) is just the graded regularised determinant

det
(
Cg,Z,η̂+ +ση+σ2)

det
(
Cg,Z,η̂− +ση+σ2

) ,(0.16)

where ση ∈R is some constant.
One of main steps in our proof of Theorem 0.1 is to construct a family of virtual

M-representations ηβ satisfying the above assumptions i) ii), parametrised by
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finite elements β ∈ b∗, such that∑
β∈b∗ e〈β,a〉Trs

[
ηβ

(
k−1)]∣∣det

(
1−Ad(eak−1)

) |z⊥(b)
∣∣1/2 =Tr

[
ρ

(
eak−1)] ,(0.17)

and such that the following identity of virtual K-representations holds,

⊕
β∈b∗

η̂β =
m⊕

i=1
(−1)i−1iΛi (p∗C)⊗ρ|K .(0.18)

Using (0.17), we can write Rρ as an alternating product of Zηβ . Thanks to (0.16),
we get a relation between the Ruelle zeta function and the Casimir operator,
which is the Hodge Laplacian of (gTZ , gF ) by (0.18) (c.f. Proposition 4.2). In this
way, we get (0.8).

0.5.3. Dirac cohomology. The construction of ηβ is based on the Dirac cohomology
[HuPa06]. Recall that in [Sh18], we have shown that (g,z(b)) is a symmetric pair.
Let (u,u(b)) be the associated compact symmetric pair. The Dirac cohomology
H±

D(ρ) of the u-representation ρ with respect to the symmetric pair (u,u(b)) is a
(bC⊕mC,KM)-modules. We define η±

β
to be the (mC,KM)-modules such that

H±
D(ρ)' ⊕

β∈b∗
Cβ�η±β,(0.19)

where Cβ is the one dimensional representation of b such that a ∈ b acts as
〈β,a〉 ∈ R. The virtual M-representation of ηβ is defined by η+

β
− η−

β
. Now, the

assumption i)4, (0.17), and (0.18) are easy consequences of properties of the Dirac
cohomology. In Section 5.3, we show the assumption ii) as well, so that the Selberg
zeta function of ηβ is well defined.

Let us remark that the Dirac cohomology is more or less equivalent to the n-
cohomology used in [Mü12]. However, Dirac cohomology is closer to the spin con-
struction used in [Sh18, Section 6].

0.5.4. Infinitesimal character and the vanishing of (g,K)-cohomology. The proof
of (0.9) is based on a relation between the infinitesimal character and the van-
ishing of (g,K)-cohomology of a unitary Harish-Chandra (gC,K)-module, which
is due to Vogan-Zuckermann [VZu84], Vogan [V84], and Salamanca-Riba [SR99].
The idea of the proof is very similar to the one given in [Sh18, Section 8]. We refer
the reader to [Sh18, Section 1H] for an introduction.

0.5.5. Final remark. In the case where G have a noncompact centre, we have
n = 0. It is unnecessary to use the Dirac cohomology and the results Vogan,
Zuckermann, and Salamanca-Riba. For greater clarity, we single out this case
in Section 4.6.

4More precisely, we need assume that the Casimir of g acts on ρ as a scalar.
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0.6. The organisation of the article. This article is organised as follows. In
Section 1, we recall the definition of the Ray-Singer analytic torsion of a flat vector
bundle.

In Section 2, we introduce the real reductive group G and the admissible met-
rics on finite dimension representations of G.

In Section 3, we recall the definition and the proprieties of the zeta functions of
Ruelle and Selberg established in [Sh18, Sh20].

In Section 4, we state our main Theorem 4.4, from which we deduce Theorem
0.1, Corollaries 0.2 and 0.3. Also, we prove Theorem 4.4 when δ(G) 6= 1 or ZG is
non compact.

In Sections 5 and 6, we establish Theorem 4.4 when δ(G)= 1 and ZG is compact.
Finally, in Section 7, we extends the previous results to orbifolds and we show

Theorem 0.5.

0.7. Notation. Throughout the paper, we use the superconnection formalism of
[Q85] and [BeGeVe04, Section 1.3]. If A is a Z2-graded algebra and if a,b ∈ A, the
supercommutator [a,b] is given by

ab− (−1)degadegbba.(0.20)

If B is another Z2-graded algebra, we denote by A⊗̂B the super tensor product
algebra of A and B. If E = E+⊕E− is a Z2-graded vector space, the algebra End(E)
is Z2-graded. If τ = ±1 on E± and if a ∈ End(E), the supertrace Trs[a] is defined
by Tr[τa].

If M is a topological group, we will denote by M0 the connected component of the
identity in M. If V is a real vector space, we will use the notation VC =V ⊗R C for
its complexification. We make the convention that N = {0,1,2, . . .}, N∗ = {1,2, . . .},
R∗+ = (0,∞).

1. THE ANALYTIC TORSION

Let Z be a closed smooth manifold of dimension m. Let (F,∇F ) be a flat complex
vector bundle on Z with flat connection ∇F . Let (Ω•(Z,F),dZ) be the de Rham
complex of smooth sections of Λ•(T∗Z)⊗R F on Z. Let H•(Z,F) be the de Rham
cohomology.

We define the Euler characteristic number χ(Z,F) and the derived Euler char-
acteristic number χ′(Z,F) by

χ(Z,F)=
m∑

i=0
(−1)i dimH i(Z,F), χ′(Z,F)=

m∑
i=1

(−1)i idimH i(Z,F).(1.1)

If F is trivial, we write χ(Z) and χ′(Z).
Let gTZ be a Riemannian metric on Z. Let gF be a Hermitian metric on F. The

metrics gTZ , gF induce a scalar product 〈,〉Λ•(T∗Z)⊗RF on Λ•(T∗Z)⊗R F. Let 〈,〉L2

be an L2-product on Ω•(Z,F) defined for s1, s2 ∈Ω•(Z,F) by

〈s1, s2〉L2 =
∫

z∈Z
〈s1(z), s2(z)〉Λ•(T∗Z)⊗RF dvZ ,(1.2)

where dvZ is the Riemannian volume form of (Z, gTZ).
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Let dZ,∗ be the formal adjoint of dZ . Set

�Z =
[
dZ ,dZ,∗

]
.(1.3)

Then, �Z is a second order self-adjoint elliptic differential operator acting on
Ω•(Z,F). By Hodge theory, we have

ker�Z = H•(Z,F).(1.4)

Let
(
ker�Z)⊥ be the orthogonal vector space to ker�Z in Ω•(X ,F). Then �Z

acts as an invertible operator on
(
ker�Z)⊥. Let

(
�Z)−1 denote the inverse of �Z

acting on
(
ker�Z)⊥. If 0É i É m, for s ∈C and Re(s)> m

2 , set

θi(s)=Trs

[(
�Z

)−s

|Ωi(Z,F)

]
.(1.5)

By [Se67] and [BeGeVe04, Proposition 9.35], θi(s) extends to a meromorphic func-
tion of s ∈C, which is holomorphic at s = 0. The regularised determinant is defined
by

det∗
(
�Z

|Ωi(Z,F)

)
= exp

(−θ′i(0)
)
.(1.6)

Formally, it is the product of non zero eigenvalues counted with multiplicities.

Definition 1.1. The Ray-Singer analytic torsion [RaSi71] of F is defined by

T(F)=
m∏

i=1
det∗

(
�Z

|Ωi(Z,F)

)(−1)i i/2 ∈R∗
+.(1.7)

By [RaSi71] and [BZ92, Theorem 0.1], if dim Z is odd and if H•(Z,F) = 0, then
T(F) does not depend on the metrics gTZ , gF . It becomes a topological invariant.

For 0 É i É m, if σ > 0, the operator σ+�Z
|Ωi(Z,F)

does not contain the zero

spectrum, we denote its regularised determinant by det
(
σ+�Z

|Ωi(Z,F)

)
. By [Vo87]

and [Sh20, Theorem 1.5], the function det
(
σ+�Z

|Ωi(Z,F)

)
extends to a holomorphic

function of σ ∈C, whose zeros are located at σ=−λwith order dimker
(
�Z

|Ωi(Z,F)
−λ

)
,

where λ ∈Sp
(
�Z

|Ωi(Z,F)

)
.

Set

T(σ)=
m∏

i=1
det

(
σ+�Z

|Ωi(Z,F)

)(−1)i i
.(1.8)

Then, T(σ) is meromorphic. By (1.1), (1.7), and (1.8), as σ→ 0, we have

T(σ)= T(F)2σχ
′(Z,F) +O (σχ

′(Z,F)+1).(1.9)

2. REDUCTIVE GROUPS AND FINITE DIMENSIONAL REPRESENTATIONS

The purpose of this section is to recall some basic facts about real reductive
groups and their finite dimensional representations.

This section is organised as follows. In Sections 2.1-2.4, we introduce the real
reductive group G, its Lie algebra g, the enveloping algebra U (g), the Casimir
operator, the Dirac operator, as well as the semisimple elements.
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In Sections 2.5 and 2.6, we introduce the fundamental Cartan subalgebra of g
and some related constructions. We recall a key lifting proprieties established in
[Sh20, Section 3.4].

In Section 2.7, we recall the definition of admissible metrics on finite dimen-
sional representations of G introduced by [MatMu63]. We show that if G has a
compact centre, then all the finite dimensional representations have admissible
metrics.

2.1. Real reductive groups. Let G be a linear connected real reductive group
[Kn86, p. 3], and let θ ∈ Aut(G) be the Cartan involution. That means G is a
closed connected group of real matrices that is stable under transpose, and θ is
the composition of transpose and inverse of matrices. If g is the Lie algebra of G,
then θ acts as an automorphism on g.

Let K ⊂ G be the fixed point set of θ in G. Then K is a compact connected
subgroup of G, which is a maximal compact subgroup. If k is the Lie algebra of
K , then k is the eigenspace of θ associated with the eigenvalue 1. Let p be the
eigenspace of θ associated with the eigenvalue −1, so that we have the Cartan
decomposition

g= p⊕ k.(2.1)

Set

m = dimp, n = dimk.(2.2)

By [Kn86, Proposition 1.2], we have the diffeomorphism

(Y ,k) ∈ p×K → eY k ∈G.(2.3)

Let B be a nondegenerate bilinear real symmetric form on g which is invariant
under the adjoint action Ad of G, and also under θ. Then (2.1) is an orthogonal
splitting of g with respect to B. We assume B to be positive-definite on p, and
negative-definite on k. Then, 〈·, ·〉 = −B(·,θ·) defines an Ad(K)-invariant scalar
product on g such that the splitting (2.1) is still orthogonal. We denote by | · | the
corresponding norm.

Let ZG ⊂G be the centre of G with Lie algebra zg ⊂ g. By [Kn86, Corollary 1.3],
ZG is a (possibly non connected) reductive group with maximal compact subgroup
ZG ∩K with the Cartan decomposition

zg = zp⊕ zk.(2.4)

Since zp commutes with ZG ∩K , by (2.3), we have an identification of the groups

ZG = exp(zp)× (ZG ∩K).(2.5)

Let gC = g⊗R C be the complexification of g and let u=p−1p⊕k be the compact
form of g. By C-linearity, the bilinear form B extends to a complex symmetric
bilinear form on gC. The restriction B|u to u is real and negative-definite.

Let U (g) and U (gC) be the enveloping algebras of g and gC. Let Z (g) and
Z (gC) be respectively the centres of U (g) and U (gC). Clearly,

U (gC)=U (g)⊗R C, Z (gC)=Z (g)⊗R C.(2.6)
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If V is a complex vector space, and if ρ : g→ End(V ) is a representation of g,
then the map ρ extends to a morphism ρ : U (gC)→End(V ) of algebras.

If ρ : G → GL(V ) is a finite dimensional complex representation of G, then the
induced morphism ρ : U (gC) → End(V ) of algebras is K-equivalent. In this way,
V is a finite dimensional (gC,K)-module, i.e., a U (gC)-module, equipped with a
compatible K-action. By [KnV95, Proposition 4.46], it is equivalent to consider
finite dimensional representations of G and finite dimensional (gC,K)-modules.
In the sequel, we will not distinguish these two objets.

Remark 2.1. If ρ : G → GL(V ) is a finite dimensional complex representation of
G, and if W ⊂ V is a g-invariant subspace, by taking the exponential of the
action of g, we see that the group G preserves W . In particular, the set of g-
subrepresentations of ρ coincides with the set of G-subrepresentations of ρ.

2.2. The Casimir operator. Let Cg ∈ Z (g) be the Casimir element associated
to B. If e1, · · · , em is an orthonormal basis of (p,B|p), and if em+1, · · · , em+n is an
orthonormal basis of (k,−B|k), then

Cg =−
m∑

i=1
e2

i +
n+m∑

i=m+1
e2

i .(2.7)

If ρ : g→ End(V ) is a complex representation of g, we denote by Cg,V or Cg,ρ ∈
End(V ) the corresponding Casimir operator acting on V , i.e.,

Cg,V = Cg,ρ = ρ(Cg).(2.8)

Similarly, the Casimir of u (with respect to B) acts on V , so that

Cu,V = Cg,V .(2.9)

2.3. The Dirac operator. Let c(p) be the Clifford algebra of (p,B|p). That is
an algebra over R generated by 1 ∈ R, a ∈ p with the commutation relation for
a1,a2 ∈ p,

a1a2 +a2a1 =−2B(a1,a2).(2.10)

Let Sp be the spinor of (p,B|p). If a ∈ p, the action of a on Sp is denoted by c(a).
If a ∈ k, ad(a)|p acts as an antisymmetric endomorphism on p. It acts on Sp by

c
(
ad(a)|p

)= 1
4

m∑
i, j=1

〈[a, e i], e j〉c(e i)c(e j).(2.11)

Let ρ : g→ End(V ) be a complex representation of g. Let DSp⊗V be the Dirac
operator acting on Sp⊗V , i.e.,

DSp⊗V =
m∑

i=1
c(e i)ρ(e i).(2.12)

Recall that k acts on p by adjoint action. The operator Ck,p is defined in (2.8).

Proposition 2.2. The following identity of operators on Sp⊗V holds,(
DSp⊗V

)2 = Cg,V + 1
8

Tr
[
Ck,p

]
−Ck,Sp⊗V .(2.13)
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Proof. This is a consequence of [BoW00, Lemma II.6.11] and of Kostant’s strange
formula [Ko76] (see also [B11, (2.6.11), (7.5.4)]).

There is another way proving this result, by imitating the proof of [B11, Theo-
rem 7.2.1] which uses Kostant’s cubic Dirac operator [Ko76, Ko97]. �

In the sequel, we will also consider the Dirac operator associated to the compact
symmetric pair (u,k) with respect to the positive bilinear form −B|u. Using the
identification a ∈ p→p−1a ∈p−1p, we can identify c(p) with the Clifford algebra
of the Euclidean space (

p−1p,−B). Also, Sp can be identified with the spinor
S
p−1p of (

p−1p,−B). Then, the Dirac operator DS
p−1p⊗V is just

p−1DSp⊗V . By
(2.9) and (2.13), we have

−
(
DS

p−1p⊗V
)2

= Cu,V + 1
8

Tr
[
Ck,

p−1p
]
−Ck,S

p−1p⊗V .(2.14)

2.4. Semisimple elements. If γ ∈ G, we denote by Z(γ) ⊂ G the centraliser of γ
in G, and by z(γ) ⊂ g its Lie algebra. If a ∈ g, let Z(a) ⊂G be the stabiliser of a in
G, and let z(a) ⊂ g be its Lie algebra. If a ⊂ g is a subset, we define Z(a) and z(a)
similarly.

Let γ ∈G be a semisimple element, i.e., there is gγ ∈G such that γ= gγeak−1 g−1
γ

and

a ∈ p, k ∈ K , Ad(k)a = a.(2.15)

The norm |a| depends only on the conjugacy class of γ in G. Write

`[γ] = |a|.(2.16)

A semisimple element γ is called elliptic, if `[γ] = 0.
If γ is semisimple, by [Kn02, Proposition 7.25], Z(γ) is a (possibly non con-

nected) reductive group with Cartan involution5 gγθg−1
γ . Let K(γ) ⊂ Z(γ) be the

associated maximal compact subgroup of Z(γ).

2.5. The fundamental Cartan subalgebra. Let T ⊂ K be a maximal torus of
K . Let t ⊂ k be the Lie algebra of T. If NK (T) is the normaliser of T in K , let
W(T : K)= NK (T)/T be associated Weyl group.

Set

b= {a ∈ p : [a,t]= 0} , h= b⊕ t.(2.17)

By [Kn86, p. 129], h is a Cartan subalgebra of g. Let H = Z(h) be the associ-
ated Cartan subgroup of G. By [Kn86, Theorem 5.22], H is a connected abelian
reductive subgroup of G, so that

H = exp(b)×T.(2.18)

We will call h and H respectively the fundamental Cartan subalgebra of g and the
fundamental Cartan subgroup of G.

Recall that complex ranks of G and K are defined respectively by the dimen-
sions of Cartan subalgebras of gC and kC.

5By [BSh19, Theorem 2.3], this is indeed independent of the choice of gγ.
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Definition 2.3. The fundamental rank δ(G) of G is defined by the difference of
complex ranks of G and K , i.e.,

δ(G)= dimb.(2.19)

Note that m and δ(G) have the same parity.

2.6. A splitting of g according to the b-action. By [Kn02, Proposition 7.25],
Z(b) is a (possibly non connected) reductive subgroup of G, so that we have the
Cartan decomposition

z(b)= p(b)⊕ k(b).(2.20)

Let m⊂ z(b) be the orthogonal space (with respect to B) of b in z(b). Then m is a
Lie subalgebra of g, and θ acts on m so that we have the Cartan decomposition

m= pm⊕ km.(2.21)

Let M ⊂ G be the connected Lie subgroup associated to the Lie algebra m. By
[B11, (3.3.11) and Theorem 3.3.1], M is closed in G and is a connected reductive
subgroup of G with maximal compact subgroup

KM = M∩K .(2.22)

Moreover, we have

Z0(b)= exp(b)×M, z(b)= b⊕m, p(b)= b⊕pm, k(b)= km.(2.23)

Since h is also a Cartan subalgebra for z(b), we have

δ(M)= 0.(2.24)

Let p⊥(b),k⊥(b),z⊥(b) be respectively the orthogonal spaces (with respect to B)
of p(b),k(b),z(b) in p,k,g. Clearly,

z⊥(b)= p⊥(b)⊕ k⊥(b).(2.25)

And also

p= b⊕pm⊕p⊥(b), k= km⊕ k⊥(b), g= b⊕m⊕ z⊥(b).(2.26)

The group KM acts trivially on b. It also acts on pm, p⊥(b), km and k⊥(b), and
preserves the splittings (2.26). Similarly, the groups M and Z0(b) act trivially on
b, act on m,z⊥(b), and preserves the third splitting in (2.26).

Remark 2.4. We can define similar objects associated to the action of
p−1b⊂ u on

u. Let um and u(b) be the compact forms of m and z(b). Then,

u(b)=
p
−1b⊕um.(2.27)

Let u⊥(b) be the orthogonal space of u(b) in u. Then,

u⊥(b)=
p
−1p⊥(b)⊕ k⊥(b), u=

p
−1b⊕um⊕u⊥(b).(2.28)

Elements of b act on z⊥(b) with semisimple real eigenvalues. We fix an element
fb ∈ b, called positive, such that ad( fb)|z⊥(b) is invertible. The choice of fb is ir-
relevant. Let n ⊂ z⊥(b) (resp. n ⊂ z⊥(b)) be the direct sum of the eigenspaces of
ad( fb)|z⊥(b) associated to the positive (resp. negative) eigenvalues. Then,

z⊥(b)= n⊕n, n= θn.(2.29)
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Clearly, Z0(b) acts on n, n and preserves the first decomposition in (2.29).

Proposition 2.5. The following statements hold.

i) The vector spaces n,n ⊂ g are Lie subalgebras of g, which have the same even
dimension.

ii) The bilinear form B vanishes on n,n and induces a Z0(b)-isomorphism,

n∗ ' n.(2.30)

iii) The actions of M on n,n,n∗,n∗ are equivalent. For 0 É j É dimn, we have
isomorphisms of representations of M,

Λ j(n∗)'Λdimn− j(n∗).(2.31)

iv) The projections on p,k map n,n into p⊥m,k⊥m isomorphically.
v) The actions of KM on n,n,p⊥m,k⊥m are equivalent.

Proof. This is [Sh20, Proposition 3.2, Corollary 3.3] (see also [BSh19, Proposition
3.10]). �

Let R(K) be the representation ring of K . We can identify R(K) with the sub-
ring of the Ad(K)-invariant smooth functions on K which is generated by the
characters of finite dimensional complex representations of K .

Similarly, we can define R(T). The Weyl group W(T : K) = NK (T)/T acts on
R(T). By [BrDi85, Proposition VI.2.1], the restriction induces an isomorphism of
rings

R(K)' R(T)W(T:K).(2.32)

Since KM and K have the same maximal torus T, the restriction induces an
injective morphism R(K) → R(KM) of rings. Recall a key result established in
[Sh20, Theorem 3.5, Corollary 3.6] (see also [Sh18, Theorem 6.1, Corollary 6.12]).

Theorem 2.6. For i, j ∈ N, the adjoint representations of KM on Λi(p∗m,C) and
Λ j(n∗C) have unique lifts in R(K).

2.7. Admissible metrics. Let ρ : G → GL(V ) be a finite dimensional complex
representation of G. Set

ρθ = ρ ◦θ.(2.33)

Then ρθ : G →GL(V ) is still a representation of G.

Proposition 2.7. If δ(G)= 0, we have an isomorphism of representations of G,

ρ ' ρθ.(2.34)

Proof. When δ(G) = 0, by [Kn86, Problem XII.10.14], there is k0 ∈ K , such that
Ad(k0) =−1 on p and Ad(k0) = 1 on k. By (2.3), for g ∈ G, we have θ(g) = k0 gk−1

0 .
Therefore, ρ(k0) : V →V is the required isomorphism (2.34). �

Definition 2.8. A Hermitian metric 〈,〉V on V is called admissible, if for u,v ∈V ,
Y1 ∈ p, Y2 ∈ k, we have〈

ρ(Y1)u,v
〉

V = 〈
u,ρ(Y1)v

〉
V ,

〈
ρ(Y2)u,v

〉
V =−〈

u,ρ(Y2)v
〉

V .(2.35)
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Assume that V has an admissible metric. If ρ∗ denotes the anti-dual represen-
tation of ρ, the admissible metric induces an isomorphism of G-representations,

ρθ ' ρ∗.(2.36)

If W ⊂ V is a (gC,K)-submodule of V , then the orthogonal space W⊥ ⊂ V is still
a (gC,K)-submodule. Moreover, by restrictions, W and W⊥ still have admissible
metrics. In this way, we see that any finite dimensional G-representation with an
admissible metric is completely reducible, i.e., it can be decomposed as a direct
sum of irreducible G-representations.

By [MatMu63, Lemma 3.1], if G is semisimple, any finite dimensional repre-
sentation of G has an admissible Hermitian metric. When G is reductive and has
a compact centre, we have a similar result.

Proposition 2.9. If G has a compact centre ZG , then any finite dimensional com-
plex representation ρ : G →GL(V ) has an admissible Hermitian metric.

Proof. Let Gss ⊂G be the connected Lie subgroup of G associated to the Lie alge-
bra [g,g] ⊂ g. By [Kn02, Corollary 7.11], Gss is a closed subgroup of G, which is
semisimple and G = Gss ·Z0

G . Let Uss be the compact form of Gss. By Weyl’s The-
orem [Kn02, Theorem 4.69], the universal cover Ũss of Uss is still compact. Since
Ũss is simply connected, by Weyl’s unitary trick, the group Ũss acts on V which is
compatible with the action of [g,g]. Moreover, the Ũss-action commutes with the
Z0

G-action. Thus, the group Ũss ×Z0
G acts on V . Since Ũss ×Z0

G is compact, there
is a Ũss × Z0

G-invariant Hermitian metric on V , which is the desired admissible
Hermitian metric. �

Remark 2.10. If G has a noncompact centre, Proposition 2.9 does not hold. For ex-

ample, when G =R, the representation x ∈R→
(
1 x
0 1

)
∈GL2(C) is not completely

reducible, so it does not have an admissible metric.

3. THE ZETA FUNCTIONS OF RUELLE AND SELBERG

The purpose of this section is to introduce the zeta functions of Ruelle and of
Selberg on locally symmetric spaces.

This section is organised as follows. In Section 3.1, we introduce the symmetric
space X =G/K , the K-principal bundle p : G → X , and a Hermitian vector bundle
associated to a finite dimensional unitary representation of K .

In Section 3.2, we introduce a discrete cocompact subgroup Γ⊂G of G, the cor-
responding locally symmetric space Z = Γ\X , and a flat vector bundle associated
to a finite dimensional representation of Γ.

Finally, in Sections 3.3 and 3.4, we introduce the zeta functions of Ruelle and
of Selberg. We recall their properties established in [Sh18, Section 7] and [Sh20,
Section 5].

We use the notation in Section 2.

3.1. Symmetric spaces. Set X = G/K . Let p : G → X be the natural projection.
Then p : G → X is a K-principal bundle.
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The group K acts isometrically on p. The tangent bundle of X is given by

TX =G×K p.(3.1)

By (3.1), the scalar product B|p on p induces a Riemannian metric gTX on X .
Classically, (X , gTX ) has a parallel and nonpositive sectional curvature.

Let τ be an orthogonal (resp. unitary) representation of K acting on a finite
dimensional Euclidean (resp. Hermitian) space Eτ. Set

Eτ =G×K Eτ.(3.2)

Then Eτ is a Euclidean (resp. Hermitian) vector bundle on X .
By (3.2), we have an identification

C∞(X ,Eτ)= C∞(G,Eτ)K .(3.3)

The group G acts on the left on C∞(X ,Eτ). Denote by Cg,X ,τ the Casimir element
of G on C∞(X ,Eτ). By (2.7), Cg,X ,τ is a generalised Laplacian on X in the sense
of [BeGeVe04, Definition 2.2], which is self adjoint with respect to the standard
L2-product (c.f. (1.2)).

3.2. Locally symmetric spaces. Let Γ⊂G be a discrete cocompact subgroup of
G. By [S60, Lemma 1] (see also [Ma19, Proposition 3.9]), Γ contains only semisim-
ple elements. Let Γe ⊂ Γ be the subset of elliptic elements, and let Γ+ = Γ−Γe be
the subset of nonelliptic elements.

The group Γ acts isometrically on the left on X . Take

Z =Γ\X =Γ\G/K .(3.4)

Then, Z is a compact orbifold with Riemannian metric gTZ . We denote by p̂ :
Γ\G → Z and π̂ : X → Z the natural projections, so that the diagram

G
p
��

// Γ\G

p̂
��

X π̂ // Z

(3.5)

commutes.
From now on until Section 6, we assume that Γ is torsion free, i.e., Γe = {id}.

Then Z is a connected closed orientable Riemannian locally symmetric manifold
with nonpositive sectional curvature. Since X is contractible, π1(Z) = Γ and X is
the universal cover of Z. In Section 7, we will consider the case where Γ is not
torsion free.

The Γ-action on X lifts to all the homogeneous Euclidean or Hermitian vector
bundles Eτ on X constructed in (3.2). Then Eτ descends to a Euclidean or Hermit-
ian vector bundle on Z,

Fτ =Γ\Eτ =Γ\G×K Eτ.(3.6)

If r ∈ N∗, and if ρ : Γ→ GLr(C) is a representation of Γ, let F be the associated
flat vector bundle on Z,

F =Γ\(X ×Cr).(3.7)
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The group Γ acts on C∞(G,Eτ)K , as well as on Cr by ρ. We have the identification

C∞(Z,Fτ⊗F)= (
C∞(X ,Eτ)⊗Cr)Γ .(3.8)

The Casimir operator Cg,X ,τ⊗ id preserves the above invariant space. Its action
on C∞(Z,Fτ⊗F) will be denoted by Cg,Z,τ,ρ. If ρ is unitary, Cg,Z,τ,ρ is self-adjoint
with respect to the L2-product on C∞(Z,Fτ⊗F) induced by the Hermitian metric
on Eτ, the standard Hermitian metric on Cr, as well as the Riemannian volume
of (Z, gTZ) (c.f. (1.2)). When ρ is the trivial representation, we denote it by Cg,Z,τ.

3.3. The Ruelle zeta function. Let us recall the definition of the Ruelle dynam-
ical zeta function introduced by Fried [F87, Section 5].

For γ ∈Γ, set

Γ(γ)= Z(γ)∩Γ.(3.9)

By [S60, Lemma2] (see also [Sh18, Proposition 4.9], [Ma19, Proposition 3.9]), Γ(γ)
is cocompact in Z(γ).

Let [Γ+] and [Γ] be the sets of conjugacy classes in Γ+ and Γ. If γ ∈ Γ, the
associated conjugacy class in Γ is denoted by [γ] ∈ [Γ].6 If [γ] ∈ [Γ], for all γ′ ∈ [γ],
the locally symmetric spaces

Γ(γ′)\Z(γ′)/K(γ′)(3.10)

are canonically diffeomorphic, and will be denoted by B[γ].
By [DuKVa79, Proposition 5.15], the set of nontrivial closed geodesics on Z

consists of a disjoint union ∐
[γ]∈[Γ+]

B[γ].(3.11)

If [γ] ∈ [Γ+], all the elements of B[γ] have the same length `[γ] > 0.
If [γ] ∈ [Γ+], the geodesic flow induces a locally free action of S1 on B[γ], so that

B[γ]/S1 is a closed orbifold. Let χorb
(
B[γ]/S1) ∈ Q be the orbifold Euler character-

istic number [Sa57]. We refer the reader to [Sh18, Proposition 5.1] for an explicit
formula for χorb

(
B[γ]/S1). In particular, if δ(G)Ê 2, or if δ(G)= 1 and γ can not be

conjugate by an element of G into the fundamental Cartan subgroup H, then

χorb
(
B[γ]/S1)= 0.(3.12)

The S1-action on B[γ] is not necessarily effective. Let

m[γ] =
∣∣ker

(
S1 →Diff(B[γ])

)∣∣ ∈N∗(3.13)

be the generic multiplicity.
Recall that ρ : Γ→ GLr(C) is a representation of Γ. By [Sh20, (4.4)], there is

σ0 > 0 such that ∑
[γ]∈[Γ+]

∣∣χorb
(
B[γ]/S1)∣∣

m[γ]

∣∣Tr
[
ρ(γ)

]∣∣ e−σ0`[γ] <∞.(3.14)

6 The quantity `[γ] depends only on the conjugacy class of γ in G. So they are well defined on
the conjugacy classes of Γ.
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Definition 3.1. For Re(σ)Êσ0, the Ruelle dynamical zeta function is defined by

Rρ(σ)= exp
( ∑

[γ]∈[Γ+]

χorb
(
B[γ]/S1)

m[γ]
Tr

[
ρ(γ)

]
e−σ`[γ]

)
.(3.15)

Remark 3.2. By (3.12), if δ(G) Ê 2, the Ruelle zeta function Rρ(σ) is the constant
function 1. Moreover, if δ(G) = 1, then the sum on the right-hand side of (3.15)
can be reduced to a sum over [γ] ∈ [Γ+] such that γ can be conjugate into H.

Theorem 3.3. If dim Z is odd, the Ruelle zeta function Rρ has a meromorphic
extension to σ ∈C.

Proof. This is [Sh20, Theorem 0.1 i)]. �

Let Rρ be the meromorphic function defined for σ ∈C by

Rρ(σ)= Rρ(σ).(3.16)

By [Sh20, Proposition 4.4], we have

Rρ∗ = Rρ, Rρ = Rρ.(3.17)

If ρ is a finite dimensional complex representation of G, the restriction ρ|Γ is a
representation of Γ. We write Rρ = Rρ|Γ to ease the notation.

Proposition 3.4. If ρ is a finite dimensional complex representation of G with
an admissible metric, then the following identity of meromorphic functions on C
holds,

Rρθ = Rρ.(3.18)

Proof. This is a consequence of (2.36) and (3.17). �

3.4. The Selberg zeta function. In this subsection, we assume δ(G)= 1 and we
use the notation in Section 2.6. Recall that KM is defined in (2.22). We have seen
that the morphism R(K)→ R(KM) of rings is injective.

Assumption 3.5. Assume that η = η+−η− is a virtual M-representation on the
finite dimensional complex vector space E+

η −E−
η such that

(1) η|KM = η+|KM
−η−|KM

∈ R(KM) has a unique lift in R(K).
(2) the Casimir Cum of um acts on η± by the same scalar Cum,η ∈R.

Following [Sh18, Definition 7.4] and [Sh20, Defintion 5.7], let us define the Sel-
berg zeta function associated7 to η. Recall that H = exp(b)×T is the fundamental
Cartan subgroup of G. For eak−1 ∈ H, we write γ ∼ eak−1 ∈ H if there is gγ ∈ G
such that γ= gγeak−1 g−1

γ . By [Sh18, (7-62)], there is σ1 > 0 such that

∑
[γ]∈[Γ+]

γ∼eak−1∈H

∣∣χorb
(
B[γ]/S1)∣∣

m[γ]

e−σ1`[γ]∣∣det
(
1−Ad(eak−1)

) |z⊥(b)
∣∣1/2 <∞.(3.19)

7A more general construction for the Selberg zeta function is given in [Sh20], which is associ-
ated to η and to an arbitrary representation of ρ :Γ→GLr(C).
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Definition 3.6. For Re(σ)Êσ1, set

Zη(σ)= exp
(
− ∑

[γ]∈[Γ+]
γ∼eak−1∈H

χorb
(
B[γ]/S1)

m[γ]

TrEη

s [k−1]∣∣det
(
1−Ad(eak−1)

) |z⊥(b)
∣∣1/2 e−σ`[γ]

)
.(3.20)

Recall that by Corollary 2.6, Λ•(p∗m,C) has a unique lift in R(K).

Definition 3.7. Let η̂ ∈ R(K) be the unique virtual representation of K on Eη̂ =
E+
η̂
−E−

η̂
such that the following identity in R(KM) holds,

Eη̂|KM =Λ•(p∗m,C)⊗̂Eη|KM ∈ R(KM).(3.21)

Let Cg,Z,η̂ be the self adjoint generalised Laplacian acting on C∞(Z,Fη̂) intro-
duced below (3.8). For λ ∈C, set

mη(λ)= dimker
(
Cg,Z,η̂+ −λ

)
−dimker

(
Cg,Z,η̂− −λ

)
.(3.22)

Let

detgr

(
Cg,Z,η̂+σ

)
= det

(
Cg,Z,η̂+ +σ)

det
(
Cg,Z,η̂− +σ)(3.23)

be a graded determinant of Cg,Z,η̂+σ. As in (1.8), by [Vo87] (see also [Sh20, The-
orem 1.5]), the function (3.23) is meromorphic on σ ∈ C. Moreover, its zeros and
poles belong to the set

{−λ :λ ∈Sp
(
Cg,Z,η̂)}. If λ ∈Sp

(
Cg,Z,η̂), the order of the zero

at σ=−λ is mη(λ).
Following [Sh18, (7-60)] and [Sh20, (5.18), (5.19)], we set

ση = 1
8

Tru
⊥(b)

[
Cu(b),u⊥(b)

]
−Cum,η.(3.24)

Remark 3.8. When ZG is non compact, by [Sh18, (4-52)], we have

G = exp(b)×M.(3.25)

Therefore, u⊥(b)= 0. By (3.24), we have

ση =−Cum,η.(3.26)

Let Pη(σ) be the odd polynomial defined in [Sh18, (7-61)] and [Sh20, (5.20),
Remark 5.9].

Theorem 3.9. The Selberg zeta function Zη(σ) has a meromorphic extension to σ ∈
C such that the following identity of meromorphic functions on C holds,

Zη(σ)= detgr

(
Cg,Z,η̂+ση+σ2

)
exp

(
vol(Z)Pη(σ)

)
.(3.27)

The zeros and poles of Zη(σ) belong to the set
{±i

√
λ+ση :λ ∈Sp

(
Cg,Z,η̂)} . If λ ∈

Sp
(
Cg,Z,η̂) and λ 6= −ση, the order of zero at σ=±i

√
λ+ση is mη(λ). The order of

zero at σ= 0 is 2mη(−ση). Also,

Zη(σ)= Zη(−σ)exp
(
2vol(Z)Pη(σ)

)
.(3.28)

Proof. This is [Sh20, Theorem 5.10] for the trivial twist (c.f. Footnote 7). �
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4. THE FRIED CONJECTURE AND ADMISSIBLE METRICS

In this section, we introduce a class of Hermitian flat vector bundles on locally
symmetric spaces associated to representations of G with an admissible metrics.
We state the main result (Theorem 4.4) of this article, which confirms the Fried
conjecture for this class of Hermitian flat vector bundles.

This section is organised as follows. In Section 4.1, we introduce a Hermitian
metric on a flat vector bundle whose holonomy representation is the restriction
ρ|Γ of a representation ρ of G with an admissible metric.

In Section 4.2, we state Theorem 4.4.
In Sections 4.3-4.5, we deduce Theorem 0.1, Corollaries 0.2 and 0.3 from Theo-

rem 4.4.
Finally, in Section 4.6, we show Theorem 4.4 when δ(G)= 1 and ZG is compact.

4.1. Hermitian metrics on flat vector bundles. Let ρ : G → GL(E) be a finite
dimensional complex representation of G with admissible Hermitian metric 〈,〉E.

Let F be the flat vector bundle associated to ρ|Γ defined in (3.7). Let us construct
a Hermitian metric gF on F following [Mü12, Section 2.5] and [BMaZ17, Section
8.1]. By the second identity of (2.35), the restriction ρ|K of ρ to K is unitary. Let

Eρ|K =G×K E(4.1)

be the Hermitian vector bundle on X defined in (3.2). We have a canonical G-
equivariant identification

[g,v] ∈G×K E → (pg, gv) ∈ X ×E.(4.2)

In this way, the G-invariant Hermitian metric on Eρ|K induces a G-invariant Her-
mitian metric gπ̂

∗F on the trivial vector bundle π̂∗F = X ×E. It descends to a
Hermitian metric gF on F =Γ\(X ×E).

Definition 4.1. We will call such (F, gF ) an admissible Hermitian flat vector bun-
dle. The gF will be called an admissible Hermitian metric on F.

By (4.2), as in (3.3) and (3.8), we have the identifications

Ω• (X , π̂∗F
)= C∞ (

G,Λ•(p∗)⊗R E
)K , Ω•(Z,F)= C∞ (

Γ\G,Λ•(p∗)⊗R E
)K .(4.3)

Let �X be the Hodge Laplacian on X acting on Ω•(X , π̂∗F) with respect to the
metrics (gTX , gπ̂

∗F ). Let �Z be the Hodge Laplacian on Z acting on Ω•(Z,F) with
respect to the metrics (gTZ , gF ). Recall that Cu,ρ ∈End(E) is the Casimir operator
of u acting on E (see (2.9)). The following proposition is classical (see [BMaZ17,
Proposition 8.4]).

Proposition 4.2. Under the identifications (4.3), we have

�X = Cg,X ,Λ•(p∗)⊗RE|K −Cu,ρ, �Z = Cg,Z,Λ•(p∗)⊗RE|K −Cu,ρ.(4.4)

Let T(F) be the analytic torsion of F associated to (gTZ , gF ). Let NΛ•(T∗Z) be
the number operator, i.e. NΛ•(T∗Z) acts by multiplication by k on Ωk(Z,F).

Theorem 4.3. Assume δ(G) 6= 1. For any t > 0, we have

Trs

[(
NΛ•(T∗Z) − m

2

)
exp

(
−t�Z

)]
= 0.(4.5)
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In particular,

T(F)= 1.(4.6)

Proof. This is [BMaZ11] and [BMaZ17, Theorem 8.6, Remark 8.7] (see also [Ma19,
Theorem 5.5]), which generalises a vanishing theorem originally due to [MoSt91,
Corollary 2.2] (see also [B11, Theorem 7.9.3]) where F is assumed to be unitarily
flat. �

Recall that ρθ = ρ ◦ θ. Clearly, 〈,〉E is still an admissible metric for ρθ. Let
(Fθ, gFθ

) be the associated admissible Hermitian flat vector bundle on Z. Since
ρ|K = ρθ|K , by (4.3), the Hodge Laplacians of (F, gF ) and (Fθ, gFθ

) act on the same

space. By (4.4) and by Cu,ρ = Cu,ρθ , these two Laplacians coincide. In particular,

H• (Z,F)' H•
(
Z,Fθ

)
, T(F)= T

(
Fθ

)
.(4.7)

4.2. The statement of the main result. The main result of this article is the
following.

Theorem 4.4. Assume that dim Z is odd and that ρ : G → GL(E) is a finite di-
mensional complex representation of G with an admissible metric. Let (F, gF ) be
the associated admissible Hermitian flat vector bundle. If ρ ' ρθ, then there exist
explicit constants Cρ ∈R∗ and rρ ∈Z (see (4.36) and Remark 5.11) such that when
σ→ 0, we have

Rρ(σ)= CρT(F)2σrρ +O (σrρ+1).(4.8)

Moreover, if H•(Z,F)= 0, then

Cρ = 1, rρ = 0,(4.9)

so that

Rρ(0)= T(F)2.(4.10)

Proof. Since dim Z is odd, δ(G) is odd. If δ(G) Ê 3, by Remark 3.2 and Theorem
4.3, our theorem follows easily. If δ(G) = 1, we will consider the case where ZG is
non compact in Section 4.6 and the case where ZG is compact in Sections 5 and
6. �

Remark 4.5. Assume dim Z is even. Then δ(G) is even as well. If δ(G) Ê 2, then
by Remark 3.2 and Theorem 4.3, we have Rρ(0) = T(F)2 = 1. If δ(G) = 0, by the
Theorem of Gauss-Bonnet-Chern and by [Sh18, Proposition 4.1], we have

χ(Z,F)= dimE ·χ(Z) 6= 0.(4.11)

In particular, there are no acyclic flat vector bundles.

4.3. Proof of Corollary 0.2. Let us restate Corollary 0.2.

Theorem 4.6. Assume that dim Z is odd and that ρ : G →GL(E) is a finite dimen-
sional complex representation of G with an admissible metric. Let (F, gF ) be the
associated admissible Hermitian flat vector bundle. If ρ is irreducible and ρ 6' ρθ,
then

H•(Z,F)= 0,(4.12)
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and Rρ is regular at σ= 0, so that∣∣Rρ(0)
∣∣= T(F)2.(4.13)

Proof. The vanishing of the cohomology H•(Z,F) is a consequence of [BoW00, The-
orem VII.6.7] (see (6.20) for a proof).

Take

ρ′ = ρ⊕ρθ.(4.14)

By (3.18) and (4.14), we have

Rρ′ = RρRρ.(4.15)

Note that ρ′ has an admissible metric. Let F ′ be the admissible Hermitian flat
vector bundle associated to ρ′. By (4.7) and (4.12), we have

H• (Z,F ′)= H•(Z,F)⊕H•
(
Z,Fθ

)
= 0, T(F ′)= T(F)T

(
Fθ

)
= T(F)2.(4.16)

Since ρ′ = ρ⊕ρθ is invariant by θ, we can apply Theorem 4.4 to ρ′. Therefore,
Rρ′ is regular at σ= 0 and

Rρ′(0)= T(F ′)2.(4.17)

By (4.15)-(4.17), we get (4.13). �

4.4. Proof of Theorem 0.1. Since any G-representation with an admissible met-
ric can be decomposed as a direct sum of irreducible G-representations, which still
have admissible metrics, by Theorems 4.4 and 4.6, we get Theorem 0.1. �

4.5. Proof of Corollary 0.3. Let ρ0 : Γ→ U(r) be a unitary representation of Γ.
Let F0 be the associated flat vector bundle . Since ρ0 is unitary, F0 admits a flat
metric gF0 . We will show that (F0, gF0) is indeed an admissible Hermitian flat
vector bundle associated to a larger reductive group.

Let

G =G×U(r), K = K ×U(r).(4.18)

Then, G is a connected real reductive group with maximal compact subgroup K .
We have an identification

G/K ' X .(4.19)

Let Γ be the graph of ρ0, i.e.,

Γ= {
(γ,ρ0(γ)) ∈G : γ ∈Γ}

.(4.20)

Then Γ is a discrete torsion free and cocompact subgroup of G, so that

Γ\G/K ' Z.(4.21)

Let ρ
0

: G → U(r) be the representation of G defined by the projection onto
the second component. The standard Hermitian metric on Cr is admissible for
the representation ρ

0
. Also, we have an identification of Hermitian flat vector

bundles

Γ\(G/K ×Cr)' F0.(4.22)
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In particular, (F0, gF0) is an admissible Hermitian flat vector bundle associated to
the representation ρ

0
of G.

More generally, the admissible Hermitian flat vector bundle (F, gF ) associated
to the G-representation ρ is also an admissible Hermitian flat vector bundle asso-
ciated to the G-representation ρ = ρ�1. Therefore, F0 ⊗F with the induced Her-
mitian metric is an admissible Hermitian flat vector bundle associated to ρ

0
⊗ρ.

By these considerations, Corollary 0.3 follows from Theorem 0.1 and Corollary
0.2. �

4.6. Proof of Theorem 4.4 when δ(G) = 1 and ZG is noncompact. Suppose
now δ(G) = 1 and ZG is non compact. Let ρ be a representation of G with an
admissible metric such that ρ ' ρθ. We can and we will assume that the Casimir
Cu acts on ρ as a scalar Cu,ρ ∈R.

For β ∈ b∗C, denote by Cβ the one dimensional representation of exp(b) such that
a ∈ b acts as the scalar 〈β,a〉 ∈C. Clearly, Cβ has an admissible metric if and only
if β ∈ b∗.

Recall that since ZG is not compact, we have G = exp(b)×M (see (3.25)). Since
a representation with an admissible metric is completely reducible, we can write

ρ = ⊕
β∈b∗

Cβ�ηβ,(4.23)

where ηβ is a representation of M.

Proposition 4.7. The following statements hold.

i) For β ∈ b∗, we have isomorphisms of representations of M,

η−β ' ηβ.(4.24)

ii) For β ∈ b∗, the representation ηβ of M satisfies Assumption 3.5, so that

Cum,ηβ = Cu,ρ+|β|2 ∈R,(4.25)

Proof. Since ρθ ' ρ, by (4.23), we have isomorphisms of representations of M, ηθ
β
'

η−β. Since δ(M)= 0, by Proposition 2.7, we have isomorphisms of representations
of M, ηθ

β
' ηβ. From these considerations, (4.24) follows.

By (3.25), we have KM = K , so Assumption 3.5 (1) is trivial. Since Cu,ρ is a
scalar, by (3.25) and (4.23), the Casimir of um acts on ηβ as a scalar given in
(4.25). In particular, ηβ satisfies also Assumption 3.5 (2). �

Recall that in Section 2.6, we have fixed a positive element fb ∈ b in b. Set

b∗+ = {α ∈ b∗ : 〈α, fb〉 > 0}.(4.26)

By (4.24), we can rewrite (4.23) as

ρ = 1�η0 ⊕
⊕
β∈b∗+

(
Cβ⊕C−β

)
�ηβ.(4.27)

Note that η0 can be zero.
Let Zηβ(σ) be Selberg zeta function associated to ηβ.
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Proposition 4.8. The following identity of meromorphic functions on C holds,

Rρ(σ)= (
Zη0(σ)

)−1 ∏
β∈b∗+

(
Zηβ

(
σ+|β|)Zηβ

(
σ−|β|))−1

.(4.28)

Proof. By (4.27), for eak−1 ∈ H, we have

Tr
[
ρ

(
eak−1)]=Tr

[
η0

(
k−1)]+ ∑

β∈b∗+
Tr

[
ηβ

(
k−1)](

e|β||a|+ e−|β||a|
)
.(4.29)

By (3.25), we have z⊥(b) = 0, so that the denominator
∣∣det(1−Ad(γ))|z⊥(b)

∣∣1/2 in
(3.20) disappears. By (3.15), (3.20), and (4.29), we get (4.28). �

By (3.26), (3.27), and (4.25), we see that

Zηβ

(
−

√
σ2 +|β|2

)
Zηβ

(√
σ2 +|β|2

)
=

[
detgr

(
Cg,Z,η̂β −Cu,ρ+σ2

)]2
(4.30)

is a meromorphic function on C. We have a generalisation of [Sh18, Theorem 5.6].
Recall that T(σ) is defined in (1.8).

Theorem 4.9. The following identity of meromorphic functions on C holds,

Rρ(σ)= T
(
σ2)exp

(−vol(Z)Pη0(σ)
) ∏
β∈b∗+

Zηβ

(
−

√
σ2 +|β|2

)
Zηβ

(√
σ2 +|β|2

)
Zηβ

(
σ+|β|)Zηβ

(
σ−|β|) .(4.31)

Proof. By (3.25), we have p= pm⊕b. By (3.21), we have an identity in R(K),

η̂β =
m∑

i=1
(−1)i−1iΛi(p∗C)⊗ηβ|K .(4.32)

By (4.4), (4.27), and (4.32), we have an identity of meromorphic functions,

T(σ)= detgr

(
Cg,Z,η̂0 −Cu,ρ+σ

)−1 ∏
β∈b∗+

detgr

(
Cg,Z,η̂β −Cu,ρ+σ

)−2
.(4.33)

By (3.26), (3.27), (4.25), (4.30), (4.33), we have

(4.34) T
(
σ2)= Zη0(σ)−1 exp

(
vol(Z)Pη0(σ)

)
× ∏
β∈b∗+

(
Zηβ

(
−

√
σ2 +|β|2

)
Zηβ

(√
σ2 +|β|2

))−1
.

By (4.28) and (4.34), we get (4.31). �

Set

rηβ = dimker
(
Cg,Z,η̂+

β −Cu,ρ
)
−dimker

(
Cg,Z,η̂−

β −Cu,ρ
)
.(4.35)

Following [Sh18, (7-75)], put

Cρ =
∏
β∈b∗+

(−4|β|2)−rηβ , rρ =−2
∑

β∈{0}∪b∗+
rηβ .(4.36)

Proceeding as [Sh18, (7-76)-(7-78)], using Theorem 4.9 instead of [Sh18, Theorem
7.8], we get (4.8).

Let Fβ be the admissible Hermitian flat subbundle of F associated to the G-
representation Cβ�ηβ. By (1.1), (4.4), (4.32), and (4.35), we have

rηβ =−χ′(Z,Fβ).(4.37)
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If H•(Z,F)= 0, then for all β ∈ b∗, H•(Z,Fβ)= 0, so rηβ = 0. By (4.36), we get (4.9).
The proof of Theorem 4.4 in the case when δ(G) = 1 and ZG is non compact is

completed. �

5. THE PROOF OF (4.8) WHEN δ(G)= 1 AND ZG IS COMPACT

The purpose of this section is to show (4.8) when δ(G) = 1 and ZG is compact
by generalising the arguments given in Section 4.6. One of the difficulties is to
construct virtual representations ηβ of M satisfying Assumption 3.5 such that an
analogue of (4.28) holds. In the case of hyperbolic manifolds, such representations
are constructed using n-cohomology [Mü12]. Here, we construct ηβ via Dirac co-
homology. These two methods are equivalent. We adopt the latter since it is closer
to certain constructions given in [Sh18, Section 6].

This section is organised as follows. In Section 5.1, we recall some facts on the
structure of real reductive groups with δ(G)= 1 established in [Sh18, Section 6].

In Section 5.2, we decompose ρ according to the action of b. We show certain
representations of KM obtained in this way can be lifted in R(K).

In Section 5.3, we introduce virtual representations ηβ of M satisfying Assump-
tion 3.5.

Finally, in Section 5.4, we establish analogues of Proposition 4.8 and Theorem
4.9, and we show (4.8).

In this section, we assume that δ(G) = 1 and ZG is compact. Suppose also that
the G-representation (ρ,E) has an admissible metric and is such that ρ ' ρθ. As
in Section 4.6, we can and we will assume that Casimir operator Cu acts as a
scalar Cu,ρ ∈R.

5.1. The structure of the reductive group G with δ(G) = 1. Since G has a
compact centre and dimb= 1, we have b 6⊂ zg, so n 6= 0. By Proposition 2.5 i), dimn

is a positive even number. Set

`= 1
2

dimn ∈N∗.(5.1)

Proposition 5.1. Elements of b act on n and n as a scalar, i.e., there is α0 ∈ b∗

such that for a ∈ b, f ∈ n, f ∈ n, we have

[a, f ]= 〈α0,a〉 f ,
[
a, f

]
=−〈α0,a〉 f .(5.2)

In particular, [
n,n

]⊂ z(b), [n,n]= [
n,n

]= 0,(5.3)

and

[z(b),z(b)]⊂ z(b),
[
z(b),z⊥(b)

]⊂ z⊥(b),
[
z⊥(b),z⊥(b)

]⊂ z(b),(5.4)

[u(b),u(b)]⊂ u(b),
[
u(b),u⊥(b)

]⊂ u⊥(b),
[
u⊥(b),u⊥(b)

]⊂ u(b).

Proof. This is [Sh18, Propositions 6.2, 6.3, and (6-29)]. �

Let a0 ∈ b be such that

〈α0,a0〉 = 1.(5.5)
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By (5.4), (u,u(b)) is a compact symmetric pair. Recall that G has a compact
centre. Let U be the compact form of G [Kn86, Proposition 5.3]. Let U(b) be the
centraliser of b in U . Then, U(b) is a connected Lie group [Kn02, Corollary 4.51]
with Lie algebra u(b).

In [Sh18, (6-31)], we have shown that J = ad
(p−1a0

) ∈ End(u⊥(b)) defines a
U(b)-invariant complex structure on u⊥(b). Moreover, the associated holomor-
phic and anti-holomorphic subspaces are nC and nC, so that we have a U(b)-
equivariant splitting

u⊥(b)⊗R C= nC⊕nC.(5.6)

Let Su⊥(b) be the spinor of (u⊥(b),−B|u⊥(b)). Classically ([Hi74], see also [Sh18,
(6-33) and (6-34)]), we have an isomorphism of U(b)-representations,

Su⊥(b)
± 'Λeven/odd (

n∗C
)⊗det(nC)−1/2 .(5.7)

In the sequel, there are representations which do not always lift to U(b). There-
fore, it is more convenient to consider Su⊥(b) as a (bC⊕mC,KM)-module.

For 0 É j É 2`, let η j be the (mC,KM)-module Λ j(n∗C). By (2.31), we have an
isomorphism of (mC,KM)-modules,

η`− j ' η`+ j.(5.8)

Proposition 5.2. We have an isomorphism of (bC⊕mC,KM)-modules,

Su⊥(b) ' ⊕̀
j=−`

C jα0 �η`− j.(5.9)

For eak−1 ∈ H, we have

TrSu⊥(b)

s
[
eak−1]= ∣∣det

(
1−Ad(eak−1)

) |z⊥(b)
∣∣1/2

.(5.10)

Proof. By (5.2), (5.7), and (5.8), we get (5.9). By (5.9) and [Sh18, Proposition 6.5],
we get (5.10). �

Let B∗ be the bilinear form on g∗ induced by B.

Proposition 5.3. We have
1
8

Tr
[
Cu(b),u⊥(b)

]
=−`2B∗ (α0,α0) .(5.11)

Proof. This is [Sh18, Proposition 6.13] with j = 0. A direct proof of this result
can be obtained by applying Kostant’s stranger formula (see also [B11, (2.6.11),
(7.5.4)]), which is left to reader. �

5.2. A splitting of ρ according to the b-action. Recall that Z0(b)= exp(b)×M.
Since ρ has an admissible metric and since ρ ' ρθ, as in (4.23) and (4.27), we can
write

ρ|exp(b)×M = ⊕
β∈b∗

Cβ�ρβ = 1�ρ0 ⊕
⊕
β∈b∗+

(
Cβ⊕C−β

)
�ρβ.(5.12)

where ρβ are representations of M such that ρ−β ' ρβ.
Recall that the restriction induces an injective morphism R(K) → R(KM) of

rings.
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Theorem 5.4. For all β ∈ b∗, the restriction ρβ|KM has a unique lift in R(K).

Proof. By (2.32), it is enough to show that the character of ρβ|T is invariant under
the Weyl group W(T : K).

For eak−1 ∈ H, by in (5.12), as (4.29), we have

Tr
[
ρ

(
eak−1)]=Tr

[
ρ0

(
k−1)]+ ∑

β∈b∗+

(
e|β||a|+ e−|β||a|

)
Tr

[
ρβ

(
k−1)] .(5.13)

Let w ∈ NK (T). Since ρ is a G representation, for eak−1 ∈ H, we have

Tr
[
ρ

(
eak−1)]=Tr

[
ρ

(
weak−1w−1)]=Tr

[
ρ

(
eAd(w)awk−1w−1

)]
.(5.14)

By (2.17), Ad(w) preserves t and b (see [Sh20, Proposition 3.4]). Since K preserves
B|p, and since dimb= 1, we see that Ad(w)a = a or −a. By (5.13), we get

(5.15) Tr
[
ρ

(
eAd(w)awk−1w−1

)]
=Tr

[
ρ0

(
wk−1w−1)]

+ ∑
β∈b∗+

(
e|β||a|+ e−|β||a|

)
Tr

[
ρβ

(
wk−1w−1)] .

By (5.13)-(5.15), since dimb= 1, for β ∈ b∗, we have

Tr
[
ρβ

(
wk−1w−1)]=Tr

[
ρβ

(
k−1)] ,(5.16)

i.e., the character of ρβ|T is invariant under the Weyl group W(T : K). �

5.3. The representation ηβ. In [Sh18], we have shown that η j satisfies As-
sumption 3.5 and we consider the Selberg zeta function associated to η j. A naive
way to generalise the arguments in Section 4.6 is to consider the Selberg zeta
function associated to η j⊗ρβ. However, η j⊗ρβ satisfies Assumption 3.5 (1), while
Assumption 3.5 (2) fails in general. We need consider all the j together to produce
a virtual representation ηβ.

Recall that ρ : G →GL(E) is a representation of G, and that Su⊥(b) is the spinor

of
(
u⊥(b),−B|u⊥(b)

)
. Let DSu⊥(b)⊗E be the Dirac operator defined in Section 2.3. Let

DSu⊥(b)⊗E
± be the restriction of DSu⊥(b)⊗E to Su⊥(b)

± ⊗E.
By (2.14), we have

−
(
DSu⊥(b)⊗E

)2
= Cu,ρ+ 1

8
Tr

[
Cu(b),u⊥(b)

]
−Cu(b),Su⊥(b)⊗E.(5.17)

Since u acts unitarily on (E,〈,〉E) , we have

kerDSu⊥(b)⊗E = ker
(
DSu⊥(b)⊗E

)2
.(5.18)

If the u(b)-action on E lifts to U(b), then kerDSu⊥(b)⊗E
± are representations8 of U(b).

In general, kerDSu⊥(b)⊗E
± are (bC⊕mC,KM)-modules. Note that by (5.9) and (5.12),

b acts semisimplely on kerDSu⊥(b)⊗E
± .

8They are called Dirac cohomology of E (see [HuPa06]).
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Definition 5.5. Define the (mC,KM)-modules η+
β

and η−
β
, so that

kerDSu⊥(b)⊗E
+ = ⊕

β∈b∗
Cβ�η+β, kerDSu⊥(b)⊗E

− = ⊕
β∈b∗

Cβ�η−β.(5.19)

Set

ηβ = η+β−η−β.(5.20)

Recall that Cu,ρ ∈R is a scalar.

Proposition 5.6. The following statements hold.
i) We have isomorphisms of (mC,KM)-modules,

η±β ' η±−β.(5.21)

ii) The virtual (mC,KM)-modules ηβ satisfy Assumption 3.5, so that the Casimir
of um acts on η±

β
by the same scalar

Cum,ηβ = |β|2 +Cu,ρ+ 1
8

Tru
⊥(b)

[
Cu(b),u⊥(b)

]
∈R.(5.22)

Proof. By (5.17)-(5.19), on Cβ�η±
β
, we have

Cu,ρ+ 1
8

Tr
[
Cu(b),u⊥(b)

]
−Cu(b),Su⊥(b)⊗E = 0.(5.23)

On Cβ�η±
β
, we have

Cu(b),Su⊥(b)⊗E =−|β|2 +Cum,η±
β .(5.24)

By (5.23) and (5.24), we see that Cum,η±
β coincide and are given by (5.22).

By (5.8), (5.9), and (5.12), we see that Su⊥(b)
± ⊗E admits a decomposition like

(5.12). By (5.17) and (5.18), kerDSu⊥(b)⊗E

± consists of the components on which
(5.22) holds. Form these two considerations, i) follows.

It remains to show each ηβ|KM lifts to R(K). By (5.19), for eak−1 ∈ H, we have

∑
β∈b∗

e〈a,β〉Trs
[
ηβ(k−1)

]=Tr
ker

(
DSu

⊥(b)⊗E
)

s
[
eak−1] .(5.25)

We claim that for eak−1 ∈ H, we have

Tr
ker

(
DSu

⊥(b)⊗E
)

s
[
eak−1]=TrSu⊥(b)⊗E

s
[
eak−1] .(5.26)

Indeed, since DSu⊥(b)⊗E commutes with eak−1, using the fact that the super trace
varnishes on the super commutator, we see that

TrSu⊥(b)⊗E
s

[
eak−1 exp

(
−t

(
DSu⊥(b)⊗E

)2)]
(5.27)

does not depend on t ∈R, from which we get (5.26).
From (5.25) and (5.26), for eak−1 ∈ H, we have∑

β∈b∗
e〈β,a〉Trs

[
ηβ(k−1)

]=TrSu⊥(b)

s
[
eak−1]Tr

[
ρ

(
eak−1)] .(5.28)

By Theorems 2.6, 5.4, (5.9), (5.12), the right-hand side of (5.28) is a sum of prod-
ucts of e〈β,a〉 with elements in R(K)' R(T)W(T:K). Thus, ηβ has a lift in R(K). �
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The following two propositions are analogues of [Sh18, Propositions 6.5, 6.10].

Proposition 5.7. We have an isomorphism of virtual (bC⊕mC,KM)-modules,(
Su⊥(b)
+ −Su⊥(b)

−
)
⊗ρ|exp(b)×M = ⊕

β∈b∗
Cβ�ηβ = 1�η0 ⊕

⊕
β∈b∗+

(
Cβ⊕C−β

)
�ηβ.(5.29)

For eak−1 ∈ H, we have

(5.30) Trs
[
η0

(
k−1)]+ ∑

β∈b∗+

(
e|a||β|+ e−|a||β|

)
Trs

[
ηβ

(
k−1)]

= ∣∣det
(
1−Ad(eak−1)

) |z⊥(b)
∣∣1/2

Tr
[
ρ

(
eak−1)]

Proof. This is a consequence of (5.10), (5.21), and (5.28). �

Proposition 5.8. The following identity in R(K) holds,⊕
β∈b∗

η̂β =
m⊕

i=1
(−1)i−1iΛi (p∗C)⊗ρ|K .(5.31)

Proof. By (5.7) and (5.29), we have an identity in R(KM),⊕
β∈b∗

ηβ|KM =Λ• (n∗C)
|KM

⊗ρ|KM .(5.32)

By (2.26), (3.21), (5.32) and Proposition 2.5 v), we get⊕
β∈b∗

η̂β|KM = ⊕
β∈b∗

Λ•
(
p∗m,C

)
⊗̂ηβ =

m⊕
i=1

(−1)i−1iΛi (p∗C)
|KM

⊗ρ|KM .(5.33)

Since the restriction R(K)→ R(KM) is injective, from (5.33), we get (5.31). �

5.4. The Selberg zeta function Zηβ . By Proposition 5.6 ii), ηβ satisfies Assump-
tion 3.5. Let Zηβ be the associated Selberg zeta function. We have an analogue of
[Sh18, Theorem 7.7] and of Proposition 4.8.

Proposition 5.9. The following identity of meromorphic function on C holds,

Rρ(σ)= (
Zη0(σ)

)−1 ∏
β∈b∗+

(
Zηβ

(
σ+|β|)Zηβ

(
σ−|β|))−1

.(5.34)

Proof. This is a consequence of (3.15), (3.20), and (5.30). �

As in (4.30), by (3.24), (3.27), and (5.22),

Zηβ

(
−

√
σ2 +|β|2

)
Zηβ

(√
σ2 +|β|2

)
=

[
detgr

(
Cg,Z,η̂β −Cu,ρ+σ2

)]2
.(5.35)

is a meromorphic function on C. The following proposition is an analogue of
[Sh18, Theorem 7.8] and of Theorem 4.9.

Theorem 5.10. The following identity of meromorphic functions on C holds,

Rρ(σ)= T
(
σ2)exp

(−vol(Z)Pη0(σ)
) ∏
β∈b∗+

Zηβ

(
−

√
σ2 +|β|2

)
Zηβ

(√
σ2 +|β|2

)
Zηβ

(
σ+|β|)Zηβ

(
σ−|β|) .(5.36)

Proof. By (1.8), (4.4), (5.21), and (5.31), the statement of (4.33) still holds in the
current situation. The rest part of the proof is exactly the same as in the proof of
Theorem 4.9. �
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Remark 5.11. Define rηβ , Cρ, and rρ by the same formula as in (4.35) and (4.36).
Proceeding as [Sh18, (7-76)-(7-78)], using Theorem 5.10 instead of [Sh18, Theo-
rem 7.8], we get (4.8) when δ(G)= 1 and ZG is compact.

6. A COHOMOLOGICAL FORMULA FOR rηβ

The purpose of this section is to show (4.9) when δ(G)= 1 and ZG is compact. Its
proof relies on some deep results from the classification of unitary representations
of real reductive groups.

This section is organised as follows. In Section 6.1, we recall the definition
of the infinitesimal characters of a U (gC)-modules, the Harish-Chandra (gC,K)-
modules, and a relation between the infinitesimal character and the vanishing
of (g,K)-cohomology of a unitary Harish-Chandra (gC,K)-module, which is due
to Vogan-Zuckermann [VZu84], Vogan [V84], and Salamanca-Riba [SR99]. The
latter is our essential algebraic input in the proof of (4.9).

In Section 6.2, we obtain a formula relating H•(Z,F) and the (g,K)-cohomology
of certain Harish-Chandra (gC,K)-modules.

Finally, in Section 6.3, we deduce a similar formula for rηβ and we prove (4.9).
We use the notation in Sections 2 and 3. In Sections 6.1 and 6.2, we assume

neither δ(G)= 1 nor ZG is compact.

6.1. Some results from representation theory. We recall some basic facts on
the representation theory of real reductive groups.

6.1.1. Infinitesimal characters. A morphism of algebras χ : Z (gC) → C will be
called a character of Z (gC). Clearly, for a ∈C, we have

χ(a)= a.(6.1)

By (2.6), Z (gC) is equipped with a complex conjugation. Moreover, the Car-
tan involution θ extends to complex automorphism on Z (gC). Also, the anti-
automorphism z → ztr of U (gC) [Kn02, Proposition 3.7], induced by a ∈ g→−a ∈ g,
descends to a complex automorphisms of Z (gC). For z ∈Z (gC), set

χ(z)= χ (z), χθ(z)= χ(θz), χtr(z)= χ
(
ztr) .(6.2)

Then, χ, χθ, and χtr are characters of Z (gC).

Definition 6.1. A complex representation of gC is said to have infinitesimal char-
acter χ, if z ∈Z (gC) acts as a scalar χ(z) ∈C.

A complex representation of gC is said to have generalised infinitesimal char-
acter χ, if for there is i À 1 such that for all z ∈Z (gC), (z−χ(z))i acts like 0.

If W is a complex representation of g with infinitesimal character χW , then W ,
Wθ (defined in an obvious way as (2.33)), and W∗ have infinitesimal characters
χW , χWθ , and χW∗ , so that

χW = χW , χWθ = χθW , χW∗ = χtr
W .(6.3)

Therefore, if W is a unitary representation of g, we have

χtr
W = χW .(6.4)
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If W is a representation of g which is equipped with an admissible Hermitian
metric, then W

∗ 'Wθ, so that

χtr
W = χθW .(6.5)

Let us recall the definition of the Harsh-Chandra parameter for a character of
Z (gC). Let hC ⊂ gC be a Cartan subalgebra of gC. Let S(hC) be the symmetric
algebra of hC. If W(hC : gC) denotes the algebraic Weyl group, let S(hC)W(hC:gC) ⊂
S(hC) be the W(hC : gC)-invariant subalgebra of S(hC). Let

φHC : Z (gC)' S(hC)W(hC:gC)(6.6)

be the Harish-Chandra isomorphism [Kn02, Section V.5]. For Λ ∈ h∗C, we can
associate to it a character χΛ of Z (gC) as follows: for z ∈Z (gC),

χΛ(z)= 〈φHC(z),Λ〉.(6.7)

By [Kn02, Theorem 5.62], every character of Z (gC) is of the form χΛ, for some
Λ ∈ h∗C. Also, Λ is uniquely determined up to an action of W(hC : gC). Such an
element Λ ∈ h∗C is called the Harish-Chandra parameter of the character.

6.1.2. Harish-Chandra (gC,K)-module and its (g,K)-cohomology.

Definition 6.2. A complex U (gC)-module V , equipped with an action of K , is
called a Harish-Chandra (gC,K)-module, if

(1) the space V is a finitely generated U (gC)-module;
(2) every v ∈ V is K-finite, i.e., {k · v}k∈K spans a finite dimensional vector

space;
(3) the actions of gC and K are compatible;
(4) each irreducible K-module occurs only for a finite number of times in V .

Let Ĝu be the unitary dual of G, that is the set of equivalence classes of complex
irreducible unitary representations π of G on Hilbert spaces Vπ. For (π,Vπ) ∈ Ĝu,
let Vπ,K be the space of K-finite vectors. By [Kn86, Theorem 8.1, Proposition 8.5],
gC acts on Vπ,K such that Vπ,K is a Harish-Chandra (gC,K)-module.

If V is a Harish-Chandra (gC,K)-module, let H•(g,K ;V ) be the (g,K)-cohomology
of V [BoW00, Section I.1.2].

Theorem 6.3. Let V be a Harish-Chandra (gC,K)-module with generalised infin-
itesimal character χ. Let W be a finite dimensional (gC,K)-module with infinitesi-
mal character χW . If χ 6= χtr

W , then

H•(g,K ;V ⊗W)= 0.(6.8)

Proof. If V has an infinitesimal character, the theorem is due to [BoW00, Theorem
I.5.3(ii)]. If V has a generalised infinitesimal character, a proof can be found in
[Sh18, Theorem 8.8]. �

The converse of (6.8) is not true in general. But it still holds if V is unitary.

Theorem 6.4. Let W be a finite dimensional (gC,K)-module with infinitesimal
character χW . If (π,Vπ) ∈ Ĝu, then

χπ 6= χtr
W ⇐⇒ H•(g,K ;Vπ,K ⊗W)= 0.(6.9)
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Proof. The direction =⇒ of (6.9) is (6.8). The direction ⇐= of (6.9) is a conse-
quence of Vogan-Zuckerman [VZu84], Vogan [V84], and Salamanca-Riba [SR99].
Indeed, if χπ = χtr

W , then the Harish-Chandra parameter of χπ is stronger regular
in the sense of [SR99, p. 525]. Such representation π is classified in [SR99], which
has non vanishing (g,K)-cohomology by [VZu84, V84]. �

6.1.3. Root system and n-homology. We use the notation in Section 2.5. Let h =
b⊕ t be the fundamental Cartan subalgebra of g. Let R ⊂ b∗⊕p−1t∗ be a root
system of (h,g). By [Kn02, Proposition 11.16] (see also [BSh19, Proposition 3.7]),
there are no real roots in R. Let Rim and Rc be the systems of imaginary roots
and complex roots, so that

R = Rim tRc.(6.10)

Then, Rim is a root system of (h,z(b)). Also, Rim|t is a root system of (t,m).
We fix a positive root system R+ ⊂ R. Set

Rim
+ = Rim ∩R+, Rc

+ = Rc ∩R+.(6.11)

As explained in [BSh19, Section 3.5], we can choose R+ such that Rc+ is stable
under complex conjugation.

Set

%u = 1
2

∑
α∈R+

α ∈ b∗⊕
p
−1t∗.(6.12)

By Kostant’s strange formula [Ko76] or [B11, Proposition 7.5.1], we have∣∣%u∣∣2 =− 1
24

Tru
[
Cu,u] .(6.13)

Define %u(b) ∈ b∗⊕p−1t∗ and %um ∈ p−1t∗ in the same way, which are associated
to Rim+ and Rim

+|t. Then,

%u(b) = (
0,%um

)
, %u|t = %um .(6.14)

If V is a Harish-Chandra (gC,K)-module, denote by H•(n,V ) its n-homology. By
[HeSc83, Proposition 2.24], H•(n,V ) is a Harish-Chandra (mC ⊕bC,KM)-module.
If V possesses an infinitesimal character with Harish-Chandra parameter Λ ∈
h∗C, by [HeSc83, Corollary 3.32], H•(n,V ) can be decomposed into a finite direct
sum of Harish-Chandra (mC ⊕ bC,KM)-modules whose generalised infinitesimal
characters are given by

χwΛ+%u−%u(b) ,(6.15)

for some w ∈W(hC : gC).

6.2. The cohomology of H•(Z,F). We use the notation in Section 4.1. Recall
that Γ ⊂ G is a discrete cocompact torsion free subgroup of G and that ρ : G →
GL(E) is a representation of G with an admissible metric. Let (F, gF ) be the
associated Hermitian flat vector bundle.



ANALYTIC TORSION AND DYNAMICAL ZETA FUNCTION 34

By [GelGrPS69, p. 23, Theorem], we can decompose L2(Γ\G) into a direct
Hilbert sum of countable irreducible unitary representations of G,

L2 (Γ\G)=
Hil⊕
π∈Ĝu

n(π)Vπ,(6.16)

with n(π)<∞.
For any unitary representation (τ,Eτ) of K , since Cg,Z,τ is elliptic and self-

adjoint and since Z is compact, we have a finite sum

ker
(
Cg,Z,τ−λ

)
= ⊕
π∈Ĝu,χπ(Cg)=λ

n(π)
(
Vπ,K ⊗Eτ

)K .(6.17)

Let X (ρ∗) be set of the infinitesimal characters of all irreducible subrepresenta-
tions of ρ∗. Note that by Remark 2.1, the sets of all irreducible subrepresentations
of ρ∗ of the group G and of the Lie algebra g coincide.

Theorem 6.5. We have

H•(Z,F)= ⊕
π∈Ĝu,χπ∈X (ρ∗)

n(π)H• (g,K ;Vπ,K ⊗E
)
.(6.18)

If H•(Z,F)= 0, then for any π ∈ Ĝu such that χπ ∈X (ρ∗), we have

n(π)= 0.(6.19)

If ρ is irreducible such that ρθ 6= ρ, then

H•(Z,F)= 0.(6.20)

Proof. Since the G-representation with an admissible metric is completely re-
ducible, we can assume that ρ is irreducible with the infinitesimal character χρ.

By (6.3), we have χtr
ρ (Cg)= χρ(Cg)= Cg,ρ. By (1.4), (4.4) and (6.17), we have

H•(Z,F)= ⊕
π∈Ĝu,χπ(Cg)=χtr

ρ (Cg)

n(π)
(
Vπ,K ⊗Λ•(p∗C)⊗E

)K .(6.21)

When χπ(Cg) = χtr
ρ (Cg), by Hodge theory for Lie algebras [BoW00, Proposition

II.3.1], we have (
Vπ,K ⊗Λ•(p∗C)⊗E

)K = H•(g,K ;Vπ,K ⊗E).(6.22)

By (6.8), (6.21), and (6.22), we get (6.18). By (6.9) and (6.18), we get (6.19).
To show (6.20), it is enough to show that if ρθ 6= ρ, then for all π ∈ Ĝu, we have

χπ 6= χtr
ρ .(6.23)

Otherwise there is π ∈ Ĝπ such that χπ = χtr
ρ . Using π∗ ' π and ρ∗ ' ρθ, by (6.4)

and (6.5), we have

χρ = χtr
π = χπ = χtr

ρ = χθρ.(6.24)

Since ρ and ρθ are irreducible and have finite dimensions, Equation (6.24) implies
ρ ' ρθ, which is a contradiction with our assumption. �

Remark 6.6. Equations (6.18) and (6.20) are [BoW00, Theorems VII.6.1 and VII.6.7].
Equation (6.18) is originally due to Matsushima [Mat67] where ρ is supposed to
be trivial.
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6.3. A formula for rηβ . Assume now that δ(G) = 1 and ZG is compact, and that
ρ : G → GL(E) is a G-representation with an admissible metric such that ρ ' ρθ

and that Cu,ρ ∈R is a scalar.
By [Sh18, Corollary 8.15], we have

(6.25) rηβ =
1

χ(K /KM)

∑
π∈Ĝu ,χπ(Cg)=Cu,ρ

0ÉiÉdimpm
0É jÉ2`

(−1)i+ jn(π)
(
dimH i(m,KM ;H j(n,Vπ,K )⊗E+

ηβ

)

−dimH i(m,KM ;H j(n,Vπ,K )⊗E−
ηβ

))
.

Proposition 6.7. Let (π,Vπ) ∈ Ĝu. Assume that χπ(Cg)= Cu,ρ and⊕
0ÉiÉdimpm

0É jÉ2`
s∈{±}

H i(m,KM ;H j(n,Vπ,K )⊗Es
ηβ

) 6= 0.(6.26)

Then,

χπ ∈X (ρ∗).(6.27)

Proof. We use the notation in Section 6.1.3. Let Λ(π∗) ∈ h∗C be a Harish-Chandra
parameter of Vπ∗,K . We need to show that there is w ∈ W(hC : gC) and a Harish-
Chandra parameter Λ(ρ) ∈ b∗⊕p−1t∗ of an irreducible g-submodule of ρ, such
that

wΛ(π∗)=Λ(ρ).(6.28)

Recall that B∗ is the bilinear form on g∗ induced by B. It extends to g∗C in an
obvious way. Since χπ(Cg)= Cu,ρ, using Harish-Chandra isomorphism (see [Kn02,
Example 5.64]), we have

B∗ (
Λ(π∗),Λ(π∗)

)−B∗ (
%u,%u

)= Cu,ρ.(6.29)

By (6.8), (6.14), (6.15), and (6.26), there exist w ∈ W(hC : gC), w′ ∈ W(tC : mC) ⊂
W(hC : gC) and the highest weight µβ ∈

p−1t∗ of an irreducible (mC,KM)-submodule
of η+

β
⊕η−

β
such that

wΛ(π∗)|tC = w′ (µβ+ρum)
.(6.30)

By Proposition 5.1 and (6.12), we have

%u = %u(b) + (`α0,0) .(6.31)

By (5.11), (5.22), (6.14), (6.29)-(6.31), there exists w′′ ∈W(hC : gC) such that

w′′Λ(π∗)= (±β,µβ+ρum
)= (±β,µβ

)+ρu(b).(6.32)

In particular, Λ(π∗) ∈ b∗⊕p−1t∗.
By (5.19),

(
β,µβ

) ∈ b∗⊕p−1t∗ is a highest weight of an irreducible (mC⊕bC,KM)-

submodule of kerDSu⊥(b)⊗E. By [HuPa06, Theorem 4.2.2], there exists w1 ∈W(hC :
gC) and a Harish-Chandra parameter Λ(ρ) ∈ h∗C of an irreducible g-submodule of
ρ, such that (

β,µβ
)= w1Λ(ρ)−ρu(b).(6.33)
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By (5.19) and (5.21), (−β,µβ) ∈ b∗⊕p−1t∗ is also the highest weight of an ir-

reducible (mC ⊕bC,KM)-submodule of kerDSu⊥(b)⊗E. As before, there exists w2 ∈
W(hC : gC) and a Harish-Chandra parameterΛ(ρ) ∈ h∗C of an irreducible g-submodule
of ρ, such that (−β,µβ

)= w2Λ(ρ)−ρu(b).(6.34)

By (6.32)-(6.34), we get (6.28). �

Corollary 6.8. For β ∈ b∗, we have

(6.35) rηβ =
1

χ(K /KM)

∑
π∈Ĝu ,χπ∈X (ρ∗)

0ÉiÉdimpm
0É jÉ2`

(−1)i+ jn(π)
(
dimH i

(
m,KM ;H j(n,Vπ,K )⊗E+

ηβ

)

−dimH i
(
m,KM ;H j(n,Vπ,K )⊗E−

ηβ

))
.

In particular, if H•(Z,F)= 0, then for all β ∈ b∗, we have

rηβ = 0.(6.36)

Proof. By (6.25) and Proposition 6.7, we get (6.35). From (6.19) and (6.35), we get
(6.36). �

Remark 6.9. By (4.36), (6.36), and by Remark 5.11, we get (4.9) in the case where
δ(G)= 1 and ZG is compact. We finish the proof of Theorem 4.4 in full generality.

7. AN EXTENSION TO ORBIFOLDS

In this section, we no longer assume Γ ⊂ G is torsion free. Then Z = Γ\G/K is
a closed Riemannian orbifold with Riemannian metric gTZ . Let us indicate the
essential steps in generalising the previous results to orbifolds.

If γ ∈Γ, Γ(γ) is not always torsion free. The cardinality∣∣ker
(
Γ(γ)→Diffeo(Z(γ)/K(γ))

)∣∣(7.1)

depends only on the conjugacy class [γ] and will be denoted by n[γ]. We define B[γ]

by the same formula as in (3.10). By [ShY17, Proposition 5.3], we have

vol(Γ(γ)\Z(γ))
vol(K(γ))

= vol
(
B[γ]

)
n[γ]

.(7.2)

By [ShY17, Remark 5.6, (5.59)], as in (3.11), the closed geodesics (see [GuHa06]
or [ShY17, Remark 2.26]) on the orbifold Z with positive length are given by∐

[γ]∈[Γ+]
B[γ].(7.3)

For [γ] ∈ [Γ+], all the elements of B[γ] have the same length `[γ] > 0.
For [γ] ∈ [Γ+], the group S1 acts locally freely on the orbifold B[γ] by rotation, so

that B[γ]/S1 is still a closed orbifold. Set

m[γ] = n[γ]
∣∣ker

(
S1 →Diffeo(B[γ])

)∣∣ ∈N∗.(7.4)
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If ρ : Γ→ GLr(C) is a representation of Γ, for Re(σ) À 1 large enough, we de-
fine Ruelle’s dynamical zeta function Rρ(σ) by the same formula (3.15) with m[γ]

defined by (7.4). As before, when δ(G)Ê 2,

Rρ(σ)≡ 1.(7.5)

By [Sh20, Theorem 7.3], if dim Z is odd, Rρ(σ) has a meromorphic extension to
σ ∈C.

Let ρ : G → GL(E) be a finite dimensional complex representation of G with
an admissible metric. Let F be the orbifold flat vector bundle on Z associated
to ρ|Γ. As in Section 4.1, F is equipped canonically with a Hermitian metric gF .
The analytic torsion of F associated to (gTZ , gF ) is defined in [DaiY17], [ShY17,
Section 4.2] (see also [Ma05]).

Theorem 7.1. The statements of Theorems 4.3, 4.4, and 4.6 still hold for orbifolds.
In particular, we get Theorem 0.5.

Proof. Using the orbifold trace formula [ShY17, Theorem 5.4] and [Ma19, Theo-
rem 5.4], we get the orbifold version of Theorem 4.3.

The proof of Theorem 4.4 in the case of orbifold is similar as before and we
need only consider the case δ(G) = 1. We can define the Selberg zeta function by
the same formula (3.20) with m[γ] defined by (7.4). By [Sh20, Section 7.2], the
statement of Theorem 3.9 still holds for orbifolds. By exactly the same method,
the statements of Proposition 4.8, Theorem 4.9, Proposition 5.9, and Theorem 5.10
hold for orbifold. Using the orbifold Hodge theory (c.f. [ShY17, Theorem 4.1]), we
can deduce that the statements of Theorem 6.5 and Corollary 6.8 hold as well. In
this way, we get Theorem 4.4 for orbifolds.

As in the proof of Theorem 4.6 given in Section 4.3, the orbifold version of The-
orem 4.6 is a consequence of the orbifold version of Theorem 4.4. The proof of our
Theorem is completed. �
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