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Abstract—This paper considers the Multiplici-
ty-Induced-Dominancy (MID) property for second
order neutral time-delay differential equations.
Necessary and sufficient conditions for the exis-
tence of a root of maximal multiplicity are given
in terms of this root and the parameters (includ-
ing the delay) of the given equation. Links with
dominancy of this root and with the exponential
stability property of the solution of the consid-
ered equations are given. Finally, we illustrate the
obtained results on the classical oscillator control
problem.

Index Terms—neutral delay system, dominant
root, root of maximal multiplicity, exponential
stability

I. Introduction

Systems with time delays provide useful models in
a wide range of scientific and technological domains
such as biology, chemistry, economics, physics, or en-
gineering, where the presence of the delays is inherent
to propagation phenomena, such as of material, en-
ergy, or information, with a finite propagation speed.
Due to their numerous applications, these kinds of
systems have been the subject of much attention by
researchers in several fields, in particular since the
1950s and 1960s. We refer to [15], [16], [24] for details
on time-delay systems and their applications.

Linear systems with delays are described in the
Laplace domain by transfer functions involving quasi-
polynomials and then admit an infinite number of
poles. Studying the stability properties of retarded
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systems (they admit a finite number of poles in any
right half-plane) is much easier than studying those of
neutral systems which may have an infinite number of
poles, in chains asymptotic to a vertical axis possibly
located in the open right half-plane or clustering the
imaginary axis from left or right. Both situations
prevent to get exponential stability for these systems.

To perform stability analysis, efficient methods
have been proposed in frequency-domain, see, for
instance, [1], [11], [16], [25], [29]–[31] and the ref-
erences therein. Even with the significant advances
that have been reported on such topics, the question
of determining conditions on the equation parameters
that guarantee asymptotic stability of solutions of
linear time-invariant time-delay systems remains still
open.

Once stability conditions are established, further
questions related to performance occur. For instance,
what is the location of the corresponding rightmost
roots1 of the system characteristic equation?

The starting point of the present work is a prop-
erty, discussed in recent studies, called Multiplicity-
Induced-Dominancy, see for instance [6]. As a matter
of fact, it is shown that multiple spectral values
for time-delay systems can be characterized using
a Birkhoff/Vandermonde-based approach; see for in-
stance [2]–[4], [10]. More precisely, in previous works,
it is emphasized that the admissible multiplicity of
the real spectral values is bounded by the generic
Polya and Szegö bound (denoted PSB), which is noth-
ing but the degree of the corresponding quasipoly-
nomial (i.e the sum of the degrees of the involved

1Such a rightmost root corresponds to the so-called α-
stability problem, itself related to the solution’s decay rate.



polynomials plus the number of delays), see for in-
stance [27, Problem 206.2, page 144 and page 347]. It
is worth mentioning that such a bound was recovered
using structured matrices in [3] rather than the argu-
ment principle as in [27]. It is important to point out
that the multiplicity of a root itself is not relevant
as such, however its connection with the eventual
induced dominancy is a meaningful tool for control
synthesis. To the best of the authors’ knowledge,
the first time an analytical proof of the dominancy
of a spectral value for the scalar equation with a
single delay was presented and discussed in the 50s,
see [17]. The dominancy property is further explored
and analytically shown in scalar delay equations in
[10], then in second-order systems controlled by a
delayed proportional controller in [7], [9], where its
applicability in damping active vibrations for a piezo-
actuated beam is proved. An extension to the delayed
proportional-derivative controller case is studied in
[5], [8] where the dominancy property is parametri-
cally characterized and proven using the argument
principle. See also [5], [8] which exhibit an analyt-
ical proof for the dominancy of the spectral value
with maximal multiplicity for second-order systems
controlled via a delayed proportional-derivative con-
troller.

Lately, the MID property has been extended to
neutral differential equations, first in [21] in the
context of the PID controller design for first-order
delayed-plants, then in [23] where the MID occurs for
spectral values with maximal multiplicity in generic
scalar neutral differential equations.

The paper is organized as follows: Section II pro-
vides some motivation examples as well as the prob-
lem formulation. Section III exhibits some technical
results on the stability and large-time behaviour of
neutral equations. Section IV states the main results
of this study. Finally, Section V is dedicated to the
exponential stabilization of an oscillator via delay, as
an illustrative example.

II. Motivations and Problem Setting

This section is dedicated to recalling some recent
results on the MID property for first and second-order
neutral differential equations.

A. MID property for first-order scalar neutral equa-
tions

It is shown in [23] that the MID property holds for
the delay differential algebraic system{

ẋ(t) = ax(t) + by(t− τ),
y(t) = cx(t) + dy(t− τ),

(1)

where x(t) and y(t) are real-valued, and a, b, c, d are
real coefficients, and whose characteristic function is
given by

∆(s) = s− a− e−sτ (sd− ad+ bc). (2)

As a matter of fact, the maximal multiplicity, which
is equal to 3, is reached at s0 ∈ R, and expressions
of the coefficients ensuring such a configuration are
determined in terms of s0 and the delay τ . Further-
more, all complex roots of (2) with real-parts equal
to s0 are fully characterized.

B. Applicative interest in MID property: Robust PID
stabilizing design for first-order delayed plants

The work in [19] aims at extending such a design
approach to time-delay systems of neutral type occur-
ring in the classical problem of PID stabilizing design
for delayed plants. Namely, consider the following
closed-loop plant

M(s) = (kds2 + kps+ ki)e−sτ

s2 − ps+ (kds2 + kps+ ki)e−sτ
, (3)

where p is a positive unstable pole of the open-loop
plant, kp, ki, kd are real parameters (gains) and τ is
the delay. In [28], it was found that the delay margin
is τPID = 2

p ; see also [20]. Now, the corresponding
characteristic function is given by

∆(s) = s2 − ps+ e−sτ (kds2 + kps+ ki). (4)

In [19], it is shown that for arbitrary real parameters
kp, ki, kd and arbitrary positive delay τ , the multipli-
city of a given root of (4) is bounded by 4. In addition,
the maximal multiplicity 4 is only reached by two
roots s± for one set of given values of the gains. As
a result, if τ < τPID, then the root s+ is dominant
and guarantees stability.

C. Does the maximal multiplicity guarantee the domi-
nancy for second-order neutral differential equations?

A natural question arises. Can one extend the
result of Mazanti et al [23] to second-order neutral
differential equations. Hence, consider the generic
second-order neutral delay differential equation with
a single delay,

2∑
k=0

ak
dkx
dtk (t) + αk

dkx
dtk (t− τ) = 0,

x(t) = ϕ(t), −τ ≤ t ≤ 0,
(5)

where a2 = 1, a0, a1, α0, α1, α2 ∈ R, α2 6= 0, τ > 0,
and ϕ is a given continuously differentiable real-
valued history function on the initial interval [−τ, 0].
Its characteristic function is given by the following
quasipolynomial of degree 5,

∆(s) = s2 + a1s+ a0 + (α2s
2 + α1s+ α0)e−τs. (6)



In other words, we shall investigate the validity of
the multiplicity-induced-dominancy (MID) property
for the above class of quasipolynomial functions.

III. Prerequisites

In this section, we recall the basic spectral theory
for linear functional differential equations. Let C =
C([−τ, 0],Cn) denote the Banach space of continuous
functions endowed with the supremum norm. For a
function X : [−τ,∞)→ Cn, we denote by Xt ∈ C the
function Xt(θ) = X(t+ θ), −τ ≤ θ ≤ 0 and t ≥ 0.

An initial value problem for a linear autonomous
neutral functional differential equation is given by the
following relation{

d
dtDXt = LXt, t ≥ 0,
X0 = φ, φ ∈ C,

(7)

where φ is the prior data, D : C → Cn is continuous,
linear and atomic at zero, L : C → Cn is linear and
continuous and both operators are, owing to the Riesz
representation theorem, defined by

Lφ =
∫ 0

−τ
dη(θ)φ(θ) and Dφ = φ(0)−

∫ 0

−τ
dµ(θ)φ(θ),

where µ, η ∈ NBV ([−τ, 0],Cn×n) are Cn×n matrices
the elements of which are of bounded variation, nor-
malized so that µ is continuous at zero and η(0) = 0;
see Hale and Verduyn Lunel [16] for details.

Remark 1. Note that it suffices to let y(t) = x′(t)
in (5), and set Xt = T (x(t) y(t)) and φ = T (ϕ ϕ′) to
reframe our problem as above:

X ′(t)−BX ′(t− τ) = −A0X(t) +A1X(t− τ), (8)

where

B =
(

0 0
0 −α2

)
, A0 =

(
0 −1
a0 a1

)
,

A1 =
(

0 0
−α0 −α1

)
.

More precisely, as we are dealing with one discrete
delay τ > 0 in our case, one has

µ(θ) =
{
−B, θ ≤ −τ,
0, θ > τ,

η(θ) =

−A1, θ ≤ −τ,
0, −τ < θ < 0,
−A0, θ ≥ 0

It is well-known that for any given initial function
φ, there exists a unique solution of the initial value
problem (7); see [12]. Namely, given the solution
X(φ) of the initial value problem (7), we define the
solution operator T (t) : C → C by the relation

T (t)φ = Xt(.;φ), t ≥ 0.

Hale and Verduyn Lunel [16] proved that the solution
operator is a C0-semigroup on C, its infinitesimal
generator A being{

D(A) = {φ ∈ C|dφdθ ∈ C, D
dφ
dθ = Lφ}

Aφ = dφ
dθ .

(9)

Moreover, σ(A) = Pσ(A) and s ∈ σ(A) if, and only if,
s satisfies the characteristic equation detM(s) = 0,
M being the characteristic matrix

M(s) = sI −
∫ 0

−τ
sesθdµ(θ)−

∫ 0

−τ
esθdη(θ), (10)

and Pσ(A) the point spectrum of A.

A. Asymptotic behavior by the spectral approach

For a given s in the spectrum of A, let defineMs

by the generalized eigenspace associated to s:

Ms = N (sI −A)κs ,

where κs is the order of z = s as a pole of M−1(z).
From the spectral theory [16], it follows that the
spectral projection ontoMs(A) along R((sI −A)κs)
can be represented by a Dunford integral

Ps = 1
2iπ

∫
Γs

(zI −A)−1dz, (11)

where Γs is a small circle such that s is the only
singularity of (zI −A)−1 inside. Finally, Frasson [13]
shows that if s0 ∈ R is a dominant zero of M(s) of
multiplicity n ≥ 1, then

Ps0φ = 0 =⇒ lim
t→∞

e−ts0X(t) = 0. (12)

B. Insights on spectrum distribution for neutral delay
systems

The generic form of the transfer function of a
neutral delay system is

G(s) = r(s)
p(s) + q(s)e−sτ ,

where p, q and r are real polynomials such that
deg p = deg q and τ > 0. Let α = lim

|s|→∞
p(s)
q(s) assumed

to be a nonzero real number. The case |α| 6= 1 is
easily disposed of, as follows.

Proposition 1 ( [26]). For all τ > 0, the following
holds

1) If |α| < 1, then G has infinitely many unsta-
ble poles, asymptotic to a vertical line <(s) ≈
− 1
τ log|α| in the right half-plane;

2) If |α| > 1, then the poles of G of large modulus
are asymptotic to a vertical line strictly in the left
half-plane; so that G has at most a finite number
of unstable poles.



C. Technical lemmas

We conclude this section, by stating and proving
technical results useful in the proof of the main result.

Following [23, Lemma 4.1.], the following lemma
provides relations between the coefficients of ∆ and
those of the quasipolynomial ∆̂ obtained after the
change of variable.

Lemma 1. Let s0 ∈ R, and consider the quasipoly-
nomial ∆̃ : C → C obtained from ∆ by the following
change of variables

∆̃(z) = τ2∆
( z
τ

+ s0

)
, z ∈ C.

Then

∆̃(z) = z2 +M1z+M0 +(N2z
2 +N1z+N0)e−z, (13)

where
M1 = τ(2s0 + a1), M0 = τ2(s2

0 + a1s0 + a0),
N2 = α2e−τs0 , N1 = τ(2α2s0 + α1)e−τs0 ,

N0 = τ2(α2s
2
0 + α1s0 + α0)e−τs0 .

Consider the following quasipolynomial function

∆̂(z) = z2 − 6z + 12− (z2 + 6z + 12)e−z. (14)

Following [22, Lemma 9], one obtains the following
identity whose proof is straightforward.

Lemma 2. Let ∆̂ be given by (14). Then, one has

∆̂(−z) = −ez∆̂(z), z ∈ C.

An immediate consequence of the above identity is
the following symmetry property for the roots of ∆̂.

Corollary 1. Let ∆̂ be given by (14) and assume that
it has a root z0 ∈ C. Then the following equalities hold

∆̂(z0) = ∆̂(−z0) = ∆̂(z̄0) = ∆̂(−z̄0) = 0.

We conclude this section with the main technical
ingredient.

Lemma 3. Let ∆̂ be given by (14) and assume that
it has a root z0 ∈ R∗ + ι̇R. Then, 0 < =(z0) < π.

IV. Main Results

The main result we prove in this paper is the
following.

Theorem 1. Consider the quasipolynomial

∆(s) = s2 + a1s+ a0 + (α2s
2 + α1s+ α0)e−τs. (15)

1) The real s0 is a root of multiplicity 5 of ∆ if, and
only if, the coefficients a0, a1, α0, α1, α2, the root
s0 and the delay τ satisfy the relations

a1 = −2s0 − 6
τ , a0 = s2

0 + 6
τ s0 + 12

τ2 ,

α2 = −eτs0 , α1 =
(
2s0 − 6

τ

)
eτs0 ,

α0 = −
(
s2

0 − 6
τ s0 + 12

τ2

)
eτs0 .

(16)

2) If (16) is satisfied, then s0 is a dominant root of
∆. Moreover, for all s ∈ C, one has

∆(s) = 0 =⇒ <(s) = s0.

3) If (16) is satisfied and s0 < 0, then the trivial so-
lution of (5) is asymptotically stable. In addition,
if the history function φ = T (ϕ ϕ′) is chosen in
order for its spectral projection with respect to the
generalized s0-eigenspace to vanish identically
Ps0φ = 0, then the large-time behaviour of the
trivial solution of (5) is limt→∞ e−s0 tx(t) = 0.

Remark 2. Note that item 3 of the theorem is ob-
tained as a corollary of the MID property, unlike (12)
in Frasson [13] where dominancy is assumed.

Remark 3. Since the expressions of a0, a1, α0, α1
and α2 in (16) are singular with respect to τ as τ → 0,
should one be interested in studying the behavior of
the roots of ∆ as τ → 0 when (16) is satisfied, the
quasipolynomial τ2∆ may be considered instead as
it exhibits the same roots as ∆, albeit with regular
coefficients.

Before proceeding with the proof of the above theo-
rem, it is convenient to normalize the setting using
the affine change of variable z = τ(s − s0). Con-
sequently, the desired multiple root and the delay
reduce to

s0 = 0 and τ = 1. (17)

Remark 4. Note that under (17), relations (16) re-
duce to a0 = 12, a1 = −6, α0 = −12, α1 =
−6, α2 = −1, so that the quasipolynomial (15)
reduces to (14).

Now, let us proceed with the proof of the main result.

Proof. Consider ∆̃, the normalized quasipolynomial,
it follows immediately from relation (14) that s0 is
a root of multiplicity 5 of ∆ if, and only if, 0 is
a root of multiplicity 5 of ∆̃. As a matter of fact,
since ∆̃ is a quasipolynomial of degree 5, zero is a
root of multiplicity 5 of ∆̃ if, and only if, ∆̃(0) =



∆̃′(0) = ∆̃(2)(0) = ∆̃(3)(0) = ∆̃(4)(0) = 0. The latter
identities yield the following Cramer system

M0 +N0 = 0,
M1 +N1 −N0 = 0,
2 + 2N2 − 2N1 +N0 = 0,
−6N2 + 3N1 −N0 = 0,
12N2 − 4N1 +N0 = 0,

whose unique solution is (M0,M1, N0, N1, N2) =
(12,−6,−12,−6,−1) as required by (14), thereby
ending the proof of the first item of the theorem.
Moreover, note that, under (17), one has ∆̂ = ∆̃.

To prove the second item, it suffices to show that
every root of ∆̂ lies on the imaginary axis. To do so,
first, integration by parts yields

∆̂(z) = 1
2z

5
∫ 1

0
t2(t− 1)2e−ztdt, (18)

then assume that there exists a root z0 ∈ C of ∆̂ sat-
isfying <(z0) 6= 0 and set to obtain a contradiction.
Writing z0 = σ+ ι̇ω for σ, ω ∈ R with σ 6= 0, one may
assume, thanks to Corollary 1 below, that σ > 0 and
ω > 0. Next, using the fact that z0 is a non-zero root
of ∆̂, one infers from (18), by taking the imaginary
part, the identity below∫ 1

0
t2(t− 1)2 exp (−σt) sin(ωt)dt = 0.

Since 0 < ω ≤ π by Lemma 3, the function t 7→
t2(t− 1)2 exp−σt sin(ωt) is strictly positive in (0, 1),
which contradicts the above equality as required to
end the proof.

The third item of the main result is a direct
consequence of item two and (12); see Frasson [13].

V. Illustrative Example: Exponential
Stabilization of an oscillator using delay

action

Consider the classical oscillator control problem:
ẍ(t) + 2 ξ ωẋ(t) + ω2x(t) = u(t) (19)

with u as the delayed output-feedback as proposed in
[18]: u(t) = α2 ẍ(t− τ) + α1 ẋ(t− τ) + α0 x(t− τ), ω
is the frequency of the arising vibrations and ξ is the
damping factor.

We proceed as in Remark 1 to reframe the problem
as (8) with

B =
(

0 0
0 α2

)
, A0 =

(
0 −1
ω2 2ξω

)
, A1 =

(
0 0
α0 α1

)
.

The associated characteristic matrix reads as
M(s)= sI + se−τsB − C − Ee−τs

=
(

s −1
ω2 − α0e−τs s− α2se−τs + 2ωξ − α1e−τs

)
,
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Figure 1. Response of the oscillator (19) subjected to the
stabilizing MID property

so that the characteristic quasipolynomial function is

∆(s) =
(
−α2s

2 − α1s− α0
)

e−τ s + s2 + 2 ξ ω s+ ω2.

Following Theorem 1, we use the MID stabilizing
property by forcing the multiplicity 5 of the real
spectral value at:

s0 =
(
σξ2 − σ − ξ

)
ω,

where σ(ξ) =
√
−3 (ξ2 − 1)−1 and setting the delay

to τ = σ
ω . one computes the appropriate gains:

α0 = −ω2 (4 ξ3σ − 4ξσ + 12ξ2 − 13
)
e−(ξσ+3),

α1 = −2ω
(
σξ2 − 2σ − ξ

)
e−(ξσ+3),

α2 = e−(ξσ+3).

Hence, we compute the spectral projection onto the
generalized eigenspace Ms0 explicitly by the Dum-
ford integral (11), following [14, Section 3.2].

Ps0φ = Ress=s0{es∆−1(s)K(s0)φ},

where φ = T (ϕ ϕ′) ∈ C([−τ, 0],C2) is the history
function, Res is the residue and

K(s0)φ=Dφ+
∫ 0

−τ
[s0dµ(θ)+dη(θ)]

∫ −θ
0

e−szφ(z+θ)dz.

To illustrate the large-time behavior of the trivial
solution x(t) of (5), we consider ξ = 1

2 , ω = 1 and
the history function ϕ(θ) = 0.4392434197 θ8 + θ7 −
3.648426084 θ3 − 3.338574638 θ2 − 0.4144356357 θ +
0.05592390768 which satisfies Ps0φ = 0 as in Theo-
rem 1.3.

VI. Conclusion

By this paper we extended the multiplicity-in-
duced-dominancy property to the generic second-
order neutral delay equation enabling a stabilizing
delayed-feedback design. The proposed design strat-
egy has been employed to exponentially stabilize an



oscillator. This new extension suggests that inves-
tigating this property for more general functional
differential equations is an interesting open problem
which is of our interest. In particular, a natural
question is to generalize the proposed result for a
high order equation as well as equations with vector-
valued state. For practical implementation, it is also
important to consider robustness aspects of the pro-
posed control design.
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VII. Appendix: Proof of Lemma 3

Let z0 = σ + ι̇ω ∈ R∗ + ι̇R be as in the statement. Thanks to Corollary 1, one may assume that σ > 0.
Since z0 is a root of ∆̂, one has

ez0(z2
0 − 6z0 + 12) = z2

0 + 6z0 + 12,

and therefore, in particular, |ez0 |2|z2
0 − 6z0 + 12|2 = |z2

0 + 6z0 + 12|2, which in turn yields

(ω4 + (2σ2 − 12σ + 12)ω2 + σ4 − 12σ3 + 60σ2 − 144σ + 144)e2σ = ω4 + (2σ2 + 12σ + 12)ω2

+ σ4 + 12σ3 + 60σ2 + 144σ + 144.

Furthermore, since e2σ is lower bounded by 1 + 2σ + 2σ2 + 4
3σ

3, one deduces that

(2σ + 2σ2 + 4
3σ

3)ω4 + ((2σ2 − 12σ + 12)(1 + 2σ + 2σ2 + 4
3σ

3)− 2σ2 − 12σ − 12)ω2

+ (σ4 − 12σ3 + 60σ2 − 144σ + 144)(1 + 2σ + 2σ2 + 4
3σ

3)− σ4 − 12σ3 − 60σ2 − 144σ − 144 < 0.

Now, setting Ω = ω2, we define f : Ω ∈ R→ R the following second degree polynomial

f(Ω) = (2x+ 2x2 + 4
3x

3)Ω2 + ((2x2 − 12x+ 12)(1 + 2x+ 2x2 + 4
3x

3)− 2x2 − 12x− 12)Ω

+ (x4 − 12x3 + 60x2 − 144x+ 144)(1 + 2x+ 2x2 + 4
3x

3)− x4 − 12x3 − 60x2 − 144x− 144,

the discriminant of which is given by

D(x) = x5D̃(x), where D̃(x) = −256
3 x3 + 256x2 + 320x+ 768.

Since x > 0, the sign of the discriminant D is equal to that of D̃, which admits a unique real root given by

x0 = (59 + 8
√

43) 2
3 + 2(59 + 8

√
43) 1

3 + 9
2(59 + 8

√
43) 1

3
,

owing to the Cardan-Tartaglia method. Hence, the discriminant D admits zero as solution and a unique
non-zero real solution x0, on the one hand. On the other hand, it is negative in the interval (x0,+∞) and
tends towards −∞ at ∞. Consequently, the discriminant D is strictly positive for every x ∈ (0, x0).

In what follows, one is only interested in the latter interval in which the discriminant D is strictly positive.
In this case, f must admit two real roots, given by

Ω±(x) = (−2x3 + 9x2 ± 2
√
−12x4 + 36x3 + 45x2 + 108x+ 3x)x

2x2 + 3x+ 3 .

The aim, now, is to determine a bound for the square of the frequency Ω. First, One may remark that the
quantity given by

Ω+(x)− Ω−(x) =
8x
√
−3(x3 − 3x2 − 15

4 x− 9)x
2x2 + 3x+ 3

is strictly positive for every x ∈ (0, x0), so that Ω+ is the greatest solution. Therefore, we shall investigate
the maximum of the branch Ω+, by studying the vanishing of its first derivative, i.e.,

Ω′+(x) =−
6x(4x4 − 15x2 − 45x− 9)

√
−4x

(
x3 − 3x2 − 15

4 x− 9
)

(−4x4 + 12x3 + 15x2 + 36x) 1
3 (2x2 + 3x+ 3)2

−
8
√

3x(6x5 + 9x4 − 27x3

2 − 297x2

4 − 108x− 243
2 )

(−4x4 + 12x3 + 15x2 + 36x) 1
3 (2x2 + 3x+ 3)2

= 0.

Or, equivalently, one may investigate the vanishing of its numerator, that is,

−((24x4 − 90x2 − 270x− 54)
√
−4x(x3 − 3x2 − 15

4 x− 9) + 8
√

3(6x5 + 9x4 − 27x3

2 −297x2

4
− 108x− 243

2 ))x = 0.



Figure 2. Left: the discriminant D of f . Right: graph of Ω+ (red) and Ω− (blue).

Figure 3. Left: graphs of P (red), P ′ (blue), P 2 (brown) and P 3 (green). Right: spectrum distribution of quasipolynomial ∆̂.

By isolating the term
√
−4x(x3 − 3x2 − 15

4 x− 9)

−48(2x− 3)(8x7 − 36x6 − 18x5 + 81x4 + 594x3 − 243x2 − 1188x− 2916)(2x2 + 3x+ 3)2 = 0.

The polynomial 2x− 3 admits one positive root, x∗1 = 3
2 , corresponding to the point which minimizes the

solution Ω−, while the polynomial 2x2 + 3x+ 3 is strictly positive. Hence, let us investigate the polynomial

P (x) = 8x7 − 36x6 − 18x5 + 81x4 + 594x3 − 243x2 − 1188x− 2916. (20)

To do so, we need to lower the degree to 4 by computing its third-order derivative

P (3)(x) = 1680x4 − 4320x3 − 1080x2 + 1944x+ 3564, (21)

the discriminant of which is negative. More precisely, it admits exactly two real roots denoted by x3,1 and
x3,2 and which may be explicitly computed by the Ferrari method. Furthermore, one may remark that
0 < x3,1 < x3,2 < x0. As a result, the above polynomial has an alternating sign, which means that the
second-order derivative of P , i.e.,

P
′′
(x) = 336x5 − 1080x4 − 360x3 + 972x2 + 3564x− 486, (22)

has an alternating monotonicity. Namely, it increases from P
′′(0) < 0 to P ′′(x3,1) > 0, it decreases from

P
′′(x3,1) to P ′′(x3,2) < 0 and by computing its limit at∞, one may see that it increases again from P

′′(x3,2)
to ∞. Then, one deduces that the polynomial given in (22) admits three positive roots denoted by x2,1, x2,2
and x2,3. Approximating these roots by a numerical algorithm, one infers that x2,1 < x3,1 < x2,2 < x3,2 <
x2,3 < x0. Along the same lines, one may deduce that the derivative of P ,

P
′
(x) = 56x6 − 216x5 − 90x4 + 324x3 + 1782x2 − 486x− 1188, (23)

admits one positive root, denoted by x1,1 such that x2,1 < x1,1 < x3,1. Then, with the same analysis, one may
also deduce that the polynomial P admits a unique positive root denoted by x∗2 such that x2,3 < x∗2 < x0.
Using a numerical algorithm, one may approximate this unique solution by {x∗2 ≈ 2.72}, which corresponds
to the point that maximizes the solution Ω+ at Ω∗+ ≈ 9.13. As a result, ω is bounded by ω∗ ≈ 3.02, that is,
0 < ω ≤ 3.02 < π as required.
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