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Abstract: 
Annual vehicle kilometres travelled (VKT) is a long used index of car use. Usually, the annual 
VKT, as reported by respondents, is used for the analysis. But the reported values almost 
systematically contain approximations such as rounding and heaping. We apply a latent class 
approach in modelling VKT to account for this problem developed by Heitjan and Rubin (1990, 
1991). Our model takes the form of a mixture of ordered probit models. The level of coarseness 
in reporting is considered as a latent variable that determines a category the respondent may 
belong to. Ordered response probit models of VKT are developed for each category. Thresholds 
are predetermined and model the level of coarseness that relates to the category. Annual VKT 
is itself assumed to affect the level of coarseness in reporting, thus included as an explanatory 
variable of the latent coarseness model. It is also modelled by an ordered probit model. The 
data set used in this study is a panel data of French households’ vehicle ownership (Parc-Auto 
panel survey). The results confirm that the longer VKT results in a larger coarseness in the 
report. The results also suggest that the coarseness in the report of VKT is larger for commuting 
car than others. The coefficient estimates on the VKT function are not statistically different 
from those estimated by conventional regression model of VKT. However, the estimated 
variance of the error term and the standard errors of the coefficient estimates in the VKT 
function for the proposed model are smaller than those for conventional regression model, 
implying that the proposed model is more efficient to investigate the effect of the explanatory 
variables on VKT than the conventional regression model. 
 
Keywords: bivariate ordered probit model, coarseness, latent class model, rounding, vehicle 
use 
 
Introduction 
Long term trend of road traffic is a major determinant of CO2 emissions, with their 
consequences in terms of fossil fuel consumption and of Global Warming (c.f. EU White Paper 
of 2011). That is why a particular attention is paid to the balance of fuel consumption resulting 
from the number of vehicles in use, multiplied by their fuel efficiency and by their annual 
mileage. For instance, this exercise is conducted every year by the Commission of National 
Transport Accounts (CCTN, 2013) in France. Moreover, EUROSTAT is planning to generalise 
this approach all over Europe, taking advantage in particular of the generalisation of the 
compulsory periodical inspection of vehicles. Indeed, very few countries are conducting panel 
surveys on car ownership and use like in France. 
Thus, annual vehicle kilometres travelled (VKT) is a crucial and long used indicator, which 
characterises car use and travel patterns of households. There have been many studies that 
model it for various purposes such as gasoline consumption, vehicle emissions, and exposure 
to road accidents (Musti and Kockelman, 2011). However, the goodness-of-fit in modelling 
VKT from disaggregate data is relatively low in general. For example, R-square of standard 
linear regression models is about 0.11 in Train (1986), 0.15 in Kockelman (1997), 0.17 in 
Yamamoto et al. (2001). One of the reasons for this is difficulty in fully representing its large 
variability across households. VKT has also been analysed together with the vehicle type choice 
behaviour. Discrete-continuous model frameworks have been applied in several studies (Bhat 
and Sen, 2006; Fang, 2008; Bhat et al., 2009; Spissu et al., 2009; Eluru et al., 2010; Brownstone 
and Fang, 2014; Liu et al., 2014; Cirillo et al., 2017; Liu and Cirillo, 2016). Explicitly 
recognising interactions between vehicle type choice and use is one of the advances in analysing 
VKT. The discrete-continuous model framework enables to rigorously investigate the indirect 
effect of particular factors on the vehicle usage through the vehicle type choice. The increase 
in goodness-of-fit as compared to just modelling VKT is however not explicitly documented. 
Another reason for the low goodness-of-fit might directly come from disaggregate data. Usually, 
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an individual self evaluates and reports his/her annual VKT. It is then directly used as a 
dependent variable in some empirical modelling, although reported values contain 
approximations such as rounding and heaping. Here, rounding occurs when observed values 
are reported only in round numbers, and a data set is “heaped” if it includes various levels of 
coarseness (Heitjan and Rubin, 1991). For example, a data set is “heaped” when large values 
of VKT are reported as the multiples of 5000 km and when low values of VKT are reported as 
the multiples of 1000 km. Since the ability of mental accounting and memorizing of annual 
VKT may vary among drivers, the reported VKT may contain various levels of rounding among 
drivers. There are three positive effects in explicitly addressing such rounding effects, as 
mentioned by Rietveld (2002) in the context of departure and arrival times: it leads to a 
considerably better treatment of reported information; biases in the computation of average 
based on the data can be avoided; it overcomes the problem of erratic patterns in the data. 
Departure and arrival times are also known as vulnerable to rounding in conventional travel 
surveys. Madre and Armoogum (1997, 1998) have shown that arrival and departure time are 
more heaped when reported in a survey on long distance travel than on daily mobility, and more 
heaped when obtained by interview than through a car-diary with possible checking by the clock 
on the dashboard. Stopher et al. (2002) compared reported departure and arrival times in the 
standard trip-based CATI (computer aided telephone interview) survey with those obtained by 
GPS survey from the same respondents, and found that about 55% of the reported departure 
and arrival times are within 5 min of the correct time, but that the departure and arrival times 
have probably been rounded by most respondents with rounding to the nearest 5 or 10 min in 
most cases. Rietvelt (2002) estimated rounding models of departure and arrival times using a 
standard trip-based survey data. Without obtaining the correct times, he estimated the 
probabilities of various levels of rounding including 5, 15, 30 and 60 min assuming the equal 
probability of actual departure or arrival times within an hour. The results suggest that rounding 
is a rule rather than an exception, although the reported arrival time is more accurate than 
departure time. Bhat and Steed (2002) considered the rounding of the reported departure time 
in developing a hazard-based duration model of departure time choice, but 5 min multiple of 
clock time was used as predetermined midpoint of the interval, and the possible larger levels of 
rounding reported in Stopher et al. (2007) were not considered. 
Other than VKT and departure and arrival times, household income is also not precisely 
reported usually. However, the household income is in general measured in a discrete number 
of categories or intervals with fixed thresholds. In this case, ordered response models with fixed 
thresholds can be applied. Bhat (1994a, 1994b) applied ordered probit models, and Tong and 
Lee (2009) applied a hazard-based duration model for grouped income data. One additional 
problem in income data is missing values. The ordered response models can be used to impute 
an income measure for the missing data, but the systematic variations in unobserved 
characteristics between respondents and nonrespondents of income variable may exist, resulting 
in biased imputations if not correctly considered. Bhat (1994a, 1994b) considered this problem 
by applying sample selection approach with bivariate ordered probit model. As stated above, 
income is usually measured with fixed thresholds, but the thresholds in reporting VKT are not 
given and may vary across respondents. Thus, the modelling of VKT needs approaches different 
from income. 
In our modelling approach, rounding and coarseness in reporting VKT values is explicitly 
accounted for. At the disaggregate level, it is not reasonable to assume that the level of 
coarseness does not vary across respondents. These levels of coarseness are latent outcomes: 
we do not observe them. For example, if the reported VKT is 15000 km, we know that the value 
is not rounded as the multiples of 10000 km, but we do not know it is rounded as the multiples 
of 5000 km, 1000 km, or smaller numbers. To this extent, we apply a model mixing ordered 
probit specifications. The latter models the observed reporting of VKT, given a rounding 
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behaviour in reporting VKT. The mixture distribution, also based on an ordered probit model, 
models the latent behaviour of the respondent as it regards the willingness to round VKT when 
being surveyed. We also consider that VKT itself may affect the coarseness in that the longer 
VKT may raise the probability of higher levels of coarseness. Heitjan and Rubin (1990, 1991) 
developed a statistical model explicitly dealing with such various levels of rounding, called as 
heaping, in the context of anthropometric data on children’s age from rural Tanzania. The 
statistical model is applied in this study for the reported VKT. In contrast to the anthropometric 
study where age was the only factor to affect the coarseness, the effects on the coarseness are 
structuralised in this study, and socio-demographic characteristics as well as VKT are 
incorporated as explanatory variables of the coarseness of the report. 
 
Modelling methodology 
The approach is built up on Heitjan and Rubin model (1990, 1991). It takes here the form of a 
discrete mixture of ordered probit models. Continuous and discrete probabilistic mixtures of 
(probabilistic) models become more and more standard practice. Conventionally, the model of 
VKT is given as  
 
 ln(yi*) = bxi + ei (1) 
 
where yi* is the VKT of vehicle i, b is a parameter vector, xi is a vector of explanatory variables, 
and ei is a random variable following a normal distribution. Here, the VKT is not precisely 
reported, but the reported VKT is rounded. From the preliminary analysis, we assume that the 
reported VKT is rounded as multiples of 1000km, 5000km, or 10000km. It means that yi* lies 
in the range [yi – 500, yi + 500) if the reported VKT yi is rounded as multiples of 1000km, in 
the range [yi – 2500, yi + 2500) if multiples of 5000km, and in the range [yi – 5000, yi + 5000) 
if multiples of 10000km. 
The coarseness of the reported VKT by individual i is modelled as a latent variable. It is defined 
as a function of the actual VKT and of other determinants: 
 
 zi* = aln(yi*) + gxi + zi (2) 
 
where a and g are parameters and zi is a normally distributed random variable. 
It is assumed that the coarseness of the report can be discretized: 
 

  (3) 

 
where zi stands for the coarseness of the report and q is a threshold to be estimated. The report 
is heaped as multiples of 1000km if zi = 1, multiples of 5000km if zi = 2, and multiples of 
10000km if zi = 3. Given the coarseness, the report can be represented by the ordered response 
model with known thresholds. Eq. (2) shows that not only VKT but also socio-demographic 
characteristics affect the coarseness of the report. Note also that one of the thresholds is 
normalized at 0 for identification of an intercept term in the latent coarseness process as shown 
in Eq. (3). Following Heitjan and Rubin (1990), taking into account that VKT itself is included 
in the explanatory variables of the function of the coarseness of the report, ln(yi*) and zi* are 
assumed to be distributed as bivariate normal with mean 
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  (4) 

 
and covariance matrix 
 

  (5) 

 
where se2 and sz2 are variances of ei and zi, respectively, and sez is covariance between ei and 
zi. Given our hierarchical relation between coarseness and mileage variables, the model is not 
identified if all the explanatory variables in VKT function are also included in the coarseness 
function.1 In our case, a limited number of variables are included in the latter, so such an 
identification problem is not realized. Since the latent variable zi* cannot be observed and is 
purely artificial, the location and scale should be fixed for identification. The location is fixed 
by setting the first threshold to 0 in Eq. (3) as already mentioned. Without loss of generality, 
and for identification of a, sz2 + a2se2 is normalized to 1 for fixing the scale, and correlation 
between lnyi* and zi* is given as ase + sez/se. Note that other normalizations can be applicable 
including the one used in Heitjan and Rubin (1990), which fixed the first and the second 
thresholds as 0 and 1, respectively. 
A region S(yi) of possible values for (yi*, zi*) can be defined that all map to yi. First define the 
regions Li = [yi – 500, yi + 500)×(-∞, 0) corresponding to heaped as multiples of 1000km, Mi 
= [yi – 2500, yi + 2500)×[0, q) corresponding to heaped as multiples of 5000km, and Hi = [yi 
– 5000, yi + 5000)×[q, ∞) corresponding to heaped as multiples of 10000km. Now, we do not 
know the levels of coarseness for a part of the respondents. If we observe yi at multiples of 
10000km (e.g., 20000km), it could be either the result of heaped as multiples of 10000km, that 
of 5000km, or that of 1000km. On the other hand, if we observe yi at multiples of 5000km but 
not at multiples of 10000km (e.g., 15000km), it could be the result of the latter two. Thus, we 
have the region given as 
 

  (6) 

 
The log-likelihood function for the parameters is given as 
 

  (7) 

 
where f(lnyi*, zi*) is the bivariate normal given by Eqs. (4) and (5). The specification of the 
conditional probability that the latent coarseness level is of a given level and that the reported 
VKT belongs to a given interval takes the form of a bivariate ordered probit (e.g. Bhat 1994a, 

 
1 Indeed, one could see in the log-likelihood shown in Equation 8 that, for given values of b and se, there are 
several candidates for {a; sez} leading to the same correlation value in the third term of F2. For each of these a 
candidates, g can then be adjusted so as to yield the same value in the second argument of F2 if the covariates xi 
in the mileage equation are all included in the coarseness equation, resulting in this case in an identification 
issue. 
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1994b). It is then further integrated to obtain its expected value with respect to the distribution 
of the latent coarseness level. More specifically, the log-likelihood function of Eq. (7) can be 
written as 
 

  (8) 
 
where si1 = 1 if yi mod 1000 == 0 and yi mod 5000 ≠ 0, and 0 otherwise, si2 = 1 if yi mod 5000 
== 0 and yi mod 10000 ≠ 0, and 0 otherwise, and si3 = 1 if yi mod 10000 == 0, and 0 otherwise 
(si1 + si2 + si3 = 1). F2 is the cumulative function of the standard bivariate normal distribution. 
Note that the log-likelihood function is similar to the conventional latent class ordered probit 
models, but the cases with si1 = 1 or si2 = 1 have no probability to be heaped as multiples of 
5000km (for si1 = 1) and 10000km (for si1 = 1 or si2 = 1) while the conventional latent class 
models assume a positive probability on every class for each case. Maximum likelihood 
estimation can be applied to obtain parameter estimates. 
 
 
Data 
 
The data set used in this study is a panel of vehicles owned by French households and drawn 
from the survey called “Parc-Auto” (Hivert, 2000). The survey adopted mail-out and mail-back 
self-administered questionnaires on vehicle ownership. The sample size has been maintained at 
about 7000 households each year. Rotation panel system is employed by the survey, where the 
participants were originally assigned to stay on the panel for four years. The questionnaire 
includes questions concerning the characteristics of up to three vehicles in the household, 
vehicle use in terms of odometer reading, annual mileage, main purposes of vehicle use, etc. 
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Also included are the attributes of main driver and household. The data set includes a rough 
estimate of the annual VKT by the respondent, who is not always the main driver of the car 
(denoted “reported VKT” hereafter). In addition, the estimated annual VKT can be calculated 
from the difference in odometer readings reported much more precisely by the respondent at 
successive two surveys which is one year apart (denoted “calculated VKT” hereafter). Sample 
used for the empirical analysis of this study is made of 2257 vehicles for which the odometer 
readings were reported by respondent on both 2010 and 2011, and the reported VKT was also 
obtained at the survey in 2011. Hivert (2000) has shown that there is no significant bias between 
the reported VKT for 1998, and the odometer readings at the fall of 1998 and of 1997, which is 
no more the case as tested for 2009-10 and 2010-11. Indeed, the reported VKT has become 
significantly lower than the difference between odometer readings. Thus, the data is a little 
dated, but the dataset used in the study is well prepared, and sufficient for the investigation of 
the coarseness of the reported VKT without interfering with the analysis of the bias appeared 
since then. However, when the odometer reading is precise, there is no significant gap between 
the reported VKT for 2010, and the odometer readings at the fall of 2010 and of 2009, which is 
not the case when odometer is rounded as a multiple of 1000 km. Although the gap has become 
significant according to more recent surveys (2010 to 2015), it suggests the comparison between 
calculated and reported annual mileage is meaningful. 
Sample distributions of calculated VKT and reported VKT are shown in Figure 1 and Figure 2, 
respectively. As shown in Figure 1, calculated VKT follows approximately lognormal 
distribution, though some fluctuations can be admitted. On the other hand, as shown in Figure 
2, reported VKT has several concentrations in the distribution. It is clear that the concentrations 
are located at multiples of 5000km. It confirms that the reported VKT contains rounding effects. 
Scatter plot of sample cases on the calculated VKT and the reported VKT is shown in Figure 3. 
At first, although most of the plots are located close to 45 degree line, several plots are found 
as located far from that line. It means some problems in the data set. Possible reasons for such 
outliers are that respondent reported totally wrong annual VKT, or totally wrong odometer 
readings in 2010 or 2011, or that the odometer readings for different vehicles obtained in 2010 
and 2011 are mismatched, resulting in a wrong calculated VKT. However, we are not sure about 
the reason, so the dataset is used for the empirical analysis without any amendment. Figure 3 
shows that many plots lie in horizontal lines at multiples of 5000km, the same as the 
concentrations shown in Figure 2. Also, similar horizontal lines can be found at other values of 
reported VKT, and it suggests that there exist the concentrations at multiples of smaller values 
than 5000km. 
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Figure 1  Sample distribution of calculated VKT 

 
Figure 2  Sample distribution of reported VKT 
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Figure 3  Scatter plot of calculated and reported VKT for sample cases 

 
Cumulative distribution of reported VKT for sample cases is shown in Figure 4. It is obvious 
that there are big jumps at multiples of 10000km and 5000km. It is also found that multiples of 
1000km and 500km have concentrations though it is not so significant for those of 500km. 
Sample distribution of reported VKT in terms of rounding is shown in Table 1. It confirms that 
many reported VKT are rounded as multiples of 10000km and 5000km, but that more reports 
are rounded at multiples of 1000km excluding multiples of 5000km. The former contains the 
cases where the VKT is rounded as multiples of 1000km, so the cases where the VKT is rounded 
as multiples of 1000km dominate the cases where the VKT is rounded as multiples of 5000km. 
Table 1 shows that there also exist cases where the VKT is rounded as multiples of 500km and 
cases with smaller rounding than 500km. The latter might include the cases with no rounding, 
but we are not sure about how accurately the respondents can answer the VKT. The cases with 
smaller rounding than 1000km are treated as rounded as multiples of 1000km in the empirical 
analysis of this study for the simplicity of the model, although it might result in biased 
estimation results. 
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Figure 4  Cumulative distribution of reported VKT for sample cases 

 
Table 1  Rounding of reported VKT 

 Cases 
Multiples of 10000km 349 
Multiples of 5000km excluding multiples of 10000km 328 
Multiples of 1000km excluding multiples of 5000km 876 
Multiples of 500km excluding multiples of 1000km 187 
Not multiple of 500km 517 
Total 2257 

Source: Parc-Auto panel survey 2011. 
 

The explanatory variables used in the model of this study are summarized in Table 2. The 
explanatory variables contain household and main driver characteristics and vehicle attributes. 
The focus of the study is on the effects of the rounding on the estimation of VKT function, so 
the exploration of the explanatory variables has not gone beyond the basic set of the variables. 
 
Table 2  Variables used in the analysis 
Variable Definition Mean SD 
Characteristics of main driver’s household   
Children Number of children under 15 0.343 0.734 

PT access Dummy: 1 if public transport is accessible from residence by less 
than 5 minutes on foot, 0 otherwise 0.621 0.485 

Large City Dummy: 1 if hh located in an urban area >200 000 inhabitants, 0 
otherwise 0.354 0.478 

Fleet size Number of vehicles held by household 1.612 0.668 

Low income Dummy: 1 if household income is less than 15 000 euros per year, 
0 otherwise 0.092 0.289 

High income Dummy: 1 if household income is over 45 000 euros per year, 0 0.181 0.385 
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otherwise 
Characteristics of main driver   
Under 40 Dummy: 1 if main user is less than 40, 0 otherwise 0.206 0.405 
Over 60 Dummy: 1 if main user is 60 or over, 0 otherwise 0.452 0.498 
Worker Dummy: 1 if main user is active on labour market 0.522 0.500 
Male Dummy: 1 if main user is a man, 0 otherwise 0.593 0.491 
Vehicle attributes and VKT   
Commuting Dummy: 1 if car is used for commuting, 0 otherwise 0.402 0.490 
Diesel Dummy: 1 if Diesel car, 0 otherwise 0.570 0.495 
Small Dummy: 1 if small class car*, 0 otherwise 0.482 0.500 
Large Dummy: 1 if large class car*, 0 otherwise 0.039 0.193 
Light truck Dummy: 1 if SUV or light truck, 0 otherwise 0.037 0.189 
Car age Vehicle age 7.669 5.124 
Reported VKT Annual VKT reported by respondents 11551 7719 
Calculated VKT Annual VKT calculated by the difference in odometer readings 11513 7966 
*Medium class car is regarded as base. Source: Parc-Auto panel survey 2010-11. 
 
 
Results 
 
First and before estimating the proposed model, the difference between reported and calculated 
VKT is examined in order to identify possible explanatory variables that may be included in 
the coarseness function. In this perspective, three standard linear regression models are 
estimated to evaluate the effects of vehicle attributes and driver characteristics on the absolute 
deviation of reported VKT from calculated VKT. The first model is estimated using the full 
sample of observations, the second is implemented using the subsample reporting an 
underestimated VKT with respect to calculated VKT, and the third model relies on the 
subsample reporting an overestimated VKT with respect to calculated VKT. In these models, 
the absolute deviation is taken in logarithm to be consistent with the dependent variable in the 
VKT function, which is also expressed in logarithm. As a consequence of this log-
transformation, the cases with no difference between reported and calculated VKT are discarded 
from the sample.2 The estimation results for these three models are shown in Table 3. They are 
globally consistent with each other and suggest that the deviation is larger for diesel than for 
petrol cars, shorter for small cars compared to medium-sized cars and larger for commuting 
cars than for others. Concurrently, annual VKT is expected to be higher for diesel, medium-
sized and commuting cars compared to petrol, small and non-commuting cars respectively. 
Therefore, higher VKT should induce larger deviations, thus supporting the inclusion of VKT 
as explanatory variable in the coarseness function. Moreover, annual VKT is usually lower on 
average in densely populated areas than in low-density areas, but the estimate related to the 
“large city” dummy is not significantly negative in the deviation models of Table 3, suggesting 
that urban cars might be subject to larger coarseness. Thus, the final set of explanatory variables 
retained in the coarseness function includes car fuel type and size, commuting use, owner’s 
location and annual VKT. 
 
Table 3  Regression models of the deviation of reported VKT from calculated VKT 

 
Absolute difference 

(a) 
Absolute underestimate 

(b) 
Overestimate 

(c) 
Variable Coefficient t-stat. Coefficient t-stat. Coefficient t-stat. 
Children -0.013 -0.26 0.025 0.30 -0.060 -0.97 
PT access -0.052 -0.75 -0.084 -0.69 -0.022 -0.27 

 
2 79 observations over 2257 in the dataset. 
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Large City 0.072 1.02 0.075 0.61 0.065 0.77 
Fleet size 0.088 1.71 0.169 1.86 0.030 0.50 
Low income 0.176 1.58 0.385 2.03 0.026 0.20 
High income -0.131 -1.53 -0.249 -1.70 -0.037 -0.36 
Under 40 0.178 1.94 0.098 0.65 0.262 2.30 
Over 60 -0.124 -1.00 -0.395 -1.81 0.105 0.73 
Worker 0.052 0.44 0.014 0.07 0.062 0.43 
Male 0.126 1.89 0.106 0.92 0.127 1.59 
Commuting 0.264 2.95 0.097 0.67 0.419 3.74 
Diesel 0.293 4.26 0.259 2.18 0.321 3.93 
Small -0.166 -2.42 -0.130 -1.09 -0.182 -2.25 
Large 0.047 0.28 -0.416 -1.43 0.389 1.96 
Light truck -0.007 -0.04 -0.090 -0.33 0.036 0.18 
Car age -0.002 -0.32 0.012 1.06 -0.012 -1.64 
Constant 7.109 38.46 7.175 21.48 7.028 33.00 
Sample size 2178 908 1270 
R-squared 0.051 0.054 0.073 
RMSE 1.433 1.603 1.29 
Note: OLS estimates. The endogenous variable is ln(|reported VKT - calculated VKT|). Model (a) is estimated 
using the full dataset, model (b) relies on the subsample reporting an underestimated VKT compared to 
calculated VKT, and model (c) relies on the subsample reporting an overestimated VKT.  
Source: Parc-Auto panel survey 2010-11. 
 
The bivariate ordered response probit model has been implemented using GAUSS, a matrix-
programming software which provides routines for maximum likelihood estimation. The 
likelihood function of the proposed model has been coded by the authors and the estimation 
results are shown in Table 4 (column a). It is found that the covariance between ei and zi, sez is 
insignificant, thus the model is re-estimated without the covariance term. The results are shown 
in Table 4 (column b). Coefficient estimates of the two results are very similar for both 
coarseness and VKT functions. t-statistics of the coefficient estimates for the VKT function are 
also very close while those for the coarseness function have larger absolute values in the model 
without the covariance term. The coefficient estimates for the coarseness function are first 
discussed. Subsequently, the results for the VKT function are commented and compared to 
alternative models. 
 
Table 4  Estimation results of proposed model of reported VKT 

 
With covariance, σεz  

(a) 
Without covariance, σεz  

(b) 
 Coefficient t-stat. Coefficient t-stat. 
Coarseness function    
Log-VKT (α) 0.867 3.86 0.861 10.61 
Large City 0.177 1.74 0.177 1.77 
Commuting 0.330 2.57 0.332 3.27 
Diesel 0.200 1.29 0.203 1.70 
Constant -9.385 -4.72 -9.337 -12.46 
Threshold (θ) 1.187 4.80 1.186 4.80 
VKT function    
PT access -0.064 -2.18 -0.065 -2.18 
Large City -0.075 -2.49 -0.075 -2.49 
Low income -0.140 -3.53 -0.140 -3.53 
Male 0.149 5.30 0.149 5.31 
Commuting 0.428 14.80 0.428 14.80 
Diesel 0.324 11.40 0.324 11.41 
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Small -0.248 -8.57 -0.248 -8.57 
Large 0.142 1.86 0.142 1.85 
Light truck -0.145 -2.18 -0.145 -2.18 
Car age -0.036 -13.96 -0.036 -13.96 
Constant 9.152 192.64 9.152 192.67 
Std. deviation (σε) 0.619 74.67 0.619 74.68 
Covariance (σεz/σε) -0.0037 -0.026 -  
Sample size 2257 2257 
Log-likelihood at convergence -6991.3 -6991.3 
Note: the endogenous variable in the VKT function is expressed in logarithm. 
Source: Parc-Auto panel survey 2010-11. 
 
As expected, greater VKT results in significantly higher coarseness in reporting. Indeed, the 
estimate for α is positive and presents a very large t-statistic. Other than VKT, only the 
“commuting car” dummy has a significant estimated coefficient in the coarseness function 
while “large city” and “diesel car” dummies are marginally significant, calling here for 
explanations. Commuting cars are driven on a longer annual distance but they are also much 
more often used than others in terms of number of trips. Thus, higher car use frequency is 
possibly another source of approximation in reporting annual VKT. In addition, drivers living 
in large cities can more easily substitute public transports for car use during a whole year. This 
may lead to more coarseness in reporting annual VKT than for drivers residing in low-density 
areas, where the choice of car is more systematic due to a lack of efficient public alternatives, 
making annual VKT easier to determine accurately. Some diesel car drivers might be less 
sensitive to fuel cost and pay less attention to their VKT because of the lower fuel price per litre 
than gasoline, leading to higher coarseness in reporting annual VKT. 
The estimation results for the VKT function are standard and do not diverge from other studies 
dealing with car use in France. While the car size and fuel type dummies turned out to be non-
significant in the coarseness function, the “diesel” and “small car” dummies have statistically 
significant coefficient estimates in the VKT function. Given that higher VKT entails 
significantly more coarsened report, this result is consistent with the regression estimates of the 
deviation models (Table 3), in which both these car attributes have significant estimates. 
Because of a lower fuel price per litre and a better fuel efficiency on average, the annual distance 
travelled is significantly longer for diesel than for petrol cars. The result on the positive 
relationship between the fuel efficiency and the annual distance travelled is consistent with 
previous studies, where the driving cost per mile had a negative effect on the usage (Liu et al., 
2014; Cirillo et al., 2017). It is significantly shorter for small cars than for medium-sized or 
large cars and decreasing as the vehicle age increases. As expected, drivers living in large cities 
make significantly lower use of their car than drivers from low-density areas, while working 
drivers make greater use than unemployed drivers only if they commute by car. In addition, 
French driving men make significantly greater use of their car than women, but the results show 
no evidence of a difference according to the driver's age.3 The gender difference on vehicle use 
is also consistent with the literature. Spissu et al. (2009), Liu et al. (2014) and Cirillo et al. 
(2017) suggested male drivers have longer annual vehicle miles than female except that Spissu 
et al. (2016) have an opposite result only for coupé drivers. Drivers from low-income 
households make lower car use than those living in medium or high-income households, and 
an access to public transports near drivers' home induces a significant decrease in their car 
mileage. Both results are again consistent with the literature. Train (1986), Brownstone and 
Fang (2014), Liu et al. (2014) and Cirillo et al. (2017) suggested high-income households had 

 
3 Despite appearances, this conclusion is not inconsistent with the expected tail-off in car use on the last part of 
life cycle: while retired drivers over 60 years old do not use their car anymore to commute, the induced decrease 
in car use is here captured by the "commuting car" dummy in the VKT function. 
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a longer annual vehicle miles. Also, Train (1986) suggested the number of trips by public transit 
had a negative effect on annual vehicle miles, and Liu et al. (2014) and Cirillo et al. (2017) 
suggested the negative relationship between the residential density and annual vehicle miles. 
Lastly, the total number of cars and the number of children in drivers' households have no 
significant impact on their car use. 
The coefficient estimates discussed above for the VKT function are not statistically different 
from those estimated by conventional linear regression models (Table 5, columns b and c). This 
suggests that not considering heterogeneous coarseness in the VKT reports does not result in a 
significant estimation bias. However, the estimated standard deviation of the error term, σε, and 
the standard errors of the coefficient estimates except for large car dummy are lower in the VKT 
function of the proposed model than in the conventional regression models. The standard errors 
of the coefficient estimates become smaller by 5.8% on average comparing with the regression 
model of the reported VKT. It implies that the proposed model is more efficient to investigate 
the effects of the explanatory variables on VKT if coarseness is taken into account. The 
proposed model can also be compared to univariate ordered response models. In these, it has 
been successively assumed a fixed coarsened level of 500, 1000, 5000 and 10000 km, 
whichever the VKT value reported by respondents. In the case of a presumed coarseness level 
of 500 km for example, the real VKT is supposed to lie in the interval around the reported VKT 
plus or less 250 km for all the observations. Again, the coefficient estimates of these models do 
not significantly differ from those of the proposed model. Thus, univariate ordered response 
probit models may also be applied to investigate VKT under the assumption of a fixed 
coarseness in the reports, even though they may contain several levels of rounding. The standard 
deviation of the error term in these univariate models is decreasing as the assumed coarseness 
level increases.4 However, assuming the largest coarseness level is not consistent with the 
collected data because only 15% of the sample has reported a VKT rounded to a multiple of 
10000 km. In addition, setting the coarseness level to the smallest value (1000 km) yields an 
estimated variance for the error term similar to the proposed model, but this assumption is 
unlikely for large values of reported VKT. Indeed, coarseness has been shown to increase with 
VKT in the proposed model, which turns out to be a better statistical framework in our context 
than univariate ordered response probit models with predetermined homogenous coarseness. 
 
Table 5  Estimation results of VKT functions 

 

Proposed model of reported 
VKT without covariance, 

σεz 
(a) 

Regression model of 
reported VKT  

(b) 

Regression model of 
calculated VKT  

(c) 

 Coefficient 
Standard 

error Coefficient 
Standard 

error Coefficient 
Standard 

error 
PT access -0.065* 0.0298 -0.064* 0.0305 -0.120** 0.0312 
Large City -0.075* 0.0301 -0.077* 0.0313 -0.035 0.0318 
Low income -0.140** 0.0397 -0.151** 0.0486 -0.057 0.0491 
Male 0.149** 0.0281 0.154** 0.0294 0.145** 0.0299 
Commuting 0.428** 0.0289 0.440** 0.0290 0.447** 0.0296 
Diesel 0.324** 0.0284 0.336** 0.0305 0.352** 0.0311 
Small -0.248** 0.0289 -0.252** 0.0305 -0.231** 0.0311 
Large 0.142 0.0768 0.147* 0.0735 0.040 0.0741 
Light truck -0.145* 0.0665 -0.152* 0.0745 -0.075 0.0758 
Car age -0.036** 0.0026 -0.037** 0.0028 -0.034** 0.0029 
Constant 9.152** 0.0475 9.130** 0.0507 9.090** 0.0517 

 
4 The estimated standard deviations are 0.644, 0.620, 0.590 and 0.5437 for predetermined coarseness levels of 
500 km, 1000 km, 5000 km and 10000 km respectively. 
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Std. deviation (σε) 0.619 0.0083 0.652  0.664  
Sample size 2257 2257 2257 
R-squared - 0.30 0.28 
Log-likelihood at 
convergence -6991.3 - - 
* p <.05, ** p < .01 
Note: the endogenous variable in the VKT function is expressed in logarithm. FIML estimates in column (a), 
OLS estimates in columns (b) and (c). “Medium-class car” is used as estimation reference. 
Source: Parc-Auto panel survey 2010-11. 
 
The models with different coarseness levels were also estimated for comparison purpose, 
including the models with {100km, 500km, 1000km, 5000km}, {500km, 1000km, 5000km}, 
{1000km, 5000km} and {5000km, 10000km} as assumed coarseness levels. In this comparison, 
the covariance between ei and zi, sez is discarded from the models because of the statistical 
insignificance. Of these, the model with {5000km, 10000km} as assumed coarseness levels did 
not converge, which implies the assumption is not appropriate. As shown in Table 1, majority 
of the respondents reported the VKT with lower coarseness than 5000 km. Thus, the coarseness 
function was not properly estimated for the model with {5000km, 10000km}. It suggests 
including 1000 km into the set of potential coarseness levels. The results of the remaining 
models are shown in Table 6. It shows that the coefficient estimates and t-statistics of the VKT 
functions are similar across the models, which implies that the effects of the explanatory 
variables on VKT can be investigated efficiently by any models in the comparison. On the other 
hand, the coefficient estimates of the coarseness function have larger values with the models 
with larger coarseness levels in general. It may imply that a larger coarseness is determined 
more systematically while a smaller coarseness is more randomly, but it is a mere speculation 
and needs further investigations in the future. 
The results show that the log-likelihood at convergence is better for the model with larger 
assumed coarseness levels, but it cannot be used to select the better model since the dependent 
variable is treated differently across the models. As shown in Equation 8, the likelihood is 
calculated by taking the integral with the range determined by the coarseness level. Thus, the 
model with the larger coarseness levels gives a higher likelihood, which is not related to the 
fitness of the model. Rather than the log-likelihood at convergence, the standard deviation of 
the error term of the VKT function represents the goodness of fit of the VKT function to the 
variance of the data. The results show that the model with the larger coarseness levels has the 
smaller estimate of the standard deviation of the error term. Thus, the model with {1000km, 
5000km, 10000km} is regarded as the best model in the comparison. It is also noted that higher 
coarseness levels than 10000 km such as 50000 km are not realistic as shown in Figure 4. 
 
Table 6  Estimation results of VKT models with different assumed coarseness levels 
Assumed coarseness 
levels in km 

{100, 500, 1000, 
5000} 

{500, 1000, 
5000} {1000, 5000} {1000, 5000, 

10000} 
 Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. 
Coarseness function         

Log-VKT (α) 0.478 12.57 0.696 12.55 0.863 10.83 0.861 10.61 
Large City 0.101 1.84 0.150 2.10 0.165 1.65 0.177 1.77 
Commuting 0.310 5.57 0.330 4.69 0.325 3.20 0.332 3.27 
Diesel 0.112 1.97 0.151 1.99 0.193 1.63 0.203 1.70 
Constant -3.991 -11.68 -6.895 -13.53 -9.323 -12.71 -9.337 -12.46 
Threshold (θ) 0.296 8.67 0.629 11.48   1.186 4.80 
Threshold (θ')* 1.446 30.26       
VKT function         
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PT access -0.066 -2.16 -0.066 -2.17 -0.067 -2.26 -0.065 -2.18 
Large City -0.077 -2.48 -0.076 -2.44 -0.074 -2.42 -0.075 -2.49 
Low income -0.149 -3.66 -0.148 -3.64 -0.142 -3.53 -0.140 -3.53 
Male 0.155 5.32 0.154 5.33 0.153 5.39 0.149 5.31 
Commuting 0.440 14.46 0.439 14.54 0.435 14.78 0.428 14.80 
Diesel 0.335 11.24 0.335 11.34 0.331 11.47 0.324 11.41 
Small -0.252 -8.40 -0.250 -8.38 -0.249 -8.49 -0.248 -8.57 
Large 0.146 1.78 0.146 1.80 0.143 1.83 0.142 1.85 
Light truck -0.151 -2.17 -0.153 -2.22 -0.151 -2.26 -0.145 -2.18 
Car age -0.037 -13.68 -0.037 -13.77 -0.036 -13.92 -0.036 -13.96 
Constant 9.131 185.77 9.133 186.62 9.140 189.83 9.152 192.67 
Std. deviation (σε) 0.645 79.38 0.642 78.07 0.629 75.03 0.619 74.68 
Sample size  2257  2257  2257  2257 
Log-likelihood at convergence -9703  -8219  -7011  -6991 

*Threshold (θ') is the upper (lower) threshold of the third (forth) coarseness level. 
 
 
Conclusions 
 
Annual vehicle kilometres travelled is analysed in this study, particularly focusing on the 
coarseness in the data resulting from the reports by survey respondents. The reports are regarded 
as heaped where various levels of rounding are included, and VKT itself is assumed to affect 
the coarseness of the report. Bivariate ordered response probit model is developed to represent 
the reported VKT and the coarseness of the report simultaneously. The coarseness of the report 
by each respondent is not perfectly known to analyst, thus the latent class approach is used to 
represent the probabilities the reported VKT could be rounded as multiples of 10000 km, 5000 
km and 1000 km. In our empirical data, about 23% of the reports are not multiples of 500 km, 
which means the actual coarseness of these reports is smaller than 500 km. However, 
comparative analysis on the assumed coarseness levels suggests that the fitness of the model 
decreases by including 500 km into the coarseness levels. It might imply the reports with the 
coarseness of 500 km or less is not accurate, but further in-depth investigation is needed. 
The model is applied to the French panel data called Parc-Auto, and the results suggest that 
longer VKT results in a larger coarseness in the report as expected. The results also suggest that 
a commuting car has a larger coarseness in the report of VKT. Commuting cars are driven on a 
longer annual distance but they are also much more often used than others in terms of number 
of trips. Thus, higher car use frequency is possibly another source of approximation in reporting 
annual VKT. The high-end in-vehicle technology getting popular especially among expensive 
vehicles might help recording the VKT at any duration and it can support the improvement in 
the VKT survey. The results suggest that such a technology provides a larger benefit from the 
view point of data collection when installed into commuting cars. 
The estimation results on the VKT function suggest that the estimates by the proposed model 
are not statistically significantly different from conventional regression model with the data set 
used in the empirical analysis of this study, but the estimated standard deviation of the error 
term and the standard errors of the coefficient estimates are smaller, implying that the proposed 
model is more efficient to investigate the effect of the explanatory variables on VKT than the 
conventional regression model. The results support that the proposed model is superior to 
conventional regression models, so the estimates might become statistically significantly biased 
if the conventional models are used for different data set. Thus, further investigations are needed 
to clarify the advantage of the proposed model. 
The extension of the proposed random heaping model by integrating with discrete-continuous 
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models of vehicle type choice and use may be the next step. Although our model treats the 
heaping appropriately when estimating the VKT function, the indirect effects of explanatory 
variables through the vehicle type choice cannot be considered. The integration may provide 
better estimates of the indirect as well as direct effects of particular factors on the vehicle usage. 
Another direction of the further analysis is the multiple imputations used in Heitjan and Rubin 
(1990). They applied multiple imputations to the data with the parameter estimates, and 
obtained smoother histograms than original sample distribution in the context of children’s age. 
The same imputation technique can be applicable to the data set used in this study, and is 
expected to provide smoother histograms than original sample distribution of reported VKT. 
Nowadays, compulsory periodical inspection of vehicles, which is generalising in Europe, 
provides a new data source on odometer reading, allowing much larger sample sizes, but with 
fewer information on the car and on its driver. Moreover new tools are emerging, which allow 
a much more accurate measurement of distance travelled (e.g. Global Positioning Systems). 
However, especially for analysing long term trends (e.g. for GHG emissions or infrastructure 
building) it is crucial to compare actual more precise data with data collected in the past with 
conventional survey methods (e.g. for the analysis of peak car travel (Grimal et al., 2013; Madre 
et al., 2012)). 
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