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RESEARCH

Not All Roads Lead to Rome: Pitch Representation and 
Model Architecture for Automatic Harmonic Analysis
Gianluca Micchi*, Mark Gotham† and Mathieu Giraud*

Automatic harmonic analysis has been an enduring focus of the MIR community, and has enjoyed a 
particularly vigorous revival of interest in the machine-learning age. We focus here on the specific case 
of Roman numeral analysis which, by virtue of requiring key/functional information in addition to chords, 
may be viewed as an acutely challenging use case.

We report on three main developments. First, we provide a new meta-corpus bringing together all 
existing Roman numeral analysis datasets; this offers greater scale and diversity, not only of the music 
represented, but also of human analytical viewpoints. Second, we examine best practices in the encoding 
of pitch, time, and harmony for machine learning tasks. The main contribution here is the introduction of 
full pitch spelling to such a system, an absolute must for the comprehensive study of musical harmony. 
Third, we devised and tested several neural network architectures and compared their relative accuracy. In 
the best-performing of these models, convolutional layers gather the local information needed to analyse 
the chord at a given moment while a recurrent part learns longer-range harmonic progressions.

Altogether, our best representation and architecture produce a small but significant improvement on 
overall accuracy while simultaneously integrating full pitch spelling. This enables the system to retain 
important information from the musical sources and provide more meaningful predictions for any new input.

Keywords: Roman numeral analysis; functional harmony; machine learning; pitch encoding; corpus

1. Introduction, Motivation, Previous Work
1.1 Key, Chords and Functional Harmony
Some sense of ‘tonal harmony’ is common to a very wide 
range of musics, including most Western Classical music 
(since the earliest emergence of harmonic writing), as well 
as most jazz, pop, rock, and much more besides.

Unsurprisingly given their ubiquity, tonal scales, keys, 
and chords feature prominently from the earliest stages 
of many music theory pedagogies,1 and have been the 
subject of much theorisation. Tymoczko (2011), for 
instance, takes a suitably expansive view of this broad 
spectrum of tonality, identifying five features that draw 
this diverse set of musics together:

1.	 ‘Conjunct motion’
2.	 ‘Acoustic consonance’
3.	 ‘Harmonic consistency’
4.	 ‘Limited macroharmony’
5.	 ‘Centricity’

These features are indeed descriptive of the Western 
repertoires mentioned: their melodies tend to move in 

conjunct steps (i.e. to adjacent notes) most of the time (1); 
the harmonies are centered on the consistent use of highly 
consonant triads and sevenths (2, 3); and those melodies 
and harmonies are organised in relation to scales which 
focus the predominant pitch usage across long spans 
on a limited collection (4) and center the passage on one 
primary pitch (5).

This focus on triads and sevenths specifically delimits 
the wider range: while many world musics can be 
described as ‘tonal’ according to the above definition, 
‘triads and sevenths’ presupposes particular types of scalar 
and harmonic construction. This particular construction 
likewise poses a specific set of theoretical questions for 
how best to describe and understand those harmonies. 
Many solutions have been proposed, reflecting, in part, 
the extraordinary diversity to be found even within the 
narrower ‘triads and sevenths’ repertoires. Like those 
musics themselves, most such descriptive systems share a 
great deal of common ground but diverge considerably in 
their details. The two systems most widely used today are: 
chord symbol charts (as used prescriptively in lead sheets 
for jazz performance, for instance), and Roman numeral 
analysis (primarily used descriptively for the analysis of 
Classical music).

Like other representations of tonal harmony, Roman 
numeral (hereafter ‘RN’) analysis focuses on recording 
chords, specifying the triad quality (major, minor …), 
seventh (where applicable), inversion (bass note), and any 
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modifications (such as added and altered notes). Unlike 
most systems, RNs also specify an analytical view of the 
local and global keys to which those chords belong and so 
also their harmonic functions (hence the term ‘functional 
analysis’). Figure 1 provides an example of RN analysis 
(given in text below the lowest stave). The letters before the 
colons (here, C in bar 1 and G in bar 6) mark changes in key. 
The Roman numerals (I, ii, V …) indicate on which degree 
of the scale the harmony is built. The chords’ qualities are 
given by the Roman characters’ case (upper/lower) and the 
inversion is indicated by the Arabic numerals at the end.

Whatever the representation system used, a chordal 
description of music involves a reductive view of the total 
pitch information for all but the simplest of cases. That 
is, in both prescriptive and descriptive contexts there will 
be ‘non-harmonic’ pitches that are in the music but not 
represented in the chords.

At least in the descriptive/analytical case, there may 
be many, different, equally credible readings of the same 
passage. This stems from the ambiguity inherent in mutually 
informative decisions over:

•	 whether and where to change chords,
•	 whether and where to change keys, and
•	 which notes in the score should be represented in the 

harmonic reduction at all.

In practice then, while experienced analysts will generally 
agree over simple contexts, their analyses may vary widely for 
more complex cases. In short, our intuitive notions of what 
is ‘in’ the harmony hides a sophisticated set of judgement 
calls. Section 2 expands on this matter for readers unfamiliar 
with this kind of task. For now, we proceed to survey prior 
work attempting to automate this process.

1.2 Previous Computational Approaches
Befitting the fact that there have been formalisations of 
harmony throughout the history of music theory, there 
have likewise been attempts at computer-based modelling of 
this problem for as long as that has been practically possible.

Early efforts include Steedman and Longuet-Higgins 
(1971) and Holtzman (1977)’s programs for deducing the 

key of a piece from its pitches. Krumhansl and Kessler 
(1982) subsequently integrated perceptual matters, 
and further improvements to algorithmic key detection 
include Temperley (1997, 1999); Madsen and Widmer 
(2007); Robine et al. (2008); Nápoles López et al. (2019).

Other efforts have focused on individual chords. Identifying 
what the chords are depends on the interconnected 
problem of determining when they change (Pardo and 
Birmingham, 2002), and thus both chordal analysis and 
generation algorithms have seen improvements by taking 
context into account (Paiement et al., 2005; Rocher et al., 
2009; McFee and Bello, 2017; Ju et al., 2017, 2019).

Studies taking on the automation of full functional 
harmonic analysis are more recent, perhaps because 
they require the simultaneous assessment of keys and 
chords. For instance, Illescas et al. (2007) demonstrate 
full RN analysis of the Bach chorale corpus, while Kröger 
et al. (2008) implement a system called ‘Rameau’ which 
combines four different algorithms for RN prediction (but 
which does not offer precise comparisons between them). 
Following Schenker (1935) and Lerdahl and Jackendoff 
(1983), several scholars have proposed hierarchical models 
for encoding harmonic functional relationships (De Haas 
et al., 2009; Harasim et al., 2018), often with visualisation 
methods among the goals (Sapp, 2005; Rohrmeier, 2011).

The major development of the last few years is the 
application of machine learning techniques to the task of 
RN analysis (Chen and Su, 2018, 2019), partly due to the 
rapidly growing provision of relevant corpora (see below). 
Machine learning methods would seem to be a good fit 
for the task of RN analysis as the constituent problems 
involved (identification of keys, chords, and functions) are 
deeply related but in complex ways. For example, while 
we know that there are regularities to what is ‘in’ the 
harmony, we can pin down the specifics only so well using 
rule-based algorithms.

1.3 Analysis Datasets
In the last decade, several corpora of human harmonic 
analyses have been published, spanning classical, jazz and 
pop/rock repertoires. Among these, the most relevant to 
the present study on functional harmonic analysis are 

Figure 1: J.S.Bach, Prelude in C, BWV846: Measures 1–11 of the score with an RN analysis given in the text below the 
lowest stave.
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those datasets expressed in RNs and focussed on Western 
Classical music:

•	 ‘TAVERN’ (Devaney et al., 2015),
•	 ‘ABC’ (Neuwirth et al., 2018),
•	 ‘BPS-FH’ (Chen and Su, 2018), and
•	 ‘Roman-Text’ (Tymoczko et al., 2019).

Table 1 summarises the scale and repertoire focus of these 
corpora, and Section 3.1 discusses the slight variations in 
the standards used.

RN notation was initially designed for Western Classical 
music and while it can be (and is) profitably applied to 
wider repertoires such as pop/rock (see for instance 
Duinker (2019)), datasets on harmonic analysis of that 
wider repertoire do not generally include functional 
labels. Instead, they specify chords directly, in the style of 
lead sheets:

•	 ‘annotated jazz chord progression corpus’ from 
Granroth-Wilding and Steedman;2

•	 de Clercq and Temperley (2011) corpus of rock music;3

•	 ‘Enhanced Wikifonia Leadsheet Dataset’;4

•	 ‘Weimar Jazz Database’;5

•	 MTG/JAAH collection from ‘The Smithsonian Collection 
of Classic Jazz’ and ‘Jazz: The Smithsonian Anthology.6

And the full set of relevant datasets is wider still, with some 
offering chordal information among other parameters:

•	 DDMAL’s Billboard Project,7 with chords, structure, 
instrumentation, and timing annotations of Billboard 
chart hits;

•	 the ‘iRb’ Jazz Corpus;8

•	 C4DM’s Isophonics datasets.9

1.4 Aim and Contents
While the type and degree of descriptive detail involved in 
RN analysis may be more or less appropriate depending 
on the musical circumstance, most other representations 
of harmonic analysis can be derived from the details held 
within it. As such, an automatic system that takes in a 
musical source and returns full RN analysis constitutes 
a defining benchmark for performance in any aspect of 
automatic harmonic analysis. This paper sets out our 
attempts to realise that goal.

Section 2 completes the motivation for this study and 
approach by setting out some specific examples of the 
ambiguities involved in harmonic analysis, Section 3 
proceeds to the method used, Section 4 turns to the results 
and some interesting edge-cases, and Section 5 provides 
an outlook.

All software developed for this project is freely available 
under an open-source licence at https://gitlab.com/
algomus.fr/functional-harmony.

2. On Functional Harmonic Analysis
Many scholars have offered heuristic preference rules for 
approaching the task of harmonic analysis. For instance, 
Tymoczko et al. (2019) suggests the possibility of preferring:

1.	 harmony changes on metrically strong positions 
and at regular intervals;

2.	 to analyse similar material in similar ways;
3.	� to identify as ‘harmonic’ notes that do not belong 

to any common species of non-harmonic tone (e.g. 
notes that are both leapt-to and leapt-from); and

4.	� harmonic analyses that are more consistent with 
standard harmonic theory.

These rules align neatly for simple cases such as Bach’s 
iconic prelude BWV846 (see Figure 1), pointing in this 
case to harmony changes once per measure. There may 
be some disagreement about where to mark the changes 
of key (see discussion in section 4), but the changes and 
membership of the chords are mostly straightforward. 
Indeed, there are arguably no non-harmonic tones until 
measure 23 (see Figure 2). Here, in order to separate 
harmonic from non-harmonic, we have to select between 
two (or more) possible options: F minor (with F, A♭, 
and C in the chord, excluding B, D) or B diminished 7th 
(with B, D, F, and A♭ in the chord, and C eliminated). The 
preference for leaping to consonant notes would guide us 
towards the later view, though credible arguments can be 
(and have been) made on both sides on the basis of the 
wider progression.

Figure 2: Measures 22–24 of the same Bach prelude of 
Figure 1.

Table 1: The contents of our meta-corpus, drawing together existing harmonic analysis datasets. The relative size of 
each corpus is given by the total, combined number of RNs in the analyses, the number of measures in the scores, and 
also the ‘Quarter length’: a metric for the total length in quarter notes.

Dataset Composer/s Movements or equivalent Quarter length Measures RNs

TAVERN Mozart 10 theme and variations sets 7 712 2 773 8 779
Beethoven 17 theme and variations sets 12 840 5 128 15 959

ABC Beethoven 16 string quartets, 70 movements 48 811 15 881 29 652

BPS-FH Beethoven 32 piano sonata first movements 30 992 9 420 11 337

Roman Text Bach 24 preludes 3 168 819 2 165
Various (19th C.) 48 romantic songs 8 326 2 791 5 283

Totals 201 scores 111 859 36 812 73 175

https://gitlab.com/algomus.fr/functional-harmony
https://gitlab.com/algomus.fr/functional-harmony
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The Bach example begins to show that more complex 
contexts can run these rules into self-contradiction. It 
quickly becomes impossible to determine a system of 
priorities among those rules that will generalise to all 
musical cases. Instead, analysts may take these rules for ‘in 
principle’ guidance, but must make complex judgement 
calls to arrive at a preferred solution, knowing that it is one 
among several viable options. This is a strong incentive for 
exploring automated systems which can similarly handle 
such ambiguity, without depending on a hierarchy among 
explicit, deterministic rules.

Measures 34–5 of ‘Einsamkeit’ from Schubert’s 
Winterreise cycle (D.911, No.12) provide an example of 
how these preference rules can lead us to at least three 
different analyses. Figure 3 shows the score along with 
three analyses below as ‘lyrics’. The rest of this section 
talks through those analyses in relation to the ‘rules’ 
outlined above, and Table 2 provides a summary.

Measure 34 marks the completion of an uncontroversial 
B minor cadence. Thereafter, if we prefer notes at 
metrically strong positions (rule 1), we start with a tonic 
triad (‘i’: B, D, F) and thus emphasise the dominant note 
(F) on the downbeat of m.35. Let’s call this Analysis 
A1. However, that view contravenes rule 3 as both G3 
and E3 are leapt-from/-to and yet excluded from the  
chord.

Alternatively (Analysis A2), we could take the leaps in 
the melodic line to indicate chord membership (rule 3). 
That radically changes the outcome: now F goes from 
a position of priority, to being the only note we would 
exclude (as a passing note between the E and G natural). 
This leads us to the radically different chordal reading 

of a German 6th (G, B, D, E), and the need to select a 
starting point and inversion. Among the possibilities here, 
the figure shows a change to Ger42 on the note D; this 
parallels the change of chord (within dominant function) 
at the earlier occurrence of this material in m.22 (rule 2). 
The pivot to (and pre-dominant of) the B minor cadence 
at the end of m.32 (not shown) was a clear German 6th 
and in the ‘correct’ inversion, thus putting the chord ‘in 
the listener’s ear’ and proving further precedent for this 
reading (rule 2 again).

Perhaps the following chords can provide helpful 
context? A modally mixed viio7-I of G major/minor 
follows, with either the E♭ (in viio7) borrowed from G 
minor into G major, or else the B♮s (in ‘I’, but also the 
vocal line of m.36) borrowed from the major into the 
minor. Informally, it would appear that minor borrowing 
into major mid-piece is more common in the target 
repertoire (rule 4),10 though viio7 comes first here, and 
thus might be thought to take priority. As for mm.34–35, 
this subsequent move to G major (or is it minor?) may 
encourage us to take m.35 as G major, yielding a I to 
initiate and balance a I-viio7-I progression in G (Analysis 
A3). That accounts for the Gs but the E is either back to 
being a leapt-to chromatic lower neighbour note, or else 
included in a chord with the B2 and D3, but no G (much 
less a better-fitting G), which gives us no kind of tonal 
triad at all.11

In cases like this, we will all have views on how to proceed 
but no one can claim to have the single, definitive, and 
unequivocally ‘correct’ answer.

3. Method
This section outlines the nature and content of the training 
materials (Section 3.1), the different encoding options for 
both input and output data (3.2), decisions over whether 
and how to use transposition for data augmentation 
(3.3), and finally the details of the network architecture, 
implementation and training (3.4).

3.1 Meta-corpus
We prepared a meta-corpus of harmonic analyses, com
bining all previously published corpora of RN analyses as 
discussed above and itemised in Table 1. To bring these 
corpora together, we developed a set of new open source 
converter tools which we offer to the community. The RN 
annotations and these tools are available at https://gitlab.
com/algomus.fr/functional-harmony, with links to the 
corresponding scores. Altogether, the corpus comprises 
201 scores and over 70,000 RN annotations.

We sought to convert each representation standard 
directly, without changing or interpreting those analyses 
except in case of clear errors. Details are available on 
request, and we are in the process of integrating the 
conversion code into music21’s sub-library for parsing 
Roman text to support future efforts bringing corpora 
together (Cuthbert and Ariza, 2010). For the ABC 
corpus, we used the version reported by Tymoczko 
et al. (2019).12 In all cases, the .rntxt files set out the 
identity of analysts, proof-readers, and converters 
involved, and the original datasets are available online 
for comparison.

Table 2: Different interpretations of measures 34 and 35 
of Schubert’s ‘Einsamkeit’ (see Figure 3). The analyses 
are written in .rntxt format (Tymoczko et al., 2019), as 
explained in Section 3.1. The ‘rules’ in the second and 
third column are set out at the beginning of Section 2.

RN Rules followed/broken

A1 m34 b: i rules 1 and 4
m35 i rule 3

A2 m34 b: i b1.5 Ger42 rules 3 and 2
m35 Ger42 rule 1

A3 m34 b: i rules 1 and 4
m35 G: I rule 3

Figure 3: Harmonic ambiguity in ‘Einsamkeit’ from 
Schubert’s Winterreise (D.911, No.12). The three parallel 
analyses represent A1, A2, and A3 respectively from top 
to bottom.

https://gitlab.com/algomus.fr/functional-harmony
https://gitlab.com/algomus.fr/functional-harmony
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Different Annotators. Among these datasets, ‘TAVERN’ is 
the only one to include more than one alternative reading 
of the same piece by different annotators, a feature that 
is useful for communicating to the algorithm that there 
can be multiple valid readings of the same passage. For 
example, some annotators may prefer to define fewer 
chord changes in order to emphasise longer-range 
structure of the piece (excluding many notes as non-chord 
tones); others may include more of those notes, leading to 
a narrower focus on momentary changes.

In this study, for the sake of simplicity, we elected to 
treat each of these analyses independently. It is clearly not 
quite right to treat multiple analyses of the same music as 
equivalent to analyses of separate pieces, and doing so will 
introduce some bias in the model; however, we consider 
this a small detraction relative to the gain in variance 
afforded by the alternative readings.

Additionally, while the other datasets consistently offer 
one analysis per piece, by drawing them together, we have 
integrated a broad range of analytical perspectives. Again 
we consider that diversity an asset above and beyond the 
simple gain in scale, though we are not in a position to make 
any claims towards a ‘balance’ of approaches represented, 
and certainly not to ‘representativeness’. For instance, each 
of the original datasets focuses on a different style, and so 
there is a non-separable correlation between annotators 
and musical genres. Future work could explore inter-
annotator stylistic variance, in order to get a data-driven 
sense of the variety of approaches and how best to balance 
them as the provision of corpora continues to grow.

Data Formats. Whatever the original formats of our data, 
we have elected here to use three formats which we find 
collectively offer the best balance between uniformity 
and suitability to the range of tasks involved. For analysis 
input, we recommend the human-readable and music21-
parseable ‘Roman text’ (.rntxt) format (Tymoczko et al., 
2019); for the presentation of results aligned with scores, 
we offer .json files that can be interpreted and visualised 
by Dezrann (Giraud et al., 2018); and for machine learning, 
we prefer a tabular representation based on that originally 
proposed by Chen and Su (2018).

This last, tabular format encodes RN analyses according 
to six properties:

1.	 Start offset: the beginning of the annotation in 
question as measured from the start of the score in 
‘quarter length’ (1 = 1 quarter note);

2.	� End offset: an equivalent for where the annotation ends 
(usually coincident with the start of the next entry);

3.	� Key: tonic, specifying full pitch spelling (so that G 
≠ A♭) and mode (uppercase for major; lowercase 
for minor);

4.	� Quality: for example, major or minor triad; major, 
minor, or dominant seventh;

5.	� (Scale) Degree: from 1 (the tonic) to 7 with the po-
tential for accidental modifications (e.g. 4) and/or 
secondary, ‘tonicised’ degrees (5/5); and

6.	� Inversion: counting from 0 (root position: bass note 
= chord root) to a maximum of 3 (thus supporting 
all inversions of seventh chords, but no ninths).

Table 3 sets out the beginning of the Bach prelude from 
Figure 1 with the Roman text and tabular representations 
aligned for comparison.

3.2 Encoding Input and Outputs
Identifying best practice in the encoding of musical 
information for machine learning is an open problem 
(Huang et al., 2018; Briot et al., 2020). One consideration 
we know to be highly relevant in determining the best 
approach is the size of the dataset. While our dataset 
is larger than previous efforts, it is still small by the 
standards and requirements of machine learning. This 
redoubles the significance of the representation format: 
we want to include all relevant information, but the more 
we compress that information, the fewer parameters the 
system has to learn, and the more one can achieve with a 
smaller dataset. This section addresses the three primary 
aspects of data encoding for our purposes: time, pitch, 
and RN representation.

Time. The literature proposes two main approaches to time 
encoding. The first (Oore et al., 2018) represents the score 
as a series of three possible event types: note on, note off, 
and time shift (following MIDI conventions). A time shift 
event defines the distance between two successive note 
events. This representation overcomes certain problems 
particularly common in music generation tasks,13 but 
it can conceal the music’s metrical structure, which is 
important in harmonic analysis.

Much better represented in the literature is the 
alternative ‘frame-based’ encoding method, where each 
input vector denotes an individual time frame. Most 
studies on symbolic music opt for some factor-of-two 
multiple for the smallest slice (1/8th, 1/16th, or 1/32nd 
notes) and accept the errors that this will entail for shorter 
values and for all triplets (which are quantised to binary 
positions).

We follow this latter practice for equal-duration, binary 
division frames. In our case, we use a 32nd note for input 
encoding (notes) and 8th note for the output (chords), 
as the harmonic rhythm is almost always (much) slower 

Table 3: The RN and tabular representations used corre-
sponding to the Bach extract in Figure 1. The first col-
umn sets out RNs in Tymoczko et al. (2019)‘s ‘Roman 
text’ format, and the remaining columns unpack that 
information according to our adaptation of Chen and 
Su (2018)‘s tabular standard.

RNTXT Start End Key Degree Quality Inv.

m1 C: I 0.0 4.0 C 1 M 0
m2 ii42 4.0 8.0 C 2 m7 3
m3 V65 8.0 12.0 C 5 D7 1
m4 I 12.0 16.0 C 1 M 0
m5 vi6 16.0 20.0 C 6 m 1
m6 G: V42 20.0 24.0 G 5 D7 3
m7 I6 24.0 28.0 G 1 M 1
m8 IV42 28.0 32.0 G 4 M7 3
m9 ii7 32.0 36.0 G 2 m7 0
m10 V7 36.0 40.0 G 5 D7 0
m11 I 40.0 44.0 G 1 M 0
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than the surface rhythm. Finally, we divide all scores in 
segments of equal quarter-note duration and pad with 
zeroes to the right when needed.

Pitch. The options for pitch encoding may be set out in 
two dimensions. The first accounts for pitch spelling. Here 
we must choose between using pitch class representations 
(12 per octave, and no difference between the enharmonic 
equivalent pairs like G and A♭), or maintaining the full 
pitch spelling (with 21 possibilities per octave for single 
sharps/flats and 35 for double).14

The other dimension concerns registral information. 
Keeping octave information leads to richer data, but 
excluding it would be more compact. We propose a third, 
‘compromise’ option reflecting the special role of the bass 
in tonal harmony in defining both chordal inversion and 
other important matters for harmonic progression. In 
this case, music is encoded with two vectors per frame: 
one with the lowest note and another with the total pitch 
content. The fact that the lowest note may not be indicative 
of the bass is one of the many tasks that the system would 
need to learn. Table 4 sets out these options with their 
relative size for the case of a 7-octave space and chromatic 
spellings of up to double sharps/flats.

Regardless of the pitch space chosen, we define a 
Boolean matrix with time frames on one axis and pitches 
on the other: The value is 1 if the pitch is present in that 
frame, and 0 otherwise. In this encoding, multiple pitches 
may be activated in the same time frame where they sound 
simultaneously in the source (as in chords, for example). 
This data representation reduces to the familiar piano roll 
notation when using CPf for the pitch space.

One potential shortcoming of such a frame-based 
encoding is that it fails to distinguish between repeated 
and held notes. Hadjeres et al. (2017) and Liang et al. (2017) 
include special symbols to disambiguate this on voice-
separated music. When the number of voices is not fixed, 
one symbol per note is required, doubling the size of the 
input vector. We decided not to encode that information 
partly due to the loss of compactness, but also because we 
do not expect distinguishing tied from repeated notes to 
be especially important for harmonic analysis.

RN Output Labels. Continuing to follow Chen and Su 
(2018) we output the harmonic analysis with six labels: Key, 
Degree 1, Degree 2, Quality, Inversion, and Root. The two 
labels for scale degrees handle cases of tonicisations in the 
format ‘Degree 2/Degree 1’. The labels for keys and chord 

roots depend on the choice of the input representations. 
For all CP cases there are 12 possible chord roots and 24 
keys (12 major and 12 minor). When the input is in a PS 
encoding, the number of possibilities increases: there 
are 35 roots and thus 70 keys for the double sharp/flat 
condition.15

There is some redundancy built into this system as it 
is possible to derive the root unambiguously from other 
features. However, learning redundant variables can be 
helpful to the algorithm’s success. The division of each RN 
label into six independently-computed sub-labels reduces 
the complexity of the task, since the total number of 
possible outputs for our best-performing representation 
is Σici = 123 ≪ ∏ici ≈ 22⋅106, where ci is the number of 
output classes for each separate target label. It also 
improves the interpretability of the results, allowing one 
to focus on each aspect separately.

This comes at the cost of a potential for self-contradictory 
outputs in which the six sub-labels have different ideas 
about the chord. In practice, we find that this is only rarely 
a problem, arising in the particular case of the ‘no chord’ 
label used by the ABC dataset (only) for passages with 
rests and/or single line melodies. Given the inconsistency 
in the source data, we do not include a provision for 
the ‘no chord’ case. Instead, we fill any such gap with a 
continuation of the foregoing chord, except in the case of 
beginnings, for which we start the first chord early.

3.3 Data Augmentation by Transposition
In practice, keys are not used equally. It is common in both 
analysis and generation tasks to augment the dataset by 
transposing it to multiple keys (Huang et al., 2018; Chen 
and Su, 2019). While a single piece in two transpositions 
should not be considered equivalent to two distinct pieces 
(for reasons somewhat analogous to the status of multiple 
analyses of the same piece discussed above), transposition 
does stand to augment considerably the overall size of the 
dataset.

While working within the ‘CP’ encoding space (as is the 
case for all work based on MIDI), there are only 12 distinct 
transpositions: one for each distinct pitch class.

When including pitch spelling, transposition moves not 
through a circle, but a spiral, potentially infinitely. Clearly, 
some constraint is required to limit this pitch space. We 
define two such constraints, both based on the ‘spiral 
of fifths’ where pitch objects (usually keys) are set out 
according to their relative flat-/sharp-ness.

Our first constraint limits the pitches to double flats/
sharps from F♭♭ to B. To enforce this constraint, we 
need to retrieve the ‘chromatic ambitus’ of each piece, 
delimited by the ‘flattest’ and ‘sharpest’ pitches used. For 
instance, Schubert’s ‘Einsamkeit’ (Figure 3) ranges from 
E♭ to E, meaning that it can be transposed by 12 further 
steps in the flat direction and 8 steps sharpwards while 
still remaining within the set limit of double sharps and  
flats.

Our second constraint limits the keys to a narrower range 
from C♭ to C majors and their relative minors (A♭ to A) 
such that the diatonic pitches are limited to single flats/
sharps. We do this to reduce the computational load 

Table 4: Total dimension of input vector for each pitch 
encoding option (limited to 7 octaves and double 
sharps/flats).

Chromatic pitch, full (CPf)
7 × 12 = 84

Pitch spelling, full (PSf)
7 × 35 = 245

CP class + bass (CPb)
12 + 12 = 24

PS class + bass (PSb)
35 + 35 = 70

CP class (CPc)
12

PS class (PSc)
35
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without losing actual information, as real pieces very rarely 
go outside these key boundaries. For this constraint, we 
need to look at the chord labels. In the Schubert example, 
by almost any reading, the sharp-most key used is B minor 
(5 steps away from the limit of A on the spiral of fifths), 
and the flatmost is C minor (4 steps away from A♭).

This procedure favours pieces with limited 
modulations. Figure 4 sets out the range in our corpus. 
The majority of pieces can be transposed 10–13 times, 
within an overall range from as few as 3 transpositions 
(for highly chromatic works) to as many as 15 (for pieces 
that never leave their home key or its relative). The more 
harmonically adventurous pieces are thus also the least 
numerously represented. As a possible, partial solution, 
one could transpose segments of the score separately. 
As the chromatic and key range of each segment is 
necessarily less than (or occasionally equal to) that of the 
overall work, these sections would be transposed more 
times.

3.4 Network Architecture
We propose a neural network architecture that divides 
the process of RN analysis into two separate but 
interconnected parts (see Figure 5). The first part analyses 
the local context with a window size of 2 quarter notes. 
This corresponds to the human analyst distinguishing 
between harmonic and non-harmonic tones, producing a 
chordal reduction and deriving the Quality, Inversion, and 
Root labels. The second part, in turn, focuses on the more 
global matters of chord progressions and key selection. 
The RN analysis emerges from the structure and pattern 
of those progressions, expressed in the Key, Degree 1, and 
Degree 2 labels.

The local part (Conv) is a 1-D implementation of the 
convolutional architecture ‘DenseNet’ (Huang et al. 2016). 
We convolve along the time domain and encode pitches as 
different feature maps on independent channels (analo
gous to different colour channels in image analysis). 
One particularly distinctive and relevant feature of 
DenseNet is the preservation of the same feature maps 

for multiple convolutional layers in order to analyse the 
same information at successive levels of abstraction. This 
allows the network to keep some important information 
in memory instead of having to learn how to store it anew 
every time. The DenseNet also contains pooling layers that 
we use to pass from the time resolution of the input notes 
to those of the output chords.

For the second part of the network, we experimented 
with two alternative architectures: the first is a dilated 
convolution (Dil), of the type introduced by Yu and 
Koltun (2015) and adapted to 1-D data by Oord et 
al. (2016). We use a non-causal dilated convolution, 
meaning that we allow the system to use both past 
and future events when determining each chord. The 
convolution is made of 4 layers with 64 kernels each of 
size 3 and a dilation of 3l, where l is the layer index. This 
means that each prediction can use information from a 
total context of 34 = 81 eighth notes: the present one as 
well as 40 from the past and 40 from the future. In most 
cases, this should be ample context for analysing chord 
progressions. This architecture is fast and scales well with 
the length of the input segment, both in terms of speed 
and reliability.

The second option for the global part of the 
architecture is a bidirectional recurrent neural network 
using gated recurrent units (GRU) (Cho et al., 2014).16 
Being bidirectional, this method also uses information 
from both past and future frames, though the process 
differs from that of the dilated architecture. The 
hidden state is made of 64 neurons per direction and 
uses a dropout rate of 0.3. This architecture is more 
expressive than the dilated convolution since it allows 
for correlations of theoretically infinite length. Further, 
the gated internal structure is more sophisticated than 
those in dilated convolutions, allowing for the discovery 
of more complex correlations. That said, it is also harder 
to train and scales poorly with the length of the given 
input segments. Therefore one needs to strike a balance 

Figure 5: Architecture of the neural network model in 
the ‘local’ training mode. When ‘global’, Quality/Inver-
sion/Root outputs are computed after the fully con-
nected layer instead. The numbers in the boxes refer to 
the number of categories for each output label in the 
PSb case (see Table 4).

short-range

Conv Poolor
33k weights no weights

43k weights 46k weights

8k weights 4k weights
(GRU) (Dil)

Fully connected

Quality12

Root35

Key30

Degree 121

Degree 221

Inversion4

input outputs

long-range

GRU Dilor

Figure 4: The distribution of work transpositions that 
remain within the set limits of F♭♭–B for pitches and 
C♭– C for keys.
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in terms of segment length: segments must be long 
enough to take advantage of the recurrent nature of the 
network, but short enough to make training feasible. We 
elected to divide the scores in non-overlapping segments 
of 80 quarter notes’ duration.

With either architecture, the second part ends with a 
fully connected layer of 64 neurons. Each label is predicted 
by a fully connected layer with softmax activation, whose 
size is determined by the number of classes for the label at 
hand. The network is trained end-to-end to ensure strong 
connection between the local and global tasks. The loss 
function used is the standard categorical cross-entropy 
loss. This is computed on each of the six target labels 
separately before the results are added, with an equal 
weighting.

As a baseline for comparison of these two approaches, 
we also trained a standard GRU model without local 
context analysis. We refer to this as PoolGRU as it is 
preceded by pooling layers to reduce the resolution on 
the time axis.

3.5 Network Training
We randomly allocated 90% of the available scores to the 
training set, reserving the remaining 10% for validation. 
Importantly, we implemented this proportion not 
only for the corpus overall, but for each of the corpora 
individually. For the special case of TAVERN, those works 
assigned to the training set included the score and both 
of the corresponding analyses; pieces in the validation 
by contrast included only one of the analyses (randomly 
selected). In order to provide direct comparison with Chen 
and Su (2018, 2019), we also calculated results using only 
their dataset, divided in the same way.

We trained in two ways. In the first (global) approach, 
all six labels are predicted at the end of the second part 
(Dil or GRU). In the second (local) method, the Quality, 
Inversion, and Root labels are determined at the end of 
the first, local part of the network and used to determine 
the key and degree. As discussed, we did not enforce 
consistency between labels. Given the lack of local 
context, PoolGRU can only be trained in global mode.

The network was encoded in Python v3.7 using Tensorflow 
v1.14. The code is available at https://gitlab.com/algomus.

fr/functional-harmony and was initially forked from Chen 
and Su (2018), but all dataset conversions, encodings, 
and models are original work. Our best model has about 
94,000 trainable weights in total: 33,000 for the local part, 
43,000 for the global, and the remaining 18,000 for the 
fully connected layers. Depending on the model, the total 
training time ranges from 20 minutes to 3 hours, when 
run on a CPU-only high-performance-computing server.

4. Results
4.1 Overall Metrics
The results for our best model (ConvGRU, PSb, global 
learning) are summarized and compared with Chen and 
Su (2018, 2019) in Table 5. The first row sets out the 
results obtained by our best model using the new meta-
corpus, while the second row reports on results limited 
to Chen and Su’s own dataset for direct comparison. At a 
glance, one can see that our proposal achieves a small but 
significant improvement over the previous state-of-the-art 
while also taking full pitch spelling into account.

Our emphasis here is on comparing the different 
encodings and the architectures, and on attempting to 
identify edge cases. To that effect, we have trained on 
all possible combinations of the six pitch encodings, the 
two architectures (and the baseline), and the two training 
types (except for PoolGRU, which is only applicable for 
global training). Table 6 presents the results averaged 
over all of the models.

As the table shows, ConvGRU (mixing local analysis 
and a GRU unit) is the best performing architecture, 
surpassing the two alternatives, with a particularly 
significant improvement over PoolGRU. Indeed, a t-test 
on the significance of the difference for the full task (the 
column ‘RN’ in Table 6) yielded a p-value < 10–2 against 
the null hypothesis of ConvGRU and PoolGRU giving the 
same result.

As for the pitch encoding, including the bass information 
(CPb/PSb) results in markedly higher performance not 
only in identifying the correct inversions, but for all of 
the tasks (again, p-value < 10–2). On the other axis of pitch 
representation, using full pitch spelling generally leads 
to slightly higher results overall, but the results are not 
statistically significant. That said, we must remember 

Table 5: Comparison of the percent accuracy between models. The two rows above the internal division report on our 
best model – ConvGRU with pitch spelling and bass (PSb) and with global training. The first row reports on training 
with all available data; the second reduces the available data to the smaller corpus used by Chen and Su (2018). Rows 
below the internal dividing line provide comparison data for the performance of Chen and Su (2018, 2019), as well as 
a baseline key detection using pitch profiles by Temperley (1999). ‘Degree’ registers as correct only when the predic-
tions match the corpus entry for both Degrees 1 and 2; ‘RN’ is correct only when all four of the previous columns 
match in that way.

Key Degree Quality Inversion RN

ConvGRU + PSb + global (all data) 82.9 68.3 76.6 72.0 42.8
ConvGRU + PSb + global 80.6 66.5 76.3 68.1 39.1

Chen and Su (2019) 78.4 65.1 74.6 62.1
Chen and Su (2018) 66.7 51.8 60.6 59.1 25.7
Local model after Temperley (1999) 67.0

https://gitlab.com/algomus.fr/functional-harmony
https://gitlab.com/algomus.fr/functional-harmony
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that analyses without pitch spelling cannot distinguish 
between enharmonically equivalent keys like G and A♭. 
As such, the inclusion of spelling means introducing more 
keys and chord roots and thus amounts to a more difficult 
task where proportionately fewer answers will be correct. 
As pitch spelling yields performances that are not worse 
while performing a harder, more musically relevant task, 
we conclude that the spelling representation is preferable 
where the data is available.

Comparing local and global training yields a much more 
ambiguous result that invites further study. The difference 
in the total result is statistically not significant. However, 
when one looks at specific (local) labels such as the 
quality, one finds that the differences in the intermediate 
steps taken by the two architectures are significant (with 
a p-value against the null hypothesis smaller than 10–6).

4.2 A Closer Look at the Music
As this discussion of overall accuracy metrics would seem to 
indicate, there is more to the task of evaluating the results 
of an RN analysis. As such, we continue here to take a closer 
look at the ‘errors’ made by the models. These ‘errors’ – or, 
more properly, divergences between the input corpus and 
prediction – appear to centre on three main types:

1.	 Segmentation errors: differences in the timing of 
chord changes (see Bach prelude, Table 7). This 
appears to be the most common discrepancy. More 
specifically, we notice that the predictions tend to 
change more frequently than the human analy-
ses, particularly in more complex passages. This is 
presumably on the basis of an attempt to divide 
the music into small enough segments to allow a 
cleaner reading of the chord in those small spans. 
Strategies such as the segmenter layer proposed by 
Chen and Su (2019) may help.

2.	� Mislabeling of rare chords: the system is highly 
reluctant to identify secondary/tonicised chords 
or chromatic chords like the augmented sixths, 
presumably because they are relatively rare in the 
corpus.

3.	� Alternative readings: moments where the system 
opts for a reading that is different from that of 
the validation corpus, but which is nonetheless 
a perfectly acceptable alternative. Corpora with 
multiple readings of the same music would be 
especially helpful here because they offer the 
system not a single ‘correct’ answer, but a list of 
viable options.

Once again, the extract from Schubert’s ‘Einsamkeit’ 
(discussed in Section 2 and shown in Figure 3) offers a 
neat example of all three issues. Our reference analysis 
corresponds broadly to analysis A2. Regarding issue 1, 
the prediction for measures 34 and 35 is made of four 
different chord labels, while in the reference dataset there 
are only two. This is strictly connected with issue 2, as the 
‘mis’-labeled chord is a German sixth, unidentified by our 
system. Lastly, ‘the different but acceptable’ reading is 
pertinent in the case of measures 36 and following, which 
the dataset analyses in terms of G minor, the system views 
in G major, and is in fact an ambiguous mixture of the two 
(as discussed in Section 2).

Finally, we found some cases we consider unacceptable 
readings, where the most compelling musical reading 
diverges from the statistically normative case. For example, 
in Beethoven’s sixth sonata (op.10 no.2, Figure 6), the 
exposition includes a theme in C major which from 
measure 41 is repeated in the parallel key of C minor. 
Perhaps because this lasts for only four measures, the 
system is reluctant to identify a full modulation, preferring 
instead to remain in C major.

Table 6: Results obtained by averaging the accuracy of several models on four different axes: architecture, input regis-
tral information, input spelling, and global/local training. Column labels are the same as for Table 5, and the first row 
likewise relates once again to the best performing model. Each sub-table thereafter shows the average performance 
of several models. For example, the ConvGRU row shows the average of 12 models with the same architecture but 
using different input representations and registral information. The values in the first row of each sub-table repre-
sent the percentage accuracy of the corresponding averaged models as a reference; each line thereafter shows the 
+/– difference in accuracy from the reference. There are only 6 PoolGRU models, as they can be trained only globally 
(not locally).

Key Degree Quality Inversion RN

ConvGRU + PSb + global 82.9 68.3 76.6 72.0 42.8

ConvGRU 12 81.9 67.4 74.6 67.9 37.8
ConvDil 12 –2.4 –1.8 –0.8 –0.5 –1.7
PoolGRU 6 –2.3 –3.0 –1.6 –1.8 –4.1

bass 10 80.8 66.6 74.3 70.1 39.2
full 10 –0.7 –0.9 –0.6 –3.5 –3.7
class 10 –0.1 –0.7 –0.1 –4.7 –4.7

spelling 15 80.6 66.2 74.1 67.6 36.5
chromatic 15 –0.3 –0.3 –0.2 –0.5 –0.4

global 15 80.6 66.8 75.4 66.7 36.9
local 15 +0.3 –0.7 –2.4 +2.0 +0.2
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5. Future Work
5.1 Improvements
A simple right/wrong accuracy metric is not the best way 
to measure the performance of an RN analysis algorithm, 
as several different readings are often equally viable. Even 
taking this into account, the 43% total accuracy that we 
report is still far from ideal. In this concluding section, we 
propose some ideas for improving these results.

As mentioned above, this field would benefit greatly 
from larger datasets, covering both a wider repertoire and 
multiple, alternative readings of the same works.

It would also be useful to explore wider encoding 
options, and not just for pitch and time: for the repertoires 
discussed here, metrical position, dynamics, texture, 
and other score indications are also strongly attested to 
have a bearing on harmonic analysis. Including those 
parameters may improve performance, though informal 
testing of metrical strength did not yield significant gains, 
and the quality of machine-readable score encoding often 
prohibits a serious analysis of parameters like dynamics.

In the time domain, comparisons could include assess
ing the relative performance of the ‘frame-based’ approach 
with the alternative ‘variable length’ convention (Oore 
et al., 2018). This latter allows representation of arbitrarily 
short and long time spans and would save on training 
time (by virtue of it reducing the total number of entries). 
It may also better reflect the human experience of music, 
which does not proceed in granular units, but centres on 
the information density of events and changes.

In the pitch domain, it would be interesting to define 
a space for the relative proximity of pitches and to add a 
second convolutional dimension on that space. This may 
lead to an improvement on the current model of using 
independent channels. Most simply, this could involve 

implementing the ‘line’ or ‘spiral’ of fifths (mentioned 
above in connection with transposition), and proposals 
for more complex spaces to explore abound.17

Relatedly, the evaluation of output could be improved, 
perhaps through the definition of relative distance in 
functional terms. This would entail a distance metric 
between chords to write a more ‘musically relevant’ loss 
function which considers chords of the same function 
(such as ii7 and IV) to be closer to one another than to 
those of a different function (V7). This could also prove 
helpful for cases with multiple annotators, providing a 
metric for the relative divergence between those readings.

Additionally, while interpreting the results of a machine 
learning method is always difficult, this would help to 
advance our understanding both of the processes in 
operation here, and by extension, of harmony itself. 
One possible way of accomplishing this is to follow the 
activation of the neurons in a set of simple example cases.

Finally, one could also explore a combination of 
learned and/or deterministic post-processing to enforce 
the kind of consistency between labels discussed above. 
It may be that approaches combining machine learning, 
deterministic algorithms, and a human-in-the-loop 
achieve results surpassing those accomplished by each of 
these methods separately.

5.2 Applications
We view the whole endeavour of (semi-)automated 
harmonic analysis as a means to the end of understanding 
harmony better. As such, one goal is to produce harmonic 
analyses at a sufficiently high quality level that they 
constitute a reliably usable dataset – and object of study – 
in themselves. This would enable us to scale up questions 
of how harmonies ‘tend to’ be used, enabling the field of 
corpus analysis to realise its potential.

We consider it important that the models we proposed 
can be adapted to other kinds of harmonic analyses. 
As discussed above, harmonies in lead sheets have a 
different ontological status from RNs, and the repertoires 
represented are stylistically divergent, but the technical 
problem is comparable and often contained within the 
framework of the RN analysis.

Table 7: A comparison between the corpus analysis (left, reproducing Table 3) and our system’s output (right). Dis-
crepancies between the input and output analyses are highlighted in italics.

RN Corpus Output
Start End Key Degree Quality Inv. Start End Key Degree Quality Inv.

m1 C: I 0.0 4.0 C 1 M 0 0.0 4.0 C 1 M 0
m2 ii42 4.0 8.0 C 2 m7 3 4.0 4.5 C 2 m7 0

4.5 7.0 C 2 m7 1
7.0 7.5 C 2 D7 0
7.5 8.0 C 5 D7 0

m3 V65 8.0 12.0 C 5 D7 1 8.0 8.5 C 5 D7 1
8.5 9.5 C 5 M 1
9.5 10.0 C 5 D7 1
10.0 11.0 C 5 M 1
11.0 12.0 C 5 D7 1

m4 I 12.0 16.0 C 1 M 0 12.0 16.0 C 1 M 0
m5 vi6 16.0 20.0 C 6 m 1 16.0 16.5 C 1 m 0

16.5 17.0 C 6 m 0
17.0 20.0 C 6 m 1

Figure 6: Beethoven’s piano sonata no.6, m.40–43.
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Finally, we welcome further work on the public-facing 
side of such research. To this end, we are developing a web 
application which will allow the wider musical community 
to experiment with the harmonic analyses generated by 
our model on any score they might provide. We hope that 
this will enable and encourage the community to share 
ideas about harmonic analysis in general, and on how to 
improve this model in particular.

Notes
	 1	 See for instance the contents pages of recent textbooks 

like Clendinning and Marvin (2016); Laitz (2016).
	 2	 http://jazzparser.granroth-wilding.co.uk/ParserPaper.

html.
	 3	 http://rockcorpus.midside.com.
	 4	 https://zenodo.org/record/1476555#.XebL6C3​

Myu4.
	 5	 h t tp :// jazzomat .h fm-weimar.de/dbformat/

dbcontent.html.
	 6	 https://zenodo.org/record/1290737$\sharp$ .

W6vIKxNKixM.
	 7	 http://ddmal.music.mcgill.ca/research/billboard.
	 8	 https://csml.som.ohio-state.edu/home/index.php/

iRb_Jazz_Corpus.
	 9	 http://www.isophonics.net/datasets.
	 10	 ‘Mid-piece’ is significant because of the relatively 

common practice of ending minor key pieces with a 
major triad (with the so-called ‘Picardie’ third).

	 11	 The chord could be re-spelled enharmonically as B 
diminished, though even that would hardly help the 
wider reading.

	 12	 See https://github.com/DCMLab/ABC/issues for 
ongoing discussion over issues with the original 
corpus. Both Tymoczko et al. and Neuwirth et al. have 
plans to release a corrected and updated version of 
this corpus; that would effectively provide a second 
multiple-annotator dataset with which to study inter-
annotator variance.

	 13	 These include the disproportionate difficulty in predic
ting long notes that arises from having to make the 
correct prediction anew for each frame.

	 14	 Systems using MIDI are necessarily limited to the 
former; the latter is only available to richer input 
formats like **kern, MusicXML, and MEI.

	 15	 However, not all those keys can actually be used 
because some diatonic pitches would have triple flats 
or sharps. We will discuss more about what keys we 
actually use in the next section.

	 16	 We prefer GRUs over LSTM cells due to their greater 
compactness.

	 17	 For historical examples, see (Heinichen (1711); Euler 
(1739); Oettingen (1866); Schoenberg (1948); and for 
more models, see (Lewin (1987); Cross (1997); Cohn 
(1999); Tymoczko (2011); Cohn (2012).
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