Amina Benarab 
email: amina.benarab@ipsa.fr
  
Karim Trabelsi 
email: karim.trabelsi@ipsa.fr
  
Guilherme Mazanti 
email: guilherme.mazanti@inria.fr
  
Catherine Bonnet 
email: catherine.bonnet@inria.fr
  
  
  
  
  
  
  
  
  
  
  
The MID property for a second-order neutral time-delay differential equation
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This paper considers the Multiplicity-Induced-Dominancy (MID) property for second order neutral time-delay differential equations. Necessary and sufficient conditions for the existence of a root of maximal multiplicity are given in terms of this root and the parameters (including the delay) of the given equation. Links with dominancy of this root and with the exponential stability property of the solution of the considered equations are given. Finally, we illustrate the obtained results on the classical oscillator control problem.

I. Introduction

Systems with time delays provide useful models in a wide range of scientific and technological domains such as biology, chemistry, economics, physics, or engineering, where the presence of the delays is inherent to propagation phenomena, such as of material, energy, or information, with a finite propagation speed. Due to their numerous applications, these kinds of systems have been the subject of much attention by researchers in several fields, in particular since the 1950s and 1960s. We refer to [START_REF] Gu | Stability of time-delay systems[END_REF], [START_REF] Hale | Introduction to functional differential equations[END_REF], [START_REF] Michiels | Stability and stabilization of time-delay systems[END_REF] for details on time-delay systems and their applications.

Linear systems with delays are described in the Laplace domain by transfer functions involving quasipolynomials and then admit an infinite number of poles. Studying the stability properties of retarded CB and IB are partially supported by a public grant overseen by the French National Research Agency (ANR) as part of the "Investissement d'Avenir" program, through the iCODE project funded by the IDEX Paris-Saclay, ANR-11-IDEX0003-02.

systems (they admit a finite number of poles in any right half-plane) is much easier than studying those of neutral systems which may have an infinite number of poles, in chains asymptotic to a vertical axis possibly located in the open right half-plane or clustering the imaginary axis from left or right. Both situations prevent to get exponential stability for these systems.

To perform stability analysis, efficient methods have been proposed in frequency-domain, see, for instance, [START_REF] Bellman | Differential-difference equations[END_REF], [START_REF] Cooke | On zeroes of some transcendental equations[END_REF], [START_REF] Hale | Introduction to functional differential equations[END_REF], [START_REF] Olgac | An exact method for the stability analysis of time delayed linear time-invariant (lti) systems[END_REF], [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF]- [START_REF] Walton | Direct method for tds stability analysis[END_REF] and the references therein. Even with the significant advances that have been reported on such topics, the question of determining conditions on the equation parameters that guarantee asymptotic stability of solutions of linear time-invariant time-delay systems remains still open.

Once stability conditions are established, further questions related to performance occur. For instance, what is the location of the corresponding rightmost roots1 of the system characteristic equation?

The starting point of the present work is a property, discussed in recent studies, called Multiplicity-Induced-Dominancy, see for instance [START_REF] Boussaada | Multiplicity-induced-dominancy in parametric second-order delay differential equations: Analysis and application in control design[END_REF]. As a matter of fact, it is shown that multiple spectral values for time-delay systems can be characterized using a Birkhoff/Vandermonde-based approach; see for instance [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems: The missing link with Birkhoff incidence matrices[END_REF]- [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF], [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF]. More precisely, in previous works, it is emphasized that the admissible multiplicity of the real spectral values is bounded by the generic Polya and Szegö bound (denoted P S B ), which is nothing but the degree of the corresponding quasipolynomial (i.e the sum of the degrees of the involved polynomials plus the number of delays), see for instance [START_REF] Pólya | Problems and Theorems in Analysis[END_REF]Problem 206.2, page 144 and page 347]. It is worth mentioning that such a bound was recovered using structured matrices in [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems[END_REF] rather than the argument principle as in [START_REF] Pólya | Problems and Theorems in Analysis[END_REF]. It is important to point out that the multiplicity of a root itself is not relevant as such, however its connection with the eventual induced dominancy is a meaningful tool for control synthesis. To the best of the authors' knowledge, the first time an analytical proof of the dominancy of a spectral value for the scalar equation with a single delay was presented and discussed in the 50s, see [START_REF] Hayes | Roots of the transcendental equation associated with a certain difference-differential equation[END_REF]. The dominancy property is further explored and analytically shown in scalar delay equations in [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF], then in second-order systems controlled by a delayed proportional controller in [START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of time-delay systems: Application to active vibration control[END_REF], [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF], where its applicability in damping active vibrations for a piezoactuated beam is proved. An extension to the delayed proportional-derivative controller case is studied in [START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF], [START_REF] Boussaada | Toward a decay rate assignment based design for time-delay systems with multiple spectral values[END_REF] where the dominancy property is parametrically characterized and proven using the argument principle. See also [START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF], [START_REF] Boussaada | Toward a decay rate assignment based design for time-delay systems with multiple spectral values[END_REF] which exhibit an analytical proof for the dominancy of the spectral value with maximal multiplicity for second-order systems controlled via a delayed proportional-derivative controller.

Lately, the MID property has been extended to neutral differential equations, first in [START_REF] Ma | Multiplicity-Induced-Dominancy extended to neutral delay equations: Towards a systematic PID tuning based on Rightmost root assignment[END_REF] in the context of the PID controller design for first-order delayed-plants, then in [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: The lossless propagation case[END_REF] where the MID occurs for spectral values with maximal multiplicity in generic scalar neutral differential equations.

The paper is organized as follows: Section II provides some motivation examples as well as the problem formulation. Section III exhibits some technical results on the stability and large-time behaviour of neutral equations. Section IV states the main results of this study. Finally, Section V is dedicated to the exponential stabilization of an oscillator via delay, as an illustrative example.

II. Motivations and Problem Setting

This section is dedicated to recalling some recent results on the MID property for first and second-order neutral differential equations.

A. MID property for first-order scalar neutral equations

It is shown in [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: The lossless propagation case[END_REF] that the MID property holds for the delay differential algebraic system

ẋ(t) = ax(t) + by(t -τ ), y(t) = cx(t) + dy(t -τ ), (1) 
where x(t) and y(t) are real-valued, and a, b, c, d are real coefficients, and whose characteristic function is given by ∆(s) = s -a -e -sτ (sd -ad + bc).

(

As a matter of fact, the maximal multiplicity, which is equal to 3, is reached at s 0 ∈ R, and expressions of the coefficients ensuring such a configuration are determined in terms of s 0 and the delay τ . Furthermore, all complex roots of (2) with real-parts equal to s 0 are fully characterized.

B. Applicative interest in MID property: Robust PID stabilizing design for first-order delayed plants

The work in [START_REF] Ma | Multiplicity-induced-dominancy extended to neutral delay equations:towards a systematic pid tuning based on rightmost root assignment[END_REF] aims at extending such a design approach to time-delay systems of neutral type occurring in the classical problem of PID stabilizing design for delayed plants. Namely, consider the following closed-loop plant

M (s) = (k d s 2 + k p s + k i )e -sτ s 2 -ps + (k d s 2 + k p s + k i )e -sτ , ( 3 
)
where p is a positive unstable pole of the open-loop plant, k p , k i , k d are real parameters (gains) and τ is the delay. In [START_REF] Silva | New results on the synthesis of pid controllers[END_REF], it was found that the delay margin is τ P ID = 2 p ; see also [START_REF] Ma | Delay margin of low-order systems achievable by pid controllers[END_REF]. Now, the corresponding characteristic function is given by

∆(s) = s 2 -ps + e -sτ (k d s 2 + k p s + k i ). (4) 
In [START_REF] Ma | Multiplicity-induced-dominancy extended to neutral delay equations:towards a systematic pid tuning based on rightmost root assignment[END_REF], it is shown that for arbitrary real parameters k p , k i , k d and arbitrary positive delay τ , the multiplicity of a given root of ( 4) is bounded by 4. In addition, the maximal multiplicity 4 is only reached by two roots s ± for one set of given values of the gains. As a result, if τ < τ P ID , then the root s + is dominant and guarantees stability.

C. Does the maximal multiplicity guarantee the dominancy for second-order neutral differential equations?

A natural question arises. Can one extend the result of Mazanti et al [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: The lossless propagation case[END_REF] to second-order neutral differential equations. Hence, consider the generic second-order neutral delay differential equation with a single delay,

     2 k=0 a k d k x dt k (t) + α k d k x dt k (t -τ ) = 0, x(t) = ϕ(t), -τ ≤ t ≤ 0, (5) 
where

a 2 = 1, a 0 , a 1 , α 0 , α 1 , α 2 ∈ R, α 2 = 0, τ > 0,
and ϕ is a given continuously differentiable realvalued history function on the initial interval [-τ, 0]. Its characteristic function is given by the following quasipolynomial of degree 5,

∆(s) = s 2 + a 1 s + a 0 + (α 2 s 2 + α 1 s + α 0 )e -τ s . ( 6 
)
In other words, we shall investigate the validity of the multiplicity-induced-dominancy (MID) property for the above class of quasipolynomial functions.

III. Prerequisites

In this section, we recall the basic spectral theory for linear functional differential equations. Let C = C([-τ, 0], C n ) denote the Banach space of continuous functions endowed with the supremum norm. For a function X : [-τ, ∞) → C n , we denote by X t ∈ C the function X t (θ) = X(t + θ), -τ ≤ θ ≤ 0 and t ≥ 0.

An initial value problem for a linear autonomous neutral functional differential equation is given by the following relation

d dt DX t = LX t , t ≥ 0, X 0 = φ, φ ∈ C, ( 7 
)
where φ is the prior data, D : C → C n is continuous, linear and atomic at zero, L : C → C n is linear and continuous and both operators are, owing to the Riesz representation theorem, defined by

Lφ = 0 -τ dη(θ)φ(θ) and Dφ = φ(0) - 0 -τ dµ(θ)φ(θ),
where µ, η ∈ NBV ([-τ, 0], C n×n ) are C n×n matrices the elements of which are of bounded variation, normalized so that µ is continuous at zero and η(0) = 0; see Hale and Verduyn Lunel [START_REF] Hale | Introduction to functional differential equations[END_REF] for details.

Remark 1. Note that it suffices to let y(t) = x (t) in [START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF], and set X t = T (x(t) y(t)) and φ = T (ϕ ϕ ) to reframe our problem as above:

X (t) -BX (t -τ ) = -A 0 X(t) + A 1 X(t -τ ), ( 8 
)
where

B = 0 0 0 -α 2 , A 0 = 0 -1 a 0 a 1 , A 1 = 0 0 -α 0 -α 1 .
More precisely, as we are dealing with one discrete delay τ > 0 in our case, one has

µ(θ) = -B, θ ≤ -τ, 0, θ > τ, η(θ) =    -A 1 , θ ≤ -τ, 0, -τ < θ < 0, -A 0 , θ ≥ 0
It is well-known that for any given initial function φ, there exists a unique solution of the initial value problem [START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of time-delay systems: Application to active vibration control[END_REF]; see [START_REF] Driver | The equation x (t) = ax(t)+bx(t-τ ) with "small" delay[END_REF]. Namely, given the solution X(φ) of the initial value problem [START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of time-delay systems: Application to active vibration control[END_REF], we define the solution operator T (t) : C → C by the relation

T (t)φ = X t (.; φ), t ≥ 0.
Hale and Verduyn Lunel [START_REF] Hale | Introduction to functional differential equations[END_REF] proved that the solution operator is a C 0 -semigroup on C, its infinitesimal generator A being

D(A) = {φ ∈ C| dφ dθ ∈ C, D dφ dθ = Lφ} Aφ = dφ dθ . (9) 
Moreover, σ(A) = P σ(A) and s ∈ σ(A) if, and only if, s satisfies the characteristic equation det M(s) = 0, M being the characteristic matrix

M(s) = sI - 0 -τ se sθ dµ(θ) - 0 -τ
e sθ dη(θ), [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF] and P σ(A) the point spectrum of A.

A. Asymptotic behavior by the spectral approach

For a given s in the spectrum of A, let define M s by the generalized eigenspace associated to s:

M s = N (sI -A) κs ,
where κ s is the order of z = s as a pole of M -1 (z). From the spectral theory [START_REF] Hale | Introduction to functional differential equations[END_REF], it follows that the spectral projection onto M s (A) along R((sI -A) κs ) can be represented by a Dunford integral

P s = 1 2iπ Γs (zI -A) -1 dz, (11) 
where Γ s is a small circle such that s is the only singularity of (zI -A) -1 inside. Finally, Frasson [START_REF] Frasson | Large time behaviour for functional differential equations with dominant eigenvalues of arbitrary order[END_REF] shows that if s 0 ∈ R is a dominant zero of M(s) of multiplicity n ≥ 1, then

P s0 φ = 0 =⇒ lim t→∞ e -ts0 X(t) = 0. ( 12 
)

B. Insights on spectrum distribution for neutral delay systems

The generic form of the transfer function of a neutral delay system is

G(s) = r(s) p(s) + q(s)e -sτ ,
where p, q and r are real polynomials such that deg p = deg q and τ > 0. Let α = lim |s|→∞ p(s) q(s) assumed to be a nonzero real number. The case |α| = 1 is easily disposed of, as follows.

Proposition 1 ( [26]

). For all τ > 0, the following holds 1) If |α| < 1, then G has infinitely many unstable poles, asymptotic to a vertical line (s) ≈ -1 τ log|α| in the right half-plane; 2) If |α| > 1, then the poles of G of large modulus are asymptotic to a vertical line strictly in the left half-plane; so that G has at most a finite number of unstable poles.

C. Technical lemmas

We conclude this section, by stating and proving technical results useful in the proof of the main result.

Following [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: The lossless propagation case[END_REF]Lemma 4.1.], the following lemma provides relations between the coefficients of ∆ and those of the quasipolynomial ∆ obtained after the change of variable. 

∆(z) = τ 2 ∆ z τ + s 0 , z ∈ C.
Then

∆(z) = z 2 +M 1 z +M 0 +(N 2 z 2 +N 1 z +N 0 )e -z , ( 13 
)
where

     M 1 = τ (2s 0 + a 1 ), M 0 = τ 2 (s 2 0 + a 1 s 0 + a 0 ), N 2 = α 2 e -τ s0 , N 1 = τ (2α 2 s 0 + α 1 )e -τ s0 , N 0 = τ 2 (α 2 s 2 0 + α 1 s 0 + α 0 )e -τ s0 .
Consider the following quasipolynomial function

∆(z) = z 2 -6z + 12 -(z 2 + 6z + 12)e -z . ( 14 
)
Following [START_REF] Mazanti | Multiplicity-induced-dominancy for delay-differential equations of retarded type[END_REF]Lemma 9], one obtains the following identity whose proof is straightforward.

Lemma 2. Let ∆ be given by [START_REF] Frasson | Large time behaviour of linear functional differential equations[END_REF]. Then, one has

∆(-z) = -e z ∆(z), z ∈ C.
An immediate consequence of the above identity is the following symmetry property for the roots of ∆.

Corollary 1.

Let ∆ be given by [START_REF] Frasson | Large time behaviour of linear functional differential equations[END_REF] and assume that it has a root z 0 ∈ C. Then the following equalities hold

∆(z 0 ) = ∆(-z 0 ) = ∆(z 0 ) = ∆(-z 0 ) = 0.
We conclude this section with the main technical ingredient. Lemma 3. Let ∆ be given by [START_REF] Frasson | Large time behaviour of linear functional differential equations[END_REF] and assume that it has a root z 0 ∈ R * + ιR. Then, 0 < (z 0 ) < π.

IV. Main Results

The main result we prove in this paper is the following.

Theorem 1. Consider the quasipolynomial

∆(s) = s 2 + a 1 s + a 0 + (α 2 s 2 + α 1 s + α 0 )e -τ s . (15)
1) The real s 0 is a root of multiplicity 5 of ∆ if, and only if, the coefficients a 0 , a 1 , α 0 , α 1 , α 2 , the root s 0 and the delay τ satisfy the relations

     a 1 = -2s 0 -6 τ , a 0 = s 2 0 + 6 τ s 0 + 12 τ 2 , α 2 = -e τ s0 , α 1 = 2s 0 -6 τ e τ s0 , α 0 = -s 2 0 -6 τ s 0 + 12 τ 2 e τ s0 .
(16)

2) If ( 16) is satisfied, then s 0 is a dominant root of ∆. Moreover, for all s ∈ C, one has

∆(s) = 0 =⇒ (s) = s 0 .
3) If ( 16) is satisfied and s 0 < 0, then the trivial solution of ( 5) is asymptotically stable. In addition, if the history function φ = T (ϕ ϕ ) is chosen in order for its spectral projection with respect to the generalized s 0 -eigenspace to vanish identically P s0 φ = 0, then the large-time behaviour of the trivial solution of ( 5) is lim t→∞ e -s0 t x(t) = 0.

Remark 2. Note that item 3 of the theorem is obtained as a corollary of the MID property, unlike [START_REF] Driver | The equation x (t) = ax(t)+bx(t-τ ) with "small" delay[END_REF] in Frasson [START_REF] Frasson | Large time behaviour for functional differential equations with dominant eigenvalues of arbitrary order[END_REF] where dominancy is assumed.

Remark 3. Since the expressions of a 0 , a 1 , α 0 , α 1 and α 2 in (16) are singular with respect to τ as τ → 0, should one be interested in studying the behavior of the roots of ∆ as τ → 0 when (16) is satisfied, the quasipolynomial τ 2 ∆ may be considered instead as it exhibits the same roots as ∆, albeit with regular coefficients.

Before proceeding with the proof of the above theorem, it is convenient to normalize the setting using the affine change of variable z = τ (s -s 0 ). Consequently, the desired multiple root and the delay reduce to

s 0 = 0 and τ = 1. ( 17 
)
Remark 4. Note that under [START_REF] Hayes | Roots of the transcendental equation associated with a certain difference-differential equation[END_REF], relations [START_REF] Hale | Introduction to functional differential equations[END_REF] reduce to a 0 = 12, a 1 = -6, α 0 = -12, α 1 = -6, α 2 = -1, so that the quasipolynomial [START_REF] Gu | Stability of time-delay systems[END_REF] reduces to [START_REF] Frasson | Large time behaviour of linear functional differential equations[END_REF].

Now, let us proceed with the proof of the main result.

Proof. Consider ∆, the normalized quasipolynomial, it follows immediately from relation ( 14) that s 0 is a root of multiplicity 5 of ∆ if, and only if, 0 is a root of multiplicity 5 of ∆. As a matter of fact, since ∆ is a quasipolynomial of degree 5, zero is a root of multiplicity 5 of ∆ if, and only if, ∆(0) = ∆ (0) = ∆(2) (0) = ∆(3) (0) = ∆(4) (0) = 0. The latter identities yield the following Cramer system

               M 0 + N 0 = 0, M 1 + N 1 -N 0 = 0, 2 + 2N 2 -2N 1 + N 0 = 0, -6N 2 + 3N 1 -N 0 = 0, 12N 2 -4N 1 + N 0 = 0,
whose unique solution is (M 0 , M 1 , N 0 , N 1 , N 2 ) = (12, -6, -12, -6, -1) as required by [START_REF] Frasson | Large time behaviour of linear functional differential equations[END_REF], thereby ending the proof of the first item of the theorem. Moreover, note that, under [START_REF] Hayes | Roots of the transcendental equation associated with a certain difference-differential equation[END_REF], one has ∆ = ∆.

To prove the second item, it suffices to show that every root of ∆ lies on the imaginary axis. To do so, first, integration by parts yields

∆(z) = 1 2 z 5 1 0 t 2 (t -1) 2 e -zt dt, (18) 
then assume that there exists a root z 0 ∈ C of ∆ satisfying (z 0 ) = 0 and set to obtain a contradiction. Writing z 0 = σ + ιω for σ, ω ∈ R with σ = 0, one may assume, thanks to Corollary 1 below, that σ > 0 and ω > 0. Next, using the fact that z 0 is a non-zero root of ∆, one infers from [START_REF] Insperger | Acceleration feedback improves balancing against reflex delay[END_REF], by taking the imaginary part, the identity below

1 0 t 2 (t -1) 2 exp (-σt) sin(ωt)dt = 0.
Since 0 < ω ≤ π by Lemma 3, the function t → t 2 (t -1) 2 exp -σt sin(ωt) is strictly positive in (0, 1), which contradicts the above equality as required to end the proof.

The third item of the main result is a direct consequence of item two and [START_REF] Driver | The equation x (t) = ax(t)+bx(t-τ ) with "small" delay[END_REF]; see Frasson [START_REF] Frasson | Large time behaviour for functional differential equations with dominant eigenvalues of arbitrary order[END_REF].

V. Illustrative Example: Exponential Stabilization of an oscillator using delay action

Consider the classical oscillator control problem:

ẍ(t) + 2 ξ ω ẋ(t) + ω 2 x(t) = u(t) (19) 
with u as the delayed output-feedback as proposed in [START_REF] Insperger | Acceleration feedback improves balancing against reflex delay[END_REF]:

u(t) = α 2 ẍ(t -τ ) + α 1 ẋ(t -τ ) + α 0 x(t -τ ), ω
is the frequency of the arising vibrations and ξ is the damping factor.

We proceed as in Remark 1 to reframe the problem as [START_REF] Boussaada | Toward a decay rate assignment based design for time-delay systems with multiple spectral values[END_REF] with

B = 0 0 0 α 2 , A 0 = 0 -1 ω 2 2ξω , A 1 = 0 0 α 0 α 1 .
The associated characteristic matrix reads as so that the characteristic quasipolynomial function is

M(s) = sI + se -τ s B -C -Ee -τ s = s -1 ω 2 -α 0 e -τ s s -α 2 se -τ s + 2ωξ -α 1 e -τ s ,
∆(s) = -α 2 s 2 -α 1 s -α 0 e -τ s + s 2 + 2 ξ ω s + ω 2 .
Following Theorem 1, we use the MID stabilizing property by forcing the multiplicity 5 of the real spectral value at:

s 0 = σξ 2 -σ -ξ ω,
where σ(ξ) = -3 (ξ 2 -1) -1 and setting the delay to τ = σ ω . one computes the appropriate gains: α 0 = -ω 2 4 ξ 3 σ -4ξσ + 12ξ To illustrate the large-time behavior of the trivial solution x(t) of ( 5), we consider ξ = 1 2 , ω = 1 and the history function ϕ(θ) = 0.4392434197 θ 8 + θ 7 -3.648426084 θ 3 -3.338574638 θ 2 -0.4144356357 θ + 0.05592390768 which satisfies P s0 φ = 0 as in Theorem 1.3.

VI. Conclusion

By this paper we extended the multiplicity-induced-dominancy property to the generic secondorder neutral delay equation enabling a stabilizing delayed-feedback design. The proposed design strategy has been employed to exponentially stabilize an oscillator. This new extension suggests that investigating this property for more general functional differential equations is an interesting open problem which is of our interest. In particular, a natural question is to generalize the proposed result for a high order equation as well as equations with vectorvalued state. For practical implementation, it is also important to consider robustness aspects of the proposed control design.
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Such a rightmost root corresponds to the so-called αstability problem, itself related to the solution's decay rate.

VII. Appendix: Proof of Lemma 3

Let z 0 = σ + ιω ∈ R * + ιR be as in the statement. Thanks to Corollary 1, one may assume that σ > 0. Since z 0 is a root of ∆, one has e z0 (z 2 0 -6z 0 + 12) = z 2 0 + 6z 0 + 12, and therefore, in particular, |e z0 | 2 |z 2 0 -6z 0 + 12| 2 = |z 2 0 + 6z 0 + 12| 2 , which in turn yields (ω 4 + (2σ 2 -12σ + 12)ω 2 + σ 4 -12σ 3 + 60σ 2 -144σ + 144)e 2σ = ω 4 + (2σ 2 + 12σ + 12)ω 2 + σ 4 + 12σ 3 + 60σ 2 + 144σ + 144. Furthermore, since e 2σ is lower bounded by 1 + 2σ + 2σ 2 + 4 3 σ 3 , one deduces that

the discriminant of which is given by

Since x > 0, the sign of the discriminant D is equal to that of D, which admits a unique real root given by

, owing to the Cardan-Tartaglia method. Hence, the discriminant D admits zero as solution and a unique non-zero real solution x 0 , on the one hand. On the other hand, it is negative in the interval (x 0 , +∞) and tends towards -∞ at ∞. Consequently, the discriminant D is strictly positive for every x ∈ (0, x 0 ).

In what follows, one is only interested in the latter interval in which the discriminant D is strictly positive. In this case, f must admit two real roots, given by

The aim, now, is to determine a bound for the square of the frequency Ω. First, One may remark that the quantity given by

is strictly positive for every x ∈ (0, x 0 ), so that Ω + is the greatest solution. Therefore, we shall investigate the maximum of the branch Ω + , by studying the vanishing of its first derivative, i.e.,

Or, equivalently, one may investigate the vanishing of its numerator, that is,

))x = 0. By isolating the term -4x(

The polynomial 2x -3 admits one positive root, x * 1 = 3 2 , corresponding to the point which minimizes the solution Ω -, while the polynomial 2x 2 + 3x + 3 is strictly positive. Hence, let us investigate the polynomial

To do so, we need to lower the degree to 4 by computing its third-order derivative

the discriminant of which is negative. More precisely, it admits exactly two real roots denoted by x 3,1 and x 3,2 and which may be explicitly computed by the Ferrari method. Furthermore, one may remark that 0 < x 3,1 < x 3,2 < x 0 . As a result, the above polynomial has an alternating sign, which means that the second-order derivative of P , i.e.,

has an alternating monotonicity. Namely, it increases from P (0) < 0 to P (x 3,1 ) > 0, it decreases from P (x 3,1 ) to P (x 3,2 ) < 0 and by computing its limit at ∞, one may see that it increases again from P (x 3,2 ) to ∞. Then, one deduces that the polynomial given in ( 22) admits three positive roots denoted by x 2,1 , x 2,2 and x 2,3 . Approximating these roots by a numerical algorithm, one infers that x 2,1 < x 3,1 < x 2,2 < x 3,2 < x 2,3 < x 0 . Along the same lines, one may deduce that the derivative of P ,

admits one positive root, denoted by x 1,1 such that x 2,1 < x 1,1 < x 3,1 . Then, with the same analysis, one may also deduce that the polynomial P admits a unique positive root denoted by x * 2 such that x 2,3 < x * 2 < x 0 . Using a numerical algorithm, one may approximate this unique solution by {x * 2 ≈ 2.72}, which corresponds to the point that maximizes the solution Ω + at Ω * + ≈ 9.13. As a result, ω is bounded by ω * ≈ 3.02, that is, 0 < ω ≤ 3.02 < π as required.