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Over the last decades, molecular signatures have become increasingly important in oncology and are opening up a new area of
personalized medicine. Nevertheless, biological relevance and statistical tools necessary for the development of these signatures
have been called into question in the literature. Here, we investigate six typical selection methods for high-dimensional settings
and survival endpoints, including LASSO and some of its extensions, component-wise boosting, and random survival forests
(RSF). A resampling algorithm based on data splitting was used on nine high-dimensional simulated datasets to assess selection
stability on training sets and the intersection between selection methods. Prognostic performances were evaluated on respective
validation sets. Finally, one application on a real breast cancer dataset has been proposed. The false discovery rate (FDR) was
high for each selection method, and the intersection between lists of predictors was very poor. RSF selects many more variables
than the other methods and thus becomes less efficient on validation sets. Due to the complex correlation structure in genomic
data, stability in the selection procedure is generally poor for selected predictors, but can be improved with a higher training
sample size. In a very high-dimensional setting, we recommend the LASSO-pcvl method since it outperforms other methods by
reducing the number of selected genes and minimizing FDR in most scenarios. Nevertheless, this method still gives a high rate
of false positives. Further work is thus necessary to propose new methods to overcome this issue where numerous predictors are
present. Pluridisciplinary discussion between clinicians and statisticians is necessary to ensure both statistical and biological
relevance of the predictors included in molecular signatures.

1. Introduction

With the advent of genomic technologies, personalized med-
icine is becoming a major concern in oncology [1]. An
important issue is improving the management of cancer
patients by identifying profiles of patients at risk of relapse.
To assist clinicians in prognosis assessment and therapeutic
decision-making, multigene signatures have been developed
to stratify cancer patients into different risk groups. Since
the publication of the first gene signature, many prognostic
multigene signatures have been extensively studied, but only

some of them have been successfully implemented in clinical
practice [2–4]. Among the latter, the most promising are
gene signatures commercially available for early breast can-
cer that predict the risk of metastatic relapse [5–7]. Neverthe-
less, reproducibility is lacking for many published gene
signatures currently not implemented in clinical practice.
Much debate is ongoing in both medical and statistical
literature to explain this high rate of failure for prognostic
signatures. Biological relevance appears questionable since
random signatures or signatures unrelated to cancer (e.g.,
signatures pertaining to the effect of postprandial laughter
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or mouse social defeat) have been shown to be significantly
associated to overall survival. It is even more surprising that
many random signatures can outperform most breast cancer
signatures [8]. Several authors have suggested that the
selected sets of genes are not unique and are strongly influ-
enced by the subset of patients included in the training
cohort [9, 10] and by the variable selection procedures [11–
14]. For low-dimensional data, the reference method to study
associations with time-to-event endpoints is the Cox propor-
tional hazards model. In the context of high-dimensional
data (number of covariates > >number of observations), the
Cox model may be nonidentifiable. Extensions, based on
boosting or penalized regression, are proposed in the litera-
ture to overcome these hurdles [15–18], as they shrink the
regression coefficients towards zero. Alternatively to the
Cox extensions, methods based on random forests have been
adapted for survival analysis [19]. This nonparametric metho-
d—random survival forest (RSF)—combines multiple deci-
sion trees built on randomly selected subsets of variables.
Since feature selection methods are questioned, it seems
important to thoroughly assess and compare existing strate-
gies that are significant components in prognostic signature
development. Many studies were interested in false discovery
rates or prognostic performances achieved by multiple vari-
able selection methods and compared them on simulated or
real datasets [20–23]. However, the impact of the training set
on the stability of the results was only assessed by Michiels
et al. [9] on a binary endpoint with a selection based on Pear-
son’s correlation and did not evaluate most recent approaches.

The main objective of this publication is to compare six
typical different feature selection methods which are com-
monly used for high-dimensional data in the context of sur-
vival analysis. For this purpose and as recommended in the
literature [24], a simulation study is performed, with special
focus on variable selection and prediction performance
according to multiple data configurations (sample size of
the training set, number of genes associated with survival).
Feature selection methods are then applied on published data
to explore stability and prognostic performances in a real
breast cancer dataset.

2. Material and Methods

2.1. Feature Selection Methods

2.1.1. Limits of the Cox Model in High-Dimensional Data. In
low-dimensional data, the semiparametric Cox proportional
hazards model is commonly used to study the relationship
between covariates and time-to-event endpoints. The β
regression coefficients related to the Z genes are estimated
by maximizing the partial log-likelihood lðβÞwithout it being
necessary to model the baseline hazard:

l βð Þ = 〠
n

i=1

δi βTZi − log 〠
j∈R T ið Þ

exp βTZ j

� �

" #( )

, ð1Þ

where n is the number of observations, δi is the event indica-
tor for patient i, β is the regression parameter vector, Z is the

vector of covariates, and RðT iÞ denotes the set of patients at
risk before time T i. However, in the case of high-
dimensional data, this model fails to be identifiable. Several
methods have been proposed to handle such a case with a
number of predictors p > >number of patientsn. In this
study, three kinds of computational methods were used to
train the models: penalized Cox regression models,
component-wise boosting for the Cox model, and RSF.

2.1.2. Penalized Approaches. Penalized Cox regression
models make it possible to simultaneously perform coeffi-
cient estimation and variable selection. The Least Absolute
Shrinkage and Selection Operator (LASSO) is an L1-norm
regularization method [17]. Coefficients are estimated by
maximizing a penalized log partial-likelihood:

l βð Þ − λ〠
p

j=1

βj

�
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with a tuning parameter λ. The choice of this shrinkage
parameter is challenging and is generally obtained by maxi-
mizing the cross-validated log-likelihood function (LASSO-
cvl). Certain recent publications have highlighted the fact
that the cvl method for choosing λ results in selecting a high
number of false positives. Ternès et al. [16] proposed an
extension of the cross-validation approach, denoting penal-
ized cross-validated log-likelihood (pcvl), and compared its
performances to other existing extensions (adaptive LASSO,
percentile LASSO, etc.). This approach, trading off between
goodness-of-fit and parsimony of the mode, leads to the
selection of fewer genes by applying a more stringent selection
criterion. LASSO-pcvl results in the best compromise between
a decline in the false discovery rate and no large increase in the
false-negative rate and thus was included in our comparison
study. On the other hand, LASSO suffers, however, from some
limitations. The number of features selected is bounded to the
number of patients, and in the case of highly correlated predic-
tors, LASSO tends to select only one of these features, resulting
in a random selection in this group of features. This may not
be desirable given that genes operating in the same biological
pathway may be highly correlated, so taking this combination
into account may be relevant.

To alleviate these limitations, Zou and Hastie [18] pro-
posed the Elastic Net method—a penalized regression with
the combination of the L1-norm and the L2-norm penalties.
The additional L2-regularization term makes it possible to
promote a grouping effect, thus removing the limitation of
the number of selected variables. Coefficients are estimated
by maximizing the partial log-likelihood lðβÞ subject to the
penalty:

λ 1 − αð Þ〠
p

j=1

βj
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The regularization parameter λ and mixing parameter α
are estimated by cross-validation. For a more flexible alterna-
tive to LASSO without having to estimate two parameters, it
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was proposed to set the default value at 0.5 for the mixing
parameter α and to estimate only the tuning parameter λ
by cross-validation [11]. A stability selection approach based
on subsampling in combination with the Elastic Net algo-
rithm may be performed (BSS Enet) [25, 26], applying the
algorithm to subsamples obtained by bootstrapping. The
proportion of subsamples in which the biomarker is selected
in the model corresponds to the selection probability for this
particular biomarker. Only genes selected with an occurrence
frequency equal to or larger than σ (with σ ∈ ½0:5 ; 1�) are
included in the final model.

We used the routine implemented in the glmnet package
to determine the optimal penalty for LASSO-cvl and Elastic
Net [27], and the biospear package for LASSO-pcvl. The pen-
alty parameter λ was chosen based on the 10-fold cross-vali-
dation, and the mixing parameter α was set at 0.5 for Elastic
Net regression and BSS Enet. The threshold σ selection prob-
ability was arbitrarily set at 0.5 for BSS Enet.

The Ridge regression was not included in this study since,
unlike L1 regression or a mixture of L1 and L2, L2 penalty
(α = 1) tends to minimize the parameters without providing
variable selection.

2.1.3. Boosting Algorithm. Like forward stepwise regression,
boosting is an iterative method which starts from a null
model and then adapts only one coefficient at a time, the
one that maximizes a penalized partial log-likelihood, includ-
ing a boosting penalty [15]. Previous boosting steps were
incorporated in the penalized partial log-likelihood as an off-
set for the next step. This variable selection method was
implemented in the R package CoxBoost. A 10-fold cross-
validation was performed to find the optimal number of
boosting steps via cv. CoxBoost, with a boosting penalty cho-
sen via the optimCoxBoostPenalty function.

2.1.4. Random Survival Forests. Random forests are nonpara-
metric variable selection methods that have been extended
for survival data [19]. The general algorithm consists in
drawing bootstrap samples from the dataset, growing a tree
for each of them and finally averaging predictions. For each
node, a subset of predictor variables was selected as candi-
dates to split data into two daughter nodes, according to
the log-rank splitting rule. Then, the best split feature from
this subset is used to split the node. Variable hunting was
then used for variable selection [28]. Survival trees were built
according to the parameters recommended by the authors in
the case of high-dimensional data, using the R randomFor-
estSRC package.

2.2. Simulated Datasets. Datasets were simulated with differ-
ent sample sizes (N = 500, 750, or 1000) and a predetermined
number p of 1500 normally distributed covariates. For each
sample size, we generated survival times following an expo-
nential regression model (with baseline equal to 1). Three
scenarios with different numbers of truly prognostic bio-
markers (q = 0, 12, or 50) were investigated. Regression
parameters were fixed at -0.11 or -0.22 (resulting in more
or less important effects of the true predictors), with hazard
ratios of 0.9 or 0.8, respectively. To simulate a biologically rel-

evant gene correlation structure, predictors were divided into
subgroups of correlated covariates, with an autoregressive cor-

relation structure [29]: (σ2
ij = ρji−jj). The parameter ρ was set

to 0.6 after a review of the literature [16, 30, 31] and analysis
of several published datasets like METABRIC and TCGA
cohorts. Censoring times were, respectively, simulated using
the uniform distribution (U [3, 5]), leading to censoring rates
from 10 to 30%. Simulation parameters are summarized in
Table 1.

2.3. Application on a Published Dataset. A public breast can-
cer dataset with available survival and gene expression data
for 614 patients was used as an application. This dataset
was extracted from GitHub (http://github.com/Oncostat/
biospear/) to obtain the same data version as Ternès et al.
[16]. The endpoint of interest was the distant recurrence-
free survival, with a censoring rate of 78.2%. Probes were pre-
viously prefiltered according to an interquartile range greater
than 1 in order to reduce the number of predictors with low
variance across the samples (p = 1689).

2.4. Comparison of Variable Selection Methods. A resampling
strategy was performed to evaluate the six selection methods:
LASSO-cvl, LASSO-pcvl, Elastic Net, BSS Enet, CoxBoost,
and RSF. Following the strategy used by Michiels et al., both
simulated and real datasets were randomly split into 100
training and validation sets with different sample sizes for
the training set (1/2 and 2/3 of the overall dataset) [9, 12].
For each training set, the different selection methods were
applied to select significant genes and create a risk score for
prediction. For the penalized and boosting approaches, the
risk score was based on the linear predictor given by the
Cox model. For RSF, the risk score was based on the average
over the trees of the cumulative hazard estimations com-
puted from the bootstrap samples which exclude this patient
in order to reduce optimism bias. Models previously devel-
oped were then applied on the respective validation sets.

Based on the feature selection during the training stage,
variable selection methods were compared in terms of num-
ber of selected genes and stability of the signatures, measured
by the frequency of selection of each gene among the 100
training sets. For simulated datasets, both the FDR and the
false-negative rate (FNR) could be computed. They corre-
sponded, respectively, to the rates of inactive genes selected

Table 1: Characteristics of simulated datasets.

N Events Censoring rate (%) p q

500 448 10.4 1500 0

500 403 19.4 1500 12

500 362 27.6 1500 50

750 678 9.6 1500 0

750 617 17.7 1500 12

750 535 28.7 1500 50

1000 892 10.8 1500 0

1000 814 18.6 1500 12

1000 709 29.1 1500 50
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and the rates of true biomarkers missed by variable selection
methods. Prognostic performances were then evaluated on
the validation set by the Brier and C-index scores for risk
scores, both implemented in the R pec package [32]. The inte-
grated Brier score (IBS) is the area under the prediction error
curve (i.e., the quadratic difference between the observed
response and the predicted probability over time). IBS is
tending to 0 for a perfect model. The C-index measures
the discriminant ability of the model; its interpretation is
similar to the classical area under the Receiver Operating
Characteristic (ROC) curve. All analyses were imple-
mented with R-3.2.4.

3. Results

3.1. Simulated Datasets

3.1.1. Variable Selection. The number of genes selected by
selection methods for each sample size and scenario is pre-
sented in Table 2. For the null scenario (q = 0, i.e., no active
biomarker), BSS Enet and RSF selected genes in all simulated
cases, whereas the other methods tended to select no predic-
tors. LASSO-cvl and Elastic Net performed the best with the
smallest FDR (respectively, range = ½0:23‐0:55, 0:24‐0:56�).
Obviously, an FDR of 1 for BSS Enet and RSF was observed
(Table 3). For alternative scenarios (q = 12, 50), the number
of selected genes by boosting and penalized approaches
increased when the sample size of the training set increased.
On the contrary, for RSF, the number of genes was inversely
correlated to the training set sample size. The FDR and FNR
were, respectively, minimized by the LASSO-pcvl and Elastic
Net approaches. The FDR of BSS Enet was reduced com-

pared to that of Elastic Net (25% decrease in median over dif-
ferent scenarios), but sometimes involved a small FNR
increase. Stability results (Table 4) show that the latter
increased with the sample size of the training set and
decreased when the number of true predictors increased.
When the sample size of the training set was maximal
(N training > 500), the occurrence frequency was approxi-

mately 100% for more than 50% of the selected predictors,
except for RSF with the worst selection stability
(median occurrence frequency ð%Þ = 42; range = ½18‐74�). If
the training sample size is not sufficient to select a large num-
ber of predictors, stability tends to decrease in the presence of
more true predictors. Some true predictors had poor occur-
rence frequency, and false predictors may have been more
stable in our in silico study. A poor intersection was observed
between predictors selected by each approach (Table 5).
Among concordant selected predictors, there were few true
positives. This proportion can be far less than 50%, particu-
larly when the number of true predictors is moderate
(q = 12) and where large training sample sizes are used.

3.1.2. Prognostic Performances. For a low number of predic-
tors (q = 12), the penalized and boosting approaches
obtained better prognostic performances with higher C-
index and lower IBS than RSF. For this scenario, prognostic
performances tended to decrease when sample size increased.
In contrast for q = 50, all approaches except RSF presented
similar performances, and prognostic performances
increased with sample size (Figures 1 and 2).

3.2. Application to the Published Dataset. The six selection
methods were applied on a breast cancer dataset, with a

Table 2: Number of selected predictors for each simulated dataset and selection method.

N q Training fraction
Number of selected predictors

med (min–max)
LASSO-cvl LASSO-pcvl Elastic Net BSS Enet CoxBoost RSF

500

0 1/2 0 (0-24) 1 (0-30) 0 (0-34) 9 (1-15) 0 (0-24) 71 (67-75)

2/3 0 (0-21) 0 (0-31) 0 (0-24) 10 (4-20) 0 (0-24) 56 (52-59)

12 1/2 25 (7-55) 11 (5-29) 33 (10-62) 22 (10-29) 26 (9-50) 71 (65-75)

2/3 27 (10-55) 13 (7-26) 37 (13-75) 27 (19-35) 30 (10-50) 56 (52-60)

50 1/2 62 (40-93) 44 (13-75) 83 (50-121) 44 (29-57) 57 (24-80) 75 (70-78)

2/3 76 (57-105) 53 (34-72) 96 (71-127) 56 (47-66) 67 (41-103) 63 (57-68)

750

0 1/2 0 (0-18) 0 (0-33) 0 (0-23) 12 (6-22) 0 (0-29) 45 (42-49)

2/3 0 (0-20) 0 (0-16) 0 (0-21) 16 (8-26) 0 (0-19) 22 (19-25)

12 1/2 25 (12-52) 13 (7-25) 33 (14-57) 25 (14-36) 27 (12-53) 47 (44-51)

2/3 24 (12-49) 11 (8-18) 28 (17-55) 28 (21-37) 26 (13-52) 25 (22-28)

50 1/2 72 (51-93) 44 (27-68) 88 (65-118) 54 (46-69) 62 (36-85) 58 (53-61)

2/3 80 (58-111) 46 (31-59) 96 (76-134) 64 (52-78) 69 (43-89) 37 (32-41)

1000

0 1/2 0 (0-45) 0 (0-36) 0 (0-45) 19 (10-34) 1 (0-40) 22 (20-25)

2/3 1 (0-48) 1 (0-43) 1 (0-48) 27 (17-40) 2 (0-45) 6 (6-8)

12 1/2 34 (11-79) 15 (8-28) 42 (18-89) 35 (24-52) 36 (17-62) 28 (25-32)

2/3 42 (21-74) 15 (9-25) 50 (23-86) 48 (31-63) 44 (14-77) 9 (8-11)

50 1/2 90 (70-124) 57 (34-78) 107 (87-139) 68 (58-89) 74 (54-114) 38 (34-43)

2/3 101 (76-145) 57 (46-73) 120 (84-168) 80 (67-99) 79 (53-112) 18 (16-20)
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fraction of a training data equal to 2/3. The number of
selected probes was 54 for LASSO-cvl, 13 for LASSO-pcvl,
78 for Elastic Net, 42 for BSS Enet, 58 for CoxBoost, and 83
for RSF. The lists of probes selected by each method are given
in Supp Table 1 and the intersections between them in
Table 6.

RSF showed poor intersection with other methods.
Among the probes selected by multiple methods, interesting
targets in carcinogenesis could be identified that play a role in
cell proliferation and apoptosis (CCDN1, MET, KIT, FGFR3,
…), cell metabolism (BTG1, LPGAT1, CKB, ASNS, …), cell
mobility and invasion (CDC42, PXDN, PFN2, …), and
immunity (CD55, CXCL13, XBP1, HLA-DQB1, …). The
same strategy of resampling was then applied to assess the
impact of the training set on selection and performance.
The number of selected genes increased when the training
sample size increased. For a given sample size of the training
set, more genes were selected by RSF than the other selection
methods, and LASSO-pcvl was the most stringent method
(Table 7). As per stability, 50% of the selected predictors
had an occurrence frequency less than 5%. Discriminant
capacities (e.g., C-index) were poor for all approaches, and
BSS Enet tended to have the lowest performances (Figure 3).

4. Discussion

The main objective of this study was to provide an exhaustive
comparison of popular variable selection methods and to
offer recommendations for developing prognostic signatures.
To our knowledge, this is the first comparison assessing the
effect of the constitution of the training set on multiple cri-
teria like stability, false discovery rates, and prognostic per-
formances between classical extensions of the Cox

proportional hazards model and random forest, the most
commonly used nonparametric method in this context.
Using simulated datasets and one real application, we inves-
tigated both variable selection and prognostic performances
of each approach. Our main conclusion is that while there
is great variability in the selection process, all variable selec-
tion methods provide good prognostic performance with a
satisfactory C-index in most scenarios.

Using simulated datasets based on biologically plausible
parameters, we evaluated the influence of both selection
methods and sample sizes on selection and prognostic per-
formances. Considering the different comparison criteria,
LASSO-pcvl is the most advisable selection method since
FDR is minimized whatever the sample size, with a moderate
increase in FNR and prognostic performances similar to
other selection methods. Conversely, RSF is the worst
method in terms of performances with too many false posi-
tives selected in most scenarios and a lack of common genes
with other approaches. This may be explained by the lack of a
prefilter step in the “variable hunting” algorithm recom-
mended for high-dimensional settings which does not limit
the number of selected genes. A cross-validation to optimize
this number, as for other selection methods, might improve
RSF performances. On the other hand, RSF has been pro-
posed to deal with complex relationships between covariates
and survival and may perform worse with linear effects.
Compared to classical Elastic Net, BSS Enet gives more satis-
factory results in alternative scenarios with a lower FDR,
despite a slightly higher FNR. The less variables are corre-
lated with true predictors, the better BSS Enet performs, but
this is an unlikely assumption in case of omics data. How-
ever, the systematic selection of false-positive genes under
the null scenarios reduces the attractiveness of this approach.

Table 3: False discovery rates and false-negative rates for each simulated dataset and selection method.

N q Training fraction
FDR/FNR

LASSO-cvl LASSO-pcvl Elastic Net BSS Enet CoxBoost RSF

500

0 1/2 0.43/. 0.51/. 0.45/. 1/. 0.49/. 1/.

2/3 0.39/. 0.48/. 0.4/. 1/. 0.49/. 1/.

12 1/2 0.62/0.29 0.32/0.36 0.69/0.19 0.56/0.24 0.65/0.3 0.92/0.56

2/3 0.61/0.18 0.28/0.23 0.69/0.1 0.6/0.12 0.64/0.19 0.9/0.51

50 1/2 0.51/0.39 0.35/0.45 0.56/0.3 0.3/0.39 0.47/0.41 0.83/0.74

2/3 0.52/0.27 0.34/0.31 0.58/0.19 0.32/0.25 0.47/0.29 0.78/0.72

750

0 1/2 0.44/. 0.5/. 0.46/. 1/. 0.46/. 1/.

2/3 0.23/. 0.42/. 0.24/. 1/. 0.38/. 1/.

12 1/2 0.62/0.24 0.31/0.27 0.67/0.16 0.59/0.16 0.64/0.25 0.85/0.4

2/3 0.57/0.21 0.19/0.23 0.62/0.12 0.63/0.11 0.61/0.2 0.65/0.29

50 1/2 0.49/0.29 0.27/0.35 0.54/0.2 0.32/0.27 0.44/0.3 0.75/0.71

2/3 0.48/0.17 0.2/0.26 0.54/0.1 0.33/0.15 0.4/0.2 0.54/0.66

1000

0 1/2 0.45/. 0.48/. 0.45/. 1/. 0.51/. 1/.

2/3 0.55/. 0.57/. 0.56/. 1/. 0.62/. 1/.

12 1/2 0.71/0.23 0.4/0.27 0.74/0.16 0.7/0.16 0.73/0.23 0.71/0.32

2/3 0.75/0.19 0.36/0.23 0.78/0.12 0.77/0.1 0.77/0.19 0.22/0.4

50 1/2 0.52/0.15 0.27/0.18 0.58/0.1 0.35/0.11 0.44/0.16 0.54/0.65

2/3 0.56/0.1 0.24/0.13 0.61/0.06 0.42/0.07 0.44/0.12 0.15/0.7
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Figure 1: C-index associated to risk score for each selection method and fraction of the training data (f app) according to the sample sizes (a)

N = 500, (b) N = 750, and (c) N = 1000 for simulated datasets with q = 12.
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A sensitivity analysis examining the effects of a more strin-
gent stability threshold on the risk score (70 and 80%) did
not address this issue. Also, BSS does not improve stability

in the selection process or prognostic performances compared
to a single step in the present study. As expected, the discrim-
inant capacity of the risk score obtained by the different
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Figure 2: Brier score associated to risk score for each selection method and fraction of the training data (f app) according to the sample sizes

(a) N = 500, (b) N = 750, and (c) N = 1000 for simulated datasets with q = 12.
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methods increases when the number of true predictors associ-
ated with survival increases and when the number of false-
positive genes selected is low. Due to overfitting, there is a
decrease in discrimination performances on the validation
dataset when the number of false positives increases. In the
public dataset, we observed poor stability compared to simula-

tion results and poor prognosis performance. Several reasons
may explain these findings, for example, the small sample size.
The instability may be explained by the fact that there is no
unique solution due to the multidimensionality of the data
[10]. Indeed, interactions and correlations between predictors
in omics studies are often more complex than in our

Table 6: Number of genes that overlap between methods for breast cancer dataset (sample results).

LASSO-cvl LASSO-pcvl Elastic Net BSS Enet CoxBoost RSF

LASSO-cvl 54 10 54 32 49 7

LASSO-pcvl 13 12 9 12 2

Elastic Net 78 38 56 9

BSS Enet 42 34 7

CoxBoost 58 8

RSF 83

Table 7: Number of selected predictors and gene frequency occurrence for breast cancer dataset and each selection method (resampling
results).

Training fraction
Number of selected predictors

med (min–max)
LASSO-cvl LASSO-pcvl Elastic Net BSS Enet CoxBoost RSF

1/2 26 (4-71) 11 (0-59) 47 (11-100) 30 (17-49) 26 (0-56) 82 (71-93)

2/3 40 (6-70) 14 (4-53) 58 (14-104) 41 (31-62) 40 (5-70) 85 (72-93)

Occurrence frequency
med (min–max)

1/2 2 (1-65) 2 (1-57) 2 (1-73) 2 (1-77) 2 (1-64) 5 (1-57)

2/3 3 (1-92) 2 (1-73) 3 (1-95) 3 (1-98) 3 (1-91) 5 (1-61)
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Figure 3: Prognostic performance for each selection method and fraction of the training data (f app) for the breast cancer dataset. (a) C-index

and (b) Brier score associated to risk score.
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simulation study. Contrary to popular belief, it is important to
note in our study that LASSOwas able to simultaneously select
correlated biomarkers simultaneously. Other simulations are
necessary to determine the impact of the correlation structure
on the selection of predictors in this approach.

This simulation study had various limitations. Firstly,
other simulation strategies for time-to-event data could have
been tested to check whether survival forests are not at too
great a disadvantage in a Cox proportional hazards scenario.
Secondly, in order to make a decision in clinical practice, it is
often helpful to have threshold values that make it possible to
determine different risk groups. Various techniques can be
employed, like the minimum p value approach, cutting the
continuous risk score into equal groups (according to the
median or other quantiles), or strategies based on ROC
curves. Further work is necessary to provide help in selecting
the most adequate threshold depending on the clinical ques-
tion. Then, the number of covariates in our study could be
much larger that is often true for genomic data unless a pre-
filter step is applied; but from this initial work with “moder-
ate” high-dimensional settings, it is clear that variable
selection methods achieve even worse stability and perfor-
mances when p > > > n. Finally, only one value was consid-
ered for the parameter of correlation in the autoregressive
correlation structure, Nevertheless, we guess that a greater
correlation may not be biologically relevant and that 0.6 is a
reasonable choice for maximum correlation in our simula-
tion study and a good compromise to evaluate statistical per-
formance for biologically plausible scenarios.

In the context of precision medicine, gene signatures are
usually developed independently from clinical factors, i.e.,
omics selection, development of a risk score and risk groups
followed by adjustment on prognostic factors. This strategy
does not make it possible to select genes with a prognostic
value independent from a clinical value. Moreover, most of
the gene signatures lose their significance after adjustment.
To our knowledge, only one in silico study was interested in
taking clinical factors into account during the gene selection
step [33]. It could be of interest to evaluate the proposed
approaches in terms of prognostic performance, but espe-
cially in terms of selected genes and associated signaling
pathways. In breast cancer research, as over half of the
genome is correlated with proliferation [8], it is quite easy
to find several significant combinations of genes associated
with clinical outcome. Nevertheless, identifying genes
involved in signaling pathways other than cell cycles could
highlight new therapeutic targets and improve prognostic
models with both clinical and genomic data. Another
important aspect is that selection methods investigated in
this publication do not take into account knowledge of
biomarker biological pathways [34]. The application on
the breast dataset suggests that, despite some relevant
selected genes previously described in the literature, many
predictors are selected because of their correlation with
true prognostic genes. Thus, an important issue in bio-
marker discovery is the true functional significance of the
variables selected. To properly determine this, biologists,
clinicians, and statisticians must work closely together to
propose relevant gene signatures.
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