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ABSTRACT

A 2-D regularized least square inversion code for

solar rotation has been constructed which approx-

imates the rotation rate by piecewise polynomials

projected on B-splines. It is applied to the rota-

tional splitting data of BBSO (Ref. 1). A discussion

of the inuence of the number and order of the spline

basis on the results is given. Preliminary results of

inversion with LOI data (Ref. 2) are presented.

Keywords: inverse problem, solar rotation.

1. BASIC EQUATIONS

The rotational splitting ��

nlm

of a p-mode of de-

gree l, radial order n and frequency �

n;l;m

can be

expressed as an integral over the rotation rate with

weighting kernels depending on the non dimensioned

radius and on the colatitude � according to:
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where � = cos(�), 
(r; �) is the unknown rotation

rate. The splitting ��

nlm

is de�ned by
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The kernels K

nl

(r) depend on the model and on the

radial eigen function of the mode n; l (Ref. 3).

Due to the symmetry of the weighting kernels rel-

atively to �, only the symmetric component of the

rotation rate relatively to the equatorial plane can be

obtained. We search for the unknown rotation rate

as a linear combination of piecewise functions '
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We introduce the following vectors and matrix:

W � (W

k

)

k=1::N

k � (n; l;m) W

k

= ��

nlm


 � (


Q

)

Q=1::N




r

N




�

Q � (p; q) 


Q

= !

pq

R � (R

kQ

) k=1::N

Q=1::N




r�

with N




r�

= N




r

N




�

and

R

k;Q

=

2

�

Z

1

0

K

nl

(r)'

p

(r)dr

��

Z

1

0

P

m

l

(�)

2

 

q

(�

2

)d�

�

Thus the inversion problem writes:

W = R 
 [3]

The observations are not yet accurate enough to give

all the splittings ��

nlm

of a mode n; l. The observa-

tional splittings are given by the coe�cients a

n;l

i

of

their development on P

i

(m=L) functions, with their

errors �a

n;l

i

. The inversions can be performed either

on the a

n;l

i

or on the splittings. Here we have derived

the splittings and their standard deviations �

nlm

ac-

cording to the following expressions:
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with L =

p

l(l+ 1)

�

nlm

=

v

u

u

t

�

L

m

�

2

X

j

(�a

n;l

j

)

2

P

j

�

m

L

�

2

[5]

In this study we assume that the errors on the split-

tings are independent. This may introduce some er-

rors on the solution since this assumption is not valid

for the multiplets of a given mode (l; n). A regular-

ization term T

r�

is also introduced to avoid the large

spurious variations of the solution induced by the

ill-conditioned inversion problem. We thus minimize

the quantity:

J
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(
) = kPW � PR
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+ T

r�

[6]
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The estimation of the rotation rate at a point r

0

and �

0

is derived from the vector solution 
 of the

minimization of equation [6]:
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From the propagation of the errors we derive the

standard deviation on the rotation rate at that point

by the relation:
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where the covariance matrix B




on the solution 
 is

given by
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More details on the derivation of the equations can

be found in Ref. 4. The inversion depends on the

numbers N




r

and N




�

of the piecewise polynomials

'(r) and  (�

2

), of the order of the spline functions

and of the distribution of the �tting points of these

polynomials. In what follows, the distribution of

these points along the radius has been chosen ac-

cording to the density of the turning points of the

considered p-modes set of data. The inversion de-

pends also on the values and forms of the regular-

izing term through the coe�cients �

r

, �

�

and the

functions f

r

and f

�

.

Figure 1: Variation of the rotation rate 
 as a function of

the radius at three latitudes: polar, mid and equatorial

latitudes. Dotted lines represent 
� �.

2. INVERSION OF BBSO DATA

2.1 Results for the solar rotation rate

We have applied our code to derive the internal solar

rotation rate from the 1986 Libbrecht data

1

(Ref. 1),

1

p-mode data acquired by Ken Libbrecht and Martin

Woodard, Big Bear Solar Observatory, Caltech

hereafter referenced as BBSO, for modes l=5 to 60.

We use the a

i

coe�cients and their errors to recon-

struct the splittings and their errors according to

equation [4] and [5]. The resulting solar rotation

rate is shown in Figure 1 as a function of the ra-

dius for three latitudes: 0, 45, 90 degree. It has

been obtained using N




r

= 20 and N




�

= 10 piece-

wise polynomials projected on cubic splines basis and

with regularizing parameters: �

r

= 10

�6

�

�

= 10

�6

f

r

= f

�

= 1

Dotted curves represent the 1� errors on the solution

(
� �). The solution is not valid for r > 0:85 due

to the lack of modes with degrees l > 60. It has

no signi�cance too for radius lower than 0.4. Our

results are in agreement with previously published

results (Ref. 5,6,7,8). The rotation rate has a surface

like latitudinal dependence in the whole convection

zone and depends only on the radius in the internal

radiative zone with a rapid variation at the basis of

the convection zone.

Figure 2: The contour plots of the averaging kernels

K(r

0

; �

0

; r; �) are given for three values of the lati-

tude �

0

= 0:01; 0:707; 0:99 and four values of the radius

r

0

= 0:55;0:65; 0:75; 0:85: Dotted lines correspond to zero

values contour plots and dashed lines to negative values

contour plots.

2.2 Averaging kernels

The estimation of the rotation at a point r

0

, �

0

given

by [7] can be expressed as a linear combination of the

data W
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The estimated rotation rate at the point r

0

and �

0

appears to be the average of the real rotation rate

weighted by an averaging kernel K(r

0

; �

0

; r; �). The
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Figure 3: Two dimensional averaging kernel at mid-

latitude for r

0

= 0.55. It is well peaked close to the loca-

tion r

0

, �

0

(�

0

=0.707). We see some contribution from

the solar surface due to the lack of modes of large degrees.

solution will be well spatially resolved if the averag-

ing kernels are close to a � distribution in radius and

� around the target radius r

0

and target �

0

.

Contour plots of averaging kernels for di�erent tar-

get radius r

0

and �

0

are given in Figure 2 and a

three dimensional plot of an averaging kernel (r

0

=

0:55; �

0

= 0:707) is shown in Figure 3. It is seen that

the kernels are peaked around the target values but

with some contributions at the surface.

The spatial resolution at a point (r

0

, �

0

) can be esti-

mated from the characteristics of the averaging ker-

nels. It depends principally on the set of modes we

consider and on the regularizing parameters which

are used to smooth the solution. It increases with

lower regularizing term, at the expense of larger er-

rors on the solution. Di�erent ways of estimating the

spatial resolution can be used (Ref. 9).

Here we characterize the averaging kernels by the

contour plot curve C corresponding to half of the

height of the maximum value (Fig. 4) and by di�er-

ent quantities. � is the geometrical distance between

position (r; �) of the maximum value of the averaging

kernel and the target point (r

0

; �

0

). The radial and

latitudinal half width of the curve C, �r and r��,

are used to de�ne the spatial resolution of the inver-

sion. These quantities are multiplied by the standard

deviation �(r

0

; �

0

) given by equation [8] which rep-

resents the error on the rotation rate 
(r

0

; �

0

) given

by propagation of the errors. We thus take into ac-

count the opposite variation of errors on the solution

and its spatial resolution in order to give an esti-

mate the quality of the result of the inversion. All

these quantities are given in Figure 4 for r = 0:55.

It is seen that, as already discussed (see for example

Ref. 9), the quality of the inversion is much better

Figure 4: Contour plot curve C of the averaging kernels

for the target radius r

0

=0.55 (indicated by a * point)

and three latitudes (equator, mid-latitude and pole) cor-

responding to half height of the maximum value.



for equator and mid-latitude rotation rate than at

the pole.

The variation of ��r and �r�� relatively to the

number of piecewise polynomials is plotted in Fig-

ure 5. The results show that these quantities do not

vary very signi�cantly and that 20 piecewise polyno-

mials are enough to describe the rotation rate. We

have also found that these quantities are not much

sensitive to the order of the B-splines that we used.

3. PRELIMINARY RESULTS ON INVERSIONS

WITH LOI DATA.

We have considered the LOI splittings given for the

degrees l = 2; 3; 4; 5 by Appourchaux et al. (Ref. 2)

and added them to the BBSO data for 5 < l � 60.

The inversion has been made for two values of the

regularizing parameters �

r

= 10

�5

�

�

= 5:10

�5

(so-

lution 1) and �

r

= 10

�6

�

�

= 5:10

�6

(solution 2)

and with f

r

= 1 f

�

= r

�4

(Ref. 9). The results are

given for the three latitudes �

0

= 0:01; 0:707; 0:99

for the BBSO data only on the left and for the

BBSO+LOI data on the right side in Figure 6. We

see that in the two cases the modi�cation of the reg-

ularizing constants induces a larger di�erence in the

solution behavior for radius smaller than 0.4, con-

trarily to what happens for r > 0:4.

The contour plots given in Figure 2 for the averaging

kernels appear to be the same for the two sets of data.

Adding the LOI data does not improve signi�cantly

the spatial resolution in our computations. The re-

sults obtained with the two values of the regularizing

parameters show as expected, that the spatial resolu-

tion estimated by the quantities �r and r�� is better

for lower values of �

r

and �

�

but the errors on the

solution (Fig. 6) are larger. The positions of the

maximum of the averaging kernels are also closer to

the respective points r

0

; �

0

in that case. However it

appears that the product of the error � by the latitu-

dinal and radial resolution ��r and �r�� are lower

for the larger values of the regularizing constants.

As an example, all these quantities are reported in

Table I for a radius r

0

= 0.35 and for the three lati-

tudes: equator (E), mid-latitude (M), pole (P). From

these results, we are lead to favour solution 1 (Fig.

6 upper right panel) which gives an estimated solar

rotation rate almost independent of the latitude for

radius 0:2 < r < 0:6.

4. CONCLUSION

We have developed a 2D least square inversion code

for the solar rotation rate, using piecewise polyno-

mials projected on B-spline functions and we have

derived some quantities to test the quality of the so-

lution. The study of the sensitivity of the results rel-

atively to the inversion parameters gives an optimal

number of piecewise polynomials to be considered

Figure 5: Sensitivity of the radial and latitudinal spa-

tial resolution multiplied by the error on the solu-

tion ��r and �r�� relatively to the number of piece-

wise polynomials N




r

. They are given for three values

N




r

= 10; 20; 30 at the same location (r

0

= 0:55) and

(�

0

= 0:01; 0:707;0:99) than Figure 4 The position of the

maximum value of the averaging kernel, characterized by

�, is not modi�ed within the grid of r and � we use to

compute these kernels.

Table 1:

�

r

� �r r�� ��r �r��

E 10

�5

0.13 0.08 0.11 0.72 0.97

10

�6

0.10 0.076 0.10 1.07 1.4

M 10

�5

0.1 0.09 0.14 1.08 1.73

10

�6

0.06 0.08 0.13 1.62 2.41

P 10

�5

0.21 0.1 0.22 2. 4.4

10

�6

0.15 0.09 0.17 3.3 5.8



Figure 6: Comparison of the rotation rates obtained with BBSO data and BBSO+LOI data for two values of the

regularizing constants �

r

and �

�

.

and shows that the results are not much sensitive to

the order of the splines which are used.

We have applied this code to BBSO and LOI data.

Our preliminary computations show that the data

BBSO+LOI and their uncertainties do not strongly

constrain the solution for r < 0:4. However, the test

quantities of Table I show that the LOI observations,

in agreement with Tomczyk et al (Ref. 10), seems to

indicate that the rotation rate remains lower than

the surface equatorial rate down to 0.3 R

�

.
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