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Abstract

The aim of this paper is to nonparametrically estimate the expectile regression in the case of a functional predictor and a scalar
response. More precisely, we construct a kernel-type estimator of the expectile regression function. The main contribution of
this study is the establishment of the asymptotic properties of the expectile regression estimator. Precisely, we establish the
almost complete convergence with rate. Furthermore, we obtain the asymptotic normality of the proposed estimator under some
mild conditions. We provide how to apply our results to construct the confidence intervals. The case of functional predictor is
of particular interest and challenge, both from theoretical as well as practical point of view. We discuss the potential impacts
of functional expectile regression in NFDA with a particular focus on the supervised classification, prediction and financial risk
analysis problems. Finally, the finite-sample performances of the model and the estimation method are illustrated using the analysis
of simulated data and real data coming from the financial risk analysis.

Keywords: Nonparametric estimation, Kernel type function estimator, Risk measure, Asymmetric least squares regression,
Expectiles, Functional data, Almost consistency, Asymptotic normality, Probability convergence, Strong mixing process.
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1. Introduction

Risk measures such as quantiles and expected shortfall have been studied and developed by several authors from a practical and
a theoretical point of view, both risk measures have their own merits and defects. In this paper, we investigate an alternative way
based on the least asymmetrically weighted squares estimation, borrowed from the econometrics literature, that is one of the basic
tools in statistical applications. This method often involves [44] concept of expectiles, a least squares analogue of the traditional
quantiles. The proposed risk measure allows to overcome some drawbacks of the classical measures. It is expressed by

θp(Y) = arg min
t∈R
E

[
ρp(Y, t)

]
, for 0 < p < 1, (1)

such that

ρp(Y, t) =
∣∣∣p − 1{(Y−t)≤0}

∣∣∣ (Y − t)2 = p(Y − t)21{(Y−t)>0} + (1 − p)(Y − t)21{(Y−t)≤0}, (2)

with ρp(Y, t) is the scoring function, the level p is called the asymmetry parameter and 1A stands for the indicator function of
the event A. Such risk model was introduced by [3, 44], in the context of linear regression models. It is worth noticing that (2)
generalizes the conditional expectation of Y given X = x, which coincides with θp(Y) when specifically p = 1/2. On the other
hand, (2) is similar to the conditional p-quantile of Y given X = x, which can be obtained by replacing (Y − t)2 by |Y − t| in (2).
This motivates the name the conditional p-expectile. Hence the expectile regression is constructed by combining the ideas of least
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square regression to those of the conditional quantile allowing to accumulate the advantages of both models. In particular, its high
sensitivity to the extreme value permits for more prudent and reactive risk management, and can be considered as an important
advantage, since if we are measuring potential losses, we want that our measure to be sensitive to the extreme tail losses. The main
aim of this work is to analyze the asymptotic behavior of this model using the functional nonparametric approach.

Recall that, in a multivariate parametric context, the expectile model has received growing interest. We cite for instance [9] for
dapper discussion on the advantages of this model over the classical risk measures such as the quantiles and the expected shortfall.
They indicate that the expectiles are perfectly reasonable alternatives to the value at risk (VaR) and the expected shortfall (ES) risk
measures. The expectile based risk measure is coherent for 0.5 ≤ p < 1. Moreover, according to [10, 12], the expectile is the only
coherent as well as elicitable risk measure. For more details about the statistical significance of the property of elicitability and
coherence, we refer the interested reader to the papers of [8, 19, 25, 55]. It turns out that, similar to the conditional mean or the
percentile, the expectile regression of order p (or the conditional p-expectile) can be uniquely be defined by

θ(p; x) = arg min
t∈R
E

[
ρp(Y, t) | X = x)

]
, for 0 < p < 1. (3)

Although they present differences in their construction, both quantiles and expectiles share similar properties. The main reason for
this, as shown in [31], is the fact that expectiles are precisely quantiles but for a transformation of the original distribution. [2]
established an important feature is that quantiles and expectiles of the same distribution coincide under the hypothesis of weighted
symmetry and pointed out that inference on expectiles is much easier than inference on quantiles. Notice that the quantiles are
not always satisfactory and can be criticized for being somewhat difficult to compute as the corresponding loss function is not
continuously differentiable. The key advantage of the expectile over the quantile is its efficiency and computing expedience,
although it has not a direct interpretation as the quantile in terms of the relative frequency, see [15]. Another substantial difference
is that the conditional expectile is based on fundamentally different information and relies on more complete information to measure
the risk in the sense that it depends on the form of the entire distribution, and it is easy to see that the conditional expectiles are
characterized by the tail expectations in the same way that the conditional quantiles are characterized by the conditional distribution
function as shown by the following equation, for more details refer to [1, 44]:

p
1 − p

=

(∫
(−∞,θ(p;x))

(y − θ(p; x))2dF x
Y (y)

) (∫
(θ(p;x),+∞)

(y − θ(p; x))2dF x
Y (y)

)−1

, (4)

where F x
Y (y) represents the conditional distribution function of Y given {X = x} and θ(p; x) is the conditional expectile of order p.

The conditional expectile has been widely studied in the applied area such as econometrics, finance and actuarial science, see,
for instance [37] as pioneer work, [18]. Despite this importance, the expectile regression is unexplored compared to both compet-
itive regressions (conditional mean and quantile). [11] have generalized the conditional expectation to the conditional expectile
by means of the minimization of an asymmetric quadratic loss function and expose their main properties. [33] have defined the
regression quantile estimators via an asymmetric absolute loss, the same authors in [34] have studied a new approach of regression
quantiles based upon the estimates of the coefficients of the regression equation. Making use of the expectiles, [16] have proposed
the estimations of the VaR and the ES or the CVaR. More details and results on regression are given by many references see
[17, 28, 36, 43]. While, these cited works consider the finite dimensional case, in the present work we use this model to analyze the
effect of a functional covariate on a scalar response variable. Therefore, we treat in this paper the functional case. Note that analo-
gously to the quantile regression, the conditional expectile allows to a get an exhaustive information on the impact of explanatory
variable on the response one by exploring its conditional distribution. On the other hand, the expectile regression can be employed
for other standard regression model such as the curves discrimination or the prediction problems. Such questions of functional data
analysis are particularly interesting, for many applied areas. Some basic materials in this modern branch of statistics can be found
in the monographs of [24, 29, 30, 35, 48] or in the special issues [5, 6, 26]. It should be noted that the principal motivation of the
functional statistics is the recent technological development of the measuring instruments allowing the data recording over thinner
discretization grids. In this context, the economics or financial data, which are the principal applied areas of the expectile model,
constitute a natural source of functional data. Accordingly, the inference statistic by the functional expectile is motivated by the
diversity of its application areas including the risk analysis, the discriminant analysis and the forecasting problem.

Notice that the nonparametric estimation in the conditional models when the regressor takes its values in an infinite dimen-
sional space, is an interesting subject and further details can be found in [24], with more details. [1] study the nonparametric
weighted symmetry tests, while the almost complete convergence of the conditional quantile kernel estimators is proved by [24] in
the independent and identically distributed observations (i.i.d.). The dependent case is considered by many authors, see for example
[23, 38, 39]. The papers of [14, 20] investigated the asymptotic normality of this estimator in both cases, i.i.d. and strong mixing
variables. Moreover, the kernel method based on the locally linear fit is adapted to the nonparametric estimation of regression
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expectiles and percentiles by using the ALS approach, and under the assumptions of stationarity and ρ-mixing, the asymptotic
normality for the estimators of conditional expectiles is thoroughly discussed in the paper of [54].

In this contribution we establish the asymptotic properties of the kernel-type estimator of the expectile regression in the case
of a functional predictor and a scalar response. To our best knowledge, this problem was open up to present, and it gives the
main motivation to our paper. We focus on the almost complete consistency by giving its convergence rate, and we will establish
the asymptotic normality of the estimator. The obtained results are stated under standard assumptions in nonparametric functional
statistics. Nevertheless, a lot of attention has been paid to others nonparametric functional regression models such as the conditional
expectation and the conditional quantiles. Among the wide literature concerning the nonparametric treatment of these functional
models we only refer to [4, 24, 38, 39] and the references therein. Finally, we refer the reader to the survey paper [41] for a state
of the art as well as some important future tracks on this topic of the nonparametric functional data analysis.

The layout of the article is as follows. In Section 2, we first present and describe the nonparametric model of the expectile
regression. In Section 3, we establish our main results of the almost complete convergence of the kernel estimators and the
asymptotic normality under some mild conditions in the i.i.d case. In Section 3.2, we extend our results to the dependent setting
by showing the consistency in probability for the α-mixing sequences. In Section 3.3, we discuss an application of our results for
the construction of the confidence interval. In Section 4, we discuss some connections of the conditional expectile in the supervised
classification, prediction and financial risk analysis problems. The implementation of the expectile regression model in practice is
given in Section 4.3 and Section 4.4, where a comparison with the quantile regression by illustration on real data is provided. Some
concluding remarks are given in Section 5. To avoid interrupting the flow of the presentation, all mathematical developments are
relegated to the Section 6. For a better understanding of our proofs, we recall some relevant results in the Appendix.

2. Model and estimators

2.1. The Conditional expectile
Let (X,Y) be a pair of random variable valued in F × R, where (F , d) is a semi-metric space equipped with a semi-metric

d(·, ·), a semi-metric sometimes called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some x1 , x2), x is a fixed
point in F , defining a topology to measure the proximity between two elements of F and which is disconnected of the definition of
X in order to avoid measurability problems. For 0 < p < 1, we define the conditional expectile θ(p; x) of order p of the increasing
function G(·; x), defined below, by the unique solution with respect to (w.r.t.) t of the following optimization problem

min
t∈R

{
E

[
p(Y − t)21{(Y−t)>0} | X = x

]
+E

[
(1 − p)(Y − t)21{(Y−t)≤0} | X = x

]}
. (5)

By a simple manipulation, we show that θ(p; x) is the unique solution w.r.t. t of

ζ(p; x) = G(t; x) := G1(t; x)
G2(t; x)

, (6)

where 
ζ(p; x) =

p
1 − p ,

G1(t; x) = −E
[
(Y − t)1{(Y−t)≤0} | X = x

]
,

G2(t; x) = E
[
(Y − t)1{(Y−t)>0} | X = x

]
.

We define the conditional expectile θ(p; x) of order p of the function G(·; x) as follows

θ(p; x) = inf{t ∈ R : G(t; x) ≥ ζ(p; x)}. (7)

Remark 1. Remark that, for all t ∈ R, the function G(·; x) is an increasing function.

Remark 2. In the real economical and financial problems, the conditional expectile measure can be considered and interpreted as
the threshold that provides a ratio between profit and loss by the quantity ζ(p; x).
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2.2. Nonparametric estimation of the conditional expectile
Let {(Xi,Yi) : i ≥ 1} be a sequence of stationary random variables with the same distribution as the couple (X,Y). Let K(·) be a

kernel function and h = hn is a sequence of positive real numbers tending to zero as n tends to infinity and is called the smoothing
parameter. The kernel estimator of the function G(·; x) is given by

Ĝn,hn (t; x) =

−

n∑
i=1

Wni(x)(Yi − t)1{(Yi−t)≤0}

n∑
i=1

Wni(x)(Yi − t)1{(Yi−t)>0}

, for t ∈ R, (8)

where
Wni(x) =

Ki(x)
n∑

i=1

Ki(x)

, Ki(x) = K
(
h−1d(x, Xi)

)
.

Using the functional kernel local weighted variables, we can write

Ĝn,hn (t; x) =
Ĝn,hn;−(t; x)

Ĝn,hn;+(t; x)
, (9)

where 
Ĝn,hn;−(t; x) = − 1

nE [K1(x)]

n∑
i=1

Ki(x)(Yi − t)1{(Yi−t)≤0},

Ĝn,hn;+(t; x) = 1
nE [K1(x)]

n∑
i=1

Ki(x)(Yi − t)1{(Yi−t)>0}.

Consequently, we estimate the conditional expectile θ(p; x) by θ̂n,hn (p; x) that is

θ̂n,hn (p; x) = arg min
t∈R

Ψ̂p(t; x), (10)

where Ψ̂p(t; x) is the estimator of Ψp(t; x) defined by

Ψ̂p(t; x) =

n∑
i=1

Wni(x)ρp(Yi, t), for t ∈ R,

which yields to
θ̂n,hn (p; x) = inf{t ∈ R : Ĝn,hn (t; x) ≥ ζ(p; x)}. (11)

2.3. Hypotheses and notation
In our analysis, the following conditions are needed to study the asymptotic properties of the estimator θ̂n,hn (p; x). We will

denote by Ci, for i ∈ {1, 2, . . .}, some strictly positive constants.

(A1) The function G(·; x) is differentiable in R and satisfies the following Lipschitz’s condition: ∃a > 0, ∀t ∈
[
θ(p; x) − a, θ(p; x) + a

]
,

∀x1, x2 ∈ F , ∣∣∣∣Gi(t; x1) −Gi(t; x2)
∣∣∣∣ ≤ Cidki (x1, x2), for ki > 0, i ∈ {1, 2}.

Furthermore, we assume that ∀x ∈ F , G1′ (θ(p; x); x) and G2′ (θ(p; x); x) are not identical to zero, with Gi′ (t; x) denoting the
derivative of the function Gi(t; x) with respect to t;

(A2) For each m ≥ 2, ϕm(Y−) = E

[∣∣∣∣Y−∣∣∣∣m | X]
≤ C3 < ∞, a.s.; with Y− = (Y − t)1{(Y−t)≤0};

(A3) For all x ∈ F ,
P (X ∈ B(x, hn)) = φx(hn) > 0,

where φx(hn) the small ball probability function, characterizes the classical concentration property (see [24]) and can be
written approximately as the product of two independent functions. B(x, hn) denotes the ball of the center x and radius
hn > 0 with

lim
n−→∞

hn = 0 and lim
n−→∞

φx(hn) = 0;
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(A4) Assume that

lim
n−→∞

nφx(hn)
log n

= ∞;

(A5) K(·) is a measurable function with a support [0, 1] and there exist two constants, C4 and C5 such that 0 < C4 < C5 < ∞, the
kernel satisfies

0 < C4 ≤ K(·) ≤ C5 < ∞;

(B1) The function
R(t; x) = E

(
(Y − t)2 | X = x

)
,

is differentiable with respect to t in R and satisfies the following Lipschitz’s condition: ∃c > 0, ∀t ∈
[
θ(p; x) − c, θ(p; x) + c

]
,

∀x1, x2 ∈ F , ∣∣∣∣R(t; x1) − R(t; x2)
∣∣∣∣ ≤ C6dr(x1, x2), for r > 0;

(B2) For all δ > 0, and C7 > 0,

E

[∣∣∣∣Y − t
∣∣∣∣2+δ

| X
]
≤ C7 < ∞, a.s.

(B3) The function K(·) satisfies (A5) and is differentiable on (0, 1) with derivative K′(·) such that there exist two constants, C8 and
C9 fulfilling 0 < C8 < C9 < ∞, and

C81(0,1)(·) ≤ K′(·) ≤ C91(0,1)(·).

Moreover, we assume that nφx(hn) −→ ∞ and for η > min(k1, k2), nh2ηφx(hn) −→ 0 as n −→ ∞;

(B4) The concentration property given in (A3) holds and there exists a function βx(·) such that

∀s ∈ [0, 1], lim
t−→0

φx(st)
φx(t)

= βx(s).

Some comments
• Recall that the preceding conditions are not very restrictive. Our main result is stated under standard conditions of the almost

complete consistency in the nonparametric functional statistics. In particular, the structure of the considered assumptions
are the same as in the monograph of [24]. They cover the three structural axes of this study (data, model and estimator).
Specifically, (A1) and (A2) allow to explore the dimensionality of the data and the model, respectively.

• The hypothesis (A1) is a regularity condition which characterizes the functional space of our model and is needed to evaluate
the bias in the asymptotic results of this paper. The hypotheses (A2), (A4) and (A5) are technical conditions and are, also,
similar to those considered in [21].

• The bridge between local weighting and the notion of small ball probabilities is given by the hypothesis (A3), which is a
simple normalization of the concentration property of the probability measure on the small balls.

• The hypotheses (B1), (B2) and (B3) are technical conditions on the functions R(·, ·) and K(·), and the hypothesis (B4) permits
to give the variance term explicitly in the asymptotic normality, and is satisfied for a large family of random functional
variables. Indeed, in many examples, the small ball probability function φx(hn) can be written approximately as the product
of two independent functions in terms of x and h, as in the following examples, which can be found in Proposition 1 of [22]:

1. If φx(h) ∼ Chυ for some υ > 0 then βx(s) = sυ;
2. If φx(h) ∼ C1hυ exp(−C2h−p) for some υ > 0 and p > 0 then βx(s) is the Dirac’s function;
3. If φx(h) ∼ C |ln(h)|−1 then βx(s) = 1]0,1](s) the indicator function in ]0, 1].

3. Main results

In this section, we present our main results concerning the asymptotic properties of the estimator θ̂n,hn (p; x) in both situations:
independent and dependent cases. Let us recall the following definition. We say that the sequence (θn)n converges a.co. to zero, if
and only if

∀τ > 0,
∑
n≥1

P(|θn| > τ) < ∞.

Furthermore, we say that θn = Oa.co.(δn), if there exists τ0 > 0, such that∑
n≥1

P(|θn| > τ0δn) < ∞.
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3.1. Independent case
In this paragraph, we suppose that the {(Xi,Yi) : i ≥ 1} are i.i.d. The first main result is given by the following proposition and

theorem. We establish the almost complete convergence (a.co.) of θ̂n,hn (p; x) to θ(p; x) in the i.i.d. case.

Proposition 1. Under the hypotheses (A1)-(A5), we have, for all t ∈ R, as n −→ ∞,

∣∣∣∣Ĝn,hn (t; x) −G(t; x)
∣∣∣∣ = O

(
hk1

n

)
+ O

(
hk2

n

)
+ Oa.co.


√

log n
nφx(hn)

 . (12)

The proof of Proposition 1 is postponed until Section 6.

Theorem 1. Under the hypotheses of Proposition 1, then, for all ε > 0, we obtain∑
n≥1

P

(∣∣∣∣̂θn,hn (p; x) − θ(p; x)
∣∣∣∣ > ε) < ∞. (13)

The proof of Theorem 1 is postponed until Section 6.
Now, we establish the asymptotic normality of θ̂n,hn (p; x). Recall that the notation Z D

= N(µ, σ2) is used whenever the random

variable Z follows a normal law with expectation µ and variance σ2,
D
−→ denotes the convergence in distribution and

P
−→ denotes

the convergence in probability. Our second main result is presented in the following theorem.

Theorem 2. Under the hypotheses (A1)-(A5)-(B1)-(B4), we have, as n −→ ∞,

Zn =

(
nφx(hn)
σ2

p(x)

) 1
2 (̂
θn,hn (p; x) − θ(p; x)

) D
−→N(0, 1), (14)

where

σ2
p(x) =

α2(x)γp (θ(p; x); x)
α2

1(x)Λ2
p (θ(p; x); x)

, (15)

α j(x) = K j(1) −
∫ 1

0

(
K j

)′
(s)βx(s)ds for j = 1, 2, (16)

and

γp (θ(p; x); x) =

(
p

1 − p

)2

Rx
+ (θ(p; x)) + Rx

− (θ(p; x)) ,

where

R+ (θ(p; x); x) = E
(
(Y1 − θ(p; x))2 1{Y1>θ(p;x)} | X = x

)
,R− (θ(p; x); x) = E

(
(Y1 − θ(p; x))2 1{Y1≤θ(p;x)} | X = x

)
,

and

Λp (θ(p; x); x) = G1′ (θ(p; x); x) −
(

p
1 − p

)
G2′ (θ(p; x); x).

The proof of Theorem 2 is postponed until Section 6.

Remark 3. • It is clear that the convergence rate of the Proposition 1 is usual in nonparametric functional data analysis. In the
sense that the nonparametric path of the model is explored in the bias term. While the functional nature of the model is
explored in the variance term through the small ball probability function φx(hn).

• Recall that the result of Theorem 1 can be viewed as generalisation of Theorem 6.1 in [24] on the regression operator, by the
fact that the expectile regression of order p = 0.5 reduces to the classical regression E[Y | X = x].

• Once again the asymptotic normality in Theorem 2 generalizes the asymptotic normality of the regression operator obtained in
Theorem 2 of [22]. It should be noted that the asymptotic normality is of particular interest of some various asymptotic
studies. In particular, it can be used as preliminary result to prove the mean quadratic consistency or to prove the uniform
integrability of the estimator, one can refer for more details and discussion to [13].
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3.2. Dependent case
Often statistical observations are not independent but are not far from being independent. If not taken into account, dependence can
have disastrous effects on statistical inference. The notion of mixing quantifies how close to independence a sequence of random
variables is, and it can help us to extend classical results for independent sequences to weakly dependent or mixing sequences. Let
us specify the dependence that we will consider in this section.

Definition 1. We call the stationary {(Xt,Yt)} strong mixing if

α( j) = sup
A∈F̂0

−∞ ,B∈F̂−∞j

|P(A ∩ B) − P(A)P(B)| = 0 as j→ ∞,

where F̂ t
s denotes σ-algebra generated by {(Xt,Yt) , s ≤ i ≤ t}. We use the term geometrically strong mixing if: α( j) ≤ a j−β for

some a > 0 and β > 1, and exponentially strong mixing if: α(k) ≤ bγk for some b > 0 and 0 < γ < 1.

The interested reader may refer to [49, 52]. [24] provided some properties of this kind of functional process. To obtain the
consistency in probability of θ̂n,hn (p; x), in addition to the assumptions (A1)-(A3), (A5), we need to the following conditions in our
analysis.

(C1) The sequence {(Xi,Yi) : i ≥ 1} satisfies: ∃a > 2,∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a and E
[
YiY j | Xi, X j

]
≤ C < ∞, ∀i , j,

P
(
(Xi, X j) ∈ B(x, r) × B(x, r)

)
= O

(
φ1+ε1

x (r)
)
> 0, for some ε1 ∈ (2a−1, 1].

(C2) Assume that
∃ε2 ∈ ((aε1 − 1)−1, 1), φx(hn) = O(n−ε2 ).

The main result of this section to be proved here may now be stated precisely as follows.

Theorem 3. Under the hypotheses (A1)-(A3), (A5) and (C1)-(C2), we have, for all ε > 0, as n −→ ∞,

P

(∣∣∣∣̂θn,hn (p; x) − θ(p; x)
∣∣∣∣ > ε) −→ 0.

The proof of this results based on the same ideas of Theorem 1. The proof of Theorem 3 is postponed until Section 6.

Remark 4. Let’s point out that Theorem 3 states the asymptotic property of the estimator θ̂n,hn (p; x) in functional time series case
using the strong mixing condition. The same result can be obtained using the geometric strong mixing condition for which the
coefficient α(n) fulfils the following specific condition

∃C > 0,∃t ∈ (0, 1), α(n) ≤ Ctn.

3.3. Application to confidence intervals
The purpose of a confidence interval is to supplement the functional estimate at a point with information about the uncertainty

in this estimate. It is a direct application of the central limit theorem (CLT). In order to provide a confidence interval for the
conditional expectile measure, we need first to propose a consistent estimator of the variance given in equation (15). A natural
consistent estimator of σ2

p(x) is then

σ̂2
p(x) =

α̂2(x)̂γp

(̂
θn,hn (p; x); x

)
α̂1

2(x)Λ̂2
p

(̂
θn,hn (p; x); x

) , (17)

where (α̂i)i=1,2 are the empirical estimators of the coefficients (αi)i=1,2 given in equation (15). Similarly to [22], (α̂i)i=1,2 are expressed
by

α̂1(x) =
1

nφx(hn)

n∑
i=1

Ki(x), α̂2(x) =
1

nφx(hn)

n∑
i=1

K2
i (x).

We have now to give estimates of γp(·, ·) and Λp(·, ·) given in (17). Since G1(·; x), G2(·; x) and θ(p; x) are estimated by Ĝn,hn;−(·; x),
Ĝn,hn;+(·; x) and θ̂n,hn (p; x) respectively, then Λp(·, ·) can be consistently estimated by

Λ̂p

(̂
θn,hn (p; x); x

)
= Ĝ′n,hn;− (̂θn,hn (p; x); x) −

(
p

1 − p

)
Ĝ′n,hn;+ (̂θn,hn (p; x); x). (18)
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For γp(·, ·), we use the Nadaraya-Waston type estimator to estimate R−(·; x) and R+(·; x) by R̃(·; x)− and R̃+(·; x) respectively, then
we obtain a consistent estimator of γp(·, ·):

γ̂p

(̂
θn,hn (p; x); x

)
=

(
p

1 − p

)2

R̃+

(̂
θn,hn (p; x); x

)
+ R̃−

(̂
θn,hn (p; x); x

)
, (19)

with the estimators of R−(·; x) and R+(·; x) are given, respectively, by

R̃−
(̂
θn,hn (p; x); x

)
=

n∑
i=1

(
Yi − θ̂n,hn (p; x)

)2
Ki(x)1

{(Yi−̂θn,hn (p;x))≤0}

n∑
i=1

Ki(x)

, (20)

R̃+

(̂
θn,hn (p; x); x

)
=

n∑
i=1

(
Yi − θ̂n,hn (p; x)

)2
Ki(x)1

{(Yi−̂θn,hn (p;x))>0}

n∑
i=1

Ki(x)

. (21)

Consequently, the equations (18), (19), (20) and (21) allow to construct a consistent estimator of σ2
p(x). On the other hand, an

application of Theorem 2 gives

P

−U1− α2
≤

(
nφx(hn)
σ2

p(x)

) 1
2 (̂
θn,hn (p; x) − θ(p; x)

)
≤ U1− α2

 = 1 − α, (22)

where (1−α) is the confidence level and U1− α2
the quantile of order (1− α

2 ) of the standard normal law. Thereby, with a confidence
level (1 − α), the confidence interval is provided by

θ̂n,hn (p; x) ± U1− α2

 σ2
p(x)

nφx(hn)

 1
2

.

Of course in practice, we replace σ2
p(x) by its estimator σ̂2

p(x), defined by

σ̂2
p(x) = nφx(hn)

∑n
i=1 K2

i (x)̂γp

(̂
θn,hn (p; x); x

)
(∑n

i=1 Ki(x)
)2

Λ̂2
p

(̂
θn,hn (p; x), x

) ,
and we obtain the following confidence interval

θ̂n,hn (p; x) ± U1− α2


∑n

i=1 K2
i (x)̂γp

(̂
θn,hn (p; x); x

)
(∑n

i=1 Ki(x)
)2

Λ̂2
p

(̂
θn,hn (p; x), x

)


1
2

. (23)

4. On the potential impact of the functional expectile regression in NFDA

It is well documented that the expectile model (conditional or unconditional) has many theoretical and practical merits. From
the theoretical point of view, the expectile regression can be interpreted as the quantilizeation of the conditional expectation. In the
sense that the expectiles play the same role as the quantiles by using the tail expectations rather than the tail probabilities. From
the empirical point of view, the use of the expectation criterion is more informative than the probability distribution (characterized
by the frequency of the data), because the expectation is based on both (values of the data and its frequencies). Similarly to
the conditional median the conditional expectation coincides with the expectile regression of order p = 0.5. In this context, the
hypotheses and asymptotic results are identifiable to the results of [24]. On the other hand, the expectile regression functions
are used to construct an alternative estimators for both known risk measures such as Conditional Value at Risk (CVaR) or the
Conditional Expected Shortfall (CES), refer to [51]. Thus we can say that the present contribution is of great importance in
nonparametric functional statistics. It can be used as an alternative model for several statistical issues such as the discriminant
analysis, the prediction problems or the risk analysis.

8



4.1. Supervised classification and prediction : expectile regression versus classical regression
The supervised curves classification is one of the fundamental problems in the functional data analysis. Recall that the classical

regression is a basic tool to solve this issue. As suggested by [24], the functional version of Nadarya-Watson estimator provides an
efficient rule of the supervised classification problem. Precisely, from a n-sample (Xi,Yi)i where Yi = 1Ci , Ci being a given class,
we estimate P(C | X) = E[Y | X] to decide on the affectation of X to the class C. Specifically, the new curve X is affected to
class C if P(C | X = X) > P(C̄ | X = X), where C̄ is the complementary set of C. Based on the same reasoning, the expectile
regression provides an alternative classifier. Indeed, for a binary random variable Y = 1C , the expectile regression θ(p; x) of order
p is explicitly defined by

θ(p; x) =
pP(Y = 1 | X = x)

pP(Y = 1 | X = x) + (1 − p)P(Y = 0 | X = x)
. (24)

Therefore, our new classification rule affects the new curve X to the class C when

θ̂n,hn (p;X) ≥ p.

Such procedure constitutes a generalization of the regression approach given by [24]. In particular, the mean regression can be
obtained by taking p = 0.5. In addition, the main feature of our new classification procedure is the possibility to take into account
the cost of the misclassification. More precisely, assume the cost of the misclassification of C is %1 against the misclassification of
C̄ is costed by %2, the expectile classifier associated to p =

%1
%1+%2

is more appropriate than the classical regression.
On the other hand, as a generalisation of the regression operator, the expectile regression function plays also an important role in
the prediction issue. Recall that the nonparametric functional prediction problem consists to determine a real characteristic Y for a
given curve X. For this purpose, we consider the functionals random variables (Xi(t))t∈R i = 1, . . . , n. For each curve (Xi(t))t∈R, we
know its required real characteristic Yi. Thus, the random variable θ̂n,hn (p; xnew), defined by (24), is the best approximation of Y ,
given xnew with respect to the loss function ρp(·, ·) given in (2).

4.2. Financial risk analysis : conditional expectile versus conditional quantile
The second attractive domain of the expectile function is the financial risk management. Such issue is crucial for bankers as

well as the investors. At this stage the CVaR or the CES, refer to [51], are is the most common models for financial risk analysis.
However, both risk measures tools have some drawbacks. For instance, the CVaR is not coherent. On the other hand, the CES
measure is not elicitabile models. In this context, the expectile regression is a good alternative which allows to overcome the
limitations of the last cited risk measures. In particular, recall that the expectile regression is the unique risk model that is coherent
and elicitabile. Recall that the coherence regroup four properties such as invariant by translation, homogeneity, monotonicity
and subadditivity. Each property is instrumental for the investment processing. For instance, the VaR model fails to satisfy the
subadditivity. This property guaranties that the risk of a financial portfolio with two combined positions is smaller than the sum of
the total risk associated with either position. Thus the VaR model cannot identify the risk measure of diversified financial portfolio.
On the other hand, the elicitabile property is also primordial of risk analysis. In particular, the elicitability means that the risk
model is obtained with respect to some appropriate criterion. Therefore, the elicitabile property allows to validate the estimation
procedure of the risk model by using the backtesting procedure. So, the non elicitability of the expected shortfall exhibits its
practical limitations. Because there is non credible rule to check the validity of this risk measure. Thus we can say there is an
important gain by using the expectile regression compared to the conditional quantile. Moreover, the standards models CVaR or
CES can be alternatively computed by using the expectile regression. In particular, the right-tail CESx(α), is defined by

CESx(α) = Φ(α, θ(p; x)) =

(
1 − p

(1 − 2p)(1 − α)

)
θ(.5; x) −

((
α(1 − 2p) + p

(1 − 2p)(1 − α)

)
θ(p; x)

)
, (25)

where p ∈ (0, 1) such that
θ(p; x) = VaRα(x), (26)

where VaRα(x) is the conditional quantile of Y given X = x of order α ∈ (0, 1). Noting that the one-to-one correspondence between
the expectiles and the quantiles of a related distribution has been proved by [31]. For a recent comparison between quantile and
expectile regressions and references, see [53].

Finally let’s point out that the expectile regression can be improved as a risk measure by introducing its own expected shortfall.
Similarly to the CES, it is defined as the conditional expectation of the financial position given that it exceeds the expectile. The
statistical estimation of this model and the identification of its real impact in risk management are fundamental future tracks of the
present study. In the same insight, the originality of this study is also motivated by the numerous open questions which can be
studied in the future.
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4.3. Simulation study
The main aim of this section is to show the easy implementation of the constructed estimator in practice. Of course, the

practical use of this estimator is closely related to the flexibility of the selection method of the different parameters involved in
the estimator. As all kernel smoothing in nonparametric functional data analysis, the influence of kernel K(·) is less important
compared to the others parameters and the choice of the metric d(·, ·) depends on the shape of the curves (Xi)i and its regularity
assumption (order of drivability, continuity, discontinuity, . . . ). Thus the challenge in this kind of estimator is the choice of the
bandwidth parameter hn. Unfortunately, despite the pivotal role of this parameter in practice, its choice stays insufficiently explored
from theoretical point of view. It is well known that only two popular rules are studied in functional statistics such as the mean
quadratic cross-validation rule by [47] and the Bayesian approach by [50]. However, from the practical point of view, [24] use
three cross-validation rules based on the minimization of the mean square prediction error. They evaluate three predicator models
that are the conditional expectation, the conditional median and the conditional mode. In this simulation paragraph, we explore the
main feature of the expectile regression, that is its multi-connection with classical regression and conditional quantile, to examine
the feasibility of the selector procedures, proposed by [24], on the expectile regression estimator. More precisely, we conduct a
simulation study to examine the efficiency of θ̂n,hn (p; x) under the two following cross-validation rules

arg min
h∈Hn

n∑
i=1

(
Yi − θ̂h(0.5; Xi)

)2
RegCV rule,

arg min
h∈Hn

n∑
i=1

(
Yi − q̂h(0.5; Xi)

)2 MedCV rule,

where q̂h(0.5; ·) is the conditional median estimator and Hn given subset of positive real numbers. For this aim, we generate a
functional input-variables using the following formula

X(t) = at3 + bt2 + ct + e, a, c v N(0, 0.2), b, e v N(0, 1). (27)

To take an idea on the suitable metric d(·, ·) on this functional variables, we show the shape of the curves in the following Figure
1. In view of the discontinuity of the curves, we can say that the PCA-metric (see [24]) is adequate for this functional explanatory
variables. Concerning the output variables Y , we generate (Yi)i by the following regression function

Y =

√∫ 3

−3
log(X2(t) + 1) + ε, where ε is white noise independent of X.

Now, in order to check the behavior of θ̂n,hn (p; x) in both cases (independent and dependent case), we simulate with two white
noises. In the first situation, we suppose that ε v N(0, 0.5), and in the second case, we generate it from the ARCH(1) model with
parameters (0.01.0.9). For the computational task, we use the quadratic kernel K(·) on (0, 1) and the PCA-metric associated to the
third eigenvalue and we optimize the rules MedCV and (RegCV) using the local k-nearest neighborhood approach for which

Hn =

a ≥ 0 :
n∑

i=1

1B(x,a)(Xi) = k

 ,
where k ∈ {5, 15, 25, . . . , 0.5n}. Finally, the efficiency of the expectile regression is evaluated by using the following backtesting
criterion

Ex(p) =
1
n

n∑
i=1

ρp (Yi, θ(p; Xi)) , (28)

where we recall that ρp(·, ·) is given in (2). The comparison results are reported in the Table 1 where we summarize the values of
Ex(p) for various sample size n = 50, 150, 250 and for three values of p = 0.1, 0.05, 0.01.

The obtained results confirm the compatibility of the rules MedCV and RegCV as bandwidth selector procedures on the
expectile regression estimation with slight advantage to the RegCV-rule. Moreover, even if, without surprising, the simulation
results are affected by the correlation of the data the Ex(p)- values shows that θ̂n,hn (p; x) has good performance in the dependence
restriction. Finally, we can see that, the computational results incorporate the asymptotic theory about the consistency of the
estimator θ̂n,hn (p; x). In sense that the efficiency of θ̂n,hn (p; x) increases with respect to the sample size n and it has satisfactory
performance for moderate sample size when n = 50.
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Fig. 1: The curves Xi(t), i ∈ {1, . . . , 100}, t j ∈ [−3, 3], j ∈ {1, . . . 110} as is defined in (27) .

4.4. Data example
In addition to the above discussions on the real impact of the expectile regression compared to its competitive models (quantile

and regression), we will examine the easy implementation of this model in practice. In particular, we focus on the risk analysis
area and we compare between the quantile and the expectile regressions. Although both models have the same role in the risk
management, the expectile regression is more easier to compute and to interpret. Indeed, firstly the smoothing property of the score
function associated with the expectile regression allows to increase the precision of its estimation and reduces its computational
time cost. Secondly, in the financial risk area, the expectile function can be viewed as a threshold that measures a ratio between
profit and loss which makes its interpretation as risk measure more easier than the quantile regression. So, in order to quantify
this gain in practice, we conduct an empirical analysis based on the daily returns of r(t) of 20 international financial stock indexes.
The data is available in the website ”https://fred.stlouisfed.org/categories/32255/downloaddata”. It provides data during the period
01/ January/ 2010 to 31/December/2018. From this data, we consider 250 separate months independently chosen from different
indexes. Of course, the analyzed functional data keeps all principal features of financial data that are volatility, excess kurtosis,
skewness and non-normality (see, the Fig. 2).

Formally, in this real data study, we suppose that the curve is X(·) is the monthly curve of the time series Z(t) = −100 log
(

r(t)
r(t−1)

)
and the real response variable is Y = Z(tl + 1), where tl is the last day of the month. As all statistical modeling, the efficiency of
the two approaches is closely linked to the choice of the different parameters involved in the definition of the estimators. However,
to conduct a fair comparison between both risk measures, we use the same rule on the choice of the fundamental parameters in
the estimators. Precisely, concerning the conditional quantile we use the routine R-code ”funopare.quantile.lcv ” provided by
[24] which is available in the website ”http://www.lsp.ups-tlse.fr/staph/npfda ”. More precisely, we point out that we have used
this routine with a quadratic kernel on (0, 1) and the PCA-metric. While the optimal bandwidth was chosen by splitting the data
into subsets (Learning and testing samples (200 + 50) and using the 200-observations of the learning to select the best smoothing
parameter by the RegCV-rule For sake of brevity, we have just considered the most popular method, that is, the cross-validated
selected bandwidth. This may be extended to any other bandwidth selector such the bandwidth based on Bayesian ideas [50]. As
previously mentioned, the expectile regression estimator is computed by using the same arguments. Finally, the efficiency of the
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Table 1: The Ex(·) values (see, equation (28) for different cross-validation rules, white-noise scenarios, sample sizes and orders of quantile).

Cross-validation rule White-noise type n p = 0.1 p = 0.05 p = 0.01
MedCV IID 50 1.58 1.37 1.26

150 1.22 1.14 1.02
250 1.10 1.05 0.93

MedCV ARCH 50 1.72 1.64 1.51
150 1.56 1.33 1.12
250 1.41 1.24 1.08

RegCV IID 50 1.15 1.06 0.89
150 0.82 0.74 0.67
250 0.70 0.61 0.54

RegCV ARCH 50 1.66 1.43 1.27
150 1.30 1.16 1.03
250 1.02 0.96 0.88

two approaches is evaluated by using the following backtesting criterions

E(θ) =
1

50

250∑
i=201

ρp (Yi − θ(p; Xi)) , (29)

Q(θ) =
1

50

250∑
i=201

Lp (Yi − θ(p; Xi)) , (30)

where
Lp(t) = (2p − 1)(Y − t) + |Y − t|,

and θ(p; Xi) means quantile or expectile regression. Such errors are evaluated for a fixed value of p = 0.05 and for both estimators
conditional expectile or conditional quantile. The proposed criterions are performed over 100 replications, of each case, we
interchange the observations between the learning and the testing parts. The obtained errors are displayed in the following box-plot
figures.

It appears clearly that the expectile regression has slight superiority in terms of precision compared to the quantile regression.
Specifically, they are equivalent for the Q(·), in Fig. 3, backtesting measure whereas the E(·), in Fig. 4, measure gives a significative
superiority of the expectile regression. Undoubtedly, this gain is due to the ease to determine an accurate estimator of the expectile
regression compared to the last absolute error regression. However, we mention that both methods fit with satisfactory performance
the volatility of the process.

5. Conclusion and perspectives

A natural perspective of this work is an extension to the multidimensional framework where Y ∈ Rd. On the basis of the
multidimensional expectile in the paper of [43], let us introduce the conditional multidimensional expectile: Let ‖ · ‖ be a norm on
Rd. We denote by (Y1)+ the vector (Y1)+ = ((Y1)+, . . . , (Yd)+)> and by (Y)− the vector (Y)− = (Y1)−, . . . , (Yd)−)>. We define the
following scoring function

sα(Y, y) = α ‖ (Y − y)+ ‖
2 +(1 − α) ‖ (y − Y)+ ‖

2,

for all y ∈ Rd. We call a multivariate conditional expectile any minimizer

y∗ ∈ arg min
y∈Rd

E[sα(Y, y) | X = x].

It will be of interest to consider this extension in a future investigation. In addition to this issue of multivariate response, another
challenging task would be to study the problem of the bandwidth selection in the expectile regression. Such question is primordial
for a better use of this estimator in practice. Recall that, in our computational study the optimal smoothing parameter hn was
chosen by some cross-validation methods over a discrete set of bandwidth values defined by the k-Nearest Neighbors (kNN). Even
if these selector procedures give satisfactory results by employing the kNN-approach, they lack a mathematical support to highlight
the conditions of their optimality and to ensure their asymptotic outcomes. At this stage, the uniform consistency in number of
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Fig. 2: The daily values of Z(t) = −100 log
(

r(t)
r(t−1)

)
for six stock index including Dow Jones Composite Average, NASDAQ 100

Index, Russell (1000 and 2000), SP 500 and Wilshire 2500.

neighborhoods, recently developed in functional statistics by [32, 40] may be a best way to overcome this issue. Moreover, it
souled by noted that one of the advantages of the expectile regression is its possibility to behave with various statistical strategies
(parametric, semiparametric or nonparametric modeling ) in the same insight as in the regression and the conditional quantile. Thus,
we can say that the linear or semiparametric version of the functional expectile is also a natural prospect of the present contribution.
A particular attention will be paid to the semiparametric approach which is actually the trend in functional data analysis (see [7, 45]
for more discussions and motivations in this topic). Among the numerous open questions that can be concluded from the present
contribution, we mention the construction of pointwise confidence intervals by combining the bootstrap ideas used by [46] on
the conditional expectation to those used by [27] on the quantile regression. Finally, let’s point out that it would be interested to
extend of our results to other functional time series cases (ergodic, long memory, associated process) which requires nontrivial
mathematics, that goes well beyond the scope of the present paper.

6. Demonstration of asymptotic results

This section is devoted to the proofs of our results. The aforementioned notation is also used in what follows.
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Fig. 3: Comparison between the quantile and the expectile using box-plot of the Q-backtesting measure defined in (30).

Proof of Theorem 1. For t ∈ R and by the fact that Ĝn,hn is an increasing function, for any ε > 0 small enough, we have{∣∣∣∣̂θn,hn (p; x) − θ(p; x)
∣∣∣∣ > ε} ⇒

{̂
θn,hn (p; x) < θ(p; x) − ε

}
∪

{̂
θn,hn (p; x) > θ(p; x) + ε

}
⇒

{
Ĝn,hn (̂θn,hn (p; x); x) ≤ Ĝn,hn (θ(p; x) − ε; x)

}
∪

{
Ĝn,hn (̂θn,hn (p; x); x) ≥ Ĝn,hn (θ(p; x) + ε; x)

}
.

Since G(θ(p; x); x) = Ĝn,hn (̂θn,hn (p; x); x), we obtain

⇒

{
G(θ(p; x); x) −G(θ(p; x) − ε; x) ≤ Ĝn,hn (θ − ε) −G(θ(p; x) − ε; x)
G(θ(p; x); x) −G(θ(p; x) + ε; x) ≥ Ĝn,hn (θ + ε) −G(θ(p; x) + ε; x).

Hence, we infer that{∣∣∣∣̂θn,hn − θ
∣∣∣∣ > ε} ⇒

{
Ĝn,hn (θ − ε) −G(θ(p; x) − ε; x) ≥ G(θ(p; x); x) −G(θ(p; x) − ε; x)

}
∪

{
Ĝn,hn (θ + ε) −G(θ(p; x) + ε; x) ≤ G(θ(p; x); x) −G(θ(p; x) + ε; x)

}
.

This implies that we have{∣∣∣∣̂θn,hn − θ
∣∣∣∣ > ε} ⇒

{∣∣∣∣Ĝn,hn (θ − ε) −G(θ(p; x) − ε; x)
∣∣∣∣ ≥ ∣∣∣∣G(θ(p; x); x) −G(θ(p; x) − ε; x)

∣∣∣∣}
∪

{∣∣∣∣Ĝn,hn (θ + ε) −G(θ(p; x) + ε; x)
∣∣∣∣ ≥ ∣∣∣∣G(θ(p; x) + ε; x) −Gx(θ)

∣∣∣∣} .
From the last equation, we obtain that∑

n≥1

P

(∣∣∣∣̂θn,hn (p; x) − θ(p; x)
∣∣∣∣ > ε) ≤

∑
n≥1

P

( ∣∣∣∣Ĝn,hn (θ(p; x) − ε; x) −G(θ(p; x) − ε; x)
∣∣∣∣ ≥ ∣∣∣∣G(θ(p; x); x) −G(θ(p; x) − ε; x)

∣∣∣∣)

+
∑
n≥1

P

( ∣∣∣∣Ĝn,hn (θ(p; x) + ε; x) −G(θ(p; x) + ε; x)
∣∣∣∣ ≥ ∣∣∣∣G(θ(p; x) + ε; x) −G(θ(p; x); x)

∣∣∣∣).
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Fig. 4: Comparison between the quantile regression and the expectile regression using box-plot of the E-backtesting measure
defined in (30).

Hence, by using the Proposition 1, for all t ∈ R and τ > 0 we have,∑
n≥1

P

(∣∣∣∣Ĝn,hn (t; x) −G(t; x)
∣∣∣∣ > τ) < ∞. (31)

Then, the proof of Theorem 1 is a direct consequence of the Proposition 1. �

Proof of Proposition 1. We recall the definitions given in (6) and (9). We first decompose Ĝn,hn (t; x) − G(t; x) into the sum
of two components, as follows:

Ĝn,hn (t; x) −G(t; x) =
Ĝn,hn ,−(t)

Ĝn,hn ,+(t)
−

G1(t; x)
G2(t; x)

=
1

Ĝn,hn ,+(t)

[
Ĝn,hn ,−(t) −G1(t; x)

]
+

G(t; x)

Ĝn,hn ,+(t)

[
G2(t; x) − Ĝn,hn ,+(t)

]
. (32)

Lemmas 1–5 below are given in order to prove Proposition 1. To obtain the consistency results, one usually writes the difference
between the estimator and the quantity to be estimated as the sum of a stochastic term and the so-called bias. The mathematical
program is to determine the size of the stochastic term and to control the bias separately in the following Lemmas.

Lemma 1. Assume that the hypotheses (A1)(for i = 1), (A2), (A3), (A4) and (A5) are satisfied. We have, as n→ ∞,∣∣∣∣Ĝn,hn;−(t; x) −E
[
Ĝn,hn;−(t; x)

]∣∣∣∣ = Oa.co.

(√
log n

nφx(hn)

)
. (33)

Lemma 2. Assume that the hypotheses (A1)(for i = 1), (A3) and (A5) are fulfilled. We have as n→ ∞,∣∣∣∣E [
Ĝn,hn;−(t; x)

]
−G1(t; x)

∣∣∣∣ = O
(
hk1

n

)
. (34)

Lemma 3. Assume that the hypotheses (A1)(for i = 1), (A2), (A3), (A4) and (A5) are satisfied. We have, as n→ ∞,∣∣∣∣Ĝn,hn;+(t; x) −E
[
Ĝn,hn;+(t; x)

]∣∣∣∣ = Oa.co.

(√
log n

nφx(hn)

)
. (35)
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Lemma 4. Assume that the hypotheses (A1)(for i = 2), (A3) and (A5) are satisfied. We have, as n→ ∞,∣∣∣∣E [
Ĝn,hn;+(t; x)

]
−G2(t; x)

∣∣∣∣ = O
(
hk2

n

)
. (36)

Lemma 5. Assume that the hypotheses (A1)(for i = 1), (A2), (A3), (A4) and (A5) are satisfied. We have, as n→ ∞,∑
n≥1

P

(∣∣∣∣Ĝn,hn;+(t; x)
∣∣∣∣ ≤ ε) < ∞. (37)

In order to demonstrate the consistency of θ̂n,hn (p; x), it suffices to show that the estimator Ĝn,hn;+(t; x) converge almost completely,
as n→ ∞. The proofs being quite lengthy, we limit ourselves to the main arguments. Hence the proof of the preceding Lemmas 3
and 5 will be omitted.

Proof of Lemma 1. We will use the notation Y−i = (Yi − t)1{(Yi−t)≤0}. We have

∣∣∣∣Ĝn,hn;−(t; x) −E
[
Ĝn,hn;−(t; x)

]∣∣∣∣ =

∣∣∣∣∣∣∣− 1
nE [K1(x)]

n∑
i=1

Ki(x)Y−i −E

− 1
nE [K1(x)]

n∑
i=1

Ki(x)Y−i


∣∣∣∣∣∣∣

=
1
n


∣∣∣∣∣∣∣ 1
E [K1(x)]

n∑
i=1

(
Ki(x)Y−i −E

[
Ki(x)Y−i

])∣∣∣∣∣∣∣
 =

1
n


∣∣∣∣∣∣∣

n∑
i=1

∆i

∣∣∣∣∣∣∣
 ,

where we have used the notation ∆i = 1
E [K1(x)]

(
Ki(x)Y−i −E

[
Ki(x)Y−i

])
. In order to control the stochastic term, we will make

use of the Bernstein’s exponential inequality for which the main ingredient is to evaluate asymptotically the m-th order moment of
∆i:

E

(∣∣∣∣∣ 1
E [K1(x)]

K1Y−1

∣∣∣∣∣m)
=

1∣∣∣∣E [K1(x)]
∣∣∣∣mE

[∣∣∣∣K1

∣∣∣∣m∣∣∣∣Y−1 ∣∣∣∣m]
=

1∣∣∣∣E [K1(x)]
∣∣∣∣mE

[
E

[∣∣∣∣Y−1 ∣∣∣∣m | X = x
]

Km
1

]
=

1∣∣∣∣E [K1(x)]
∣∣∣∣mE

[
ϕm(Y−1 )Km

1
]

= E
[
ϕm(Y−1 )(K̂1)m

]
,

where
K̂i(·) =

Ki(·)
E [Ki(·)]

and recall that ϕm(Y) = E

[∣∣∣∣Y ∣∣∣∣m | X = x
]
.

By using the assumptions (A2), (A3) and (A5), we get

E
∣∣∣∣ (K̂1Y−1

) ∣∣∣∣m = E

∣∣∣∣∣∣
(

1
E [K1(x)]

K1Y−1

)∣∣∣∣∣∣m ≤ C3(φx(hn))−m+1.

This readily implies that
E

∣∣∣∣ (K̂1Y−1
) ∣∣∣∣m = O

(
(φx(hn))−m+1

)
. (38)

By the use of the Newton’s binomial formula, we obtain that

E
∣∣∣∣ (Y−1 K̂1 −E

[
Y−1 K̂1

]) ∣∣∣∣m = E
∣∣∣∣ m∑

l=0

Cm
l

(
Y−1 K̂1

)l (
E

[
Y−1 K̂1

])m−l
(−1)m−l

∣∣∣∣ ≤ m∑
l=0

Cm
l E

∣∣∣∣Y−1 K̂1

∣∣∣∣lE∣∣∣∣E [
Y−1 K̂1

] ∣∣∣∣m−l

≤

m∑
l=0

Cm
l E

∣∣∣∣Y−1 K̂1

∣∣∣∣l∣∣∣∣E [
E

[
Y−1 K̂1

]
| X1

] ∣∣∣∣m−l
≤ C

m∑
l=0

Cm
l (φx(hn))−l+1

∣∣∣∣GX1
1 (t)

∣∣∣∣m−l

≤ C max
0≤l≤m

(φx(hn))−l+1 = C (φx(hn))−m+1 .

We therefore obtain that
E

∣∣∣∣ (Y−1 K̂1 −E
(
Y−1 K̂1

)) ∣∣∣∣m = O
(
(φx(hn))−m+1

)
. (39)

Thus, to achieve this proof, it suffices to use the classical Bernstein’s inequality (see Corollary A8 in [24]) with

a2
n = (φx(hn))−1 ,
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and by using (A4) we obtain, for all τ > 0, that

P

∣∣∣∣Ĝn,hn;−(t; x) −E
[
Ĝn,hn;−(t; x)

] ∣∣∣∣ > τ
√

log n
nφx(hn)

 = P

∣∣∣∣ n∑
i=1

∆i

∣∣∣∣ > nτ

√
log n

nφx(hn)

 ≤ 2 exp
(
−

1
2
ϑn

)
,

where

ϑn =
τ2 log n

1 + τ
√

log n
nφx(hn)

,

and

∑
n≥1

P

∣∣∣∣Ĝn,hn;−(t; x) −E
[
Ĝn,hn;−(t; x)

] ∣∣∣∣ > τ
√

log n
nφx(hn)

 ≤ 2
∑
n≥1

exp
(
−Cτ2 log n

)
.

Thereby, for a strictly positive constant C, we choose τ > 1
√

C
to obtain that∑

n≥1

exp
(
−Cτ2 log n

)
< ∞.

This, implies that ∣∣∣∣Ĝn,hn;−(t; x) −E
[
Ĝn,hn;−(t; x)

]∣∣∣∣ = Oa.co.


√

log n
nφx(hn)

 . (40)

Hence the proof is complete. �

Proof of Lemma 2. Notice that we have

E
[
Ĝn,hn;−(t; x)

]
−G1(t; x) = E

− 1
nE [K1(x)]

n∑
i=1

Ki(x)Y−i

 − (
−E

[
Y− | X = x

])
= E

[
Y− | X = x

]
−

1
E [K1(x)]

E
[
K1(x)Y−1

]
=

1
E [K1(x)]

{
E

[
K1E

[
Y− | X = x

]]
−E

[
E

[
K1Y−1 | X1

]]}
=

1
E [K1(x)]

{
E

[
K1(x)E

[
Y− | X = x

]]
−E

[
Y−1 | X1

]}
=

1
E [K1(x)]

{
E

[
K1(x)

(
GX1

1 (t) −G1(t; x)
)]}
,

where Y−i = (Yi − t)1{(Yi−t)≤0}. We have

E
[
K1(x)

(
G1(t; X1) −G1(t; x)

)]
= E

(
K

(
d(x, X1)

hn

) (
G1(t; X1) −G1(t; x)

))
=

∫
K

(
d(x, z)

hn

) (
G1(t; z) −G1(t; x)

)
dPX1

=

∫
d(x,z)≤hn

K
(

d(x, z)
hn

) (
G1(t; z) −G1(t; x)

)
dPX1 =

∫
B(x,hn)

K
(

d(x, z)
hn

) (
G1(t; z) −G1(t; x)

)
dPX1

= E
[
K1(x)

(
G1(t; X1) −G1(t; x)

)
1B(x,hn)

]
.

By using the condition (A1)(for i = 1), we obtain that∣∣∣∣E [
Ĝn,hn;−(t; x)

]
−G1(t; x)

∣∣∣∣ =
1

E [K1(x)]

∣∣∣∣E [
K1(x)

(
G1(t; X1) −G1(t; x)

)
1B(x,hn)

] ∣∣∣∣ ≤ C11B(x,hn)dk1 (x, X1) ≤ C1hk1
n .

This readily implies that ∣∣∣∣E [
Ĝn,hn;−(t; x)

]
−G1(t; x)

∣∣∣∣ = O
(
hk1

n

)
. (41)

By combining the results (41) and (40), we establish the almost complete convergence of Ĝn,hn ,−(t; x) to G1(t; x). Thus, for all ε > 0,
we have ∑

n≥1

P

(∣∣∣∣Ĝn,hn;−(t; x) −G1(t; x)
∣∣∣∣ > ε) < ∞. (42)
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Finally, by Lemma 2 and 1, we get ∣∣∣∣Ĝn,hn;−(t; x) −G1(t; x)
∣∣∣∣ = O

(
hk1

n

)
+ Oa.co.


√

log n
nφx(hn)

 . (43)

Hence the proof is complete. �

Proof of Lemma 4. We observe that we have

E
[
Ĝn,hn;+(t; x)

]
−G2(t; x) = E

 1
nE [K1(x)]

n∑
i=1

Ki(x)Y+
i

 −E [
Y+ | X = x

]
=

1
E [K1(x)]

{
E

[
K1(x)

(
GX1

2 (t) −G2(t; x)
)]}
,

where
Y+

i = (Yi − t)1{(Yi−t)>0}.

Then, under assumption (A1)(ii), we get: ∣∣∣∣E [
Ĝn,hn;+(t; x)

]
−G2(t; x)

∣∣∣∣ = O
(
hk2

n

)
. (44)

By combining the results (35) and (44), we obtain the almost complete convergence of Ĝn,hn ,+(t; x) to G2(t; x). Thus for all ε > 0,
we have ∑

n≥1

P

(∣∣∣∣Ĝn,hn;+(t; x) −G2(t; x)
∣∣∣∣ > ε) < ∞. (45)

Finally, the application of Lemmas 4 and 3 yields to∣∣∣∣Ĝn,hn;+(t; x) −G2(t; x)
∣∣∣∣ = O

(
hk2

n

)
+ Oa.co.


√

log n
nφx(hn)

 . (46)

Hence the proof is complete. �

Proof of Theorem 2. Let us introduce

Zn =

(
nφx(h)
σ2

p(x)

) 1
2 (̂
θn,hn (p; x) − θ(p; x)

)
.

For z ∈ R, we set
δp(z, x) = θ(p; x) + z(nφx(h))−

1
2σp(x).

We have the following decomposition

P (Zn ≤ z) = P
(̂
θn,hn (p; x) ≤ δp(z, x)

)
= P

({̂
θn,hn (p; x) ≤ δp(z, x)

}
∩

{
Ĝn,hn;+

(
δp(z, x)

)
= 0

})
+P

({̂
θn,hn (p; x) ≤ δp(z, x)

)
} ∩

{
Ĝn,hn;+

(
δp(z, x)

)
, 0

})
= I1(x) + I2(x). (47)

The term I2(x) can be written as follows

θ̂n,hn (p; x) ≤ δp(z, x)⇐⇒
p

1 − p
≤ Ĝn,hn

(
δp(z, x); x

)
⇐⇒

p
1 − p

≤
Ĝn,hn;−

(
δp(z, x); x

)
Ĝn,hn;+

(
δp(z, x); x

) .
Using the fact that the function Ĝn,hn (·; x) is an increasing function and θ̂n,hn (p; x) is the unique solution of the equation Ĝn,hn (θ; x) =

p
1−p , we readily obtain

I2(x) = P

 p
1 − p

≤
Ĝn,hn;−

(
δp(z, x); x

)
Ĝn,hn;+

(
δp(z, x); x

)  = P

((
p

1 − p

)
Ĝn,hn;+

(
δp(z, x); x

)
− Ĝn,hn;−

(
δp(z, x); x

)
≤ 0

)
.

We have
I2(x) = P

(
L̂p(z, x) −E

[
L̂p(z, x)

]
≤ E

[
−L̂p(z, x)

])
, (48)

where

L̂p(z, x) =

(
p

1 − p

)
Ĝn,hn;+

(
δp(z, x)

)
− Ĝn,hn;−

(
δp(z, x)

)
.

In order to complete the proof of Theorem 2, we need first to prove the following Lemmas. Lemma 6 shows that I1(x) converges
to zero, and the Lemmas 7, 8 show the convergence in distribution of I2(x) to a standard normal random variable, as n tends to
infinity.
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Lemma 6. Assume that the hypotheses (A3), (A5) and (B3) are satisfied. We have, as n→ ∞,

I1(x) = o(1), (49)

where I1(x) is defined in the equation (47).

Due to the lack of space, the proof of Lemma 6 will be omitted.

Lemma 7. Assume that the hypotheses of Theorem 2 are satisfied. We have, as n→ ∞,(
nφx(h)
σ2

p(x)

) 1
2 (

Λp(θ(p; x); x)
)−1
E

[
−L̂p(z, x)

]
= z + o(1). (50)

Lemma 8. Suppose that the hypotheses of Theorem 2 hold true. We have, as n→ ∞,

(nφx(h))Var

 n∑
i=1

µi(x)

 −→ α2(x)γp(θ(p; x); x)
α2

1(x)
, (51)

and

Zn =

(
nφx(h)
σ2

p(x)

) 1
2 (

Λp(θ(p; x); x)
)−1 (

L̂p(z, x) −E
[
L̂p(z, x)

]) D
−→N(0, 1), (52)

where

µi(x) =
1

nE [K1(x)]
Ki(x)

(
Yi − δp(z, x)

) ( p
1 − p

1Ai + 1Ac
i

)
,

with Ai = {Yi > δp(z, x)} and Ac
i = {Yi ≤ δp(z, x)}.

Proof of Lemma 7. Keep in mind the definition

L̂p(z, x) =

(
p

1 − p

)
Ĝn,hn;+

(
δp(z, x)

)
− Ĝn,hn;−

(
δp(z, x)

)
,

and

G(θ(p; x); x) =
G1(θ(p; x); x)
G2(θ(p; x); x)

.

By the fact that θ(p; x) is the conditional expectile of G(·; x) of order p, i.e.,

G(θ(p; x); x) =
p

1 − p
.

We have

E
[
−L̂p(z, x)

]
= E

[
Ĝn,hn;−(δp(z, x); x)

]
−

p
1 − p

E
[
Ĝn,hn;+(δp(z, x); x)

]
=

(
E

[
Ĝn,hn;−(δp(z, x); x)

]
−G1(δp(z, x); x)

)
+

p
1 − p

(
G2(δp(z, x); x) −E

[
Ĝn,hn;+(δp(z, x); x)

])
+

(
G1(δp(z, x); x) −G1(θ(p; x); x)

)
−

p
1 − p

(
G2(δp(z, x); x) −G2(θ(p; x); x)

)
+

(
G1 (θ(p; x)) −

p
1 − p

G2 (θ(p; x); x)
)

= J1(x) + J2(x) + J3(x) + J4(x) + J5(x). (53)

By the fact that θ(p; x) is the unique solution of the equation (6), we infer that the term J5(x), in the last equation, is equal to zero.
We next evaluate the term J1(x) in the right side of (53). Taking into consideration the conditions (A1)(for i = 1), (A5) and (B3),
we have the following bound ∣∣∣∣J1(x)

∣∣∣∣ =
∣∣∣∣E [

Ĝn,hn;−(δp(z, x))
]
−G1(δp(z, x); x)

∣∣∣∣ ≤ C1hk1
n .

Following similar steps for J2(x) ans using the hypotheses (A1)(for i = 2), (A5) and (B3), we show that∣∣∣∣J2(x)
∣∣∣∣ =

p
1 − p

∣∣∣∣[E [
Ĝn,hn;+(δp(z, x))

]
−G2(δp(z, x); x)

]∣∣∣∣ ≤ C2hk2
n ,

which implies, for i = 1, 2, ∣∣∣∣Ji(x)
∣∣∣∣ = O(hki

n ).
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In order to evaluate the terms J3(x) and J4(x) in the right side of (53), we start with the Taylor’s expansion of the function G1(·; x)
to obtain

J3(x) = G1
(
δp(z, x); x

)
−G1 (θ(p; x); x) = zσp(x) (nφx(h))−

1
2 G1′ (θ(p; x); x) + o

(
(nφx(h))−

1
2
)
,

and the similar arguments for J4(x) yield to

J4(x) =

(
−

p
1 − p

)
G2(δp(z, x); x) −G2(θ(p; x); x) = zσp(x) (nφx(h))−

1
2

((
−

p
1 − p

)
G2′ (θ(p; x); x)

)
+ o

(
(nφx(h))−

1
2
)

Then, by setting

Λp (θ(p; x); x) = G1′ (θ(p; x); x) −
(

p
1 − p

)
G2′ (θ(p; x); x),

one can see that ∣∣∣∣∣∣∣
5∑

i=1

Ji(x)

∣∣∣∣∣∣∣ = O(hηn) + zσp(x) (nφx(h))−
1
2
(
Λp(θ(p; x); x)

)
+ o

(
(nφx(h))−

1
2
)
.

Under the assumption (B3), for η > min(k1, k2), we get the following result(
nφx(h)
σ2

p(x)

) 1
2 (

Λp(θ(p; x); x)
)−1 ∣∣∣∣E (

−L̂p(z, x)
) ∣∣∣∣ = O

(
nh2η

n φx(h)
) 1

2
+ z + o(1) = z + o(1).

Thus the proof is complete. �

Proof of Lemma 8. In what follows, we set

Zn =

(
nφx(h)
σ2

p(x)

) 1
2 (

Λp(θ(p; x); x)
)−1 (

L̂p(z, x) −E
[
L̂p(z, x)

])
.

We can apply the Lyapunov CLT to conclude that, as n −→ ∞,

Zn =
1

S n

n∑
i=1

(
µi(x) −E

[
µi(x)

]) D
−→N(0, 1), S n =

 n∑
i=1

Var(µi(x))


1
2

. (54)

In order to demonstrate that equation (54) holds, we start by computing the asymptotic variance of L̂p(z, x). We keep in mind the
following equations

L̂p(z, x) = L̂p(z, x) =

(
p

1 − p

)
Ĝn,hn;+

(
δp(z, x); x

)
− Ĝn,hn;−

(
δp(z, x); x

)
,

δp(z, x) = δp(z, x) = θ(p; x) + z(nφx(h))−
1
2σp(x).

We first write L̂p(z, x) in the following form

L̂p(z, x) =
p

1 − p

 1
nE [K1(x)]

n∑
i=1

Ki(x)
(
Yi − δp(z, x)

)
1(Yi−δp(z,x))>0

 − 1
nE [K1(x)]

 n∑
i=1

Ki(x)
(
Yi − δp(z, x)

)
1(Yi−δp(z,x))≤0


=

1
nE [K1(x)]

n∑
i=1

Ki(x)
(
Yi − δp(z, x)

) [ p
1 − p

1Ai + 1Ac
i

]
=

n∑
i=1

µi(x),

where we recall that µi(x), Ai and Ac
i are defined in Lemma 8. Thus we can simplify the problem of obtaining the asymptotic

variance of L̂p(z, x) by computing instated the variance of the sum of µi(x). We can therefore write the following equalities

(nφx(h))Var
(
L̂p(z, x)

)
= (nφx(h))Var

 n∑
i=1

µi(x)

 =
φx(h)

E2 [K1(x)]
Var

(
K1(x)

(
Y1 − δp(z, x)

) ( p
1 − p

1A1 + 1Ac
1

))

= φx(h)
E

[
K2

1 (x)
]

E2 [K1(x)]
E

 K2
1 (x)(Y1 − δp(z, x))2

(
p

1−p1A1 + 1Ac
1

)2

E
[
K2

1 (x)
]


−φx(h)E2

 K1(x)
(
Y1 − δp(z, x)

) (
p

1−p1A1 + 1Ac
1

)
E [K1(x)]


= T0(x)T1(x) + T2(x). (55)
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By conditioning with respect to X1, we readily obtain

E

[
K1(x)

(
Y1 − δp(z, x)

) ( p
1 − p

1A1 + 1Ac
1

)]
= E

[
K1(x)

{(
p

1 − p

)
G2

(
δp(z, x), X1

)
−G1(δp(z, x), X1)

}]
= E

[
K1(x)

{(
p

1 − p

)
M2(x) − M1(x)

}]
,

where, Mi(x) = Gi(δp(z, x), X1) −Gi(θ(p; x); x), for i ∈ {1, 2}. Under the assumption (A1), it follows immediately from the triangle
inequality that, for i ∈ {1, 2},

1d(x,X1)≤h

∣∣∣∣Mi(x)
∣∣∣∣ ≤ Cihki + z (nφx(h))−

1
2 σp(x)Gi′(θ(p; x); x).

From which we deduce that

E

 K1(x)
(
Y1 − δp(z, x)

) (
p

1−p1A1 + 1Ac
1

)
E [K1(x)]

 = o(1).

This, implies that
T2(x) = o(1). (56)

We next evaluate the term T1(x) in the right side of (55). We set

λp(δp; x) =

(
p

1 − p

)2

R+

(
δp(z, x); x

)
+ R−

(
δp(z, x); x

)
,

and

γp(θ(p; x); x) =

(
p

1 − p

)2

R+ (θ(p; x); x) + R− (θ(p; x); x) .

By the same previous arguments used to treat the T2(x), we have

T1(x) = E

 K2
1 (x)

(
Y1 − δp(z, x)

)2 (
p

1−p1A1 + 1Ac
1

)2

E
[
K2

1 (x)
]

 = E

 K2
1 (x)λp

(
δp, X1

)
E

[
K2

1 (x)
]  = E


K2

1 (x)
{(

p
1−p

)2
N2(x) + N1(x)

}
E

[
K2

1 (x)
]

 + γp (θ(p; x); x) ,

where
N1(x) = R−

(
δp(z, x); X1

)
− R− (θ(p; x); x) , N2(x) = R+

(
δp(z, x); X1

)
− R+(θ(p; x); x).

An application of the triangle inequality implies readily that

1d(x,X1)≤h

∣∣∣∣N1(x)
∣∣∣∣ ≤ C1hr1 + z (nφx(h))−

1
2 σp(x)R′−(θ(p; x); x),

1d(x,X1)≤h

∣∣∣∣N2(x)
∣∣∣∣ ≤ C2hr2 + z (nφx(h))−

1
2 σp(x)R′+(θ(p; x); x).

By combining the assumptions (A3) and (B1), (B3), we infer that

T1(x) = γp (θ(p; x); x) + o(1). (57)

We evaluate the term T0(x) in the right side of (55). Using similar arguments as in [24], we can show that

E
[
K j

1(x)
]

= K j(1)φx(h) −
∫ 1

0

(
(K j)

)′
(s)φx(sh)ds + o (φx(h)) for j ∈ {1, 2}. (58)

This when combined with (15) gives that, as n −→ ∞,

φx(h)E
[
K2

1 (x)
]

E2 [K1(x)]
−→

α2(x)
α2

1(x)
. (59)

By combining (56), (57) and (59) we obtain the statement (51). To derive the asymptotic normality, we will show the Lyapunov
conditions for the independent variables µi(x). Since the observations are i.i.d. and making use of the Cr-inequality (see [42,
p.155]), this implies, for some η > 0, that

(nφx(h))
2+η

2

n∑
i=1

E

[∣∣∣∣µi(x) −E
[
µi(x)

] ∣∣∣∣2+η
]
≤ 2η+1n(nφx(h))

2+η
2 E

[∣∣∣∣µ1(x)
∣∣∣∣2+η

]
+ 2η+1n(nφx(h))

2+η
2

∣∣∣∣E [
µ1(x)

] ∣∣∣∣2+η

= A1(x) + A2(x).
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Through conditioning with respect to X1 and using the conditions (B2) and (B3), we obtain

A1(x) = 2η+1 (nφx(h))
−η
2

(
φx(h)

E [K1(x)]

)2+η

×E

 K2+η
1 (x)
φx(h)

∣∣∣∣Y1 − δp(z, x)
∣∣∣∣2+η∣∣∣∣ p

1 − p
1A + 1Ac

∣∣∣∣2+η


≤

(
max

(
1,

p
1 − p

))2+η

2η+1 (nφx(h))
−η
2

(
φx(h)

E [K1(x)]

)2+η

×E

 K2+η
1 (x)
φx(h)

E

(∣∣∣∣Y1 − δp(z, x)
∣∣∣∣2+η

| X1

) ≤ C (nφx(h))
−η
2 .

This, implies that
A1(x) −→ 0 as n −→ ∞. (60)

In order to evaluate A2(x), we use the same arguments as those involved in the proof of T2(x). We get

A2(x) = 2η+1n (nφx(h))
2+η

2

∣∣∣∣E [
µ1(x)

] ∣∣∣∣2+η

= 2η+1n−
η
2 (φx(h))

2+η
2

∣∣∣∣∣∣∣E
 K1(x)(Y1 − δp(z, x))( p

1−p1A + 1Ac )

E [K1(x)]


∣∣∣∣∣∣∣
2+η

= 2η+1n−
η
2 (φx(h))

2+η
2

∣∣∣∣T2(x)
∣∣∣∣2+η

.

By combing the condition (56) with the assumption (A3), we obtain

A2(x) = o(1). (61)

Consequently, from (60), (61) and (51), for some η > 0, we infer that, as n −→ ∞,

1

(nφx(h))
2+η

2 S 2+η
n

(nφx(h))
2+η

2

n∑
i=1

E

[∣∣∣∣µi(x) −E
[
µi(x)

] ∣∣∣∣2+η
]
−→ 0. (62)

We conclude from (62) that the Lyapunov condition is verified which, implies the convergence in distribution of Zn to a standard
normal N(0, 1). We therefore obtain, as n −→ ∞,

(nφx(h))Var
(
L̂p(z, x))

)
−→ σ2

p(x)Λ2
p (θ(p; x); x) . (63)

Combining (51) and (63), we infer

σ2
p(x)Λ2

p (θ(p; x); x) =
α2(x)γp(θ(p; x); x)

α2
1(x)

.

Thus by (47) and (49) whith (48), we get

P(Zn ≤ z) ≤ o(1) +P
(
Zn ≤ Un.E

[
−L̂p(z, x)

])
, (64)

where

Un =

(
nφx(h)
σ2

p(x)

) 1
2 (

Λp(θ(p; x); x)
)−1

.

Finally, in order to prove Theorem 2, we combine (64) with the equations (50), (51) and (52). �

Proof of Theorem 3. The proof is based on the same arguments as those used in the proof of Theorem 1. However the bias
term is not affected by the dependence assumption. So, it remains to evaluate the asymptotic behaviors of the variance terms of
Ĝn,hn;−(t; x) and Ĝn,hn;+(t; x) to prove the convergence in probability of the estimator θ̂n,hn (p; x) stated in Theorem 3.

Lemma 9. Under the hypotheses of the Theorem 3, we have, as n→ ∞,

Var
[
Ĝn,hn;−(t; x)

]
= O

(
n

φx(hn)

)
, (65)

and

Var
[
Ĝn,hn;+(t; x)

]
= O

(
n

φx(hn)

)
. (66)

Proof of Lemma 9. The proof of this lemma is omitted, it follows the same lines of the proof of Lemma 11.5 in [24]. �
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7. Appendix

7.1. Demonstration of Remark 1: the function G(·; x) is increasing.
Recall that

G(t; x) =
G1(t; x)
G2(t; x)

, (67)

where

G1(t; x) = −E
[
(Y − t)1{(Y−t)≤0} | X = x

]
,G2(t; x) = E

[
(Y − t)1{(Y−t)>0} | X = x

]
.

If t1 > t2, we get, −(y − t1) ≥ −(y − t2) and∫ t2

−∞

−(y − t2)F x
Y (y) ≤

∫ t2

−∞

−(y − t1)dF x
Y (y),

where F x
Y (·) is the distribution function of Y conditional on {X = x}: then∫ t2

−∞

−(y − t2)dF x
Y (y) ≤

∫ t1

−∞

−(y − t1)dF x
Y (y),

which implies that

E
(
−(Y − t2)1(Y−t2)≤0 | X = x

)
≤ E

(
−(Y − t1)1(Y−t1)≤0 | X = x

)
.

Then, G1(·; x) is an increasing function. Similarly, if t1 > t2 for G2(·; x)∫ +∞

t2

(y − t2)dF x
Y (y) ≥

∫ +∞

t2

(y − t1)dF x
Y (y) ≥

∫ +∞

t1

(y − t1)dF x
Y (y),

This implies that

E
(
(Y − t2)1(Y−t2)>0 | X = x

)
≥ E

(
(Y − t1)1(Y−t1)>0 | X = x

)
.

We readily infer that G2(·; x) is a decreasing function. Therefore we obtain that G(·; x) is an increasing function. �

7.2. Bernstein’s inequality.
Let Z1, . . . ,Zn be independent real zero mean random variables. If for all m ≥ 2, there exists a constant Cm > 0, such that

E|Zm
1 | ≤ Cma2(m−1),

we have for ε > 0,

P


∣∣∣∣∣∣∣

n∑
i=1

Zi

∣∣∣∣∣∣∣ > εn
 ≤ 2 exp

(
−ε2n

2a2(1 + ε)

)
. (68)

7.3. Lyapunov CLT.
In this variant of the central limit theorem, the random variables Xi have to be independent, but not necessarily identically

distributed. The theorem also requires that random variables have moments of order (2 + δ), δ > 0.

Theorem 4. Suppose {X1, X2, . . .} is a sequence of independent random variables, each with a finite expected value µi and variance

σ2
i . Define s2

n =

n∑
i=1

σ2
i . If for some δ > 0, the Lyapunov’s condition

lim
n−→∞

1
s2+δ

n

n∑
i=1

E
[
| Xi − µi|

2+δ
]

= 0,

is satisfied, then we have, as n→ ∞,
1
sn

n∑
i=1

(Xi − µi)
D
−→N(0, 1).
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