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Abstract

We study a token-based central queue with multiple customer types. Customers of each type arrive according
to a Poisson process and have an associated set of compatible tokens. Customers may only receive service
when they have claimed a compatible token. If upon arrival, more than one compatible token is available, an
assignment rule determines which token will be claimed. The service rate obtained by a customer is state-
dependent, i.e., it depends on the set of claimed tokens and on the number of customers in the system. Our first
main result shows that, provided the assignment rule and the service rates satisfy certain conditions, the steady-
state distribution has a product form. We show that our model subsumes known families of models that have
product-form steady-state distributions including the order-independent queue of [20] and the model of [22]. Our
second main contribution involves the derivation of expressions for relevant performance measures such as the
sojourn time and the number of customers present in the system. We apply our framework to relevant models,
including an M/M/K queue with heterogeneous service rates, the MSCCC queue and multi-server models with
redundancy. For some of these models, we present expressions for performance measures that have not been
derived before.

Keywords: product form, token-based, order-independent queue, redundancy system, matching model

1 Introduction
The discovery of queueing systems with a steady-state product-form distribution is probably one of the most
fundamental contributions in queueing theory. In a pioneering work, [17] showed that in a queueing network
formed by M/M/1 nodes, the joint steady-state distribution is given by the product of the marginal distributions of
the individual nodes. Roughly speaking, this implies that the stationary distribution of the network can be obtained
by multiplying the stationary distributions of the individual nodes assuming that each node is in isolation. Due to
this property, the analysis of a queueing network reduces to that of single-node queues, simplifying the analysis
tremendously. Product-form distributions provide insight into the impact of parameters on the performance and
allow efficient calculation of performance measures. As a consequence, since Jackson’s discovery, considerable
effort has been put in understanding the conditions such that a stochastic model has a product-form steady-state
distribution. Important steps forward were made by [7] and [19], who introduced BCMP networks and Kelly
networks, respectively, which have product-form steady-state distributions. These networks demonstrate that
models with multiple types of customers and general service time distributions could also have a product-form
distribution. Since then, further studies have shown that networks with negative arrivals, instantaneous signals and
blocking might have a product-form distribution, see [9] for an overview.
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Figure 1: An example of a token-based model with token set T = {t1, t2}. Grey-shaded customers are paired with
tokens and can thus receive service. Figure b) depicts the initial state. Figure c) then sketches what happens when
the first customer would leave: token t1 scans the queue for the next compatible customer, and is then claimed
by the oldest compatible customer, which is of type c1. Figure d) describes what happens if the customer holding
token t2 would then leave the system. Token t2 again scans the rest of the queue for compatible customers, but it
turns out that the last customer is of type c1, and token t2 becomes available.

Recent years have witnessed a surge of interest in parallel server models with different types of customers.
The main application is in the study of data centers, which consists of a pool of resources that are interconnected
by a communication network. Indeed, data centers provide the main infrastructure to support many internet
applications, enterprise operations and scientific computations. In two relevant studies, [22] and [20], sufficient
conditions have been obtained for a multi-server system to have a product form. We note that these product-
form distributions are not expressed as the product of per-type or per-server terms. In fact, they are expressed
as a product of terms that correspond to a unique customer in the system. In that respect, they do not allow an
interpretation in terms of a product of marginal distributions, as is the case with classical product-form distributions
for Jackson, BCMP and Kelly networks. A notable difference between the two papers is in the state descriptor
considered therein. In the multi-type customer and server model of [22], the authors consider an aggregated
descriptor that keeps track of the servers being active but not of the type of customers being served or waiting. On
the other hand, in the order-independent queue of [20], the state descriptor keeps track of the type of customers
in the system, but not of the servers being active. These two modelling approaches have led to two separate
streams of papers, where each of the approaches covers applications that are not covered by the other. Some of the
applications studied are systems with blocking, redundancy and computer clusters. A natural question that arises
is whether the original models of [22] and [20] can be generalised while preserving the product-form distribution
in steady state.

We answer this question in the affirmative in this paper. We analyse a token-based central queue with multiple
types of customers and multiple tokens. As will be proved in the paper, this model is a generalisation of both
the model of [22] and the order-independent queue of [20]. Customers of each type arrive according to a Poisson
process and have an associated set of compatible tokens. To receive service, a customer must claim a compati-
ble token. Therefore, an arriving customer will immediately claim a compatible token if there is one available,
otherwise it will wait until it can claim one.

For illustrational purposes, we regard an example of the token-based central queue depicted in Figure 1a).
In this example, there are two customer types, namely c1 and c2, and two tokens t1 and t2. We assume type-
c1 customers can only claim token t1, whereas type-c2 customers are compatible to both token t1 and token t2.
Figure 1b) represents a particular state of this system. Namely, there are four customers (represented by squares)
in the queue, of which the first is a type-c2 customer. Upon arrival, this customer immediately claimed token t1
according to an assignment rule, which we will elaborate on later. The second customer that arrived, does not hold
a token. This is partly because t1 was already claimed by the first customer upon arrival of the second customer.
Since it did not claim token t2 upon arrival either, token t2 must have been incompatible with the type of the
second customer, so that the second customer must be of type c1. The third customer that arrived, however, has
claimed token t2, and hence must be of type c2. For the last customer in the queue, we do not have any information
regarding its type, since upon arrival, all tokens were already claimed by other customers. As the first and third
customer hold tokens, they are provided service with a state dependent service rate or departure rate.

Our first main result shows that, provided the assignment rule and the departure rate function satisfy the
required conditions, the steady-state distribution of the token-based central queue has a product form. As in the
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case of [22] and [20], this product-form distribution cannot be expressed as the product of per-type or per-token
terms. We further show that the order-independent queue and the multi-type customer and server model of [22]
are particular instances of our model and that our model includes examples that were not covered by either. In
other words, our model and main results provide a unifying framework for parallel-server models with a product-
form distribution. Our second main contribution is that we use the steady-state distribution of the general model to
characterise transforms of relevant performance measures, including the sojourn time and the number of customers
in the system. We illustrate the applicability of the framework by computing the steady-state distribution and
analysing the performance of many relevant models, including an M/M/K queue with heterogeneous service rates,
the MSCCC queue and multi-server models with redundancy. For some of these models, we present expressions
for performance measures that have not been derived before. It is important to note that, even though our model is
based on a central-queue architecture, some of the applications, in particular the redundancy models, correspond
to topologies without a central queue, where instead every server has its own queue.

The rest of the paper is organised as follows. In the next section, we discuss studies related to this paper.
Section 3 then describes the token-based central queue that we study in more detail and introduces the required
notation. Section 4 shows that the token-based central queue has a product-form stationary distribution, which
allows for the calculation of other performance measures in Section 5. Finally, we show in Section 6 that the
models of [20] and [22] are captured by our model, and we discuss several applications of our model.

2 Related work
As mentioned in the introduction, there has been a surge of interest in multi-server queueing models in recent
years. The main two references related to our work are [22] and [20], which identify classes of models that have
a product-form stationary measure.

Subsequently, several studies have used the results of these two models to analyse a variety of other models.
An important application area that has received a lot of attention is formed by redundancy models. While there
are several variants of a redundancy-based system, the general notion of redundancy is to create multiple copies
of the same customer that will be sent to a subset of servers. Depending on when replicas are deleted, there
are two classes of redundancy systems: cancel-on-start (COS) and cancel-on-completion (COC). In redundancy
systems with COC, once a copy has completed service, the other copies are deleted and the customer is said to
have received service. On the other hand, in redundancy systems with COS, copies are removed as soon as one
copy starts being served. In [8] the authors observe that the COC model is a special case of the order-independent
queue in [20], which enables the authors to derive the steady-state distribution directly. We also refer to [15] for a
thorough analysis of the COC system. On the other hand, [6] shows that while the COS based redundancy system
is not an order-independent queue, it fits within the multi-type customer and server model of [22]. They also
show that, while the COC model does not fit the framework of [22], it does fit an extension of it, where the state
descriptor used in [22] is endowed with a more general departure rate function. We will use the resulting state
descriptor also in this paper (see Section 3 for more details).

An important application area, which fits the framework of [22], is that of matching models, which have been
studied in several recent papers, see for instance [1]. We also refer to [4] and [3], where the authors explore the
relation between redundancy and matching models.

Another important related work is [5]. The model considered therein is similar to the one of [22] with the
exception that the assignment policy ‘assign longest idle server’ (ALIS) is used. Under the ALIS-policy, a new
arrival that could be served by more than one inactive server, is assigned to the longest-idle server. To implement
this policy, the state descriptor is enriched with information on the idleness of every inactive server. The authors
prove that the steady-state distribution of this model has a product form. In our paper, we do not consider the
ALIS variant. However, from the analysis of [5], we expect that all our results would carry over to this case. We
discuss this in more detail in Section 4.

We conclude this section by mentioning the work of [10, 11], which discusses a token-based model that is
somewhat related to ours. More particularly, in that study, a token-based mechanism is devised for the purpose of
dynamic load balancing. This mechanism is described in terms of a tripartite compatibility graph and differs from
ours mainly in that arriving customers which do not claim a token are immediately lost.
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3 Model description
We now proceed with a detailed description of the model.

Customers and tokens. The model that we study represents a central-queue system with multi-type customers.
The set of all customer types is denoted by C and customers of type c ∈ C arrive according to a Poisson process
with rate λc. The total arrival rate of customers to the system is λ :=

∑
c∈C λc. In order for customers to receive

service, they must hold a token. To this end, a set of K tokens denoted by T = {t1, . . . , tK} is associated with the
model, where T could be an infinitely large set (i.e., K could be equal to infinity, see Section 4.3 for more details).
In particular, a type-c customer type is characterised by a token set Tc ⊆ T which consists of the compatible
tokens that can be held by customers of this type. Similarly, associated with a token t ∈ T is a set of customer
types Ct ⊆ C that can choose this token. As an example, we have in Figure 1 that Tc1 = {t1}, Tc2 = {t1, t2},
Ct1 = {c1, c2} and Ct2 = {c2}.

Assignment of customers to tokens. At any point in time, the set of available tokens is denoted by T (a),
T (a) ⊆ T , while the set of unavailable tokens is given by T \T (a). To receive service, customers are required to
hold a compatible token. Hence, when a customer of type c ∈ C arrives, it will claim a single token from the set
Tc∩T (a) (if it is non-empty), and then join the central queue. In case no compatible token is available upon arrival
(|Tc ∩T (a)| = 0), the customer joins the queue and waits until a token in the set Tc becomes available. If multiple
compatible tokens are available, i.e., |Tc ∩ T (a)| > 1, an assignment rule decides which of the tokens will be
claimed by the arriving customer. This assignment rule constitutes a randomised policy which, given T (a) and the
type of the arriving customer, dictates the probability with which the customer should claim a particular token. We
assume this assignment rule to satisfy a so-called assignment condition, which is specified in Condition 1 below.
Once a token t is selected by a customer, it is no longer available for selection (i.e. T (a) := T (a)\{t}) until
the customer completes service. Upon release, the token will immediately be reclaimed by the longest waiting
tokenless customer of a type from the set Ct. If there are no such customers, the token is added back to the set T (a)

(T (a) := T (a) ∪ {t}). This event for example occurs in Figure 1d). We shall refer to customers with tokens as
active customers and identify such customers by their associated tokens. Customers in the central queue without
tokens are referred to as inactive customers. In Figure 1b), for instance, the first and third customer in line are
active, the second and fourth are inactive and both tokens are claimed: T (a) = ∅.

Departure rates of customers. We assume service requirements of customers to be exponentially distributed.
Since only customers possessing tokens receive service, the departure rate of active customers from the system is
non-negative, while that of inactive customers is zero. Throughout the paper, we assume that the departure rates
associated with active customers satisfy a condition that is specified in Condition 2 below. Since this condition is
reminiscent of the order-independent queue as studied in [20], we call this the order-independent condition.

Markovian state descriptor. Due to the memoryless properties of the arrival and departure processes, the
token-based central queue can be represented as a Markov process. We now introduce a suitable state descrip-
tor, which in Section 4.1 is indeed shown to lead to a Markovian system. The state descriptor is of the form
(T1, n1, . . . , Ti, ni). This descriptor retains the order of arriving customers in the central queue from left to
right. When the model is in state (T1, n1, . . . , Ti−1, ni−1, Ti, ni), it has i active customers which have claimed
tokens T1, . . . , Ti. Furthermore, there are nj inactive customers in the central queue that arrived between the
two customers that have claimed tokens Tj and Tj+1, respectively, for 1 ≤ j ≤ i − 1. Inactive customers
at the end of the queue are denoted by ni. Since tokens are always claimed by the longest waiting eligible
customer, we have for example that n1 represents inactive customers which have token T1 as their only com-
patible token. The set of such customer types is denoted by U({T1}) := {c ∈ C : Tc = {T1}}. In general,
for 1 ≤ j ≤ i, we denote the set of customer types that can claim tokens only from the set {T1, . . . , Tj} by
U({T1, T2, . . . , Tj}) := {c ∈ C : Tc ⊆ {T1, . . . Tj}}. Thus, the customer types of the nj customers between
those with tokens Tj and Tj+1 must belong to the set U({T1, T2, . . . , Tj}). As the state descriptor retains the
order of arrival, the oldest customer in a state is represented by token T1. The youngest customer is one of the ni
customers, or in case ni = 0, it is the active customer with token Ti. Furthermore, when 1 ≤ j < k ≤ i, all nj
customers between Tj and Tj+1 arrived before the nk customers between Tk and Tk+1. We denote the state space
of the resulting Markov process by X , where any generic state x ∈ X is of the form x = (T1, n1, . . . , Ti, ni). The
only exception is the empty state with no customers present, which we denote by (0).

As an illustration of the state descriptor, the state depicted in Figure 1b) is described by (t1, 1, t2, 1): the
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first customer holds token t1, the second customer waits for token t1, the third customer holds token t2, and the
fourth customer waits for any compatible token. Likewise, the states in Figure 1c) and Figure 1d) are described
by (t1, t2, 1) and (t2, 1), respectively. Note that these state descriptors do not include the actual types of the cus-
tomers themselves. Furthermore, for Figure 1 we have U({t2}) = ∅, U({t1}) = {c1} and U({t1, t2}) = {c1, c2}.

Assignment rule and assignment condition. In state x = (T1, n1, . . . , Ti, ni), the arrival rate of customers that
will initially be inactive is given by λU({T1,...,Ti}) :=

∑
c∈U({T1,...,Ti}) λc, while the arrival rate of customers that

become active immediately is given by λ − λU({T1,...,Ti}). When multiple compatible tokens are available upon
a customer’s arrival, an assignment rule determines the probability with which any of these tokens is assigned to
the customer. Given the nature of the assignment rule, we denote by λt({T1, . . . , Tj}) the rate at which arriving
customers claim token t, provided that {T1, . . . , Tj} is the set of all unavailable tokens. While λt({T1, . . . , Tj})
depends on the assignment rule, it holds for any assignment rule that

λ− λU({T1,...,Ti}) =
∑

t∈T \{T1,...,Ti}

λt({T1, . . . , Ti}). (1)

As in [22], for the system to have a product-form stationary distribution, we require that an assignment rule
satisfies the following assignment condition.

Condition 1. For any possible combination of i tokens T1, . . . , Ti, i = 1, . . . ,K,

i∏
j=1

λTj ({T1, . . . Tj−1}) =

i∏
j=1

λT̄j
({T̄1, . . . T̄j−1}) (2)

for every permutation T̄1, . . . T̄i of T1, . . . Ti.

[2] shows that there always exists an assignment rule for which Condition 1 is satisfied.

Order-independent condition. For any state x = (T1, n1, . . . , Ti, ni), let µTj
(x ) denote the departure rate of

the active customer holding token Tj . Furthermore, let µ(x ) =
∑i
j=1 µTj

(x ) be the total departure rate in state x .
Additionally, we denote by φ(x ) = i+

∑i
j=1 nj the total number of customers in state x . The order-independent

condition, which the departure rates in this model must satisfy, now reads as follows.

Condition 2. In a given state x = (T1, n1, . . . , Ti, ni), each of the departure rates µTj
(x ), j = 1, . . . , i, can be

written as
µTj (x ) = η(φ(x ))sj(T1, . . . , Ti), (3)

where

1. sj(·) is a non-negative real-valued function for which sj(T1, . . . , Ti) = sj(T1, . . . , Tj), 1 ≤ j ≤ i,

2. k(T1, . . . , Ti) :=
∑i
j=1 sj(T1, . . . , Tj) is independent of any permutation of (T1, . . . , Ti) and

3. η(·) is a non-negative real-valued function for which η(j) > 0 for j = 1, 2, . . ..

These restrictions on the functions sj(·), k(·) and η(·) have the following implications. First, by the restriction
on sj(·), the departure rate of an active customer may depend on the types of the active customers ahead of it, but
not on those behind. Note that sj(·) may equal zero, so that it is possible for active customers to still receive no
service. Second, k(·) is defined such that the total departure rate of customers from the system is the same for any
permutation of the active customers. Finally, the function η(·) allows the departure rate of customers to depend
on the total number of customers present in the system, but at the same time the departure rate is indifferent to the
types of the inactive customers. Next, based on the definition of µ(x ), we conclude that

µ(x ) = η(φ(x ))k(T1, . . . , Ti). (4)

As mentioned earlier, Condition 2 is reminiscent of the order-independent queue introduced in [20]. The differ-
ence, however, stems from the fact that we consider a different state descriptor, which captures a broader set of
systems (cf. Section 6.2). It is also important to note that this condition allows our model to be more general than
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that of [22], as will become clear in Section 6.3.

Further notation. We conclude this section with notation needed to describe several important performance
measures. At an arbitrary point in time, let N denote the number of inactive customers in the system. More
particularly,Nj denotes the number of inactive customers in the central queue between the two customers that have
claimed tokens Tj and Tj+1. Thus, when the system is in state x = (T1, n1, . . . , Ti, ni), it holds that Nj = nj

and N =
∑i
j=1 nj . Moreover, the number of type-c customers among these Nj customers is denoted by N (c)

j .

As a consequence, the total number of inactive type-c customers, denoted by N (c), satisfies N (c) =
∑i
j=1N

(c)
j .

Using the same style of notation, M denotes the total number of customers present in the system. Furthermore,
Mj = Nj+1 represents the number of customers in the ‘j-th’ part of the system, where the added single customer
is the one that holds token Tj . Of these Mj customers, M (c)

j are of type c, so that M (c), the number of type-c

customers present in the system, satisfies M (c) =
∑i
j=1M

(c)
j . Note that the state descriptor does in general not

include the types of both active customers and inactive customers. However, in special cases of the model, the
values of M (c)

j and N (c)
j can still be retrieved.

We define the time-till-token of a customer to be the duration of the period between its arrival and the moment
the customer claims a token. The time-till-token and the sojourn time of a type-c customer is denoted by Wc and
Sc, respectively. Likewise, the quantities W and S refer to the time-till-token and the sojourn time of an arbitrary
customer. Finally, the indicator function 1{A} on the event A returns one if event A is true, and zero otherwise.

4 Product-form stationary distribution
In this section, we derive the stationary distribution of the token-based central queue. To do this, in Sections
4.1 and 4.2 we use the methods and techniques of [22, Section 3], while accounting for a more elaborate token
structure and using a slightly different notation. Afterwards, we provide notes on computational efficiency and
stability in Sections 4.3 and 4.4, respectively.

4.1 Transition rates and balance equations
To derive the stationary distribution, we first note that, as is the case in [22], the model contains three types of
transitions.

• Arrival transitions. An arriving customer either joins the central queue as an inactive customer (when
it finds no compatible tokens in the set T (a)) or joins it as an active customer. In a given state x =
(T1, n1, . . . , Ti, ni), the arrival rate of inactive customers λU({T1,...,Ti}) forms the transition rate from
state x to state (T1, n1, . . . , Ti, ni + 1). Likewise, customers that immediately claim a token t upon ar-
rival, t /∈ {T1, . . . , Ti}, arrive at rate λt({T1, . . . , Ti}). Therefore, the transition rate from state x to state
(T1, n1, . . . , Ti, ni, t) is given by λt({T1, . . . , Ti}).

• Departure transitions where tokens become available. Transitions to a state x = (T1, n1, . . . , Ti, ni) due to
a departure of a customer where a token T is released are possible from states of the form

releasek,n(x , T ) = (T1, n1, . . . , Tk, nk − n, T, n, Tk+1, nk+1, . . . , Ti, ni),

where k ∈ {0, . . . , i}, n ∈ {0, . . . , nk} and T ∈ T \{T1, . . . , Ti}. It is straightforward to verify that
φ(releasek,n(x , T )) = φ(x ) + 1, so that

µT (releasek,n(x , T )) = η(φ(x ) + 1)sT (T1, . . . , Tk, T, Tk+1, . . . , Ti)

= η(φ(x ) + 1) (k(T1, . . . , Tk, T )− k(T1, . . . , Tk)) . (5)

To obtain the transition rate from state releasek,n(x , T ) to x , µT (releasek,n(x , T )) must be multiplied with
the probability that the token T is indeed released from activity after the departure. This probability is given
by rk,n(x , T ) = βk(T )nβk+1(T )nk+1 · · ·βi(T )ni , where

βk(T ) =
λU({T1,...,Tk})

λU({T1,...,Tk,T})
(6)
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is the probability that a customer waiting in the k-th portion of the central queue can not be served by
token T . As a special case, we define β0(T ) = 0 for any token T ∈ T . It now follows that the transition
rate from releasek,n(x , T ) to x is given by µT (releasek,n(x , T ))rk,n(x , T ). In reference to [22], note that
releasek,n(x , T ), rk,n(x , T ) and βk(T ) are equivalent to insertMkn(x ), pTkn(x ) and δk(T ), respectively, in
the notation of that paper.

• Departure transitions where tokens are reassigned. Departures where a token Tj is immediately reclaimed
by another customer leading to transitions to x = (T1, n1, . . . , Ti, ni) are possible from states of the form

shiftk,n(x , Tj) = (T1, n1, . . . , Tk, nk−n, Tj , n, Tk+1, nk+1, . . . , Tj−1, nj−1+1+nj , Tj+1, nj+1, . . . , Ti, ni),

where 1 ≤ k ≤ i, k + 1 < j ≤ i and n ∈ {0, . . . , nk}. Again, φ(shiftk,n(x , T )) = φ(x ) + 1, so that

µT (shiftk,n(x , Tj)) = η(φ(x ) + 1)sTj
(T1, . . . , Tk, Tj , Tk+1, . . . , Ti)

= η(φ(x ) + 1) (k(T1, . . . , Tk, Tj)− k(T1, . . . , Tk)) . (7)

Similar to the previous case, the transition rate from state shiftk,n(x , Tj) to state x can be argued to be equal
to µT (shiftk,n(x , Tj))sk,n(x , Tj), where

sk,n(x , Tj) = βk(Tj)
nβk+1(Tj)

nk+1 · · ·βj−1(Tj)
nj−1(1− βj−1(Tj)),

with βk(Tj) as defined in (6). In [22], shiftk,n(x , Tj) and sk,n(x , Tj) are denoted by swapTj

kn(x ) and qTj

kn,
respectively.

Taking these transitions into account, denoting the stationary distribution by {π(x ) : x ∈ X} and recalling
that the total departure rate from a state x is simply µ(x ), one can now conclude that the global balance equations
are, for x = (T1, n1, . . . , Ti, ni) ∈ X\{(0)}, given by

(λ+ µ(x ))π(x ) = 1{ni>0}λU({T1,...,Ti})π(T1, n1, . . . , Ti, ni − 1)

+ 1{ni=0}λTi
({T1, . . . , Ti−1})π(T1, n1, . . . , Ti−1, ni−1)

+
∑

T∈T \{T1,...,Ti}

i∑
k=0

nk∑
n=0

µT (releasek,n(x , T ))rk,n(x , T )π(releasek,n(x , T ))

+

i∑
j=1

j−1∑
k=0

nk∑
n=0

µTj (shiftk,n(x , Tj))sk,n(x , Tj)π(shiftk,n(x , Tj)), (8)

and, moreover,
λπ((0)) =

∑
T∈T

µT ((0, T ))π((0, T )). (9)

4.2 Derivation of the stationary distribution
In the following theorem, we present one of the main contributions of this paper: when both the assignment
condition and the order-independent condition (cf. Conditions 1 and 2) are satisfied, the stationary distribution of
the token-based central queue has a product form.

Theorem 1. If the token-based central queue is stable and Conditions 1 and 2 are satisfied, then, for each x =
(T1, n1, . . . , Ti, ni) ∈ X , the stationary distribution is given by

π(x ) = π((0))
Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

i∏
j=1

αj
nj

φ(x)∏
j=1

1

η(j)
, (10)

where

Πλ({T1, . . . , Ti}) =

i∏
j=1

λTj ({T1, . . . , Tj−1}),Πk(T1, . . . , Ti) =

i∏
j=1

k(T1, . . . , Tj) and αj =
λU({T1,...,Tj})

k(T1, . . . Tj)
.
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The normalising constant π((0)) is given by

π((0)) =

1 +

K∑
i=1

∑
(T1,...,Ti)∈T i

Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

∑
(n1,...,ni)∈Ni

i∏
j=1

αj
nj

i+
∑i

k=1 nk∏
j=1

1

η(j)

−1

, (11)

where T i denotes the set of all possible combinations of i tokens from the set T .

Proof. The proof is similar to that of [22, Theorem 2], but accounts for the more general order-independent service
rates. In Appendix A, we show that (10) satisfies (8). It is furthermore straightforward to verify that (10) satisfies
(9). This guarantees that (10) represents the unique stationary distribution. The constant π((0)) in (11) follows
from normalisation.

Remark 1. The expression in (10) is not in closed form, since the normalising constant π((0)) contains infinite
sums. For some specific cases of the function η(·), though, given that the token set is finite, π((0)) allows for a
closed-form expression. For example, when η(·) = 1, (11) reduces to

π((0)) =

1 +

K∑
i=1

∑
(T1,...,Ti)∈T i

Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

i∏
j=1

1

1− αj

−1

, (12)

which is in closed form. We will see in Section 6 that η(·) is a constant function in many applications.

Remark 2. In the literature, most notably [5], a different assignment mechanism has been studied called ALIS:
‘Assign Longest Idle Server’. Stated in our context, the key feature of an ALIS queue is that an arriving customer
who finds multiple compatible tokens upon arrival, will activate the token that has been available the longest. Since
this mechanism cannot be captured by an assignment rule as described in Section 3, the state descriptor would
have to be extended to keep track of which token has been available the longest. The new state descriptor would
be of the form (T1, n1, . . . , Ti, ni, Ti+1, . . . , TK), where Ti+1, . . . , TK are the available tokens in ascending order
of the time they have been idle. In other words, if an arriving customer is eligible to claim token TK , it will do so.
Otherwise, it will claim TK−1 if it is able to do so, and so on. By following the lines of proof of [5], we expect that
the stationary distribution for the token-based central queue with an ALIS mechanism also has a product form.

4.3 Aggregation of states for indistinguishable tokens
Having derived the stationary distribution, we now point out how its computation, and especially the computation
of the normalising constant in (11) can be made more efficient. We do so by realising that the tokens may be
indistinguishable in certain model instances. This also sllows for the modelling of an infinite number of tokens.

To define the notion of indistinguishability, we write the token set T as a union of disjoint token sets T̃1, . . . , T̃l,
where l is assumed to be finite and it holds for any two tokens s, t ∈ T̃i, i ∈ {1, . . . , l} that Cs = Ct, λs(T1, . . . , Tj) =
λt(T1, . . . , Tj), λTj

({T1, . . . , Tj−1, s}) = λTj
({T1, . . . , Tj−1, t}) and k(T1, . . . , Tj , s) = k(T1, . . . , Tj , t) for

T1, . . . , Tj ∈ T \{s, t}. We then call tokens which belong to the same token set T̃i indistinguishable.
We say that a token t has a token label lk whenever t ∈ T̃k, k ∈ {1, . . . , l}. Then, two tokens s and t

from the set T̃k can be addressed by their token label lk. This leads to a state descriptor of the form x (L) =
(L1, n1, . . . , Li, ni), where Li represents the label of the token held by the i-th active customer in the system. We
denote the state space under this state descriptor by X (L). Let l(t) denote the label of token t ∈ T , i.e. l(t) = lj
if t ∈ T̃j . Then, by aggregation of states in (10),

π((L1, n1, . . . , Li, ni)) =
∑

(T1,...,Ti)∈T i:l(Tj)=Lj∀j∈{1,...,i}

π((T1, n1, . . . , Ti, ni))

= π((0))

i∏
j=1

λLj
({L1, . . . , Lj−1})
k(L1, . . . , Lj)

i∏
j=1

(
λU({L1,...,Lj})

k(L1, . . . , Lj)

)nj φ(x)∏
j=1

1

η(j)
. (13)

Here, λLj ({L1, . . . , Lj−1}) =
∑
t∈T :l(t)=Lj

λt(T1, . . . , Tj−1) (with l(T1) = L1, l(T2) = L2, . . .) represents
the arrival rate of customers that immediately claim a token with label Lj , when there are j − 1 active cus-
tomers that have claimed tokens from labels L1, . . . , Lj−1. Likewise, when Lj = l(Tj) for j ∈ {1, . . . , i},
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k(L1, . . . , Lj) = k(T1, . . . , Tj) and U({L1, . . . , Lj}) = U({T1, . . . , Tj}). The normalising constant π((0)) as
given in (11) remains unchanged, but can now alternatively be written as

π((0)) =

1 +

K∑
i=1

∑
(L1,...,Li)∈Li

i∏
j=1

λLj ({L1, . . . , Lj−1})
k(L1, . . . , Lj)

∑
(n1,...,ni)∈Ni

i∏
j=1

(
λU({L1,...,Lj})

k(L1, . . . , Lj)

)nj
i+

∑i
k=1 nk∏
j=1

1

η(j)

−1

,

where Li represents the set of all possible combinations of i token labels. In the sequel, when working with the
aggregated state descriptor, we will use µLj

(x (L)) and sj(L1, . . . , Lj) as notation for the equivalents of µTj
(x )

and sj(T1, . . . , Tj).

4.4 Stability
From the stationary distribution (10), stability conditions can be derived. In particular, when the function η(·)
has a limit η := limj→∞ η(j), the system will be stable if

λU({T1,...,Ti})
k(T1,...,Ti)

< η for each i ∈ {1, . . . ,K} and
{T1, . . . , Ti} ⊂ T , since (10) then constitutes a non-null and convergent solution of the equilibrium equations of
the irreducible Markov process underlying the model. As such, it is implied by [13, Theorem 1] that the Markov
process is ergodic, leading to stability. When

λU({T1,...,Ti})
k(T1,...,Ti)

> η for some i ∈ {1, . . . ,K} and {T1, . . . , Ti} ⊂ T ,
we have by (11) that π((0)) = 0, making the expected return time to state (0) infinite. Then, the Markov process
is not ergodic and the token-based central queue is unstable. In case

max
i∈{1,...,K}
{T1,...,Ti}⊂T

λU({T1,...,Ti})

k(T1, . . . , Ti)
= η,

the existence of ergodicity depends on the way (and possibly the speed at which) the function η(·) converges to its
limit η.

5 Performance analysis
In this section, we study several performance measures of the token-based central queue. By extending the tech-
niques of [22, Section 4] to allow for the order-independent token structure, we study the (per-type) population
size of inactive customers in Section 5.1, as well as their time-till-token using Little’s law ( [18]). Next, we con-
sider performance measures in Section 5.2 that concern the total population of customers, namely the per-type
population size and the sojourn time of customers.

5.1 Population of inactive customers
We first consider the population of inactive customers, i.e., the population of customers which are yet to claim a
token. By following the analysis in [22, Section 4], we obtain the following expression for N (c), the number of
present type-c customers that are inactive.

Theorem 2. Let θc,j :=
λc1{c∈U(T1,...,Tj)}

λU(T1,...,Tj
) for j ∈ {1, . . . ,K} and c ∈ C. Then, the joint PGF of {N (c) : c ∈ C}

is, for zc ∈ {c̄ ∈ C : |c̄| < 1}, given by

E

[∏
c∈C

zN
(c)

c

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αj
∑
c∈C

θc,jzc)
nj , (14)

Proof. The proof extensively uses Theorem 1 and can be found in Appendix B.
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In [22], the waiting-time distribution of customers in their model has also been derived. In our model, however,
although a customer may have claimed a token, it may still not receive any service. We will explicitly consider
the time-till-token Wc of type-c customers (i.e. the time it takes for type-c customers to claim a token). In many
applications, among which the model of [22],Wc coincides with the waiting time. To study the time-till-token, we
note that the order in which type-c customers arrive is the same as the order in which type-c customers acquire a
token, since tokens are always claimed by the longest waiting eligible customer. Therefore, N (c) and W (c) satisfy
the assumptions required for the distributional form of Little’s law to hold (cf. [18]). Little’s law dictates that, for
any s ∈ {c̄ ∈ C : <(c̄) > 0},

E
[
e−sWc

]
= E

[(
λc − s
λc

)N(c)]
. (15)

This leads to the following theorem.

Theorem 3. The time-till-token of a type-c customer, Wc, satisfies, for any s ∈ {c̄ ∈ C : <(c̄) > 0},

E
[
e−sWc

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(
αj

(
1−

s1{c∈U({T1,...,Tj})}

λU({T1,...,Tj})

))nj

. (16)

Proof. The theorem follows by substitution of zd = 1 for all d 6= c in (14) and combining the result with (15).

5.2 Total population of customers
In this section, we present results on the per-type sizes of the total population (that is, both inactive and active)
as well as the population’s sojourn times. Let gj be the type of the customer that holds token Tj and define

Gc1,...,ci(T1, n1, . . . , Ti, ni) := P
(⋂

j∈{1,...,i}{gj = cj} | x = (T1, n1, . . . , Ti, ni)
)

. Then, based on the results

of the previous section, we find that M (c), the number of type-c customers present in the system, satisfies the
following theorem.

Theorem 4. The joint PGF of {M (c) : c ∈ C} is, for zc ∈ {c̄ ∈ C : |c̄| < 1} given by

E

[∏
c∈C

zM
(c)

c

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

 ∑
{c1,...,ci}∈Ci

Gc1,...ci(T1, n1 . . . , Ti, ni)

i∏
j=1

zcj

×
×

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αj
∑
c∈C

θc,jzc)
nj . (17)

Proof. The proof is given in Appendix C.

Remark 3. A general expression for Gc1,...,ci(T1, n1, . . . , Ti, ni), the probability that, provided the system is in
state x = (T1, n1, . . . , Ti, ni), tokens T1, . . . , Ti are claimed by customers with types c1, . . . , ci, respectively,
seems hard to derive. For some applications, the derivation of an expression for Gc1,...,ci(T1, n1, . . . , Ti, ni) is,
however, straightforward. For example, if the token sets Tc, c ∈ C, are disjoint, thenGc1,...,ci(T1, n1, . . . , Ti, ni) =
1{∩i

j=1{Tj∈Tcj }}
.

We next focus on the sojourn time Sc of type-c customers. Deriving expressions for the sojourn time is
generally hard, as type-c customers do not necessarily depart the system in the order of their arrival. Therefore,
we only consider the sojourn time for instances of the model where type-c customers do depart the system in the
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order of arrival. In such cases, again the distributional form of Little’s law for the quantities M (c) and Sc holds
true:

E
[
e−sSc

]
= E

[(
λc − s
λc

)M(c)]
, (18)

for any s ∈ {c̄ ∈ C : <(c̄) > 0}. This additional assumption holds in variety of applications and allows us to state
the following theorem.

Theorem 5. If type-c customers depart the system in the order of arrival, the LST of their sojourn time Sc is, for
s ∈ {c̄ ∈ C : <(c̄) > 0}, given by

E
[
e−sSc

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

 ∑
{c1,...,ci}∈Ci

Gc1,...ci(T1, n1 . . . , Ti, ni)

(
λc − s
λc

)∑i
j=1 1{ci=c}

×
×

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(
αj

(
1−

s1{c∈U({T1,...,Tj})}

λU({T1,...,Tj})

))nj

. (19)

Proof. The proof is the same as that of Theorem 3, but instead of (14) and (15), (17) and (18) are used.

In case |Tc| = 1 for some type c ∈ C, the assumption that type-c customers depart the system in the order of
arrival is always valid. Then, if Tc = {t} and Ct = {c}, (19) simplifies to

E
[
e−sSc

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

λc − s1{t∈{T1,...,Ti}}

λc
×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(
αj

(
1−

s1{t∈{T1,...,Tj}}

λU({T1,...,Tj})

))nj

. (20)

Remark 4. An expression for N , the total number of inactive customers in the system, can be obtained by noting
that E

[
zN
]

= E
[
z
∑

c∈C N
(c)
]

= E
[∏

c∈C z
N(c)

]
and

∑
c∈C θc,j =

∑
c∈C

λc1{c∈U({T1,...,Tj})}

λU({T1,...,Tj})
= 1. Using this in

(14) leads to

E
[
zN
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αjz)
nj . (21)

Likewise, similar notions, along with the realisation that
∑
{c1,...,ci}∈Ci Gc1,...,ci(T1, n1, . . . , Ti, ni) = 1, leads to

E
[
zM
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

zi
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αjz)
nj .

(22)
The overall time-till-tokenW and the overall sojourn time S can be reconstructed from E

[
e−sW

]
=
∑
c∈C

λc

λ E
[
e−sWc

]
and E

[
e−sS

]
=
∑
c∈C

λc

λ E
[
e−sSc

]
, respectively.

Remark 5. In Appendix D, simplified expressions for several performance measures studied are given in case
η(·) = 1. These expressions are in closed form, and it follows from inversion of these expressions that N (c) and
N can be interpreted as a weighted convolution of geometric random variables. Likewise, Wc can be interpreted
as a weighted convolution of exponential random variables.
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Figure 2: A classification of token-based central queues.

6 Generalisation of two existing classes of models
In this section, we show that both the multi-type customer and server model ( [22]) as well as the order-independent
queue ( [20]) can be seen as special cases of the token-based central queue as analysed in this paper. The results
are summarised in the Venn diagram presented in Figure 2.

6.1 Multi-type customer and server model
In the multi-type customer and server model of [22], type-c customers arrive at the system according to a Poisson
process with rates λc and have an exponentially distributed service requirement with rate 1. There are K servers
and server i works at rate µi. Each customer type has a set of compatible servers it can be served at. Whenever a
server becomes idle, it takes the earliest arrived customer in the queue that it can process into service. An arriving
customer that finds more than one compatible server idle is assigned to one of the servers according to a random
assignment rule that satisfies a certain assignment condition.

6.1.1 Modelling as a token-based central queue

Introducing K tokens, letting each token represent a server and setting η(·) = 1 and sj(T1, . . . , Ti) = µTj in
our token-based central queue, we directly retrieve the multi-type customer and server model. The assignment
condition of [22] coincides with Condition 1 and it is immediately seen that the order-independent condition
(Condition 2) is also satisfied. We hence find that the model of [22] is a particular instance of our model.

6.1.2 Applications

In this section, we give two applications of the token-based central queue that fit the model of [22]. For illustrative
purposes, we describe the M/M/K queue with heterogeneous service rates and explain how it can be interpreted as
a token-based central queue. Then, we consider the redundancy-d COS model, and use results from Section 5 to
derive performance measures that have not been derived before in the literature.

6.1.2.1 M/M/K queue with heterogeneous service rates
The M/M/K queue with heterogeneous service rates is a single-type queue that has K servers labeled t1, . . . , tK ,
to which customers arrive according to a Poisson(λ) process. Upon arrival, the customer is assigned any idle
server with equal probability. In case there are no idle servers, the customer waits in the queue. A customer served
by server ti requires an exponentially distributed service time with parameter µ(ti). We denote the sum of the
service rates by µ =

∑K
i=1 µ(ti).

To interpret this queue as a token-based central queue, we introduce a token for every server. Because of this,
we label the tokens t1, . . . , tK as well. Hence, when a customer holds token ti, it receives service from server ti.
Due to the uniform assignment of idle servers to arriving customers, the assignment rule is for j = 1, . . . ,K and
t ∈ T \{T1, . . . , Tj−1} given by λt(T1, . . . , Tj−1) = λ

K−j+1 . Condition 1 is now satisfied. Furthermore, since
there is only one customer type, λU(T ) = λ and λU(S) = 0 for any strict subset S ⊂ T . To match the departure
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rates of the M/M/K queue, we choose, for all j ∈ N, η(j) = 1, sj(T1, . . . , Ti) = µ(Tj) and k(T1, . . . , Ti) =∑i
j=1 µ(Tj). These parameters satisfy Condition 2, and moreover make this model satisfy the framework of [22]

(cf. Section 6.1.1). If the M/M/K queue would have homogeneous service rates (i.e. µ(Ti) = µ(Tj) for all i 6= j),
the queue is also order-independent, as all tokens would then be indistinguishable from one another. We explain
why indistinguishable tokens lead to order-independent queues in Section 6.2.1. Finally, since the system has a
single customer type (C = {c}), we have that Gc,...,c(T1, n1, . . . , Ti, ni) = 1.

Theorem 1 now leads to the stationary distribution, which was already derived in [16]. In particular, for any
x = (T1, T2, T3, . . . , Tk, nk) ∈ X , we have that

π(x ) = π((0))

∏i
j=1

λ
K−j+1∏i

j=1

∑j
l=1 µ(Tl)

(
λ

µ

)1{i=K}nK

= π((0))
λi(K − i)!

K!
∏i
j=1

∑j
l=1 µ(Tl)

(
λ

µ

)1{i=K}nK

, (23)

while π(x ) = 0 for all other states. It is possible to drop the ordering of the tokens, while the system remains
Markovian. In other words, states of the form (n,R) can be introduced, where n is the number of waiting
customers andR represents the (orderless) set of servers/tokens in service (i.e. R = T \T (a)). By aggregation of
states, we obtain

π(0,R) =
π((0))λ|R|(K − |R|)!

K!

∑
(T1,...,T|R|)∈R

1∏|R|
j=1

∑j
l=1 µ(Tl)

and

π(n, T ) =
π((0))λK

K!

(
λ

µ

)n ∑
(T1,...,TK)∈T

1∏K
j=1

∑j
l=1 µ(Tl)

,

where R (T ) is the set of all possible permutations of the tokens in R (T ). In case n > 0 and |R| < K, we
obviously have that π(n,R) = 0.

Since the M/M/K queue with heterogeneous service rates fits the framework of this paper, Theorems 2–4
now immediately offer characterizations of the size of the waiting customer population, the waiting times and the
size of the overall customer population, respectively. In doing so, the size of the waiting customer population,
conditional on the event all servers are busy, can be found to have a geometric distribution with failure parameter
λ
µ , while the waiting time of a customer, conditional on it being positive, is exponentially(µ − λ) distributed. To
obtain expressions for the sojourn time distribution, however, Theorem 5 does not apply, since customers of equal
types do not necessarily leave the system in the order of their arrival. Instead, through a PASTA-argument and by
conditioning on the server that an arriving customer will be served by, we derive for any s ∈ {c̄ ∈ C : <(c̄) > 0}
that

E
[
e−sS

]
=

 ∑
R⊂T :T \R6=∅

π(0,R)
λ

K − |R|
∑

T∈T \R

µ(T )

µ(T ) + s

+

+

∞∑
n=0

π(n, T )E
[
e−sW |W > 0

] ∑
T∈T

µ(T )

µ

µ(T )

µ(T ) + s

=

 ∑
R⊂T :T \R6=∅

π(0,R)
λ

K − |R|
∑

T∈T \R

µ(T )

µ(T ) + s

+

(
λ

µ

)K
µ− λ

µ− λ+ s

∑
T∈T

µ(T )

µ

µ(T )

µ(T ) + s
,

where terms between brackets represent the case where an arriving customer is immediately served.

6.1.2.2 The redundancy-d COS model
As pointed out in [6], an example of an application that fits the model of [22] is the redundancy-d cancel-on-start
(COS) model. This model constitutes a system with K single-server FCFS queues and homogeneous servers
providing service at unit speed. Customers arrive according to a Poisson(λ) process. Upon arrival, the customers
choose at random d out ofK queues, and to each of those queues, a copy of the customer is sent, each copy having
its own independent, exponentially(µ) distributed service requirement. Once service on any of these copies has
started, all the other copies of the same customer are removed from the system (cancelled), and only the sole
remaining copy will be serviced. In case an arriving customer finds multiple of its d chosen servers idle upon
arrival, one copy will go into service at any of these servers with uniform probability, and all other copies are
cancelled immediately.
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To interpret the COS-model as a token-based central queue, we follow much of the reasoning of [6]. We intro-
duce a token set T = {t1, . . . , tK}, where token ti has a one-to-one correspondence to the i-th of the K servers.
We also introduce customer types corresponding to the set of servers/tokens an arriving customer replicates to:
equal-type customers send copies to the same d out of K servers. As a consequence, there are

(
K
d

)
lexicographi-

cally ordered customer types, labeled c1, . . . , c(K
d ). When a token is claimed by a customer, the customer is taken

into service by the server corresponding to the token, so that all other copies are cancelled. If type-c customers
send copies to servers in the set R ⊂ T , we have that Tc = R. Since an arriving customer is of any of the

(
K
d

)
types with uniform probability, we have λci = λ

(K
d )

. Deriving λt(T1, . . . , Tj−1) is more intricate. An arriving cus-

tomer that finds a tokens available will immediately claim any one of them with probability 1
a . Thus, when tokens

(T1, . . . , Tj−1) are active, this means that there are
(
K−j
a−1

)(
j−1
d−a
)

customer types of which an arriving customer,
upon arrival, would find a tagged token t among the a available tokens that it could immediately claim. That is, t
is one of the eligible available tokens, there are a−1 others out of theK−j available tokens (

(
K−j
a−1

)
possibilities)

and the remaining d − a out of the d eligible tokens are among T1, . . . , Tj−1 (
(
j−1
d−a
)

possibilities). Combining
these observations and assuming that

(
m
n

)
= 0 for 0 ≤ m < n, we have for any (T1, . . . , Tj−1) ∈ T j−1 and any

t ∈ T \{T1, . . . , Tj−1} that

λt(T1, . . . , Tj−1) =

min{K−j+1,d}∑
a=1

λ(
K
d

) 1

a

(
K − j
a− 1

)(
j − 1

d− a

)
.

Due to symmetry, it is immediate that Condition 1 is satisfied. We also reason that λU({T1,...,Ti}) =
λ(i

d)
(K

d )
, since

out of the
(
K
d

)
customer types, there are

(
i
d

)
that replicate to d servers/tokens in the set {T1, . . . , Ti}. As for the

departure rate parameters; when a copy of a customer starts service (i.e., claims a token), its departure rate from
the system equals µ. Therefore, η(j) = 1 for all j ∈ N and sj(T1, . . . , Ti) = µ for all possible sets (T1, . . . , Ti)
of i tokens, so that k(T1, . . . , Ti) = iµ. By probabilistic reasoning, we have that Gc1,...,ci(T1, n1, . . . , Ti, ni) =
λ1{

⋂i
j=1
{Tj∈Tcj }}

(K−1
d−1 )

, since any server/token can be selected by
(
K−1
d−1

)
customer types.

For this model, [6, Proposition 2] provides the PGF of E
[
zN
]
, the total number of waiting customers in the

system. Since in generality, customers do not depart the system in the order of arrival, the distributional form
of Little’s law cannot be directly applied to this PGF to obtain an expression for the (PGF of the) waiting-time
distribution W of the redundancy-d COS model. We therefore use the results of Section 5 for this purpose. For
this model, the waiting time of a type-c customer coincides with its time-till-token. Hence, by using Theorem 3
and exploiting symmetry, we obtain for s ∈ {c̄ ∈ C : <(c̄) > 0} that

E
[
e−sW

]
= E

[
e−sWc1

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

∑min{K−j+1,d}
a=1

λ

(K
d )

1
a

(
K−j
a−1

)(
j−1
d−a
)

jµ− λ (j
d)

(K
d )

+ s1{j≥d}

,

where

π((0)) =

1 +

K∑
i=1

∑
(T1,...,Ti)∈T i

∏i
j=1

∑min{K−j+1,d}
a=1

λ

(K
d )

1
a

(
K−j
a−1

)(
j−1
d−a
)

i!µi

i∏
j=d

(
K
d

)
jµ(

K
d

)
jµ− λ

(
j
d

)
−1

.

As for the sojourn time of customers, Theorem 5 again does not apply as same-type customers do not claim a
token in the order of arrival. However, since each customer’s exponential(µ) service time is independent of its

waiting time, we have that E
[
e−sS

]
=

µE[e−sW ]
µ+s .

6.2 The order-independent queue
The order-independent (OI) queue was first described in [20]. This model consists of a single central queue where
customers of multiple types wait. The distinguishing feature of this model, as compared to a conventional FCFS
queue, is that the service rate that the j-th customer receives is not necessarily zero for j > 1. Instead, the service
rates of the customers satisfy an order-independent property. More particularly, in the OI queue, customers of type
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i arrive according to a Poisson(λi) process and have an exponentially distributed service requirement with rate 1.
The generic state descriptor as considered in [20] is x (OI) = (c1, . . . , cn), where n is the number of customers in
the system and cj denotes the type of the jth customer in the central queue. Let X (OI) denote the corresponding
state space. For a given state x (OI) ∈ X (OI), let µ(OI)

j (x (OI)) denote the departure rate associated with the j-th
customer. In an OI queue the following order-independent property holds.

Condition 3. In a given state x (OI) = (c1, . . . , cn), each of the rates µ(OI)
j (x (OI)), j = 1, . . . , n, can be written

as
µ

(OI)
j (x (OI)) = η(OI)(n)s

(OI)
j (c1, . . . , cn), (24)

where

1. s(OI)
j (c1, . . . , cn) = s

(OI)
j (c1, . . . , cj) for any 1 ≤ j ≤ i

2. k(OI)(c1, . . . , cn) :=
∑n
j=1 s

(OI)
j (c1, . . . , cj) is independent of any permutation of (c1, . . . , cn) and

3. η(OI)(n) > 0 for n > 0.

We see a close similarity with the order-independent condition as stated in Condition 2.

6.2.1 Modelling as a token-based central queue

Also the OI-queue can be interpreted as a token-based central queue, but seeing this is more intricate than the
model of [22] before. The following theorem provides a connection between the OI queue and the token-based
central queue.

Theorem 6. For a given model, the following statements are equivalent:

(1) the model fits in the OI queue framework;

(2) the model can be seen as a token-based central queue where the token sets associated with each of the
customer types each consist of indistinguishable tokens.

Proof. To prove (1)→(2), one is given an OI queue, and to map this to a token-based central queue, one introduces
an infinite number of tokens per customer type, and associates each customer with a token. To prove the opposite,
i.e., (2)→(1), we notice that when in a token-based central queue the tokens are indistinguishable, it is clear to
which type of customer an active token is associated, hence allowing for an OI state descriptor. For full details,
we refer to Appendix E.

The above theorem states that, given some model, one can interpret it as an OI queue if and only if the
model can be interpreted as a token-based central queue where the token set of each customer type contains
indistinguishable tokens. Recall from Section 4.3 that a model with indistinguishable tokens comes with the state
descriptor x (L) = (L1, n1, . . . , Li, ni). It is important to note the difference in the two state representations x (OI)

and x (L): the types of all the customers are known in the OI queue, while only the customer types associated with
the active customers can be known in our token-based representation. However, this sacrifice of detail leads to a
richer class of models, as Theorem 6 shows that token-based central queues with distinguishable tokens handles a
larger class of applications than OI queues.

For both state descriptors, a product-form solution for the steady-state distribution exists. For our state descrip-
tor, the steady-state distribution follows from (13). Using this result and Theorem 6, the stationary distributions for
the OI state descriptor can be recovered as is done in the corollary below. The proof can be found in Appendix F.

Corollary 7. If the model fits in the OI queue framework, the steady-state distribution in terms of the OI state
descriptor, denoted by π(OI)(x (OI)), is given by

π(OI)(x (OI)) = π(OI)((0))

n∏
i=1

λci
η(OI)(i)k(OI)(c1, . . . , ci)

, (25)

as was derived in [20].
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6.2.2 Applications

We now proceed to give two applications of the token-based central queue that can be interpreted as OI queues.
Based on Section 5, we derive performance measures for these models, which to the best of the authors’ knowledge
have not been obtained in the literature before.

6.2.2.1 The MSCCC queue
The first application that we consider is the Multi-server Station with Concurrent Classes of Customers (MSCCC)
queue, as studied in [21] and [12]. As the name suggests, the MSCCC queue contains multiple servers and multiple
types of customers, where at most one customer of any type can be in service. More particularly, the MSCCC
queue consists of k identical servers serving customers at unit rate. Customers of type cl, l ∈ N, arrive according
to a Poisson(λcl ) process and have exponential(µ) service requirements. Upon arrival, when a server is available
and no other customer of his/her type is in service, the customer will go into service at an arbitrary free server.
When no server is available or another customer of its type is already in service, the customer waits in line. When
a server becomes available, it takes into service the longest waiting customer of a type not already in service.

To model the MSCCC queue using the token-based representation, we introduce for every customer type cl a
token tl, which is dedicated to type-cl customers. Thus, token tl will always be held by the oldest type-cl customer
in the system if there is any, otherwise it is available. Given the one-to-one correspondence between customer types
and tokens, we also refer to type-cl customer as type-tl customers (i.e., λcl = λtl , zcl = ztl and so on). Then, it
holds that λtl(T1, . . . , Ti) = λtl in case tl /∈ {T1, . . . , Ti}. It follows trivially that λU(T1,...,Ti) =

∑i
j=1 λTj

. The
departure rates are characterised by η(j) = 1, sj(T1, . . . , Ti) = µ1{j≤k} and k(T1, . . . , Ti) = min{i, k}µ for
any (T1, . . . , Ti) ∈ T i and j = 1, . . . , i. These parameter settings satisfy Condition 1 as well as Condition 2 and
lead to Gc1,...,ci(T1, n1, . . . , Ti, ni) = 1{

⋂i
j=1{CTj

={cj}}}.
The stationary distribution of this queue, which was already reported in [21] and [12] can now be reconstructed

from (10). Additionally, after substitution of the model parameters derived above, Theorem 4 leads for zc ∈ {c̄ ∈
C : |c̄| < 1} to

E

[∏
c∈C

zM
(c)

c

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

λTj
zTj

k(T1, . . . , Tj)−
∑j
l=1 λTl

zTl

,

where π((0)) =

(∑
x∈X

∏i
j=1 λTj

µi min(i,k)!kmax(i−k,0)

)−1

. The expected queue lengths as reported in [12] and [20] can

be derived from this expression. As for the sojourn time distribution, the MSCCC queue satisfies the condition
that same-type customers depart the system in the order they arrive. Therefore, it follows after substitution of the
model parameters from Theorem 5 (or more particularly, (20)) that, for s ∈ {c̄ ∈ C : <(c̄) > 0},

E
[
e−sScl

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

λTj
− s1{Tj=tl}

min(j, k)µ−
∑j
l=1 λTl

+ s1{tl∈{T1,...,Tj}}
.

The waiting-time distribution of a type-cl customer is now given by µ+s
µ E

[
e−sScl

]
.

6.2.2.2 The redundancy-d COC model
We now study another OI queue, namely the redundancy-d cancel-on-complete (COC) model. This model shares
many characteristics with the redundancy-d COS model studied in Section 6.1.2. The only difference with that
model is that redundant customer copies will now only be cancelled once any of the copies has completed service,
rather than just having started service. Therefore, it is now possible that multiple copies of the same customer
are in service at the same time. In [14], the sojourn time distribution of this model has been analysed in limiting
regimes and the mean sojourn time in the general setting has been derived. The work of [8] in fact showed
that this model is an OI queue, and therefore this model can also be interpreted as a token-based central queue.
Using results from Section 5, we now supplement the analysis of [14] by giving a characterisation of the complete
distribution of the sojourn time in the general setting. We also give an expression for the total number of customers
in the system, which has not been derived before.

To interpret the redundancy-d COC model as a token-based central queue, the model parameters need to
be chosen in a different way as compared to the COS model. We still introduce a customer type for every
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choice of d out of K servers an arriving customer replicates to, so that there are
(
K
d

)
customer types in to-

tal. However, we do not associate tokens with servers, but with customer types, as we did for the MSCCC
queue. This is possible, since in a COC model only copies of the oldest of the customers of any type can re-
ceive service. We thus introduce a token set T = {t1, . . . , t(K

d )}, where ti corresponds to the i-th customer

type. Since every customer type has its dedicated token, we have that λti(T1, . . . , Tj−1) = λci = λ

(K
d )

when

ti /∈ {T1, . . . , Tj−1}. Similarly, we have that λU({T1,...,Ti}) = iλ

(K
d )

and Condition 1 is trivially satisfied. For

the departure rates, we choose η(j) = 1 for all j ∈ N. Recall that sj(T1, . . . , Ti) is the departure rate of the
customer that holds token Tj . This customer is the oldest of its type, and the j-th oldest overall among all the
customers which are the oldest from their type. This customer’s departure rate is given by µ (the service rate
obtained from a single server) times the number of servers that are working on copies of this customer. These
are the servers to which a copy of the customer with token Tj has been sent, but have not been sent a copy of
any of the customers holding tokens T1, . . . , Tj−1. In other words, if Fj(T1, . . . , Ti) refers to the number of
servers that are able to serve copies of at least one of the customers holding T1, . . . , Tj , 1 ≤ j ≤ i, we have
that sj(T1, . . . , Ti) = µ(Fj(T1, . . . , Ti) − Fj−1(T1, . . . , Ti)). Note that, by nature of the function Fj(·), it is
straightforward that Fj(T1, . . . , Ti) = Fj(T1, . . . , Tj) and that Fj(T1, . . . , Tj) = Fj(T̄1, . . . , T̄j) for any permu-
tation (T̄1, . . . , T̄j) of (T1, . . . , Tj). As a consequence, k(T1, . . . , Ti) = µFi(T1, . . . , Ti) and Condition 2 holds.
Finally, we have that Gc1,...,ci(T1, n1, . . . , Ti, ni) = 1{

⋂i
j=1{Ti=ti}}.

Now that the model parameters are known, Theorem 1 provides the stationary distribution of the COC model
as provided in [6, Proposition 7]. Moreover, (22) now implies for z ∈ {c̄ ∈ C : |c̄| < 1} that

E
[
zM
]

=

(K
d )∑
i=0

∑
(T1,...,Ti)∈T i

(λz)iπ((0))∏i
j=1 µ

(
K
d

)
Fj(T1, . . . , Ti)− jλz

,

where π((0)) =

(
1 +

∑K
i−1

∑
(T1,...,Ti)∈T i

∏i
j=1

λ

µ((K
d )Fj(T1,...,Ti)−jλ)

)−1

is a normalisation constant. Fur-

thermore, by applying Theorem 5 (or more particularly, (20)) and exploiting symmetry, we have for any s ∈ {c̄ ∈
C : <(c̄) > 0} that

E
[
e−sS

]
= E

[
e−sSc1

]
=

(K
d )∑
i=0

∑
(T1,...,Ti)∈T i

λ− s
(
K
d

)
1{t1∈{T1,...,Ti}}

λ
×

× λiπ((0))∏i
j=1

(
µ
(
K
d

)
Fj(T1, . . . , Ti)− jλ+ s

(
K
d

)
1{t1∈{T1,...,Tj}}

) .
Remark 6. In the redundancy COC model in this section, as well as the redundancy COS model of Section 6.1.2.2,
we have assumed that upon arrival, every customer selects exactly d servers to send copies to. Furthermore, we
assumed that all servers each serve customers at an equal rate. However, conceptually, the results of this paper can
be applied to a redundancy model where neither of these assumptions are satisfied, but at the cost of more intricate
expressions.

Remark 7. The redundancy COC model is intimately related to other models, as discussed in [3]. More particu-
larly, it is there shown that, among others, the redundancy COC model is equivalent to a parallel FCFS matching
model. Such matching models arise naturally in many areas such as manufacturing, call centers and housing.
Because of this equivalence, the framework of this paper also has applications in the field of matching.

6.3 Models that are neither a multi-type customer and server nor an OI queue
There also exist models that can be modelled as a token-based central queue, but do fit neither of the frameworks
of [22] or [20]. In fact, a necessary and sufficient condition for a model to fall in this category is given as follows.

Condition 4. A token-based central queue is not captured by the frameworks of [22] and [20] if and only if both
of the following statements hold:

a) The departure rate functions µTj
(x ) are such that either η(j) is not constant in j, or there exists no set of

token-dependent values {µt : t ∈ T } so that sj(T1, . . . , Ti) = µTj
for all states.
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b) There is a token set Tc which contains at least one pair of tokens that are distinguishable from one another.

This condition can be argued as follows. If Condition 4a) is (not) satisfied, the model cannot (can) be a multi-
type customer and server queue, because of the findings in Section 6.1.1. Similarly, Condition 4b) is the negation
of the statement that the token-based central queue is also an OI queue by Theorem 6. Condition 4 thus allows us
to design models that are token-based central queues but do not fit any of the two frameworks, and conversely to
verify whether a given model falls into this category. We now introduce two such models, which shows that the
token-based model extends the existing frameworks.

6.3.1 Dedicated and flexible customers

Consider a system with K servers and K + 1 customer types. The set of compatible tokens for customer type ci,
i ≤ K is given by the infinite set Tci = {t(1)

di
, t

(2)
di
, . . .} of indistinguishable tokens, which we refer to as class-tdi

tokens. We call these customer types dedicated, since they can only claim tokens of class tdi . Customer type
cK+1 has as compatible token set

TcK+1
= {t(1)

1 , . . . , t
(γ1)
1︸ ︷︷ ︸

γ1

, t
(1)
2 , . . . , t

(γ2)
2︸ ︷︷ ︸

γ2

, . . . , t
(1)
K , . . . , t

(γK)
K︸ ︷︷ ︸

γK

}.

The first γ1 tokens in this set are mutually indistinguishable, as are the tokens in the other K − 1 respective token
subsets of sizes γ2, γ3, . . . , γK . Customers of type cK+1 are henceforth called flexible in the sense that they can
claim K different classes of tokens: t1, t2, . . . , tK .

In this system, the i-th server is associated to tokens ti and tdi . This means that among the customers in the
system holding a token of either class tdi or class ti, only the one who arrived earliest will be served at rate µi,
whereas the others do not receive service. Upon arrival, dedicated customers claim a token from their respective
token set. Upon the arrival of a flexible customer, in case more than one token of the set TcK+1

is available, an
assignment rule will assign one of the tokens to the customer. When there is no token of TcK+1

available, the
customer waits.

The model can be interpreted as a load balancing system that implements redundancy, where customers are
served in a FCFS fashion; see Figure 3. Upon arrival of a dedicated customer, the dispatcher always sends
this customer immediately to the associated server, since a dedicated customer can always immediately claim a
token from its infinite token set. If a flexible customer can also immediately claim a token from its set TcK+1

, it
will likewise be dispatched to the corresponding server. When a flexible customer cannot claim a token directly
upon arrival, this can be interpreted as having redundant copies of this customer dispatched to every server. The
first copy that finds γi − 1 flexible customers ahead of it in its queue will be kept and eventually served by its
corresponding server. All the other copies of the customer will be cancelled. This is the interpretation of a flexible
customer claiming a token of class ti which is released by another flexible customer that has its service completed
by a server i. Figure 3 provides an example of this system.

The fact that the departure rate function is a state-dependent function and that this model involves mutually
indistinguishable tokens ensures that Condition 4 is satisfied, so that this model is neither a multi-type customer
and server queue nor an OI queue. It is tempting to think that for γ1 = γ2 = 1, as is the case in Figure 3, the model
can be interpreted as an asymmetric redundancy CoS model in the spirit of Section 6.1.2.2, and as a result, that this
model leads to a multi-type customer and server queue. However, this model does not incorporate a cancel-on-
start mechanism. To illustrate, in Figure 3c), a copy of the customer has already been cancelled, while service for
this customer has not started yet. Because of this reason, the model cannot be interpreted as a multi-type customer
and server queue either.

6.3.2 M/M/K queue with a generalised service rate function

Let us consider the M/M/K queue with heterogeneous service rates of Section 6.1.2. That is, there are K tokens
labeled t1, . . . , tK , each associated with one of the K servers, and every arriving customer can claim any of
them. Since the service rates are heterogeneous, the tokens are distinguishable. Recall that the service rate of the
customer holding token Tj , j ≤ i, is given by µTj (x ) = η(φ(x ))sj(T1, . . . , Ti). We now look at the following
variant of the model. Suppose that now either sj(T1, . . . , Ti) does not only depend on token Tj , or that the η(·)-
function is not constant (i.e. the service rates vary with the number of customers in the system). It then follows
from Condition 4 that the model cannot be cast in the framework of [22] or [20]. Such a model could be motivated
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Figure 3: A two-server model with dedicated and flexible customers and γ1 = γ2 = 1. All dedicated customers
have a token, and only the first flexible customer in each queue has a token. The servers serve the queues in a
FCFS fashion, so only the first (shaded) customer in the queue gets service. Part a) shows a snapshot of the system
at some arbitrary time t. The second flexible customer of type c3 has redundant copies in both servers, as it has
not claimed token of classes t1 or t2 yet. Part b) shows the system at a time t′ > t, when the first customer from
server 2 departs. Because of this, the next customer in line, which is a dedicated customer, starts being served,
the flexible customer in server 1 obtains a token and its redundant copy in server 1 is cancelled (part c)). Part d)
shows the final configuration.

by power saving systems, in which the speed of servers is modified depending on the number of customers in the
system. The approach undertaken here, by generalising the service rate function, could be applied to other existing
models. For example, by applying this to Section 6.1.2.2, one obtains a redundancy model that does not fit in the
existing two frameworks.
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A Completion of proof of Theorem 1
Proof. We complete the proof of Theorem 1 by showing that (10) satisfies (8). To this end, we follow the proof
techniques of [22, Theorem 2]. In particular, we show below that (10) satisfies the equations

µ(x )π(x ) = 1{ni>0}λU({T1,...,Ti})π((T1, n1, . . . , Ti, ni − 1))

+ 1{ni=0}λTi
({T1, . . . , Ti−1)π(T1, n1, . . . , Ti−1, ni−1), (26)

λT ({T1, . . . , Ti})π(x ) =

i∑
k=0

nk∑
n=0

µT (releasek,n(x , T ))rk,n(x , T )π(releasek,n(x , T )) (27)

and

λU({T1,...,Ti})π(x ) =

i∑
j=1

j−1∑
k=0

nk∑
n=0

µTj (shiftk,n(x , Tj))sk,n(x , Tj)π(shiftk,n(x , Tj)). (28)
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Next, summing (27) over all available tokens T ∈ T \{T1, . . . , Ti} and adding (26) and (28), we conclude using
(1) that (10) satisfies (8). The theorem then follows.

It is straightforward using (4) to see that (10) satisfies (26), in accordance with the reasoning in [22, Section
3.5]. We next show that (10) satisfies (27). By substitution of (10) in the right-hand side of (27) and subsequent
rewriting, we obtain

i∑
k=0

nk∑
n=0

µT (releasek,n(x , T ))rk,n(x , T )π(releasek,n(x , T ))

=

i∑
k=0

nk∑
n=0

η(φ(x ) + 1)(k(T1, . . . , Tk, T )− k(T1, . . . , Tk))βk(T )n

 i∏
j=k+1

βj(T )nj

×
× π((0))

Πλ({T1, . . . , Tk, T, Tk+1, . . . , Ti})
Πk(T1, . . . , Tk, T, Tk+1, . . . , Ti)

k−1∏
j=1

α
nj

j

αnk−n
k

(
λU({T1,...,Tk,T})

k(T1, . . . , Tk, T )

)n
×

×

 i∏
j=k+1

(
λU({T1,...,Tj ,T})

k(T1, . . . , Tk, T, Tk+1, . . . , Tj)

)nj

 φ(x)+1∏
j=1

1

η(j)

= π(0)

φ(x)∏
j=1

1

η(j)

 i∑
k=0

(k(T1, . . . , Tk, T )− k(T1, . . . , Tk))
Πλ({T1, . . . , . . . , Ti, T})

Πk(T1, . . . , Tk, T, Tk+1, . . . , Ti)

k−1∏
j=1

α
nj

j

×
×

 i∏
j=k+1

(
βj(T )λU({T1,...,Tj ,T})

k(T1, . . . , Tk, T, Tk+1, . . . , Tj)

)nj

 nk∑
n=0

αnk−n
(
βk(T )λU({T1,...,Tk,T})

k(T1, . . . , Tk, T )

)n

= λT ({T1, . . . , Ti})π(0)
Πλ({T1, . . . , Ti)}
Πk(T1, . . . , Tk)

 i∏
j=1

α
nj

j

φ(x)∏
j=1

1

η(j)

×
×

i∑
k=0

k(T1, . . . , Tk, T )− k(T1, . . . , Tk)

k(T1, . . . , Tk, T )

i∏
j=k+1

(
λU ({T1, . . . , Tj})
αjk(T1, . . . , Tj , T )

)nj

×

×
i∏

j=k+1

k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

nk∑
n=0

(
λU({T1,...,Tk})

αkk(T1, . . . , Tk, T )

)n

= λT ({T1, . . . , Ti})π(x )

i∑
k=0

k(T1, . . . , Tk, T )− k(T1, . . . , Tk)

k(T1, . . . , Tk, T )
×

×
i∏

j=k+1

(
k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

)nj+1 nk∑
n=0

(
k(T1, . . . , Tk)

k(T1, . . . , Tk, T )

)n

= λT ({T1, . . . , Ti})π(x )

i∑
k=0

k(T1, . . . , Tk, T )− k(T1, . . . , Tk)

k(T1, . . . , Tk, T )
.

where similar arguments are used as in [22, pp. 288–289], such as the use of Condition 1 in the second equality.
The major difference stems from the fact that now Condition 2 and the straightforwardly verifiable fact that
Πk(T1, . . . , Tj , T, Tk+1, . . . , Ti) = k(T1, . . . , Ti, T )Πk(T1, . . . , Ti)

∏i
j=k+1

k(T1,...,Tj ,T )
k(T1,...,Tj) is needed for the third

equality to hold true. To verify the last equality, one can see that the outer sum of this line indeed equals one can
be done by straightforward algebraic manipulation, but the probabilistic argument of [22, p. 289] can also be used.

Finally, we show that (10) satisfies (28) in a similar way, using arguments of [22, pp. 289–290]. By manipu-
lation of the right-hand side of (28), we obtain

i∑
j=1

j−1∑
k=0

nk∑
n=0

µTj
(shiftk,n(x , Tj))sk,n,(s, Tj)π(shiftk,n(x , Tj)))
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=

i∑
j=1

j−1∑
k=0

nk∑
n=0

η(φ(x ) + 1) (k(T1, . . . , Tk, j)− k(T1, . . . , Tk))βk(Tj)
n

(
j−1∏
l=k+1

βl(Tj)
nl

)
(1− βj−1(Tj))×

× π((0))
Πλ({T1, . . . , Tk, Tj , Tk+1, . . . , Tj−1, Tj+1, . . . , Ti})
Πk(T1, . . . , Tk, Tj , Tk+1, . . . , Tj−1, Tj+1, . . . , Ti)

(
k−1∏
l=1

αnl

l

)
αnk−n
k ×

×
(
λU({T1,...,Tk,Tj})

k(T1, . . . , Tj , Tk)

)n( j−1∏
l=k+1

(
λU({T1,...,Tl,Tj})

k(T1, . . . , Tk, Tj , Tk+1, . . . , Tl)

)nl
)
×

×
(

λU({T1,...,Tj})

k(T1, . . . , Tk, Tj , Tk+1, . . . , Tj−1)

)nj+1

×

×

 i∏
l=j+1

(
λU({T1,...,Tl})

k(T1, . . . , Tk, Tj , Tk+1, . . . , Tj−1, Tj+1, . . . , Tl)

)nl

 φ(x)+1∏
l=1

1

η(l)
.

= π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

φ(x)∏
j=1

1

η(j)

 i∑
j=1

(
1−

λU({T1,...,Tj−1})

λU({T1,...,Tj})

) j−1∑
k=0

(k(T1, . . . , Tk, Tj)− k(T1, . . . , Tk))×

×

( ∏j
l=k+1 k(T1, . . . , Tl)∏j−1
l=k k(T1, . . . , Tl, Tj)

)(
k−1∏
l=1

αnl

l

)(
j−1∏
l=k+1

(
λU({T1,...,Tl,Tj})

k(T1, . . . , Tl, Tj)

)nl
)(

λU({T1,...,Tj})

k(T1, . . . , Tj)

)nj+1

×

×

 i∏
l=j+1

(
λU({T1,...,Tl})

k(T1, . . . , Tl)

)nl

 nk∑
n=0

αnk−n
k

(
λU({T1,...,Tk

)

k(T1, . . . , Tk, Tj)

)n

= π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

α
nj

j

φ(x)∏
j=1

1

η(j)

 i∑
j=1

(
λU({T1,...,Tj}) − λU({T1,...,Tj−1})

)
×

×
j−1∑
k=0

(
1− k(T1, . . . , Tk)

k(T1, . . . , Tk, Tj)

)( j−1∏
l=k+1

k(T1, . . . , Tl)

k(T1, . . . , Tl, Tj)

)(
j−1∏
l=k+1

(
λU({T1,...,Tl,Tj})

αjk(T1, . . . , Tl, Tj)

)nl
)
×

×
nk∑
n=0

(
λU({T1,...,Tk

)

αkk(T1, . . . , Tk, Tj)

)n

= π(x )

i∑
j=1

(
λU({T1,...,Tj}) − λU({T1,...,Tj−1})

)
×

×
j−1∑
k=0

(
1− k(T1, . . . , Tk)

k(T1, . . . , Tk, Tj)

)( j−1∏
l=k+1

(
k(T1, . . . , Tl)

k(T1, . . . , Tl, Tj)

)nl+1
)

nk∑
n=0

(
k(T1, . . . , Tk)

k(T1, . . . , Tk, Tj)

)n
= λU({T1,...,Ti})π(x ),

which is the left-hand side of (28). In the second equality, Conditions 1 and 2 are used. The final equality follows
by using the fact that

∑i
j=1

(
λU({T1,...,Tj}) − λU({T1,...,Tj−1})

)
= λU({T1,...,Ti}). The sum involving the k-terms

can again be shown to equal one by algebraic manipulation or the probabilistic argument of [22, p. 289]. As we
have now rewritten the right-hand side of (28) into its left-hand side, we conclude that (10) satisfies (28), which
completes the proof.

B Proof of Theorem 2
Proof. The proof consists of applying the steps of [22, Section 4] to the token-based central queue. That is, we
will consider N (c)

j , the number of type-c customers among the Nj customers between those that have claimed Tj
and Tj+1, out of which an expression for {N (c), c ∈ C will follow.
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From Theorem 1, we gather that the stationary distribution of the model at hand satisfies

π(T1, n1, . . . , Ti, ni) = π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

α
nj

j

i∏
j=1

1

η(j)

∑i
k=1 nk∏
j=1

1

η(i+ j)
. (29)

By the dynamics of the arrival process, we next note that N (c)
j is binomially distributed with parameters Nj and

θc,j :=
λc1{c∈U(T1,...,Tj)}

λU(T1,...,Tj
) . The indicator function in this expression reflects the fact that in order for N (c)

j to be

positive, any token in the set T \{T1, . . . , Tj}must reject type-c customers. More generally, the set {N (c)
j : c ∈ C}

is multinomially distributed with population size parameter Nj and probability parameters {θc,j : c ∈ C}. We
also observe that, given the values of N1, N2, . . ., the sets {N (c)

1 : c ∈ C}, {N (c)
2 : c ∈ C}, . . . are independent, so

that

P

 ⋂
j∈{1,...,i},c∈C

{N (c)
j = n

(c)
j } |

i⋂
j=1

{Nj = nj}

 =

i∏
j=1

nj !∏
c∈C n

(c)
j !

∏
c∈C

θnc,j
c . (30)

Using (30) and applying Newton’s binomium leads, for zc,j ∈ {c̄ ∈ C : |c̄| ≤ 1}, to

E

∏
c∈C

i∏
j=1

z
N

(c)
j

c,j | x = (T1, n1, . . . , Ti, ni)


=

∑
{n(c)

j :c∈C}:
∑

c∈C n
(c)
j =nj

nj !∏
c∈C n

(c)
j !

∏
c∈C

(θc,jzc,j)
nc,j =

i∏
j=1

(∑
c∈C

θc,jzc,j

)nj

. (31)

Unconditioning using (29) now leads to

E

∏
c∈C

K∏
j=1

z
N

(c)
j

c,j


=

K∑
i=0

∑
(T1,...,Ti)∈T i

∑
(n1,...,ni)∈Ni

0

π((T1, n1, . . . , Ti, ni))E

∏
c∈C

K∏
j=1

z
N

(c)
j

c,j | x = (T1, n1, . . . , Ti, ni)


=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αj
∑
c∈C

θc,jzc,j)
nj ,

(32)

after which (14) follows since E
[∏

c∈C z
N(c)

c

]
= E

[∏
c∈C z

∑k
j=1N

(c)
j

c

]
= E

[∏
c∈C
∏k
j=1 z

N
(c)
j

c

]
.

C Proof of Theorem 4

Proof. We note that if there are at least j tokens activated, either M (c)
j = N

(c)
j + 1 if token Tj is claimed by a

type-c customer, or M (c)
j = N

(c)
j otherwise. This leads to

E

∏
c∈C

i∏
j=1

z
M

(c)
j

c,j


=

K∑
i=0

∑
(T1,...,Ti)∈T i

∑
(n1,...,ni)∈Ni

0

π((T1, n1, . . . , Ti, ni))E

∏
c∈C

i∏
j=1

z
N

(c)
j

c,j | x = (T1, n1, . . . , Ti, ni)

×
×

∑
(c1,...,ci)∈Ci

Gc1,...,ci(T1, n1, . . . , Ti, ni)

i∏
j=1

zc,j
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The theorem now follows by substitution of (29) and (31) into this expression and realising that E
[∏

c∈C z
M(c)

c

]
=

E
[∏

c∈C
∏k
j=1 z

M
(c)
j

c

]
.

D Expressions for performance measures when η(·) = 1

It follows by substitution and subsequent simplification of (14), (21), (22), (16) and (19) that, when η(j) = 1 for
all j ∈ N,

E

[∏
c∈C

zN
(c)

c

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

1

1− αj
∑
c∈C θc,jzc

,

E
[
zN
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

1

1− αjz
,

E
[
zM
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

zi
i∏

j=1

1

1− αjz

and

E
[
e−sWc

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

λTj
(T1, . . . , Tj−1)

k(T1, . . . , Tj)− λU({T1,...,Tj}) + s1{c∈U({T1,...,Tj})}
,

with π((0)) as given in (12).

E Proof of Theorem 6
We will use the notion of indistinguishable tokens as introduced in Section 4.3, as well as the state descriptor of
the form x (L) = (L1, n1, . . . , Li, ni) and the corresponding steady-state distribution (cf. (13)). We start out with
a preparatory lemma.

Lemma 8. For any token-based central queue where each token set Tc, c ∈ C, consists of indistinguishable tokens,
there exists a function τ : X (OI) → X (L), where τ(x (OI)) ∈ X (L) denotes the unique state (L1, n1, . . . , Li, ni)
corresponding to the state x (OI) ∈ X (OI).

Proof. Since each customer type has one token label it can select from, this guarantees that there is no ambiguity
about how the tokens are distributed among the customers. By keeping track of the order of arrival and the token
labels allotted to the customers, one can construct the unique state x (L) = (L1, n1, . . . , Li, ni) corresponding
to x (OI) = (c1, . . . , cn), that is, the function τ(·) as stated in the lemma exists. The quantity ni represents
customers without a claimed token.

This lemma allows us to prove Theorem 6, which exposes the connection between OI queues and token-based
central queues.

Proof. We first assume that (1) holds, that is, we are given a model that fits in the OI queue framework. In
the remainder of this proof, we will use the notion of indistinguishable tokens and token labels as introduced in
Section 4.3. We define the following token sets Tc. Each token set of customer type c consists of an infinite
number of indistinguishable tokens with label c. Thus, every customer type has its dedicated token label. Then,
the state x (L) = (L1, . . . , Ln) gives exactly the same information as the state x (OI) = (c1, . . . , cn), hence both
state descriptors are equivalent. When setting µLj

(x (L)) = µ
(OI)
j (x (OI)), the token-based central queue describes

exactly the same model as the OI queue.
What is left to show is that the token-based central queue satisfies Condition 1 and Condition 2. Condition 2

follows directly, since µLj
(x (L)) = µ

(OI)
j (x (OI)) and µ(OI)

j satisfies Condition 3. Since each customer type c has
its own dedicated set of indistinguishable tokens with label c, we have that λc({L1, . . . , Li}) = λc. Therefore,
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∏i
j=1 λLj

({L1, . . . Lj−1}) =
∏i
j=1 λLj

. This expression is independent of the permutation of the Lj’s, and
since tokens that bear the same label are indistinguishable, Condition 1 is satisfied. We have hence proved that
(1)→ (2).

We now assume that (2) of Theorem 6 holds, that is, we are given a token-based central queue where each
token set consists of indistinguishable tokens. From Lemma 8, it follows that to a given state x (OI) = (c1, . . . , cn)
(describing the type of each customer), there corresponds a unique state x (L) = (L1, n1, . . . , Li, ni), given by
τ(x (OI)). We also define the function τ̃(x (OI)) that gives the unique activated tokens (L1, . . . , Li) as a function
of x (OI). To prove that (1) of Theorem 6 holds, that is, the model fits the OI queue framework, we will (i) define
functions η(OI)(·) and s(OI)

j (·), (ii) show that these functions give rise to an OI queue and (iii) show that the
departure rates under the token-based central queue and the OI queue are sample-path wise equal.

(i) Since φ(τ(x (OI))) = n, we define

η(OI)(n) := η(φ(τ(x (OI)))).

Let h(j, x (OI)) :=
∑
c∈C min(

∑j
l=1 1(cl=c), |Tc|) denote the number of active customers among the first j cus-

tomers (for ease of exposition, we assume that any two tokens from any two token sets Tca and Tcb , ca, cb ∈ C, are
not indistinguishable). When in state x (OI) = (c1, . . . , cn) and if

∑j
i=1 1(cj=ci) ≤ |Tcj |, then the j-th customer

is the h(j, x (OI))-th customer that has a token. We therefore define

s
(OI)
j (x (OI)) :=

{
sh(j,x (OI))(τ̃(x (OI))) if

∑j
i=1 1(cj=ci) ≤ |Tcj |,

0, otherwise.

(ii) Since Condition 2 is satisfied, it is immediate that µ(x (OI)) satisfies Condition 3 and hence gives rise to
an OI queue.

(iii) Consider the j-th customer. We now show that its departure rate in both systems is the same, which
concludes the proof. If

∑j
i=1 1(cj=ci) ≤ |Tc(j)|, then the j-th customer has a token and is the h(j, x (OI))-th

active customer in the queue. Its departure rate in the OI queue is µ(OI)
j (x (OI)) = η(OI)(n)s

(OI)
j (x (OI)) =

η(φ(τ(x (OI))))sh(j,x (OI))(τ̃(x (OI))) = µL
h(j,x(OI))

(τ(x (OI))), which equals its departure rate in the token-based

central queue. If the j-th customer is not active, then its departure rate in the OI queue is µ(OI)
j (x (OI)) = 0, which

equals its departure rate in the token-based central queue.

F Proof of Corollary 7

Proof. In the proof of Theorem 6 (1)→ (2) it was shown that the OI queue can be seen as a token-based central
queue where a token set Tc of a customer type c consists of infinitely many indistinguishable tokens with label c.
Noting that φ(x ) = n, nj = 0 and λc({L1, . . . , Lj}) = λc, from (13) we recover the product-form stationary
distribution (25) for the OI state descriptor.
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