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Recovering an elliptic coated inclusion by an
energy gap tracking function?

B. Meftahi and N. Benmeghnia

Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis,
ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia lamsin@enit.utm.tn

Abstract. In this paper, we consider the inverse problem of reconstruct-
ing coated inclusions from overdetermined boundary data. In a first part,
a shape identifiability result from a Cauchy data is presented, i.e. with
Neumann and Dirichlet boundary as measurements. Then the inverse
geometric problem is reduced into a minimzation of a cost-type func-
tional: energy gap tracking functional. Since the boundary conditions are
known, the variable of the functional is the shape of the coated inclusions.
The shape sensitivity analysis is rigorously performed by means of a La-
grangian formulation coupled with paramatrization of the shape. Thus
we explicit the gradient of the functional by computing the derivative
with respect to the missing shape. The optimization problem is numer-
ically solved by means of gradient-based shape strategy then numerical
illustrations are presented.

Keywords: Heat conduction, Shape Optimization, Shape Derivative,
Coated Inclusions, Inverse problems, Identifiability, Cauchy data.

1 Introduction

In this work, we are dealing with the location of elliptic coated inclusions inside a
thermal conductor domain. For the numerical treatment, this ill-posedness con-
stitutes a serious difficulty. Even if the amount of data collected is sufficient to
guarantee uniqueness, the unknown coefficient or boundary, respectively, usually
does not depend continuously on the measured data. To overcome this difficulty
authors often resort to apply regularization techniques to prove an a priori con-
tinuous dependency between them[1,2].

The uniquness ussue is crucial in order to perform numerical experiments. In
this paper we performed the identifiabilty result using the energy functional [3,4]
. From practical point of view a shape optimization approach is used to locate
elliptic coated inclusions. In such problem the shape sensitivity analysis plays a
central role in the differentiability of the cost function with respect to the shape
of the geometric domain on which the partial differential equation is defined.
In this work and in order to perform a numerical procedure, we formulate the
geometric inverse problem as a shape minimization of a Lagrangian functional
associated with an energy gap tracking cost functional J .

? Supported by organization LAMSIN

Proceedings of CARI 2020 
Bruce Watson, Eric Badouel, Oumar Niang, Eds.

Ecole Polytechnique de Thiès, Sénégal 
October 2020



2. PROBLEM FORMULATION

This work is an extension of the problem studied to reconstruct a single
circular and elliptic inclusion in[5,6].

In our paper the reconstruction of geometric parameters is based on the mini-
mization of the function error between the Dirichlet and the Neumann solutions.
The main result of this paper is to extend the numerical reconstruction in[6] to
a coated elliptic shape using a diffrerent theoretical approach. The main diffi-
culty in order to devise such an algorithm is to study the sensitivity of the cost
function with respect to the shape.

The main feature of this work is the use of a gradient-type algorithm com-
bined with the boundary expression of the shape gradient. In order to compute
the shape derivative of the cost function J , we need to get around the calculus
of the material and shape derivative of the variable state and in this context we
used a theorem of implicit functions as in [7] which was used for more general
variation of the domain. We adapted this technique to a weaker differentiability
: a Frechet differentiability enough to express the variation of the boundary of
our domain with a small real parameter t and in the direction of a fixed veloc-
ity flow h. We will combine this technique with function space parametrization
and function space embedding in spirit of Delfour and Zolésio[8] to provide the
explicit expression of the shape derivative.

2 Problem formulation

Let Ω ⊂ R2 be a domain with Lipschitz boundary ∂Ω and ω ∈ Oad with

Oad := {ω of classe C2 : ω ⊂ Ω, dist(∂ω, ∂Ω) > ν},

for some ν > 0 Let , Ω0, Ω1, Ω2 subsets of Ω such that Ω2 is surrounded by Ω1

and the latter is surrounded by Ω0 and ω = Ω1∪Ω2. We denote by Γ2 = ∂Ω2 and
Γ1 the external boundary of Ω1, see Figure 2 for a description of the geometry.

Assume that thermal conductivity in Ω is

σ = σ0χΩ0
+ σ1χΩ1

+ σ2χΩ2
,

where σ0, σ1, σ2 > 0, are a positive constants,σi 6= σj , i 6= j and χ denotes the
indicator function.

Ω0Ω2 Ω1
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2. PROBLEM FORMULATION

For a given source term f ∈ L2(Ω) then the scalar potential uω, generated by
the Neumann data g ∈ H−1/2(∂Ω) (in the prescence of the coated inclusion ω),
is the solution to the following Neumann problem

−div(σ∇uω) = f in Ω,

JuωK = 0 on Γi, i = 1, 2,

Jσ∂nuωK = 0 on Γi, i = 1, 2,

−σ0∂nuω = g on ∂Ω.

(1)

Here, n is the outward unit normal vector to ∂Ω.
The solvability of this elliptic boundary value problem is well known, when

g ∈ H−1/2(∂Ω) and

∫
∂Ω

g(x) ds(x) = 0

, there exits a unique solution u ∈ H1(Ω). For a proof, we refer to[?].
The problem under consideration is the following.

Given the Neumann data g and the potential u|∂Ω := q measured on the boundary of Ω,

we want to find the location of the coated inclusion ω ⊂ Ω.
(2)

In order to approximate the inclusion ω, we introduce the following optimization
problem:{

minimize J(ω, uN , uD)

subject to ω ∈ A and uN , uD the solutions of 5 and 6 respectively,
(3)

where J is the energy gap tracking functional, defined by :

J(uN , uD) :=
1

2

∫
Ω

σ|∇(uN − uD)|2 dx. (4)

Here

A = {ω ⊂ Ω : P (ω,Ω) <∞} ,

where P (ω,Ω), is the relative perimeter of ω in Ω. For the sake of completeness,
we give the definition of the relative perimeter.

P (ω,Ω) := sup

{∫
ω

div φdx : φ ∈ C1
c (Ω,R2), ‖φ‖∞ ≤ 1

}
.

The states uN and uD are respectively solutions of the following problems.

− div(σ∇uN ) = f in Ω, − σ0∂nuN = g in ∂Ω,

∫
Ω

uN ds(x) = 0. (5)

− div(σ∇uD) = f in Ω, uD = q in ∂Ω. (6)
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3. IDENTIFIABILITY IN THE CASE OF MONOTONOUS INCLUSIONS

3 Identifiability in the case of monotonous inclusions

In this section, we discuss the uniqueness issue for the geometric inverse problem
considered using the energy functional [4]. For i = 1, 2, let Ω(i) be a domain
defined in the same manner as in section 2 and let ui be the solution of the
problem 

− div(σ∇ui) = 0 in Ω(i),

ui = q on Γ \ Υ,
σ∂nui = g on Υ,

JuiK = 0 on Γ
(i)
j , j = 1, 2,

Jσ∂nuiK = 0 on Γ
(i)
j , j = 1, 2,

(7)

where Υ ⊂ Γ := ∂Ω. We consider the following notation ω(i) := Ω
(i)
1 ∪ Ω

(i)
2

then, ∂ω(i) = Γ
(i)
1 ∪ Γ

(i)
2 . We consider the particular case when Ω

(2)
1 ⊂ Ω

(1)
1 as

depicted in Figure 1.

𝛺
2

(2)

𝛶 

𝛤\𝛶 

Fig. 1. The case of monotonuous inclusions.

Theorem 1. Let ω(1) = Ω
(1)
1 ∪ Ω(1)

2 and ω(2) = Ω
(2)
1 ∪ Ω(2)

2 be two coated

inclusions such that ω(2) ⊂ ω(1). For i = 1, 2, and Ω
(i)
2 = αω(i), α ∈]0, 1[, let u(i)

be the solution of the direct problem (7) defined in Ω(i). Then, if ω(1) and ω(2)

lead to the same measured temperature on Υ , we have ω(1) = ω(2) ∀σ2 < σ1 < σ0

or σ0 < σ1 < σ2 or if α 6= σ1 − σ0
σ1 − σ2

∀σ1 > σ0 > σ2 or σ1 < σ2 < σ0.
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4. SHAPE SENSITIVITY ANALYSIS

4 Shape sensitivity analysis

In this section, our goal is to determine the variation of the energy-gap functional
J due to the modifications in the configuration Ω. We firstly presente some
concepts related to the shape optimisation theorie.

4.1 Perturbation of domains

Let Ω ⊂ R2 be the domain such as defined in section 2. For t ∈ R, we introduce
a family of perturbations {Ωt} of a fixed domain Ω, we define by

Ft = Id + th, (8)

the perturbation of the identity operator Id, for a deformation field h belonging
to the space

H =
{
h ∈ C1,1(U) : h = 0 on ∂Ω, h.τ = 0 on Γ1 ∪ Γ2

}
,

where U is an open and bounded domain such that Ω ⊂ U and τ is the tangent
vector to the interface Γi, i = 1, 2. We note that for t sufficiently small, Ft is
a diffeomorphism from Ω into its image. Then the family {Ωt} and {Γi,t} are
defined by

Ωt = Ft(Ω), Γi,t = Ft(Γi), i = 1, 2.

4.2 Shape derivative

To obtain the expression of the shape derivative of J , it is necessery firstly to
recall the following lemma.

Theorem 2. Let φ : [0, T ] → W 1,∞(Rd) differentiable at t = 0 with φ(0) = Id
and φ

′
(0) = h and let Ω ⊂ Rd with Lipschitz boundary. Assume [0, T ] 3

t → G(t, .) ∈ L1(Rd) is differentiable at 0 and G
′
(0, .) ∈ W 1,1(Rd). Then∫

φ(t)(Ω)

G(t, x)dx is differentiable at 0 and we have

d

dt

 ∫
φ(t)(Ω)

G(t, x)dx


∣∣∣∣∣∣∣
t=0

=

∫
∂Ω

G(0, x)h.nds+

∫
Ω

∂G(t, x)

∂t

∣∣∣∣
t=0

dx.

We come now to the main result of this section.

Theorem 3. The mapping t → J(Ωt) is C1 in a neighborhood of 0 and its
derivative at t = 0 is given by

L
′
(Ω, h) =

i=2∑
i=1

(σi−1 − σi)
2

∫
Γi

(
σi
σi−1

(
(∂nu

−
N )2 − (∂nu

−
D)2
)

+ |∇τuN |2 − |∇τuD|2
)
h.ndΓi.
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5. NUMERICAL RESULTS

5 Numerical results

We take Ω the unit disk. The conductivity values are set σ0 = 10, σ1 = 2.7 and
σ2 = 1.9. The term source values are f0 = 0, f1 = 0 and f2 = 0. without loss of
generality.

5.1 Example 1

We first reconstruct the shape of three coated elliptic ω = Ω1∪Ω2, parametrized
as

Γ1 = {(0.4 cos(θ)− 0.35, 0.2 sin(θ)− 0.1) θ ∈ [0, 2π]}
Γ2 = {(0.3 cos(θ)− 0.35, 0.1 sin(θ)− 0.1) θ ∈ [0, 2π]}.

(9)

For the reconstruction of ω we impose five fluxes :
g1 = (1/x10, 0, 0, 0, 0), g2 = (0, 1/y4, 0, 0, 0), g3 = (0, 0, 1/x5, 0), g4 = (0, 0, 0, 1/y3, 0)
and g5 = (0, 0, 0, 0, cos(θ)).

Fig. 2. Reconstruction of the semi-major axe r1 and the semi-minor axe r11 of the
external ellipse Ω1 using the Newton method.
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5. NUMERICAL RESULTS

Fig. 3. Reconstruction of the semi-major axe r2 and the semi-minor axe r22 of the
internal ellipse Ω2 using the Newton method

Table 1. Table of convergence of the center and the semi-major and semi-minor axes
of the external and the internal ellipses

x-centre y-centre r1 r11 r2 r22 The norm error ‖ . ‖2
Figure (5),(6) -0.3509 -0.0997 0.3946 0.1946 0.2910 0.0910 0.0148

5.2 Example 2

In this example we reconstruct the shape of a three coated elliptic inclusions
ωi = Ω1,i ∪Ω2,i i = 1..3 which have the same size and whose parametrized as

Γ1,i = {(0.25 cos(θ)− xi, 0.125 sin(θ)− yi) θ ∈ [0, 2π]}
Γ2,i = {(0.15 cos(θ)− xi, 0.06 sin(θ)− yi) θ ∈ [0, 2π]}.

(10)

Where Xi = [xi, yi] are the centers and X1 = [−0.5,−0.3], X2 = [0, 0.56], X3 =
[0.6,−0.3].
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5. NUMERICAL RESULTS

Fig. 4. The history of the energy gap cost functional and reconstruction of the coated
ellipse(the intial shape(green), the approximated shape(blue), the exact shape(red))

Fig. 6. Reconstruction of the semi-major axe r2 and the semi-minor axe r22 of the
internal ellipse Ω2 using the Newton method
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5. NUMERICAL RESULTS

Fig. 5. Reconstruction of the semi-major axe r1 and the semi-minor axe r11 of the
external ellipse Ω1 using the Newton method.

Fig. 7. The history of the energy gap cost functional and reconstruction of three coated
ellipses(the intial shape(green), the approximated shape(blue), the exact shape(red))
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6. CONCLUSION

6 Conclusion

In this study, a reconstruction of coated inclusions from over-determined bound-
ary data is obtained by minimizing an energy gap tracking functional. Using
the shape sensitivity tools, the explicit formula of the shape derivative for the
focused problem is presented. Then, the numerical results show that such identi-
fication process produced reasonable location of the unknown coated inclusions.
A complete theoritical analysis for more general shape is delivered while we only
considered the specific elliptic shape for numerical illustration, this leave space
for further numerical reconstruction of more complicated shape as well as its
extension to three-dimensional situations. It is also of great interest to examine
this identification procedure from partial boundary measurements and study the
case of time-dependent heat conduction problem.
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