Toshiyuki Yamamoto 
email: yamamoto@civil.nagoya-u.ac.jp
  
Jean-Loup Madre 
email: jean-loup.madre@ifsttar.fr
  
Matthieu De Lapparent 
  
Roger Collet 
email: roger.collet@laposte.net
  
Matthieu De Lapparent 
email: matthieu.delapparent@heig-vd.ch
  
  
  
  
  
  
A RANDOM HEAPING MODEL OF ANNUAL VEHICLE KILOMETRES TRAVELLED CONSIDERING HETEROGENEOUS APPROXIMATION IN REPORTING by

Keywords: bivariate ordered probit model, coarseness, latent class model, rounding, vehicle use y y y

Annual vehicle kilometres travelled (VKT) is a long used index of car use. Usually, the annual VKT, as reported by respondents, is used for the analysis. But the reported values almost systematically contain approximations such as rounding and heaping. We apply a latent class approach in modelling VKT to account for this problem developed by Heitjan and Rubin (1990, 1991). Our model takes the form of a mixture of ordered probit models. The level of coarseness in reporting is considered as a latent variable that determines a category the respondent may belong to. Ordered response probit models of VKT are developed for each category. Thresholds are predetermined and model the level of coarseness that relates to the category. Annual VKT is itself assumed to affect the level of coarseness in reporting, thus included as an explanatory variable of the latent coarseness model. It is also modelled by an ordered probit model. The data set used in this study is a panel data of French households' vehicle ownership (Parc-Auto panel survey). The results confirm that the longer VKT results in a larger coarseness in the report. The results also suggest that the coarseness in the report of VKT is larger for commuting car than others. The coefficient estimates on the VKT function are not statistically different from those estimated by conventional regression model of VKT. However, the estimated variance of the error term and the standard errors of the coefficient estimates in the VKT function for the proposed model are smaller than those for conventional regression model, implying that the proposed model is more efficient to investigate the effect of the explanatory variables on VKT than the conventional regression model.

Introduction

Long term trend of road traffic is a major determinant of CO2 emissions, with their consequences in terms of fossil fuel consumption and of Global Warming (c.f. EU White Paper of 2011). That is why a particular attention is paid to the balance of fuel consumption resulting from the number of vehicles in use, multiplied by their fuel efficiency and by their annual mileage. For instance, this exercise is conducted every year by the Commission of National Transport Accounts (CCTN, 2013) in France. Moreover, EUROSTAT is planning to generalise this approach all over Europe, taking advantage in particular of the generalisation of the compulsory periodical inspection of vehicles. Indeed, very few countries are conducting panel surveys on car ownership and use like in France. Thus, annual vehicle kilometres travelled (VKT) is a crucial and long used indicator, which characterises car use and travel patterns of households. There have been many studies that model it for various purposes such as gasoline consumption, vehicle emissions, and exposure to road accidents [START_REF] Musti | Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas[END_REF]. However, the goodness-of-fit in modelling VKT from disaggregate data is relatively low in general. For example, R-square of standard linear regression models is about 0.11 in [START_REF] Train | Qualitative Choice Analysis: theory, econometrics, and an application to automobile demand[END_REF], 0.15 in [START_REF] Kockelman | Travel behavior as a function of accessibility, land use mixing, and land use balance: evidence from the San Francisco Bay Area[END_REF], 0.17 in [START_REF] Yamamoto | An analysis of vehicle type choice, allocation and use by households[END_REF]. One of the reasons for this is difficulty in fully representing its large variability across households. VKT has also been analysed together with the vehicle type choice behaviour. Discrete-continuous model frameworks have been applied in several studies [START_REF] Bhat | Household vehicle type holdings and usage: an application of the multiple discrete-continuous extreme value (MDCEV) model[END_REF][START_REF] Fang | A discrete-continuous model of households' vehicle choice and usage, with an application to the effects of residential density[END_REF][START_REF] Bhat | The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use[END_REF][START_REF] Spissu | A copula-based joint multinomial discrete-continuous model of vehicle type choice and miles of travel[END_REF][START_REF] Eluru | A joint flexible econometric model system of household residential location and vehicle fleet composition/usage choices[END_REF][START_REF] Brownstone | A vehicle ownership and utilization choice model with endogenous residential density[END_REF][START_REF] Liu | An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices[END_REF][START_REF] Cirillo | Simulation, numerical approximation and closed forms for joint discrete continuous models with an application to household vehicle ownership and use[END_REF][START_REF] Liu | Small area estimation of vehicle ownership and use[END_REF]. Explicitly recognising interactions between vehicle type choice and use is one of the advances in analysing VKT. The discrete-continuous model framework enables to rigorously investigate the indirect effect of particular factors on the vehicle usage through the vehicle type choice. The increase in goodness-of-fit as compared to just modelling VKT is however not explicitly documented. Another reason for the low goodness-of-fit might directly come from disaggregate data. Usually, an individual self evaluates and reports his/her annual VKT. It is then directly used as a dependent variable in some empirical modelling, although reported values contain approximations such as rounding and heaping. Here, rounding occurs when observed values are reported only in round numbers, and a data set is "heaped" if it includes various levels of coarseness [START_REF] Heitjan | Ignorability and coarse data[END_REF]. For example, a data set is "heaped" when large values of VKT are reported as the multiples of 5000 km and when low values of VKT are reported as the multiples of 1000 km. Since the ability of mental accounting and memorizing of annual VKT may vary among drivers, the reported VKT may contain various levels of rounding among drivers. There are three positive effects in explicitly addressing such rounding effects, as mentioned by [START_REF] Rietveld | Rounding of arrival and departure times in travel surveys: an interpretation in terms of scheduled activities[END_REF] in the context of departure and arrival times: it leads to a considerably better treatment of reported information; biases in the computation of average based on the data can be avoided; it overcomes the problem of erratic patterns in the data. Departure and arrival times are also known as vulnerable to rounding in conventional travel surveys. Madre andArmoogum (1997, 1998) have shown that arrival and departure time are more heaped when reported in a survey on long distance travel than on daily mobility, and more heaped when obtained by interview than through a car-diary with possible checking by the clock on the dashboard. Stopher et al. (2002) compared reported departure and arrival times in the standard trip-based CATI (computer aided telephone interview) survey with those obtained by GPS survey from the same respondents, and found that about 55% of the reported departure and arrival times are within 5 min of the correct time, but that the departure and arrival times have probably been rounded by most respondents with rounding to the nearest 5 or 10 min in most cases. Rietvelt (2002) estimated rounding models of departure and arrival times using a standard trip-based survey data. Without obtaining the correct times, he estimated the probabilities of various levels of rounding including 5, 15, 30 and 60 min assuming the equal probability of actual departure or arrival times within an hour. The results suggest that rounding is a rule rather than an exception, although the reported arrival time is more accurate than departure time. [START_REF] Bhat | A continuous-time model of departure time choice for urban shopping trips[END_REF] considered the rounding of the reported departure time in developing a hazard-based duration model of departure time choice, but 5 min multiple of clock time was used as predetermined midpoint of the interval, and the possible larger levels of rounding reported in [START_REF] Stopher | Assessing the accuracy of the Sydney Household Travel Survey with GPS[END_REF] were not considered. Other than VKT and departure and arrival times, household income is also not precisely reported usually. However, the household income is in general measured in a discrete number of categories or intervals with fixed thresholds. In this case, ordered response models with fixed thresholds can be applied. Bhat (1994aBhat ( , 1994b) ) applied ordered probit models, and [START_REF] Tong | The use of a hazard-based duration model for imputation of missing personal income data[END_REF] applied a hazard-based duration model for grouped income data. One additional problem in income data is missing values. The ordered response models can be used to impute an income measure for the missing data, but the systematic variations in unobserved characteristics between respondents and nonrespondents of income variable may exist, resulting in biased imputations if not correctly considered. Bhat (1994aBhat ( , 1994b) ) considered this problem by applying sample selection approach with bivariate ordered probit model. As stated above, income is usually measured with fixed thresholds, but the thresholds in reporting VKT are not given and may vary across respondents. Thus, the modelling of VKT needs approaches different from income. In our modelling approach, rounding and coarseness in reporting VKT values is explicitly accounted for. At the disaggregate level, it is not reasonable to assume that the level of coarseness does not vary across respondents. These levels of coarseness are latent outcomes: we do not observe them. For example, if the reported VKT is 15000 km, we know that the value is not rounded as the multiples of 10000 km, but we do not know it is rounded as the multiples of 5000 km, 1000 km, or smaller numbers. To this extent, we apply a model mixing ordered probit specifications. The latter models the observed reporting of VKT, given a rounding behaviour in reporting VKT. The mixture distribution, also based on an ordered probit model, models the latent behaviour of the respondent as it regards the willingness to round VKT when being surveyed. We also consider that VKT itself may affect the coarseness in that the longer VKT may raise the probability of higher levels of coarseness. Heitjan andRubin (1990, 1991) developed a statistical model explicitly dealing with such various levels of rounding, called as heaping, in the context of anthropometric data on children's age from rural Tanzania. The statistical model is applied in this study for the reported VKT. In contrast to the anthropometric study where age was the only factor to affect the coarseness, the effects on the coarseness are structuralised in this study, and socio-demographic characteristics as well as VKT are incorporated as explanatory variables of the coarseness of the report.

Modelling methodology

The approach is built up on Heitjan andRubin model (1990, 1991). It takes here the form of a discrete mixture of ordered probit models. Continuous and discrete probabilistic mixtures of (probabilistic) models become more and more standard practice. Conventionally, the model of VKT is given as

ln(yi * ) = bx i + ei (1)
where yi * is the VKT of vehicle i, b is a parameter vector, xi is a vector of explanatory variables, and ei is a random variable following a normal distribution. Here, the VKT is not precisely reported, but the reported VKT is rounded. From the preliminary analysis, we assume that the reported VKT is rounded as multiples of 1000km, 5000km, or 10000km. It means that yi * lies in the range [yi -500, yi + 500) if the reported VKT yi is rounded as multiples of 1000km, in the range [yi -2500, yi + 2500) if multiples of 5000km, and in the range [yi -5000, yi + 5000) if multiples of 10000km. The coarseness of the reported VKT by individual i is modelled as a latent variable. It is defined as a function of the actual VKT and of other determinants:

zi * = aln(yi * ) + gx i + zi (2)
where a and g are parameters and zi is a normally distributed random variable.

It is assumed that the coarseness of the report can be discretized:

(3) where zi stands for the coarseness of the report and q is a threshold to be estimated. The report is heaped as multiples of 1000km if zi = 1, multiples of 5000km if zi = 2, and multiples of 10000km if zi = 3. Given the coarseness, the report can be represented by the ordered response model with known thresholds. Eq. (2) shows that not only VKT but also socio-demographic characteristics affect the coarseness of the report. Note also that one of the thresholds is normalized at 0 for identification of an intercept term in the latent coarseness process as shown in Eq. (3). Following [START_REF] Heitjan | Inference from coarse data via multiple imputation with application to age heaping[END_REF], taking into account that VKT itself is included in the explanatory variables of the function of the coarseness of the report, ln(yi * ) and zi * are assumed to be distributed as bivariate normal with mean

* * * 1 if 0, 2 if 0 , 3 if i i i i z z z z q q = < = £ < = £ (4) 
and covariance matrix

(5)

where se 2 and sz 2 are variances of ei and zi, respectively, and sez is covariance between ei and zi. Given our hierarchical relation between coarseness and mileage variables, the model is not identified if all the explanatory variables in VKT function are also included in the coarseness function. 1 In our case, a limited number of variables are included in the latter, so such an identification problem is not realized. Since the latent variable zi * cannot be observed and is purely artificial, the location and scale should be fixed for identification. The location is fixed by setting the first threshold to 0 in Eq. ( 3) as already mentioned. Without loss of generality, and for identification of a, sz 2 + a 2 se 2 is normalized to 1 for fixing the scale, and correlation between lnyi * and zi * is given as ase + sez/se. Note that other normalizations can be applicable including the one used in [START_REF] Heitjan | Inference from coarse data via multiple imputation with application to age heaping[END_REF], which fixed the first and the second thresholds as 0 and 1, respectively. A region S(yi) of possible values for (yi * , zi * ) can be defined that all map to yi. First define the regions Li = [yi -500, yi + 500)×(-∞, 0) corresponding to heaped as multiples of 1000km, Mi = [yi -2500, yi + 2500)×[0, q) corresponding to heaped as multiples of 5000km, and Hi = [yi -5000, yi + 5000)×[q, ∞) corresponding to heaped as multiples of 10000km. Now, we do not know the levels of coarseness for a part of the respondents. If we observe yi at multiples of 10000km (e.g., 20000km), it could be either the result of heaped as multiples of 10000km, that of 5000km, or that of 1000km. On the other hand, if we observe yi at multiples of 5000km but not at multiples of 10000km (e.g., 15000km), it could be the result of the latter two. Thus, we have the region given as (6)

The log-likelihood function for the parameters is given as

(7)
where f(lnyi * , zi * ) is the bivariate normal given by Eqs. ( 4) and ( 5). The specification of the conditional probability that the latent coarseness level is of a given level and that the reported VKT belongs to a given interval takes the form of a bivariate ordered probit (e.g. Bhat 1994a,

1 Indeed, one could see in the log-likelihood shown in Equation 8that, for given values of b and se, there are several candidates for {a; sez} leading to the same correlation value in the third term of F2. For each of these a candidates, g can then be adjusted so as to yield the same value in the second argument of F2 if the covariates xi in the mileage equation are all included in the coarseness equation, resulting in this case in an identification issue.
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It is then further integrated to obtain its expected value with respect to the distribution of the latent coarseness level. More specifically, the log-likelihood function of Eq. ( 7) can be written as ( 8)

where si1 = 1 if yi mod 1000 == 0 and yi mod 5000 ≠ 0, and 0 otherwise, si2 = 1 if yi mod 5000 == 0 and yi mod 10000 ≠ 0, and 0 otherwise, and si3 = 1 if yi mod 10000 == 0, and 0 otherwise (si1 + si2 + si3 = 1). F2 is the cumulative function of the standard bivariate normal distribution. Note that the log-likelihood function is similar to the conventional latent class ordered probit models, but the cases with si1 = 1 or si2 = 1 have no probability to be heaped as multiples of 5000km (for si1 = 1) and 10000km (for si1 = 1 or si2 = 1) while the conventional latent class models assume a positive probability on every class for each case. Maximum likelihood estimation can be applied to obtain parameter estimates.

Data

The data set used in this study is a panel of vehicles owned by French households and drawn from the survey called "Parc-Auto" [START_REF] Hivert | Le Parc Automobile des Ménages: Étude en fin d'année 1998, à partir de la source[END_REF]. The survey adopted mail-out and mail-back self-administered questionnaires on vehicle ownership. The sample size has been maintained at about 7000 households each year. Rotation panel system is employed by the survey, where the participants were originally assigned to stay on the panel for four years. The questionnaire includes questions concerning the characteristics of up to three vehicles in the household, vehicle use in terms of odometer reading, annual mileage, main purposes of vehicle use, etc.
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Also included are the attributes of main driver and household. The data set includes a rough estimate of the annual VKT by the respondent, who is not always the main driver of the car (denoted "reported VKT" hereafter). In addition, the estimated annual VKT can be calculated from the difference in odometer readings reported much more precisely by the respondent at successive two surveys which is one year apart (denoted "calculated VKT" hereafter). Sample used for the empirical analysis of this study is made of 2257 vehicles for which the odometer readings were reported by respondent on both 2010 and 2011, and the reported VKT was also obtained at the survey in 2011. [START_REF] Hivert | Le Parc Automobile des Ménages: Étude en fin d'année 1998, à partir de la source[END_REF] has shown that there is no significant bias between the reported VKT for 1998, and the odometer readings at the fall of 1998 and of 1997, which is no more the case as tested for 2009-10 and 2010-11. Indeed, the reported VKT has become significantly lower than the difference between odometer readings. Thus, the data is a little dated, but the dataset used in the study is well prepared, and sufficient for the investigation of the coarseness of the reported VKT without interfering with the analysis of the bias appeared since then. However, when the odometer reading is precise, there is no significant gap between the reported VKT for 2010, and the odometer readings at the fall of 2010 and of 2009, which is not the case when odometer is rounded as a multiple of 1000 km. Although the gap has become significant according to more recent surveys (2010 to 2015), it suggests the comparison between calculated and reported annual mileage is meaningful. Sample distributions of calculated VKT and reported VKT are shown in Figure 1 and Figure 2, respectively. As shown in Figure 1, calculated VKT follows approximately lognormal distribution, though some fluctuations can be admitted. On the other hand, as shown in Figure 2, reported VKT has several concentrations in the distribution. It is clear that the concentrations are located at multiples of 5000km. It confirms that the reported VKT contains rounding effects.

Scatter plot of sample cases on the calculated VKT and the reported VKT is shown in Figure 3. At first, although most of the plots are located close to 45 degree line, several plots are found as located far from that line. It means some problems in the data set. Possible reasons for such outliers are that respondent reported totally wrong annual VKT, or totally wrong odometer readings in 2010 or 2011, or that the odometer readings for different vehicles obtained in 2010 and 2011 are mismatched, resulting in a wrong calculated VKT. However, we are not sure about the reason, so the dataset is used for the empirical analysis without any amendment. Figure 3 shows that many plots lie in horizontal lines at multiples of 5000km, the same as the concentrations shown in Figure 2. Also, similar horizontal lines can be found at other values of reported VKT, and it suggests that there exist the concentrations at multiples of smaller values than 5000km. Cumulative distribution of reported VKT for sample cases is shown in Figure 4. It is obvious that there are big jumps at multiples of 10000km and 5000km. It is also found that multiples of 1000km and 500km have concentrations though it is not so significant for those of 500km. Sample distribution of reported VKT in terms of rounding is shown in Table 1. It confirms that many reported VKT are rounded as multiples of 10000km and 5000km, but that more reports are rounded at multiples of 1000km excluding multiples of 5000km. The former contains the cases where the VKT is rounded as multiples of 1000km, so the cases where the VKT is rounded as multiples of 1000km dominate the cases where the VKT is rounded as multiples of 5000km.

Table 1 shows that there also exist cases where the VKT is rounded as multiples of 500km and cases with smaller rounding than 500km. The latter might include the cases with no rounding, but we are not sure about how accurately the respondents can answer the VKT. The cases with smaller rounding than 1000km are treated as rounded as multiples of 1000km in the empirical analysis of this study for the simplicity of the model, although it might result in biased estimation results. The explanatory variables used in the model of this study are summarized in Table 2. The explanatory variables contain household and main driver characteristics and vehicle attributes. The focus of the study is on the effects of the rounding on the estimation of VKT function, so the exploration of the explanatory variables has not gone beyond the basic set of the variables. 

Results

First and before estimating the proposed model, the difference between reported and calculated VKT is examined in order to identify possible explanatory variables that may be included in the coarseness function. In this perspective, three standard linear regression models are estimated to evaluate the effects of vehicle attributes and driver characteristics on the absolute deviation of reported VKT from calculated VKT. The first model is estimated using the full sample of observations, the second is implemented using the subsample reporting an underestimated VKT with respect to calculated VKT, and the third model relies on the subsample reporting an overestimated VKT with respect to calculated VKT. In these models, the absolute deviation is taken in logarithm to be consistent with the dependent variable in the VKT function, which is also expressed in logarithm. As a consequence of this logtransformation, the cases with no difference between reported and calculated VKT are discarded from the sample. 2 The estimation results for these three models are shown in Table 3. They are globally consistent with each other and suggest that the deviation is larger for diesel than for petrol cars, shorter for small cars compared to medium-sized cars and larger for commuting cars than for others. Concurrently, annual VKT is expected to be higher for diesel, mediumsized and commuting cars compared to petrol, small and non-commuting cars respectively. Therefore, higher VKT should induce larger deviations, thus supporting the inclusion of VKT as explanatory variable in the coarseness function. Moreover, annual VKT is usually lower on average in densely populated areas than in low-density areas, but the estimate related to the "large city" dummy is not significantly negative in the deviation models of Table 3, suggesting that urban cars might be subject to larger coarseness. Thus, the final set of explanatory variables retained in the coarseness function includes car fuel type and size, commuting use, owner's location and annual VKT. The bivariate ordered response probit model has been implemented using GAUSS, a matrixprogramming software which provides routines for maximum likelihood estimation. The likelihood function of the proposed model has been coded by the authors and the estimation results are shown in Table 4 (column a). It is found that the covariance between ei and zi, sez is insignificant, thus the model is re-estimated without the covariance term. The results are shown in Table 4 (column b). Coefficient estimates of the two results are very similar for both coarseness and VKT functions. t-statistics of the coefficient estimates for the VKT function are also very close while those for the coarseness function have larger absolute values in the model without the covariance term. The coefficient estimates for the coarseness function are first discussed. Subsequently, the results for the VKT function are commented and compared to alternative models. As expected, greater VKT results in significantly higher coarseness in reporting. Indeed, the estimate for α is positive and presents a very large t-statistic. Other than VKT, only the "commuting car" dummy has a significant estimated coefficient in the coarseness function while "large city" and "diesel car" dummies are marginally significant, calling here for explanations. Commuting cars are driven on a longer annual distance but they are also much more often used than others in terms of number of trips. Thus, higher car use frequency is possibly another source of approximation in reporting annual VKT. In addition, drivers living in large cities can more easily substitute public transports for car use during a whole year. This may lead to more coarseness in reporting annual VKT than for drivers residing in low-density areas, where the choice of car is more systematic due to a lack of efficient public alternatives, making annual VKT easier to determine accurately. Some diesel car drivers might be less sensitive to fuel cost and pay less attention to their VKT because of the lower fuel price per litre than gasoline, leading to higher coarseness in reporting annual VKT. The estimation results for the VKT function are standard and do not diverge from other studies dealing with car use in France. While the car size and fuel type dummies turned out to be nonsignificant in the coarseness function, the "diesel" and "small car" dummies have statistically significant coefficient estimates in the VKT function. Given that higher VKT entails significantly more coarsened report, this result is consistent with the regression estimates of the deviation models (Table 3), in which both these car attributes have significant estimates. Because of a lower fuel price per litre and a better fuel efficiency on average, the annual distance travelled is significantly longer for diesel than for petrol cars. The result on the positive relationship between the fuel efficiency and the annual distance travelled is consistent with previous studies, where the driving cost per mile had a negative effect on the usage [START_REF] Liu | An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices[END_REF][START_REF] Cirillo | Simulation, numerical approximation and closed forms for joint discrete continuous models with an application to household vehicle ownership and use[END_REF]. It is significantly shorter for small cars than for medium-sized or large cars and decreasing as the vehicle age increases. As expected, drivers living in large cities make significantly lower use of their car than drivers from low-density areas, while working drivers make greater use than unemployed drivers only if they commute by car. In addition, French driving men make significantly greater use of their car than women, but the results show no evidence of a difference according to the driver's age. 3 The gender difference on vehicle use is also consistent with the literature. [START_REF] Spissu | A copula-based joint multinomial discrete-continuous model of vehicle type choice and miles of travel[END_REF], [START_REF] Liu | An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices[END_REF] and [START_REF] Cirillo | Simulation, numerical approximation and closed forms for joint discrete continuous models with an application to household vehicle ownership and use[END_REF] suggested male drivers have longer annual vehicle miles than female except that Spissu et al. (2016) have an opposite result only for coupé drivers. Drivers from low-income households make lower car use than those living in medium or high-income households, and an access to public transports near drivers' home induces a significant decrease in their car mileage. Both results are again consistent with the literature. [START_REF] Train | Qualitative Choice Analysis: theory, econometrics, and an application to automobile demand[END_REF], [START_REF] Brownstone | A vehicle ownership and utilization choice model with endogenous residential density[END_REF], [START_REF] Liu | An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices[END_REF] and [START_REF] Cirillo | Simulation, numerical approximation and closed forms for joint discrete continuous models with an application to household vehicle ownership and use[END_REF] suggested high-income households had a longer annual vehicle miles. Also, [START_REF] Train | Qualitative Choice Analysis: theory, econometrics, and an application to automobile demand[END_REF] suggested the number of trips by public transit had a negative effect on annual vehicle miles, and [START_REF] Liu | An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices[END_REF] and [START_REF] Cirillo | Simulation, numerical approximation and closed forms for joint discrete continuous models with an application to household vehicle ownership and use[END_REF] suggested the negative relationship between the residential density and annual vehicle miles. Lastly, the total number of cars and the number of children in drivers' households have no significant impact on their car use. The coefficient estimates discussed above for the VKT function are not statistically different from those estimated by conventional linear regression models (Table 5, columns b and c). This suggests that not considering heterogeneous coarseness in the VKT reports does not result in a significant estimation bias. However, the estimated standard deviation of the error term, σε, and the standard errors of the coefficient estimates except for large car dummy are lower in the VKT function of the proposed model than in the conventional regression models. The standard errors of the coefficient estimates become smaller by 5.8% on average comparing with the regression model of the reported VKT. It implies that the proposed model is more efficient to investigate the effects of the explanatory variables on VKT if coarseness is taken into account. The proposed model can also be compared to univariate ordered response models. In these, it has been successively assumed a fixed coarsened level of 500, 1000, 5000 and 10000 km, whichever the VKT value reported by respondents. In the case of a presumed coarseness level of 500 km for example, the real VKT is supposed to lie in the interval around the reported VKT plus or less 250 km for all the observations. Again, the coefficient estimates of these models do not significantly differ from those of the proposed model. Thus, univariate ordered response probit models may also be applied to investigate VKT under the assumption of a fixed coarseness in the reports, even though they may contain several levels of rounding. The standard deviation of the error term in these univariate models is decreasing as the assumed coarseness level increases. 4 However, assuming the largest coarseness level is not consistent with the collected data because only 15% of the sample has reported a VKT rounded to a multiple of 10000 km. In addition, setting the coarseness level to the smallest value (1000 km) yields an estimated variance for the error term similar to the proposed model, but this assumption is unlikely for large values of reported VKT. Indeed, coarseness has been shown to increase with VKT in the proposed model, which turns out to be a better statistical framework in our context than univariate ordered response probit models with predetermined homogenous coarseness. The models with different coarseness levels were also estimated for comparison purpose, including the models with {100km, 500km, 1000km, 5000km}, {500km, 1000km, 5000km}, {1000km, 5000km} and {5000km, 10000km} as assumed coarseness levels. In this comparison, the covariance between ei and zi, sez is discarded from the models because of the statistical insignificance. Of these, the model with {5000km, 10000km} as assumed coarseness levels did not converge, which implies the assumption is not appropriate. As shown in Table 1, majority of the respondents reported the VKT with lower coarseness than 5000 km. Thus, the coarseness function was not properly estimated for the model with {5000km, 10000km}. It suggests including 1000 km into the set of potential coarseness levels. The results of the remaining models are shown in Table 6. It shows that the coefficient estimates and t-statistics of the VKT functions are similar across the models, which implies that the effects of the explanatory variables on VKT can be investigated efficiently by any models in the comparison. On the other hand, the coefficient estimates of the coarseness function have larger values with the models with larger coarseness levels in general. It may imply that a larger coarseness is determined more systematically while a smaller coarseness is more randomly, but it is a mere speculation and needs further investigations in the future. The results show that the log-likelihood at convergence is better for the model with larger assumed coarseness levels, but it cannot be used to select the better model since the dependent variable is treated differently across the models. As shown in Equation 8, the likelihood is calculated by taking the integral with the range determined by the coarseness level. Thus, the model with the larger coarseness levels gives a higher likelihood, which is not related to the fitness of the model. Rather than the log-likelihood at convergence, the standard deviation of the error term of the VKT function represents the goodness of fit of the VKT function to the variance of the data. The results show that the model with the larger coarseness levels has the smaller estimate of the standard deviation of the error term. Thus, the model with {1000km, 5000km, 10000km} is regarded as the best model in the comparison. It is also noted that higher coarseness levels than 10000 km such as 50000 km are not realistic as shown in Figure 4. 

Conclusions

Annual vehicle kilometres travelled is analysed in this study, particularly focusing on the coarseness in the data resulting from the reports by survey respondents. The reports are regarded as heaped where various levels of rounding are included, and VKT itself is assumed to affect the coarseness of the report. Bivariate ordered response probit model is developed to represent the reported VKT and the coarseness of the report simultaneously. The coarseness of the report by each respondent is not perfectly known to analyst, thus the latent class approach is used to represent the probabilities the reported VKT could be rounded as multiples of 10000 km, 5000 km and 1000 km. In our empirical data, about 23% of the reports are not multiples of 500 km, which means the actual coarseness of these reports is smaller than 500 km. However, comparative analysis on the assumed coarseness levels suggests that the fitness of the model decreases by including 500 km into the coarseness levels. It might imply the reports with the coarseness of 500 km or less is not accurate, but further in-depth investigation is needed. The model is applied to the French panel data called Parc-Auto, and the results suggest that longer VKT results in a larger coarseness in the report as expected. The results also suggest that a commuting car has a larger coarseness in the report of VKT. Commuting cars are driven on a longer annual distance but they are also much more often used than others in terms of number of trips. Thus, higher car use frequency is possibly another source of approximation in reporting annual VKT. The high-end in-vehicle technology getting popular especially among expensive vehicles might help recording the VKT at any duration and it can support the improvement in the VKT survey. The results suggest that such a technology provides a larger benefit from the view point of data collection when installed into commuting cars. The estimation results on the VKT function suggest that the estimates by the proposed model are not statistically significantly different from conventional regression model with the data set used in the empirical analysis of this study, but the estimated standard deviation of the error term and the standard errors of the coefficient estimates are smaller, implying that the proposed model is more efficient to investigate the effect of the explanatory variables on VKT than the conventional regression model. The results support that the proposed model is superior to conventional regression models, so the estimates might become statistically significantly biased if the conventional models are used for different data set. Thus, further investigations are needed to clarify the advantage of the proposed model. The extension of the proposed random heaping model by integrating with discrete-continuous models of vehicle type choice and use may be the next step. Although our model treats the heaping appropriately when estimating the VKT function, the indirect effects of explanatory variables through the vehicle type choice cannot be considered. The integration may provide better estimates of the indirect as well as direct effects of particular factors on the vehicle usage. Another direction of the further analysis is the multiple imputations used in [START_REF] Heitjan | Inference from coarse data via multiple imputation with application to age heaping[END_REF]. They applied multiple imputations to the data with the parameter estimates, and obtained smoother histograms than original sample distribution in the context of children's age. The same imputation technique can be applicable to the data set used in this study, and is expected to provide smoother histograms than original sample distribution of reported VKT. Nowadays, compulsory periodical inspection of vehicles, which is generalising in Europe, provides a new data source on odometer reading, allowing much larger sample sizes, but with fewer information on the car and on its driver. Moreover new tools are emerging, which allow a much more accurate measurement of distance travelled (e.g. Global Positioning Systems). However, especially for analysing long term trends (e.g. for GHG emissions or infrastructure building) it is crucial to compare actual more precise data with data collected in the past with conventional survey methods (e.g. for the analysis of peak car travel [START_REF] Grimal | Is the stagnation of individual car travel a general phenomenon in France? A time-series analysis by zone of residence and standard of living[END_REF][START_REF] Madre | Are we heading towards a reversal of the trend for ever-greater mobility? Discussion Papers 2012-16[END_REF]).

Figure 1 Figure 2 Figure 3

 123 Figure 1 Sample distribution of calculated VKT
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 4 Figure 4 Cumulative distribution of reported VKT for sample cases

  

Table 1

 1 Rounding of reported VKT

	Cases

Table 2

 2 Variables used in the analysis

	Variable	Definition

Table 3

 3 Regression models of the deviation of reported VKT from calculated VKT OLS estimates. The endogenous variable is ln(|reported VKT -calculated VKT|). Model (a) is estimated using the full dataset, model (b) relies on the subsample reporting an underestimated VKT compared to calculated VKT, and model (c) relies on the subsample reporting an overestimated VKT. Source: Parc-Auto panel survey 2010-11.

		Absolute difference	Absolute underestimate	Overestimate
		(a)		(b)		(c)	
	Variable	Coefficient	t-stat.	Coefficient	t-stat.	Coefficient	t-stat.
	Children	-0.013	-0.26	0.025	0.30	-0.060	-0.97
	PT access	-0.052	-0.75	-0.084	-0.69	-0.022	-0.27

2 79 observations over 2257 in the dataset.

Table 4

 4 Estimation results of proposed model of reported VKT

		With covariance, σεz	Without covariance, σεz
		(a)		(b)	
		Coefficient	t-stat.	Coefficient	t-stat.
	Coarseness function				
	Log-VKT (α)	0.867	3.86	0.861	10.61
	Large City	0.177	1.74	0.177	1.77
	Commuting	0.330	2.57	0.332	3.27
	Diesel	0.200	1.29	0.203	1.70
	Constant	-9.385	-4.72	-9.337	-12.46
	Threshold (θ)	1.187	4.80	1.186	4.80
	VKT function				
	PT access	-0.064	-2.18	-0.065	-2.18
	Large City	-0.075	-2.49	-0.075	-2.49
	Low income	-0.140	-3.53	-0.140	-3.53
	Male	0.149	5.30	0.149	5.31
	Commuting	0.428	14.80	0.428	14.80
	Diesel	0.324	11.40	0.324	11.41

Table 5

 5 Estimation results of VKT functions

		Proposed model of reported				
		VKT without covariance,	Regression model of	Regression model of
		σεz		reported VKT	calculated VKT
		(a)		(b)		(c)	
			Standard		Standard		Standard
		Coefficient	error	Coefficient	error	Coefficient	error
	PT access	-0.065 *	0.0298	-0.064 *	0.0305	-0.120 **	0.0312
	Large City	-0.075 *	0.0301	-0.077 *	0.0313	-0.035	0.0318
	Low income	-0.140 **	0.0397	-0.151 **	0.0486	-0.057	0.0491
	Male	0.149 **	0.0281	0.154 **	0.0294	0.145 **	0.0299
	Commuting	0.428 **	0.0289	0.440 **	0.0290	0.447 **	0.0296
	Diesel	0.324 **	0.0284	0.336 **	0.0305	0.352 **	0.0311
	Small	-0.248 **	0.0289	-0.252 **	0.0305	-0.231 **	0.0311
	Large	0.142	0.0768	0.147 *	0.0735	0.040	0.0741
	Light truck	-0.145 *	0.0665	-0.152 *	0.0745	-0.075	0.0758
	Car age	-0.036 **	0.0026	-0.037 **	0.0028	-0.034 **	0.0029
	Constant	9.152 **	0.0475	9.130 **	0.0507	9.090 **	0.0517

Table 6

 6 Estimation results of VKT models with different assumed coarseness levels

	Assumed coarseness levels in km	{100, 500, 1000, 5000}	{500, 1000, 5000}	{1000, 5000}	{1000, 5000, 10000}
		Coef.	t-stat. Coef.	t-stat. Coef.	t-stat. Coef.	t-stat.
	Coarseness function								
	Log-VKT (α)	0.478 12.57	0.696 12.55	0.863 10.83	0.861 10.61
	Large City	0.101	1.84	0.150	2.10	0.165	1.65	0.177	1.77
	Commuting	0.310	5.57	0.330	4.69	0.325	3.20	0.332	3.27
	Diesel	0.112	1.97	0.151	1.99	0.193	1.63	0.203	1.70
	Constant	-3.991 -11.68 -6.895 -13.53 -9.323 -12.71 -9.337 -12.46
	Threshold (θ)	0.296	8.67	0.629 11.48			1.186	4.80
	Threshold (θ')*	1.446 30.26						
	VKT function								

Despite appearances, this conclusion is not inconsistent with the expected tail-off in car use on the last part of life cycle: while retired drivers over 60 years old do not use their car anymore to commute, the induced decrease in car use is here captured by the "commuting car" dummy in the VKT function.

The estimated standard deviations are 0.644, 0.620, 0.590 and 0.5437 for predetermined coarseness levels of

km, 1000 km, 5000 km and 10000 km respectively.
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