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A unifying event-triggered control framework based on a hybrid small-gain theorem

We propose a unifying emulation-based design framework for the event-triggered control of nonlinear systems that is based on a hybrid small-gain perspective. We show that various existing event-triggered controllers fit the unifying perspective. Moreover, we demonstrate that the flexibility offered by our approach can be used for the development of novel event-triggered schemes and for a systematic modification and improvement of existing schemes. Finally, we illustrate via a simulation example that these novel and/or modified eventtriggered controllers can lead to a reduction in the required number of transmissions, while still guaranteeing the same stability properties.

I. INTRODUCTION

Event-triggered control (ETC) is a class of sampled-data schemes where the sampler and hold devices are triggered whenever a state or output-dependent condition holds [START_REF] Årzén | A simple event-based PID controller[END_REF], [START_REF] Åström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF], [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF]. As such, ETC is a natural generalization of the classical sampled-data control [START_REF] Chen | Optimal sampled-data control systems[END_REF], since state-dependent sampling is used instead of equidistant sampling. Reasons for considering ETC are manifold and we single out the motivation arising from the emerging resource-aware control applications with packed-based communication networks, where the design of the event-triggering condition can be used to reduce the communication between the plant and controller while maintaining appropriate performance and robustness guarantees, see, e.g., [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lpgain performance and Zeno-freeness[END_REF], [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], [START_REF] Liu | A small-gain approach to robust eventtriggered control of nonlinear systems[END_REF], [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | Event design in event-triggered feedback control systems[END_REF]. This approach was experimentally verified for mobile robots [START_REF] Postoyan | Event-triggered tracking control of unicycle mobile robots[END_REF] and for vehicle platooning [START_REF] Dolk | Event-triggered control for string-stable vehicle platooning[END_REF], for instance.

The benefits of ETC were recognised for a long time, see [START_REF] Åström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF], and many approaches have been proposed in the literature since then. However, the relationship between the various approaches, the intuition behind different schemes and their advantages/disadvantages are hard to understand as the underlying design tools and philosophy appear to be different. Typically, it is often unclear how the design flexibility within each approach affects the required transmissions and system performance. The recent studies on the required transmissions [START_REF] Khashooei | A consistent threshold-based policy for event-triggered control[END_REF], [START_REF] Postoyan | Inter-event times analysis for planar linear event-triggered controlled systems[END_REF] for classes of ETC systems shed some light on this issue, but a systematic design framework remains elusive.

The purpose of this paper is to show that a large class of seemingly unrelated emulation-based ETC schemes can be unified within a novel design framework. This provides valuable insights not previously observed in the literature. One advantage of such a unifying design perspective is that it provides clear viewpoints on the essential differences and similarities of existing ETC strategies. It also provides the design flexibility for each existing approach, which allows for a systematic modification or "redesign" of existing schemes. Moreover, our approach can be used as a design framework for generating novel ETC schemes, not previously considered in the literature. This design flexibility enables a more systematic design methodology that may be used for the reduction of required transmissions as we illustrate via a numerical example. This work focuses on the emulation based approach, see the relevant results in e.g., [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lpgain performance and Zeno-freeness[END_REF], [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], [START_REF] Liu | A small-gain approach to robust eventtriggered control of nonlinear systems[END_REF], [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | Event design in event-triggered feedback control systems[END_REF] and the references therein, which is a prevailing design approach in ETC. Emulation design consists of two steps. In the first step, a (potentially dynamic) continuous-time controller is designed to robustly stabilize the continuoustime plant. In the second step, the controller is implemented via an event-triggering rule that might involve auxiliary state variables, see, e.g., [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lpgain performance and Zeno-freeness[END_REF], [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], while preserving important stability and performance properties. Our approach is to decompose the closed-loop system as an interconnection of two hybrid systems that need to satisfy a recently proposed hybrid small-gain theorem [START_REF] Liberzon | Lyapunov-based smallgain theorems for hybrid systems[END_REF] to ensure stability. The required small-gain condition can be ensured by a judicious selection of auxiliary variables, as well as the design of the event-triggering rule. We demonstrate that this smallgain analysis underlies various important emulation-based schemes of the literature [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] and provides a flexible design framework for the analysis of existing and the design of novel ETC schemes. Indeed, the analysis reveals a singularity: the ISS gain of one of the subsystems is equal to zero, which trivially ensures the satisfaction of the small-gain condition. Based on this observation, we redesign the original techniques in [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] so that this is no longer the case, thereby enlarging the flow set, which may help reducing the number of transmissions as illustrated on a numerical example.

Note that a small-gain interpretation of the static triggering rule in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] was already demonstrated in [17, Section V.C]. Here, we generalize this approach here to a much larger class of dynamic triggering rules that involve auxiliary state variables. The proofs are omitted for space reasons.

II. PRELIMINARIES

We will model closed-loop ETC systems as hybrid systems [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] of the form below, for which the jump times correspond to triggering instants,

H q = F(q) q ∈ C q + = G(q) q ∈ D, (1) 
where q ∈ R n is the state, C, D ⊆ R n are the flow and the jump sets, which are assumed to be closed, and F, G : R n → R n are continuous. Hence, system (1) satisfies the hybrid basic conditions in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF]. We focus on the following stability property, and we omit the other description of the notation and definitions used throughout this paper and refer the reader to Section II in [START_REF] Wang | Periodic event-triggered control for nonlinear networked control systems[END_REF]. Definition 1: System H is uniformly globally asymptotically stable (UGAS), if there exists β ∈ KL such that, for any solution ϕ and (t, j) ∈ dom ϕ, it holds that

|ϕ(t, j)| ≤ β(|ϕ(0, 0)|, t + j), (2) 
and all maximal solutions are complete. Definition 2: System H has a uniform semi-global dwell time outside the origin, if for any ∆ > 0, there exists τ (∆) ∈ R >0 such that, for any hybrid solution ϕ with |ϕ(0, 0)| ≤ ∆ and for all j ∈ Z >0 ,

∀t ∈ [t j , t j+1 ], ϕ(t, j) = 0 ⇒ t j+1 -t j ≥ τ (∆) , (3) 
where dom ϕ = [t j , t j+1 ] × {j}.

Remark 1: The only hybrid state, on which the existence of a dwell-time is not guaranteed by the event-triggering conditions in this paper, is the origin. The reason that we do not "worry" about the origin is the fact that solutions initialized at the origin are not unique for the considered systems in the sequel: they all remain at the origin for all future hybrid times but their hybrid time domains can take any form, ranging from Zeno behaviour to no jump at all, see also [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF]. Hence, there exist (infinitely many) zero solutions, whilst might not have a dwell-time.

III. HYBRID MODEL

The purpose of this section is to derive a hybrid model of a large class of emulation-based ETC schemes, like in [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], and to recall a small-gain theorem for hybrid systems from [START_REF] Liberzon | Lyapunov-based smallgain theorems for hybrid systems[END_REF] that can enable a unifying ETC design framework. We consider the plant

ẋp = f p (x p , u), (4) 
where x p ∈ R np is the state. The first step in the emulation approach is to design a controller

ẋc = f c (x c , x p ) u = g c (x c , x p ), (5) 
to robustly stabilize (4) as formalised below, see Assumption 1. We have that u ∈ R nu and x c ∈ R nc are respectively the control input and the state of the controller. For a static feedback controller, (5) simplifies to u = g c (x p ). The functions f p and f c are assumed to be continuous, and g c is assumed to be continuously differentiable and zero at zero. In the second step of emulation, we implement the designed controller (5) over a network, see Fig. 1. The communication occurs at transmission instants t j , j ∈ I ⊆ Z ≥0 at which the current values of x p and u are sent over the network. In this setup, plant (4) has no longer access to u, but to its networked version û, and controller (5) has access to xp , the networked version of x p . We assume ideal packedbased communication in the sense that xp (t + j ) = x p (t j ) and û(t + j ) = u(t j ), for any j ∈ I. Between two successive transmission instants, xp and û are governed by the dynamics of the holding devices

ẋp = fp (x p , xp , û) u = fc (x c , xp , û) t ∈ (t j , t j+1 ) , j ∈ I, (6) 
where fp and fc are continuous. Zero-order-hold devices correspond to fp = fc = 0, for instance.

Let x := (x p , x c ) ∈ R nx , n x := n p + n c
, denote the concatenation of the plant and the controller state, and let e := (e xp , e u ) ∈ R ne , n e := n p + n u , denote the networkinduced error with e xp := xp -x p and e u := û -u. We then derive that ẋ = f (x, e) with f being determined by ( 4)- [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], where e is an input to x-system. We assume that the controller ( 5) is designed so that the following conditions are satisfied.

Assumption 1: There exist a continuously differentiable function V : R nx → R ≥0 , and functions α

V , α V , α V , γ ∈ K ∞ such that the following hold. (i) For all x ∈ R nx , α V (|x|) ≤ V (x) ≤ α V (|x|). (ii) For all x ∈ R nx and e ∈ R ne , ∇V (x), f (x, e) ≤ -α V (|x|) + γ(|e|).
In general, the transmission instants t j , j ∈ I, are generated by an event-triggering mechanism, which may depend on x p , u and some auxiliary variables η ∈ R nη , n η ∈ Z >0 that are modeled as η = h(x, e, η), t ∈ (t j , t j+1 ) , j ∈ I,

η(t + j ) = x(t j ), e(t j ), η(t j ) , (7) 
where h, : R nx × R ne × R nη → R nη are continuous functions to be designed. The overall closed-loop ETC system is then modeled as the hybrid system

ẋ = f (x, e) ė = g(x, e) η = h(x, e, η)      (x, e, η) ∈ C (8) 
x + = x e + = 0

η + = (x, e, η)      (x, e, η) ∈ D (9) 
where functions f and g can be derived from ( 4)-( 6), whereas the sets C, D ⊂ R nx × R ne × R nη and functions h, are to be designed and they lead to different event-triggering conditions. To design C, D, h and , we interpret system (8) as a feedback interconnection of the (x, η)-system and the e-system, see Fig. 2, and rewrite the model as

H 1 ( ẋ, η) = F 1 (q) q ∈ C x + , η + = G 1 (q) q ∈ D H 2 ė = F 2 (q) q ∈ C e + = G 2 (q) q ∈ D, (10) 
where q := (x, e, η), F 1 (q) := f (x, e), h(x, e, η) , G 1 (q) := x, (x, e, η) , F 2 (q) := g(x, e), G 2 (q) := 0. The feedback interconnection (10) provides a starting point for our unifying emulation-based ETC design framework. The design consists in shaping the sets C and D of hybrid system (10) (equivalently of the system (8)) together with defining the flow and jumps dynamics of η, if any, to guarantee that a hybrid small-gain condition holds. We next state the hybrid small-gain theorem from [17, Theorem III.3], which is a crucial technical tool in our approach.

Proposition 1: Suppose that there exist locally Lipschitz functions

V i : R ni → R ≥0 , n 1 := n x + n η , n 2 := n e , α i , α i ∈ K ∞ , χ i ∈ K ∞ ∪{0}
, and positive definite functions

α i : R ≥0 → R ≥0 , i ∈ {1, 2}, such that the following hold. (i) For all q ∈ C ∪ D α 1 (|(x, η)|) ≤ V 1 (x, η) ≤ α 1 (|(x, η)|), and α 2 (|e|) ≤ V 2 (e) ≤ α 2 (|e|). (ii) For all q ∈ C, V 1 (x, η) ≥ χ 1 V 2 (e) ⇒ V • 1 ((x, η); F 1 (q)) ≤ -α 1 (|(x, η)|), V 2 (e) ≥ χ 2 V 1 (x, η) ⇒ V • 2 (e; F 2 (q)) ≤ -α 2 (|e|). (iii) For all q ∈ D, V i (G i (q)) ≤ V i (q), i ∈ {1, 2}.
(iv) The small-gain condition χ 1 • χ 2 (s) < s holds for all s > 0. Then, there exist α U , α U , ρ ∈ K ∞ and positive definite functions α U : R ≥0 → R ≥0 such that the following holds for U (q) := max{V 1 (q), ρ(V 2 (q))}. (a) For all q ∈ C ∪ D, α U (|q|) ≤ U (q) ≤ α U (|q|).

(b) For all q ∈ C, U • (q; F(q)) ≤ -α U (|q|), where F(q) := (F 1 (q), F 2 (q)). (c) For all q ∈ D, U G(q) ≤ U (q), where G(q) := (G 1 (q), G 2 (q)). Proposition 1 can be used to construct a Lyapunov function for system [START_REF] Eqtami | Eventtriggered control for discrete-time systems[END_REF] if its (x, η)-system and e-systems satisfy input-to-state (ISS) properties, see its definition in hybrid system setting in [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], with respect to inputs e and (x, η), as specified in the ISS Lyapunov based conditions (i)-(iii) in combination with the small-gain conditions (iv). We will show how these ISS conditions can be ensured through the ETC designs of [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] in the following sections. Uniform global asymptotic stability of system [START_REF] Eqtami | Eventtriggered control for discrete-time systems[END_REF] then follows from (a)-(c) of Proposition 1 under extra conditions on the hybrid time domains of its solutions, see [24, Theorem 1], as stated next.

Theorem 1: Consider system (10) and suppose that the following holds.

1) The conditions of Proposition 1 are verified.

2) The system has a uniform semi-global dwell time outside the origin. 3) Maximal solutions are complete. Then, the system is UGAS.

Novelties of our approach are: (i) we demonstrate that various popular ETC schemes in the literature can be reinterpreted using this unifying framework based on a hybrid small-gain view; (ii) we show that the original triggering conditions can be systematically modified to potentially generate longer inter-event times. We sometimes use the same notation to denote different quantities from one section to another in the sequel to underline the similarities among the different triggering techniques. [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] We start with the technique proposed in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], which was exploited and extended in various other contexts in, e.g., [1], [START_REF] Anta | To sample or not to sample: self-triggered control for nonlinear systems[END_REF], [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lpgain performance and Zeno-freeness[END_REF], [START_REF] Eqtami | Eventtriggered control for discrete-time systems[END_REF], [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF], [START_REF] Liberzon | Lyapunov-based smallgain theorems for hybrid systems[END_REF], [START_REF] Linsenmayer | Periodic event-triggered control for networked control systems based on nonmonotonic lyapunov functions[END_REF].

IV. THE RELATIVE THRESHOLD TECHNIQUE

A. Model

This approach does not involve auxiliary variable η, hence (8) reduces to ẋ = f (x, e) ė = g(x, e) q ∈ C,

x + = x e + = 0 q ∈ D, (11) 
where q := (x, e). We translate the considered triggering condition in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] as sets C and D given by

C = {(x, e) : γ(|e|) ≤ σα V (|x|)} D = {(x, e) : γ(|e|) ≥ σα V (|x|)}, (12) 
see also, e.g. [START_REF] Borgers | Event-separation properties of event-triggered control systems[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], where σ ∈ (0, 1) is a design parameter, and α V , γ ∈ K ∞ come from Assumption 1. We need the next Lipschitz conditions in view of [26, Theorem III.1], to guarantee the existence of a uniform semi-global dwell time outside the origin, see also [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF]Theorem 4]. Assumption 2: The functions f , g in ( 11), and α -1 V , γ ∈ K ∞ from Assumption 1 are locally Lipschitz.

B. Analysis

In this case, we can show that the conditions of Proposition 1 hold with gains χ 1 and χ 2 given by

χ 1 (s) = 0 χ 2 (s) = (1 + ε) γ -1 • σα V • α -1 V (s) 2 , (13) 
where ε > 0 can take any value, and γ, α V , α V come from Assumption 1.

According to Theorem 1, we need two extra conditions to conclude about the stability of the origin: the dwelltime property and the completeness of maximal solutions. Thanks to Assumption 2, as shown in [26, Theorem III.1] and [24, Theorem 4], system (11)-( 12) has a uniform semiglobal dwell time outside the origin. Moreover, according to [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF]Theorem 4], all maximal solutions to system (11)-( 12) are complete. Then, we can apply Theorem 1 to derive the following stability result.

Corollary 1: Consider system ( 11)-( 12) and suppose that Assumptions 1 and 2 hold. Then, the system is UGAS.

This implies that the relative threshold technique [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] fits our framework. It is important to note that the gain χ 1 in ( 13) is zero. This suggests that we can modify the triggering condition, i.e., the flow and the jump sets, in such a way that the ISS property of the x-system holds with a nonzero gain, while still preserving the small-gain condition and thus stability. By doing so, we inflate the flow set C, which can help generating longer inter-event times as shown on an example in Section VII. This is explained in the sequel.

Remark 2: Note that [START_REF] Liberzon | Lyapunov-based smallgain theorems for hybrid systems[END_REF] already related the relative threshold technique [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] with a hybrid Lyapunov small-gain theorem. The difference here is that we consider exactly the same condition as in the original paper [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], and not a modified, more conservative, version as in [START_REF] Liberzon | Lyapunov-based smallgain theorems for hybrid systems[END_REF].

C. Redesign

We modify the triggering condition by defining

C = {(x, e) : (1 -δ)γ(|e|) ≤ σα V (|x|)} D = {(x, e) : (1 -δ)γ(|e|) ≥ σα V (|x|)}, (14) 
where δγ(|e|) is the newly introduced term enlarging the flow set compared to [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF]. To design δ, we rely on the next assumption, which is satisfied when Assumption 1 holds with α V , α V , α V all quadratic or all linear for instance. Assumption 3: There exists c > 0 such that for any s ≥ 0,

α V • α -1 V (s) ≤ cα V • α -1 V (s). We select the parameter δ in 0, 1 -σ 1 -σ + σc
by verifying conditions of Proposition 1. As a result, Proposition 1 holds with

χ 1 (s) = α V • α -1 V δ ν(1 -σ) γ(s 1 2 
)

χ 2 (s) = γ -1 (1 + ε)χ 2 (s) 2 , ( 15 
)
where ν ∈ (0, 1) and ε > 0 are some constants, and

χ 2 (s) = σ 1 -δ α V • α -1 V (s)
. Then, we derive the UGAS property of system ( 11), ( 14) by following the analysis in Section IV-B.

Corollary 2: Consider system ( 11), ( 14) and suppose that Assumptions 1, 2 and 3 hold. Then, the system is UGAS.

V. THE DYNAMIC TRIGGERING CONDITION OF [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] Here we study the dynamic event-triggering rule of [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], which has been extended afterwards to other (distributed) event-triggered control setting, see, e.g., [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lpgain performance and Zeno-freeness[END_REF].

A. Model

The auxiliary variable has the next dynamics [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] 

η = -β(η) + σα V (|x|) -γ(|e|) q ∈ C η + = η q ∈ D, (16) 
where β : R ≥0 → R ≥0 is any continuous positive definite function. The triggering technique of [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] leads to

C = {q : η + θ(σα V (|x|) -γ(|e|)) ≥ 0, η ≥ 0} D = {q : η + θ(σα V (|x|) -γ(|e|)) ≤ 0, η ≥ 0}, (17) 
for α V , γ ∈ K ∞ from Assumption 1, σ ∈ (0, 1) and θ > 0.

B. Analysis

Here, the conditions of Proposition 1 hold with

χ 1 (s) = 0, χ 2 (s) = γ -1 ((1 + ε)χ 2 (s)) 2 , (18) 
where

χ 2 (s) = s θ + σα V • α -1 V (s)
for any ε > 0. Moreover, the system ( 8), ( 16), ( 17) admits a uniform semi-global dwell time outside the origin when Assumption 2 holds, according to [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF]Proposition 2.3]. This, with completeness of maximal solutions, ensures the following property.

Corollary 3: Consider system (8), ( 16), [START_REF] Liberzon | Lyapunov-based smallgain theorems for hybrid systems[END_REF] and suppose that Assumptions 1 and 2 hold. The system is UGAS.

Note that χ 1 is equal to zero, as in Section IV. We can modify the flow dynamics of η, as well as the flow and the jump sets, so that χ 1 is no longer zero, while still ensuring the small-gain condition and thus stability.

C. Redesign

The redesign of [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] presented here relies on the next condition, in place of item (ii) of Assumption 1, which can always be satisfied by modifying V in Assumption 1 (which is supposed to hold) if needed, in view of [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF]Theorem 2]. We thus consider a V > 0 and γ ∈ K ∞ such that, for all x ∈ R nx and e ∈ R ne ,

∇V (x), f (x, e) ≤ -a V V (x) + γ(|e|). (19) 
We modify the dynamics of η to

η = -bη + σα V V (x) -(1 -δ)γ(|e|) q ∈ C, η + = η q ∈ D, (20) 
where b > 0 and δ ∈ (0, 1) are to be designed. We have taken β in ( 16) linear in [START_REF] Liu | A small-gain approach to robust eventtriggered control of nonlinear systems[END_REF] for the sake of convenience.

The main difference with ( 16) is that we have added the term δγ(|e|) in the flow map of η, which slows down the decrease of η and which may thus help reducing the number of jumps. We modify the flow and the jump sets accordingly as

C = {q : η + θ(σa V V (x) -(1 -δ)γ(|e|)) ≥ 0, η ≥ 0} D = {q : η + θ(σa V V (x) -(1 -δ)γ(|e|)) ≤ 0, η ≥ 0}. (21) 
We design δ to ensure that the conditions of Proposition 1 hold. In particular, we take

δ ∈ 0, a 1 a 1 + a 2 , (22) 
where a 1 := min{(1 -σ)a V , b} and a 2 := max{θ -1 , σa V }.

As a result, conditions of Proposition 1 hold with

χ 1 (s) = δ νa 1 γ(s 1 2 ), χ 2 (s) = γ -1 1 + ε 1 -δ a 2 s 2 ,
for some ν ∈ (0, 1) and ε > 0.

We can then derive, similarly to Corollary 3, the next stability result. Note that, for any given initial condition, the first jump time generated by system ( 8), ( 20), [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] occurs later than the one generated by ( 8), ( 16), [START_REF] Liberzon | Lyapunov-based smallgain theorems for hybrid systems[END_REF]. Using this argument, we can prove that system (8), ( 20), ( 21) has a semiglobal dwell-time outside the origin; completeness of maximal solutions follows like for Corollary 3.

Corollary 4: Consider system ( 8), ( 20), [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] and suppose that Assumptions 1 and 2 hold. The system is UGAS. VI. DECREASING THRESHOLD STRATEGY [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] We next consider the decreasing threshold strategy of [24, Section V.A], see similar techniques in, e.g., [START_REF] Liu | Event-based control of nonlinear systems with partial state and output feedback[END_REF], [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF].

A. Model

In [24, Section V.A], a scalar variable η is used in the triggering condition. Its dynamics are given by η = -β(η) q ∈ C,

η + = η q ∈ D, ( 23 
)
where β is any function in K ∞ ,

C := {q : γ(|e|) ≤ σ(α V (|x|) + β(η)), η ≥ 0} D := {q : γ(|e|) ≥ σ(α V (|x|) + β(η)), η ≥ 0}, (24) 
σ ∈ (0, 1) is a design parameter and γ, α V come from Assumption 1. Note that we have slightly modified the original triggering condition of [24, Section V.A] in [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], but the rationale remains the same.

B. Analysis

We verify the conditions of Proposition 1, which hold with

χ 1 (s) = 0, χ 2 (s) = γ -1 (1 + ε)σ(α V • α -1 V + β) 2 ,
where ε > 0 is any strictly positive constant. By following similar arguments as in [24, Section V.A], we have that system (8) with ( 23) and ( 24) has a uniform semi-global dwell time outside the origin, and its maximal solutions are complete. Consequently, we have the next result.

Corollary 5: Consider the system (8) with ( 23) and ( 24) and suppose that Assumptions 1 and 2 hold. The system is UGAS.

C. Redesign

We redesign the technique presented above. As in Section V-C, we rely on [START_REF] Liu | Event-based control of nonlinear systems with partial state and output feedback[END_REF]. We now consider η = -bη + δγ(|e|) q ∈ C,

η + = η q ∈ D, (25) 
where b > 0 and δ > 0 are parameters to be designed. Note the major difference exists between ( 23) and [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF]. While in [START_REF] Postoyan | Inter-event times analysis for planar linear event-triggered controlled systems[END_REF], η is an open-loop signal and this is no longer the case in [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF] as the flow dynamics now depends on |e|, via the term δγ(|e|).

The flow and the jump sets are given by

C := {q : γ(|e|) ≤ σ(a V V (x) + bη), η ≥ 0} D := {q : γ(|e|) ≥ σ(a V V (x) + bη), η ≥ 0}, (26) 
where a V and b come from ( 19) and ( 25), respectively. We select δ in [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF] such that

δ ∈ 0, 1 -σ σ a 1 a 2 , (27) 
where a 1 := min{a V , b} and a 2 := max{a V , b}. As a result, the conditions of Proposition 1 are satisfied with

χ 1 (s) = δ ν(1 -σ)a 1 γ(s 1 2 ), χ 2 (s) = γ -1 ((1 + ε)σa 2 s) 2 ,
for some constants ν ∈ (0, 1) and ε > 0. By following similar arguments as in the previous sections, we derive the next stability result from Section VI-B. Corollary 6: Consider system (8), ( 25), [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] and suppose that Assumptions 1 and 2 hold. The system is UGAS.

VII. NUMERICAL EXAMPLE

We compare the redesigned techniques presented in Sections IV-C, V-C and VI-C, respectively, with the corresponding original triggering conditions, in terms of number of transmissions. We consider for this purpose the linear example in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] given by ẋ = Ax + Bu, where

A = 0 1 -2 3 , B = [0 -1] . Controller (5) is taken as u = Kx with K := [-3 -7]. Assumption 1 is verified with V (x) = x P x, P = 0.55 -0.5 -0.5 0.75 , α V (s) = λ min (P )s 2 , α V (s) = λ max (P )s 2 , α V (s) = 1 2 s 2 and γ(s) =
2|P BK|s 2 for any s ≥ 0. On the other hand, Assumption 3 is satisfied with c = λ max (P )/λ min (P ) and the inequality in [START_REF] Liu | Event-based control of nonlinear systems with partial state and output feedback[END_REF] holds with a V = 1/(2λ max (P )).

We have selected the parameters as σ = 0.9, δ = 0.9 1-σ 1-σ+σc in ( 14), δ = 0.9 × 0.0413 in [START_REF] Postoyan | Event-triggered tracking control of unicycle mobile robots[END_REF], δ = 0.999 × 0.0479 in [START_REF] Wang | Periodic event-triggered control for nonlinear networked control systems[END_REF], and θ = 1. The dynamic triggering condition of [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] studied in Section V has been implemented with η = -η + σα V V (x) -γ(|e|) and C and D defined accordingly so that we can analyze the impact of the redesign condition presented in Section V-C; hence, β(η) = bη = η for any η ≥ 0. We have similarly simulated the triggering conditions of Section VI using (26) for both cases with σ = 0 and σ = 0.9, with δ in [START_REF] Wang | Periodic event-triggered control for nonlinear networked control systems[END_REF] and β(η) = bη = η for any η ≥ 0. We have run simulations for each triggering condition for 10 different initial conditions of 1 x uniformly distributed on the circle centered at the origin of radius 10. In all cases, we have selected e(0, 0) = 0 and η(0, 0) = 10, when relevant. The obtained average and minimum intertransmissions times over the ten simulations are summarized in Table I. We observe that, in all cases, the redesigned technique generates larger average inter-event times than the corresponding original one, thus fewer transmissions, while still guaranteeing desirable stability conditions. A similar improvement is seen for the minimum inter-event times, at the exception of the technique of Section VI.

The main purpose of this paper is to provide a unifying view of event-triggering design and proof techniques. Indeed, we concentrate on the "qualitative" properties of the eventtriggering mechanisms. This "qualitative" approach offers an opportunity to deal with "quantitative" issues, i.e., get tighter bounds on the gains, which have an impact on the number of transmissions. We acknowledge that the improvements reported in Table I on the average and minimum inter-event times are moderate. This can be explained by the fact that we do not strive to obtain the tightest bounds on the gains, We rather provide a principle here. Future work will be dedicated to tailor these bounds further to get even larger improvements.

VIII. CONCLUSION

A unifying emulation-based ETC design framework was proposed for a large class of nonlinear systems. The design consists of choosing the dynamics of auxiliary variables and jump and flow sets in such a manner that a small-gain condition holds. We showed that several well-known ETC schemes fit our framework and provided clear viewpoints on the essential differences and similarities of these ETC strategies. Moreover, we demonstrated the flexibility of the framework by providing redesigns of each of these schemes, which leads to the same stability guarantees as the original scheduler, however, typically using less transmissions. This was also illustrated through a numerical example. In future work, the framework can be generalized to encompass other (distributed) triggering conditions, as well as other control scenarios such as systems with disturbances and the output feedback control.
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 1 Fig. 1: Block diagram of the setup
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 2 Fig. 2: Block diagram of the decomposition

TABLE I :

 I Average (τavg) and minimum (τmin) inter-transmission times over 10 different initial conditions and an interval of 10 (continuous) time units.

This work is supported by the Australian Research Council under the Discovery Project DP170104099, HANDY project ANR-18-CE40-0010-02 and the France-Australia collaboration project IRP-ARS CNRS. W. Wang and D.