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Abstract—This paper proposes a micro-kernel to efficiently
compute 4x4 8-bit matrix multiplication on In-Memory Comput-
ing (IMC) Architectures with 128-bit word-lines. The proposed
implementation requires simple instructions with vector-data
computation and could be used as a basic block to implement
General Matrix Multiplication (GEMM) on 128-bit word-lines IMC
architectures, using 4x4 matrix partitioning. This micro-kernel
would be beneficial to domains such as image processing and
computer graphics.

Index Terms—in-memory computing, sram, matrix-
multiplication, simd, micro-kernel

I. CONTEXT

A. Computational SRAM architecture

Fig. 1: Computational SRAM architecture

The Computational SRAM (C-SRAM) architecture is an
SRAM-based IMC architecture allowing to perform computa-
tion directly inside the memory array. Logical and arithmetical
operations are computed by an ALU slice in periphery of the
bit-cell array, which allows for low-cost IMC integration in
existing SRAM technologies [1] [2].

By limiting data transfers over the bus between the host
CPU and the memory, this architecture offers time and energy
reduction [3]. Furthermore, the C-SRAM architecture can be
re-configured to perform large-vector data computation either
on single SRAM tile or across multiple tiles, as seen on Fig. 1.

For computation to be correctly performed, the data need
to be physically aligned on the same columns, inducing
challenges of data placement.

This algorithm stands in the context of a C-SRAM archi-
tecture configured to 128-bit vectors.

B. Vectorization schemes for matrix multiplication

Existing works present two main methods to vectorize
matrix multiplication: the first one, on Fig. 2a is to vectorize
the computation of the dot-product for each element of the
output matrix, and then perform an horizontal reduction by
adding every element of the vector together. It requires a
transposition on one of the inputs and both inputs are visited
row-major [4].

The second method requires to duplicate data across one of
the input vectors to compute multiple elements at once, as seen
on Fig. 2b. This method has the advantage of not requiring
any matrix transformation prior to computation [5].

(a) Per-row vectorization (b) Per-columns vectorization

Fig. 2: Existing vectorization schemes of matrix multiplication

Both these algorithms are efficient on large instances, when
each matrix are large enough to profit from data-level paral-
lelism. However, when using 128-bit vectors, the design of
C-SRAM requires an alignment of every matrix row on the
same columns, as seen on Fig. 3.

Fig. 3: Data placement required on 128-bits vectors C-SRAM.

II. PROPOSED IMPLEMENTATION: JAG-AND-ROTATE

A. Algorithm

Our proposed implementation is an iterative process that
does not require each row of the matrix to be horizontally



aligned. As such, each matrix can be entirely stored in a single
vector without impeding computation.

First we transform one of the input matrix A into AJ(0)
such as : let 0 ≤ x ≤ N and 0 ≤ y ≤ N :

AJ(0)[x][y] = A[(x+ y)%N ][x]
(1)

The iterative process can be seen on Fig. 4. On each iteration
i > 0, we rotate the rows of AJ(i−1) by 1 byte to compute a
partial result of C, called C ′

J(i), and accumulate it in a vector
Acc. At each iteration, C ′

J(i) is re-aligned with Acc with a
vector-wise rotation before being accumulated. The command
for this rotation is the width of a row (ROW_SIZE) times i. .

Fig. 4: Our proposed vectorization scheme

The complexity of this iterative process equals the size of
the row in number of elements (here 4 elements, so 4 steps).
At he last iteration the matrix C can be obtained from Acc
via the following expression :

let 0 ≤ x ≤ N and 0 ≤ y ≤ N :

C[x][y] = CJ [x][(x+ y)%N ]
(2)

B. Implementation through the features of C-SRAM

Both input (Eq. 1) and output (Eq. 2) transformations do not
require any data duplication. These transformations, the 32-bit
rotations on AJ(i) and the vector-wise rotation on on C ′

J(i)
can all be done using a Block Shuffle unit at byte granularity
[6].

To support this vectorization scheme on larger instances the
C-SRAM should possess vectors large enough to contain the
matrix and 2) appropriate rotation units. Respectively, variants
of this algorithm run on the 128-bit word-lines C-SRAM scale
up poorly to larger matrix sizes due to the cost of inter-
vector permutation, contrary to the per-row and per-columns
vectorization schemes, previously presented.

C. Algorithmic evaluation

Both the per-row and per-columns vectorization schemes
require row of matrix to be aligned, as illustrated in Fig. 3. In

these conditions, this constraint limits the effective throughput,
in terms of computations per instruction, to 4, while the
theoretically maximum throughput achievable by the 128-bit
word-line C-SRAM is 16 computations per instruction. One
one hand, As seen on Fig. 2, the per-row scheme needs 3
instructions to compute an element, added the input trans-
position this makes 49 cycles. On the other hand, the per-
columns scheme needs 3 times 4 instructions to compute a
row, which amounts in total to 48 cycles. Our implementation,
however, partially compute the entirety of the matrix at a rate
of 3 instructions per iteration and delivers the result after 4
iterations. Added the two input and output transformations,
our vectorization scheme multiplies 4x4 matrices in 14 cycles,
while achieving the maximum throughput available on C-
SRAM.

III. PERSPECTIVES

4x4 matrices in themselves are often used in image process-
ing, to apply convolution kernels and in computer graphics as
transformation matrices. Moreover, this implementation can be
used as a basic block to perform 8-bit General Matrix Multipli-
cation (gemm), using matrix partitioning on IMC architectures
with 128-bit word-lines. Scientific libraries, generally, rest on
highly-optimized routines (such as the Basic Linear Algebra
Subroutines (BLAS) libraries [7]) efficient programming mod-
els to interface the applications to the hardware. Studying
IMC-specific optimized routines can be a first step in designing
a high-performance software stack.

IV. CONCLUSION

This paper proposes an efficient micro-kernel for 4x4 8-
bit matrix multiplication that can be used as a basic block
to perform 8-bit General Matrix Multiplication, using matrix
partitioning. This micro-kernel is the beginning of a reflexion
on IMC-specific micro-kernels which could be implemented
in domain-specific libraries [4].
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