
HAL Id: hal-02934136
https://hal.science/hal-02934136v1

Submitted on 27 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speeding-Up Verification of Digital Signatures
Abdul Rahman Taleb, Damien Vergnaud

To cite this version:
Abdul Rahman Taleb, Damien Vergnaud. Speeding-Up Verification of Digital Signatures. Journal of
Computer and System Sciences, 2021, 116, pp.22-39. �10.1016/j.jcss.2020.08.005�. �hal-02934136�

https://hal.science/hal-02934136v1
https://hal.archives-ouvertes.fr

Speeding-Up Verification of Digital Signatures

Abdul Rahman Taleb1, Damien Vergnaud2,

Abstract

In 2003, Fischlin introduced the concept of progressive verification in cryptog-
raphy to relate the error probability of a cryptographic verification procedure
to its running time. It ensures that the verifier confidence in the validity of a
verification procedure grows with the work it invests in the computation. Le,
Kelkar and Kate recently revisited this approach for digital signatures and pro-
posed a similar framework under the name of flexible signatures. We propose
efficient probabilistic verification procedures for popular signature schemes in
which the error probability of a verifier decreases exponentially with the ver-
ifier running time. We propose theoretical schemes for the RSA and ECDSA
signatures based on some elegant idea proposed by Bernstein in 2000 and some
additional tricks. We also present a general practical method, that makes use
of efficient error-correcting codes, for signature schemes for which verification
involves a matrix/vector multiplication.

Keywords: Public-Key Cryptography, Digital Signatures, Probabilistic
Verification, RSA Signatures, ECDSA Signatures, GPV Signatures

1. Introduction

It is common in public-key cryptography, that parties need to repeatedly
verify equations that ensure the validity of some input (e.g. for digital signa-
ture schemes, commitment schemes, or proof systems). In 2003, Fischlin [21]
introduced the idea of progressive verification in cryptography to relate the er-
ror probability of a verification procedure to its running time. This concept
overcomes the property that a verifier remains oblivious about the validity of a
verification procedure until it is actually completed. Fischlin’s approach ensures
that the verifier confidence grows with the work it invests in the computation.

Digital signatures are arguably the most important cryptographic primi-
tive and fast signature verification is extremely desirable in many applications
(especially for numerous low computation scenarios such as RFID, wireless sen-
sors or smart cards). Therefore, as explicitly mentioned in Fischlin’s work,

Email addresses: taleb.abdulrahman1@gmail.com (Abdul Rahman Taleb),
damien.vergnaud@lip6.fr (Damien Vergnaud)

1Sorbonne Université, CNRS, LIP6, Paris, France and CryptoExperts
2Sorbonne Université, CNRS, LIP6, Paris, France and Institut Universitaire de France

Preprint submitted to Elsevier September 24, 2020

it is interesting to find non-trivial signature schemes in which the underlying
number-theoretic function is somewhat progressively verifiable. In a digital sig-
nature protocol with progressive verification, the goal is to design a probabilistic
verification procedure (in addition to the classical deterministic verification al-
gorithm) that takes as input a message m, a public-key vk, a putative digital
signature σ on m for vk, and a timing parameter τ and outputs some real
number α ∈ [0, 1] (or the special symbol ⊥ if σ is detected as invalid). The pro-
gressive verification algorithm never rejects valid signatures and α represents
its confidence level on the signature validity. This algorithm can be seen as a
probabilistic method to spot flawed signatures faster than using the classical
deterministic verification algorithm. The progressive verification procedure is
sound if it accepts any invalid signature with probability at most α (over the
random choices of the verification procedure). Recently, Le, Kelkar and Kate
recently revisited Fischlin’s concept for digital signatures (under the name of
flexible signatures) [41]. They presented a progressive probabilistic verification
for the classical one-time signatures of Lamport. The goal of this paper is to
present efficient and secure progressive verification procedures for popular sig-
nature schemes (including RSA, ECDSA and GPV signature schemes).

1.1. Prior Work
Digital signatures are a cryptographic mechanism used to verify the authen-

ticity and integrity of digital data. They allow a signer who has established
a public verification key to sign a message such that any other party can ver-
ify that the message originated from the signer and was not modified in any
way. This primitive is of paramount importance for building secure systems
and are used in most real-world security protocols. However, for most signa-
ture schemes, many computation devices with limited computation power are
not able to perform signature verification which is both time and power con-
suming. Many techniques have been suggested over the years to decrease the
computational overhead of signature verification.

A lot of work in cryptography has been devoted to design schemes allowing
to perform expensive tasks in batch rather than individually to achieve better ef-
ficiency. For instance, in order to speed up the verification of several signatures,
Bellare, Garay and Rabin [4] proposed batch verification to securely verify a set
of digital signatures. For the verification of individual signatures, the concept
of server-aided verification was proposed by Quisquater and de Soete [45] for
speeding up RSA verification with a small exponent. Protocols for signature
schemes were subsequently proposed and Girault and Lefranc formalized the
concept in [29]. This paradigm allows signatures to be verified by executing an
interactive protocol with an untrusted server which requires less computation
than the original verification algorithm of the digital signature.

For all these verification procedures, a verifier performs a certain number
of verification steps and finally outputs a decision; the error probability of this
decision is usually null or at most negligible. However, if a verification algo-
rithm is stopped after some computation steps but before its end, the algorithm
usually cannot predict the result better than before the start of computation.

2

all-or-nothing
verification

error
probability

time
progressive
verification

error
probability

time
linear progressive

verification

error
probability

time

Figure 1: Principle of Progressive Verification

In [21], Fischlin called this all-or-nothing verification: in order to give a reliable
decision one must run the full verification procedure (see Figure 1, left part).
Fischlin introduced the idea of progressive verification with the goal to relate
the error probability of the decision to the running time of the verifier. As
shown in Figure 1 (right part), one wants the error probability of the verifier’s
decision to decrease quickly with the number of performed steps of the verifi-
cation procedure. Fischlin focused on message authentication codes in [21] and
hash chains in [22] and left open the problem of designing signature schemes in
which the underlying number-theoretic function is progressively verifiable.

As mentioned above, Le, Kelkar and Kate [41] showed that the classical
one-time Lamport signature scheme [40] is suitable for progressive verification
in which the error probability of the verifier’s decision decrease linearly with
the number of performed steps of the verification procedure. Indeed, in this
signature scheme, a verifier validates a signature by checking whether k (inde-
pendent) equations hold (where k is the length of the signed message), and the
progressive verification procedure consists in checking each equation in a ran-
dom order. In the following, we will use the term linear progressive verification
for such schemes that run atomic verification of independent computation in a
random order and for which the error probability thus decreases linearly with
its number of sequential executions (see Figure 1, middle part). They also pro-
posed a (linear) progressive verification scheme for Merkle tree signatures [43].
This idea of using intermediate values of the computation has also been used
in the context of verification of hash chains before (see e.g. [34, 35, 36, 37] and
references therein).

Many identification protocols proceeds in sequential rounds such that in each
round a cheating prover will be caught with some small probability, say, 1/2 or
2/3 (e.g. [19] in factoring-based cryptography, [49, 50] in code-based cryptog-
raphy, [39] in lattice-based cryptography or [46] in multivariate cryptography).
Repeating the protocol permits to reduce the soundness error of these iden-
tification systems. Fischlin already noted in [21] that using the Fiat-Shamir
heuristic [20], we obtain digital signature schemes suitable for linear progressive
verification. These resulting signature schemes are often less efficient (in compu-
tational complexity or communication complexity) than other schemes based on

3

similar assumptions, but which do not support the linear progress of verification
(e.g. [32] in factoring-based cryptography, [16] in code-based cryptography, [42]
in lattice-based cryptography and [44] in multivariate cryptography). The latter
schemes often significantly outperform the former ones even with probabilistic
verification.

In their paper, Le et al. mentioned that lattice-based signature schemes such
as GPV signatures [27] are also good candidates for progressive verification.
Indeed, for this scheme, the public verification key is a matrix, a signature is
a vector and verification consists in a matrix/vector multiplication. Le et al.
outlined a progressive verification method in which one checks the validity on
each row of the matrix (in a random order) but again the error probability of
the verifier’s decision decreases only linearly with the verifier computation time.
Finally, they also claimed that “prominent traditional signature schemes such
as RSA, (EC)DSA seem unsuitable towards building flexible signatures”.

1.2. Contributions of the Paper
We revisit the concept of progressive verification for digital signatures, with

the goal to propose efficient probabilistic verification procedures for popular sig-
nature schemes in which the error probability decreases exponentially with the
number of verification steps (see Figure 1, right part). We present three tech-
niques for such progressive verification of important digital signature schemes
based on the RSA primitive, on the discrete logarithm problem on elliptic curves
(and in particular ECDSA) and on GPV signatures and variants where the ver-
ification procedure consists in a matrix/vector multiplication.

1.2.1. RSA signatures
The RSA signature is one of the most elegant and well-known signature

schemes. It is extensively used in a wide variety of applications, and serves as
the basis of several existing standards. The public key is a pair (N, e) where N
is an integer (of unknown factorization) and e is an integer coprime with ϕ(N)
(the Euler totient function of N); a signature of a message m is an element
σ ∈ ZN such that

σe ≡ H(m) mod N (1)

where H is an appropriate hash function that maps messages of arbitrary length
to elements in ZN .

In [6], a paper that predates Fischlin’s paper [21], Bernstein proposed an
elegant verification procedure for Rabin signatures which can be seen as prob-
abilistic verification. In Rabin signatures, the verification equation is roughly
speaking (1) but with e = 2; in this case, one can add to the signature the inte-
ger k such that σ2 = H(m)+kN (and adding this element does not decrease the
security since it can be computed easily from the signature σ). Using classical
techniques, one can then check the validity of this equation over Z by mapping
it to a random quotient ring Zp of Z for some prime number p. To increase its
confidence, a verifier can simply map the equality to enough quotient rings and
the error probability decreases exponentially with the number of tested prime

4

numbers. Since, in this case, we have e = 2 in (1), the integer k is smaller
than N and the signature size is at most doubled. A naive approach for RSA
signatures (already mentioned by Wagner in [53]), is to add to the signature the
integer k such that σe = H(m) +kN and then check this equality modulo small
prime numbers. This approach is only suitable for very small public exponents
e since the integer k is close to Ne−1 and thus the signature size is multiplied
by e. As a first example of a signature scheme with progressive verification, we
present a variant of the RSA signature based on Bernstein’s technique where
the signature size is multiplied only by a factor O(log(e)). It relies on a simple
trick and serves as an introduction to the primitive. It is worth mentioning
that this verification technique to the so-called RSA Full Domain Hash signa-
ture scheme [5] can also be applied to other paddings (e.g. RSA-PSS [5]) and
variants of RSA in the standard security model (i.e. without the random oracle
heuristic assumption, e.g. Cramer-Shoup signatures [14]). This construction is
mainly of theoretical interest since, even if it achieves a good efficiency improve-
ment in the verification procedure, the increase of the signature size makes it
useless in most practical settings where the additional power consumption for
reading the signature outweighs the efficiency gain.

1.2.2. ECDSA signatures
The Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature

Algorithm (ECDSA) [38] are efficient digital signature schemes which produce
(reasonably) short signatures and whose securities rely on the discrete logarithm
problem in their respective underlying groups. Due to its small key size, thanks
to the (assumed) stronger difficulty of this problem on elliptic curves, ECDSA
has a fast signing algorithm and is therefore used in many standard crypto-
graphic libraries and in cryptocurrencies. For a security parameter λ, ECDSA
signatures have size O(λ) bits and their verification requires O(λ) operations in
the underlying finite field Fq with log(q) = O(λ). This gives an overall binary
complexity O(λ3) (i.e. without using fast arithmetic3 in Fq) for verification
which is asymptotically faster than the O(log(e)λ6) binary complexity for RSA
verification (for which the key size is cubic in the security parameter). How-
ever, in practice for λ = 128 and small public exponent e, RSA verification is
faster than ECDSA verification. It is thus interesting to propose an efficient
progressive verification procedure for ECDSA.

A natural approach is to use Bernstein’s idea from [6] and to consider all
equalities that occur in an ECDSA verification over the ring Z instead of over
Zq. It is indeed possible to combine readily this idea with our trick introduced
for RSA progressive verification for models of elliptic curves where the group
arithmetic does not involve division in the ring Zq. These elliptic curve mod-
els are the most widely used in cryptography since it is usually too costly to
compute inverses in Zq. We present a more efficient approach using the clas-

3Using fast arithmetic, the verification algorithms have bit complexity Õ(λ2) for ECDSA
and Õ(log(e)λ3) for RSA (where the Õ notation “ignores” logarithmic factors).

5

sical Weierstrass affine model of elliptic curves. In this case, the group law on
the elliptic curve requires the computation of inverses modulo q and it is not
clear how to handle these equations in the ring Z and its quotient rings Zp
for small prime numbers p. Indeed, for a small prime p, a random element in
{1, . . . , q− 1} will not be invertible modulo p with probability close to 1/p. We
present a progressive verification scheme for ECDSA signature with bit com-
plexity O(τ log(p)λ2) where the probability error decreases exponentially with
τ , and log(p) is much smaller than λ. The signatures generated have size O(λ2)
bits (e.g. still asymptotically shorter than RSA signatures) and their security
is identical to the security of original ECDSA signatures. As for RSA, our
technique is generic and can be applied to many elliptic-curve based digital sig-
natures (e.g. Schnorr signatures [47]) and is also mainly of theoretical interest
(since the increase of the signature size outweighs the efficiency gain).

1.2.3. GPV signatures and variants
In 2008, Gentry, Peikert and Vaikutanathan [27] proposed a lattice-based sig-

nature scheme with strong security guarantees and good asymptotic efficiency.
Given some integers p, n, m, the public key is a basis A ∈ Zn×mp of a random
lattice Λ; a signature of a message m is a "short" vector ~σ ∈ Zmp such that:

A · ~σ = H(m) (2)

where H is an appropriate hash function that maps messages of arbitrary length
to elements in Znp . Checking that ~σ is “short” can be done efficiently and the most
time-consuming operation in GPV signature verification is checking whether (2)
holds. As mentioned above, it consists therefore in performing a matrix/vector
multiplication in Zp and one can obtain a linear progressive verification proce-
dure by checking each row of (2) in a random order.

As the main contribution of the paper, we propose a progressive verification
scheme for GPV signatures. In randomized computation, Freivalds’ algorithm
[24] is a well-known probabilistic algorithm used to verify (square) matrix mul-
tiplication: given three matrices A, B and C in Zn×np , the algorithm checks
whether A·B = C in time4 O(τn2) for some parameter τ (with error probability
bounded by 2−τ). It simply picks uniformly at random τ vectors ~r1, . . . , ~rτ ∈ Znp
and computes successively ~si = B~ri, ~ti = A~si = (A · B)~ri and ~ui = C~ri for
i ∈ {1, . . . , τ}. and accepts if and only if ~ti = ~ui for all i ∈ {1, . . . , τ}. This
approach does not seem applicable to check our matrix/vector multiplication
(at least without doing some off-line pre-computation5).

4i.e. faster than computing AB with requires O(n2.3729) operations in Zp using the best
known matrix multiplication algorithm [54].

5Added in proof. Recently, Boschini, Fiore and Pagnin [11] revisited flexible signatures
from [41] . They proposed another way to speed up the verification process of lattice-based
signatures (similar to Freivalds’ algorithm [24]). It requires (secret) pre-processing from the
verifier (that can be re-used an unbounded number of times). The verifier has to store some
secret verification key (different for each signer public key) but the resulting verification pro-
cedure is then very efficient.

6

Instead, our approach makes use of error-correcting codes and in particular of
(`, n, δ`)-linear codes which minimum distance satisfies the Gilbert-Varshamov
Bound. The new progressively verifiable signature scheme does not modify the
signatures (and in particular does not increase their size) but modifies the public
key (and increases its size). We consider G ∈ Z`×np a generator matrix for some
linear code over Zp with ` > n. The new public key consists in the two matrices
G · A ∈ Z`×mp and G ∈ Z`×np . Instead of checking whether (2) holds, the
verification procedure checks the equality

(GA) · ~σ = G · H(m) (3)

which obviously holds if (2) holds (and conversely (2) holds if (3) holds and G
is of full rank). This approach makes the complete verification of (3) costlier
than the one of (2) but allows for progressive verification. Indeed, if the code
generated by G is a “good” error-correcting code then it has no non-zero code-
words of “small” Hamming weight (i.e. with a “large” number of null coordinates
in Zp). Therefore, if A · ~σ − H(m) 6= ~0, then the vector G · (A · ~σ − H(m))
has a “large” number of non-zero coordinates and checking that a “sufficiently
large” set of rows in (3) coincide ensures with “good” probability that (3) holds
for all rows (and thus that the signature is valid). Using reliable and proba-
bilistic constructions of (`, n, δ`)-linear codes, we can make all these statements
mathematically precise and improve significantly the efficiency of GPV signa-
ture verification. This approach is actually very general and can be used to
improve the efficiency of other cryptographic operations which involve a ma-
trix/vector multiplication. In particular, we show how our technique improves
also the verification procedure of the recent signature scheme called Wave and
proposed by Debris-Alazard, Sendrier and Tillich in [16].

1.3. Organization of the Paper
The rest of the paper is organized as follows. In Section 2, we briefly describe

the model assumed in our paper and provide some notation used throughout it.
Section 3 presents and analyzes our RSA-based progressively verifiable signature
scheme based on Bernstein’s idea from [6]; it also contains efficiency analysis and
implementation results. In Section 4, we recall some standard facts on elliptic
curve arithmetic and we present our variant of ECDSA signatures with progres-
sive verification; it ends with efficiency analysis of our new scheme. Section 5
recalls needed facts on GPV and Wave signature schemes, on the probabilistic
construction of (`, n, δ`)-linear codes suitable for our needs that satisfies the
Gilbert-Varshamov Bound, and presents the new verification scheme together
with a mathematical analysis of its security and efficiency. This section ends
with a brief performance analysis and comparison to basic verification proce-
dure for these two signature schemes. We conclude the paper with a few open
problems for future research in Section 6.

7

2. Preliminaries

2.1. Notations
We denote the security parameter by λ ∈ N which is given to all algorithms

in the unary form 1λ. Algorithms are randomized unless otherwise stated, and
PPT stands for “probabilistic polynomial-time,” in the security parameter. We
denote random sampling from a finite set X according to the uniform distribu-
tion with x $←− X. We also use the symbol $←− for assignments from randomized
algorithms, while we denote assignment from deterministic algorithms and cal-
culations with the symbol ←. If n is an integer, we write Zn for the ring Z/nZ.
We let Z∗n the invertible elements of Zn. As usual, f ∈ negl(λ) denotes a func-
tion that decreases faster than the inverse of any polynomial in λ; such functions
are called negligible.

In the following, implementation and timings are provided for the different
signature schemes. All implementations were run on a laptop computer (In-
tel(R) Core(TM) i7-8550U CPU, 1.80GHz with 4 cores) using Ubuntu operating
system and various cryptographic libraries.

2.2. Progressive Verification of Signatures
In this section, we recall the syntax of digital signatures and the notion of

(strong) existential unforgeability. Note that all schemes used in this work are
proven existentially unforgeable under standard complexity assumptions (in the
random oracle model or in the generic group model). Formally, a digital signa-
ture scheme consists of three algorithms, namely the key generation algorithm,
the signing algorithm and the verification algorithm.

Definition 1 (Digital signatures). A digital signature scheme Σ is a triple of
PPT algorithms Σ = (KeyGen, Sign,Verify) such that:

• The key generation algorithm KeyGen, on input security parameter 1λ,
generates a key pair (sk, vk)

$←− KeyGen(1λ); sk is called the (secret) signing
key and vk is called the (public) verification key;

• the signing algorithm Sign, on input a signing key sk and a message m ∈
{0, 1}∗, outputs a signature σ $←− Sign(sk,m);

• the (deterministic) verification algorithm Verify, on input a verification
key vk, a message m ∈ {0, 1}∗, and a bit string σ, outputs a bit b ←
Verify(vk,m, σ),

and the scheme Σ satisfies the following correctness property: ∀λ ∈ N, ∀(sk, vk)
$←−

KeyGen(1λ), ∀m ∈ {0, 1}∗,∀σ $←− Sign(sk,m), then Verify(vk,m, σ) = 1.
If for some verification key vk, some message m ∈ {0, 1}∗ and some bit-string
σ ∈ {0, 1}∗, we have Verify(vk,m, σ) = 1 then σ is called a signature on m for
vk.

8

Remark 1. It is worth noting that in most existing works, the verification
algorithm is assumed to be deterministic. We use the same approach in this
work even if our definitions and techniques can be applied to digital signature
schemes with probabilistic verification as defined in [23].

We recall the strong6 EUF-CMA security notion:

Definition 2 (Strong EUF-CMA Security). A digital signature scheme Σ =
(KeyGen, Sign,Verify) is strongly secure against existential forgeries in a chosen-
message attack (strongly EUF-CMA-secure) if the advantage of any PPT adver-
sary A against the EUF-CMA game defined in Figure 2 is negligible:

AdvEUFA,Σ(λ) = Pr
[
EUFAΣ (λ) = 1

]
∈ negl(λ).

EUFAΣ (λ):
L← ∅
(sk, vk)

$←− Σ.KeyGen(1λ)

(m∗, σ∗)← ASign(·),Verify(·,·),H(·)(1λ)

if (m∗, σ∗) 6∈ L
return Σ.Verify(vk,m∗, σ∗)

return 0

Sign(m):

σ
$←− Σ.Sign(sk,m)

L← L ∪ {(m,σ)}
return σ

Verify(m,σ):
return Σ.Verify(vk,m, σ)

Figure 2: Strong EUF-CMA experiment for digital signature schemes.

Given two functions t : N → N and ε : N → [0, 1], we also define a (t, ε)-
EUF-CMA-adversary as a probabilistic algorithm A for which the expected run-
ning time of the experiment EUFAΣ (λ) is upper-bounded by t(λ) and its advan-
tage AdvEUFA,Σ(λ) is lower-bounded by ε(λ).

We now give the syntax of digital signatures with probabilistic verification.
Note that our definition differs from the definition of flexible signatures from [41].
Our security definition for the progressive verification is statistical rather than
computational in [41]. For that reason and to avoid confusion between the two
primitives, we use the name put forth by Fischlin in his seminal work [21].

Definition 3 (Digital signatures with progressive verification). A digital sig-
nature scheme with progressive verification Σ is a 4-tuple of PPT algorithms
Σ = (KeyGen, Sign,Verify,ProgVerify) such that:

• Σ = (KeyGen, Sign) is a correct digital signature scheme;

6In contrast to the weak version, the adversary is allowed to forge for a message that they
have queried before, provided that their forgery is not an oracle response.

9

• the (probabilistic) progressive verification algorithm Verify, on input a ver-
ification key vk, a message m, and a bit string σ, and some timing param-
eter τ outputs α $←− ProgVerify(vk,m, σ, τ) where α is either a real number
in [0, 1] or the special symbol ⊥,

with the following properties:

1. if for some verification key vk, some message m ∈ {0, 1}∗, some bit-string
σ ∈ {0, 1}∗, and some timing parameter τ , ProgVerify(vk,m, σ, τ) outputs
⊥ then we have Verify(vk,m, σ) = 0 (i.e. σ is not a signature on m for
vk).

2. if for some verification key vk, some message m ∈ {0, 1}∗, some bit-string
σ ∈ {0, 1}∗ and some timing parameter τ , ProgVerify(vk,m, σ, τ) outputs
α then Verify(vk,m, σ) = 0 with probability at most 1− α (taken over the
random coins of ProgVerify).

With our definition, the progressive verification algorithm never rejects valid
signatures. When this algorithm ProgVerify(vk,m, σ, τ) outputs some real num-
ber α ∈ [0, 1], α represents its confidence level on the signature validity: when
α = 0, the progressive verification algorithm has no information on the validity
of σ as a signature of m for vk whereas for α = 1, we have Verify(vk,m, σ) = 1
with certainty. This model of progressive verification with “one-sided error”
is reminiscent of the probabilistic complexity class RP and Monte-Carlo al-
gorithms7. We can see this definition as a method to spot flawed signatures
prematurely. As mentioned in the introduction, a digital signature scheme with
progressive verification is interesting if it is secure against existential forgeries in
a chosen-message attack and if rejecting invalid signatures grows with the per-
formed work. In the schemes we present in the rest of the paper, we will obtain
constructions where α = 2−Ω(τ) (i.e. in which the error probability decreases
exponentially with the timing parameter).

3. RSA Signatures

3.1. Description
In this paragraph, we first recall the description of the classical RSA Full

Domain Hash (RSA-FDH) signature scheme from [5]. It achieves EUF-CMA-
security in the random oracle model assuming the so-called RSA computational
assumption [5] (which is a stronger assumption than the difficulty of the integer
factoring problem).

Our description involves a security parameter λ ∈ N (following Definition 1);
this integer λ represents the bit size of the RSA moduli generated but not

7Another possible approach is to consider signatures with progressive verification in which
the progressive verification algorithm takes as input a confidence level and prematurely ter-
minate the verification according to this level and then decide about validity of the given
signature.

10

actually the security level of the signature scheme. To achieve a security level of
κ security bits (i.e. a probabilistic adversary cannot break the RSA assumption
and thus the scheme in expected time less than O(2κ)), we must choose at least
λ = Ω(κ3) to prevent the best known factoring methods.

The RSA-FDH signature scheme consists of the following procedures:

• KeyGen(1λ): In order to generate the keys, one picks uniformly at random
two (λ/2)-bits prime numbers p and q, and defines the public modulus
N = pq. Then, a public exponent e is chosen such that 1 < e < ϕ(N)
and gcd(e, ϕ(N)) = 1, where ϕ denotes Euler’s totient function. The
private key d is then computed as the modular inverse of e in Zϕ(N). The
verification key is vk = (N, e,H) where H is a cryptographic hash function
H : {0, 1}∗ → ZN , while the signing key is sk = (N, d,H).

• Sign(sk,m): To sign a message m ∈ {0, 1}∗, the signer computes the hash
value h = H(m) ∈ ZN , and outputs the signature σ = hd mod N .

• Verify(vk,m, σ): To determine the validity of a signature σ of a messagem,
one computes h′ = σe mod N and h = H(m). The signature is accepted
if and only if h = h′.

In this deterministic verification algorithm, the value h′ = σe mod N needs to
be computed entirely before deciding on the validity of the signature. In fact,
the verification is an all-or-nothing algorithm where no information is revealed
before the complete exponentiation algorithm is executed. Our goal in the rest
of this section is to provide a modified version of the RSA signature scheme
where the verification is made progressive.

3.2. RSA Signatures with Progressive Verification
As mentioned in the introduction, our progressive scheme of the RSA-FDH

signature uses the elegant idea proposed by Bernstein in [6]. To test whether
an integer in Z is equal to 0, one simply tests if it is equal to 0 modulo small
prime numbers.

When verifying a signature σ of a message m, one tests that the equality
σe = H(m) mod N holds. This can be rewritten as σe − H(m) = 0 mod N ,
which holds modulo an integer N of bit-length λ. With the trick from [6], a
faster way to test the equality is to consider the quotient k of the Euclidean
division of σe by N , and verify that c = 0 where c = σe −H(m)− k ·N . This
can be done fast by checking if c is divisible by a random prime p of bit-length
equal to some parameter µ� λ. Indeed, since c is an integer of bit-length e · λ,
it cannot be divisible by more than de ·λ/µe distinct primes of bit-length µ. By
the prime number theorem (see below for a precise statement), it is known that
the number of prime numbers of bit-length µ is roughly equal to 2µ/(2µ). For
a random prime p smaller than 2µ, we thus have :

Pr
p prime, 2µ−1<p<2µ

[c 6= 0 ∧ c = 0 mod p] ≤ e · λ
2µ−1

(4)

11

This is the probability of accepting an invalid signature, when c = σe−H(m)−
k · N 6= 0 but is divisible by the prime p which makes the equality c = 0
mod p hold. For large µ, this probability becomes negligible, and for progressive
verification one can choose τ different random primes of length µ uniformly at
random instead of one, to make this probability even smaller (namely upper-
bounded by (eλ/2µ−1)τ). If we consider for example RSA-2048 (i.e. with λ =
2048) with e = 216 + 1, choosing one prime of length µ = 32 would make the
error probability as small as 2−4, and choosing τ primes makes it smaller than
2−4τ (which decreases exponentially with τ).

However, the problem with this method is that the output signature needs to
be (σ, k), where the bit-length of k is approximatively equal to (e− 1)λ, and for
large values of e (typically for e ≈ N), outputting k in the signature becomes ex-
ponential in λ and totally impractical. For this reason, in our proposed modified
signature scheme, we use an additional trick by extending the signature with all
the intermediate values of σi and ki which appears in the “square-and-multiply”
algorithm performed during the computation of σe mod N . The modified sig-
nature scheme Progressive-RSA is described below. For simplicity, we consider
only public exponents e of the form e = 2h + 1 for some parameter h (since
these exponents are the most widely used and it makes the presentation sim-
pler). However, our scheme can be readily generalized to any public exponent
by considering any addition chain for computing e.

• KeyGen(1λ): The procedure is the same as the key generation for classical
RSA-FDH signature. The verification key is vk = (N, e,H) with e = 2h+1
for some parameter h andH is a cryptographic hash functionH : {0, 1}∗ →
ZN , while the signing key is sk = (N, d,H).

• Sign(sk,m): Given a message m, the algorithm first computes the classical
RSA-FDH signature σ0 = H(m)d mod N . It then computes σe0 mod N
using the “square-and-multiply” algorithm, and stores the (2h+1) integers
k0 and {σi, ki}i∈[h], where ki and σi are respectively the quotient and
remainder of the Euclidean division of σ2

i−1 by N for i ∈ [h] and kh+1 is
the quotient of the Euclidean division of σ0 · σh by N . The algorithm
outputs the signature σ = (σ0,

{
σ2i , ki

}
i∈[h+1]

, kh+1).

• Verify(vk,m, σ): A signature σ = (σ0,
{
σ2i , ki

}
i∈[h]

, kh+1) of a message

m is valid, if and only if σ2
i−1 − σi − ki · N = 0 for all i ∈ [h] and

σ0 · σ2
h −H(m)− kh+1 ·N = 0.

In this scheme, each of the σi and ki are of bit-length λ at most. The signature
length is then roughly 2(h + 1)λ. The verification algorithm is slightly faster
than the verification algorithm of the RSA-FDH scheme (since it removes the
Euclidean divisions and only requires ring operations in Z). The signing algo-
rithm is slightly slower since it involves running the verification algorithm of
RSA-FDH (but for e = 216 +1 for instance, the increase is marginal). The verifi-
cation algorithm of this new scheme only involves ring operations in Z and one

12

can apply Bernstein’s idea from [6] to obtain Progressive-RSA(µ) a progressive
verification scheme for RSA signatures (parameterized by some integer µ):

• ProgVerify(vk,m, σ, τ): Given a putative signature σ of a message m for
vk parsed as σ = (σ0,

{
σ2i , ki

}
i∈[h]

, kh+1), the algorithm picks uniformly

at random a prime number pj of bit-length µ, sequentially for j ∈ [τ],
and checks whether σ2

i−1 − σi − ki · N = 0 mod pj for all i ∈ [h] and
σ0 ·σ2

h−H(m)− kh+1 ·N = 0 mod pj for j ∈ [τ]. If one equation does not

hold, the algorithm returns ⊥; otherwise it returns α = 1−
(
λ

2µ

)τ
.

The advantages of the verification in this scheme, apart from the fact that it
becomes progressive, is that the operations are all modulo primes of size much
smaller than that of N . For a fixed error probability, there is clearly a trade-off
between the size µ of the primes to generate and their number τ .

3.3. Security Analysis
The following proposition claims that the previous digital signature scheme

Progressive-RSA is not less secure than the RSA-FDH classic scheme:

Proposition 1. Let t : N → N and ε : N → [0, 1], be two functions and let A
be (t, ε)-EUF-CMA-adversary against Progressive-RSA. There exist B a (t′, ε)-
EUF-CMA-adversary against RSA-FDH with t′ = t + qS · TRSA-FDH.Verify where
TRSA-FDH.Verify : N → N denotes the running time of the RSA-FDH.Verify (i.e.
TRSA-FDH.Verify(λ) = O(λ3)) and qS denotes the number of queries made by A to
its signing oracle.

Proof. The proof is straightforward. As mentioned above, the signing algorithm
Progressive-RSA.Sign first runs RSA-FDH.Sign to obtain σ0 = H(m)d mod N for
a messagem and then runs the algorithm RSA-FDH.Verify (with no secret input)
to compute the full signature σ = (σ0,

{
σ2i , ki

}
i∈[h+1]

, kh+1). Given a public

key for the scheme Progressive-RSA, the algorithm B simply forwards it to the
algorithm A. For each signing query made by A on a message mi for i ∈ [qS], B
forwards it to its own signing oracle to obtain σ(i)

0 = H(mi)
d mod N for i ∈ [qS].

The algorithm B runs RSA-FDH.Verify on each triple (vk,mi, σ
(i)
0) for i ∈ [qS]

to complete the full signature computation. Eventually A outputs a forgery
(m?, σ∗) valid with probability at least ε(λ) and B can simply extracts a forgery
for m? for RSA-FDH as σ?0 if σ? is parsed as σ? = (σ?0 , k

?
0 ,
{
σ2i

?
, k?i

}
i∈[h]

).

Following the probabilistic analysis outlined above and using an explicit ver-
sion of the prime number theorem, we can also easily show that the progressive
verification is correct:

Theorem 1. Let µ ∈ N with µ > 5. The digital signature scheme with progres-
sive verification Progressive-RSA(µ) is correct (i.e. it returns ⊥ only for invalid
signatures and if it returns a real number α ∈ [0, 1] on input (vk,m, σ, τ) then
σ is not a signature of m for vk with probability at most 1− α).

13

τ

1− α

1 3 5 7 9 11 13 15
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 3: Error probability for 2048-bit RSA signatures with µ = 12

Proof. For an integer x, we denote as usual π(x) the number of primes smaller or
equal to x. For x ≥ 30, an explicit version of the prime number theorem [33, 15]
proved by Dusart [17, p. 9]) ensures that 0.92x/ ln(x) < π(x) < 1.11x/ ln(x).
Therefore, if µ > log2 30 + 1, π (2µ) > 0.9 · 2µ/(µ ln(2)) and π

(
2µ−1

)
< 1.11 ·

2µ/2(µ − 1) ln(2). The number of primes in [[2µ−1, 2µ − 1]] is then at least
2µ/2(µ− 1).

Given a putative signature σ of a message m for vk parsed as

σ = (σ0,
{
σ2i , ki

}
i∈[h]

, kh+1),

σ is valid if and only if the following two conditions hold:

• σ2
i−1 − σi − ki ·N = 0 for all i ∈ [h];

• σ0 · σ2
h −H(m)− kh+1 ·N = 0.

Therefore, if σ is not valid, at least one equality out of these (h + 1) does not
hold over Z. This inequality involves integers smaller than N2 and as mentioned
above its reduction in a quotient ring Zp for some prime number p is an equality
for at most d2λ/µe primes of bit-length µ. Therefore, for each prime pi picked
uniformly at random among all prime numbers of bit-length µ, the probability
that the (h+ 1) relations hold modulo pi if σ is invalid is upper-bounded by⌈

2λ

µ

⌉
·
(

2µ

2(µ− 1)

)−1

=
µ− 1

µ
· λ · 2−µ ≤ λ · 2−µ.

Since the algorithm ProgVerify uses τ distinct primes of bit-length µ, the prob-
ability that an invalid signature is not detected by the verification algorithm is
upper-bounded by (λ · 2−µ)τ and thus the real α = 1 − .(λ · 2−µ)τ output by
the algorithm provides a correct confidence level for this signature scheme.

It is worth mentioning that one can indeed conclude with certainty that the
classical deterministic verification algorithm would also accept or reject a sig-
nature if one runs the progressive verification procedure modulo primes p1, ...p`

14

such that
∏`
i=1 pi > N . Figure 3 illustrates the exponential decreasing of the

error probability of the progressive verification procedure for 2048-bit RSA mod-
ulus (i.e. λ = 2048) and 12-bits prime numbers (i.e. µ = 12).

3.4. Complexity, Implementation and Performances
Using naive modular arithmetic, namely multiplication and division mod-

ulo N with quadratic binary complexity (with no special tricks like Fast Fourier
Transform), the binary complexity of the RSA-FDH.Verify algorithm is O(log(e)·
λ2). The algorithm Progressive-RSA(µ).ProgVerify has improved binary com-
plexity O(log(e) ·λ ·µ) (since modular reduction of an n-bit integer by an m-bit
integer requires O(mn) binary operations, see [12]).

The proposed variant of the RSA signature scheme was implemented in
order to validate its efficiency in practice. The implementation was done in
C language using the GMP BIGNUM Library [30]. The scheme was tested
with the public key e = 216 + 1, which is a common choice in practice, and a
good candidate to evaluate the performance of the progressive verification, with
respect to the increase in the signature size. The results for RSA-2048 and RSA-
4096 are given in Table 1. The desired upper bound on the error probability for
the modified scheme has been fixed to 2−60, and different number of generated
primes with different sizes have been tested accordingly to illustrate the trade-off
discussed in 3.2. The verification modulo each prime was done independently
in parallel. The progressive verification scheme shows faster execution when
choosing higher number of primes, with smaller sizes. This behavior is normal
since the reduction operation is less costly when the size of the prime decreases.
In fact, the fastest verification is achieved when choosing four primes of 26 bits
in the case of the modified RSA-2048, and four primes of 27 bits in the case of
RSA-4096. It can also be observed that the verification process of the modified
RSA scheme is clearly faster than the classical one. The verification time for
either a valid or an invalid signature is the same with the latter for both RSA-
2048 and RSA-4096, since the entire exponentiation of σe mod N have to be
executed in order to validate the signature. Meanwhile, the verification for the
valid signature is twice (resp. four times) faster in the case of progressive RSA-
2048 (resp. RSA-4096). An invalid signature was constructed by injecting one
single incorrect equation in a valid signature, and then randomly choosing the
order of the equations to verify. An invalid signature is clearly detected faster
with the progressive verification. On average, an invalid input is detected four
times faster in the case of progressive RSA-2048 verification, and eight times
faster for RSA-4096. This shows that the increase in the signature size leads to
a much faster verification process for RSA signatures.

Remark 2. In order to further improve the efficiency of our scheme, we con-
sidered to choose the prime numbers in the proposed RSA signature scheme,
to be so-called pseudo-Mersenne primes [48], which offer faster modular reduc-
tions. However, this did not lead to an interesting improvement in the effi-
ciency/security trade-off (since these special prime numbers are more rare and
the error probability is significantly higher).

15

Signature
Size (in kB)

Verification Time (in ms) (Number, Size) of
primesValid Invalid

RSA-2048 0.256 0.0291 Verification modulo N
(|N | = 2048)

Proposed
RSA-2048 8.704

0.0155 0.0073 (1, 71)
0.0139 0.0066 (2, 41)
0.0133 0.0064 (3, 31)
0.0130 0.0064 (4, 26)

RSA-4096 0.512 0.0873 Verification modulo N
(|N | = 4096)

Proposed
RSA-4096 17.408

0.0228 0.0087 (1, 72)
0.0182 0.0082 (2, 42)
0.0179 0.0081 (3, 32)
0.0177 0.0080 (4, 27)

Table 1: Performance of the progressive verification process, compared to the basic
verification, in the cases of both valid and invalid signatures, for RSA-2048 and RSA-
4096. The desired upper bound on the error probability has been fixed to 2−60.

4. ECDSA Signatures

4.1. Elliptic Curves and ECDSA Signatures
The main advantage of elliptic curve cryptosystems stems from the absence

of a sub-exponential-time algorithm to compute discrete logarithms on general
elliptic curves over finite fields. Consequently, one can use an elliptic curve
group that is smaller in size compared with systems in the multiplicative group
of a finite field but the arithmetic of the underlying group is more tedious. Let
K be a field. Consider an elliptic curve E(K) defined over K. E(K) has the
following generalized Weierstrass equation :

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (5)

where a1, a2, a3, a4, a5, a6 ∈ K. For simplicity of notations and description of the
ECDSA signature and the proposed fast verification scheme, we will consider8
K = Zp of characteristic p > 3 a prime. Then, E(Zp) admits a model using the
short Weierstrass form :

y2 = x3 + ax+ b (6)

where a, b ∈ Zp and −16(4a3 + 27b2) 6= 0 mod p. Recently, a lot of work has
been devoted to the study of alternative models of elliptic curves that could
admit more efficient arithmetic (see [8] for an encyclopedic overview of these
models). In this work, we consider only the (affine and projective Jacobian)
Weierstrass model.

8Note that the proposed scheme would still apply for K of characteristic 2 or 3, changing
only the form of the Weierstrass equation.

16

When speaking about point addition and doubling over elliptic curves, an
estimate of their complexities will be discussed in number of basic field opera-
tions. In the next sections, the multiplication (resp. inversion) operation over
the considered field K, will be denoted by the symbol M (resp. I).

We recall the description of the ECDSA signature scheme [38]. It achieves
EUF-CMA-security in the generic group model and its security is related to the
difficulty of the discrete logarithm problem. Our description involves a security
parameter λ ∈ N (following Definition 1); this integer λ represents the bit-size
of the underlying finite field but not actually the security level of the signature
scheme. To achieve a security level of κ security bits, we must choose λ ≈ 2κ to
prevent the best known attacks. The ECDSA signature scheme consists of the
following procedures:

• KeyGen(1λ): Generate a prime p of bit-length λ uniformly at random.
Define an elliptic curve E(Zp), along with a point G ∈ E, of prime or-
der n (with n also of bit-length λ). Then, choose d ∈ Zn uniformly
at random, and calculate the point Q = dG. The verification key is
vk = (p,E(Zp),G,Q,H) where H is a cryptographic hash function H :
{0, 1}∗ → {0, 1}λ, while the signing key is sk = (p,E(Zp),G, d,H).

• Sign(sk,m): The signer chooses a secret k ∈ Zn uniformly at random, then
calculates the point (x1, y1) = kG, and r = x1 mod n. He repeats the
whole process until r 6= 0. Next, the signer computes s = k−1(H(m) + rd)
mod n and repeats the signing process from the beginning until s 6= 0.
The signature of the message m is the pair σ = (r, s).

• Verify(vk,m, σ): To verify a signature pair σ = (r, s) of a messagem for vk,
the verifier first checks that Q 6= O, and 0 < r, s < n. He then computes
the point R = (x, y) = u1G + u2Q, where u1 = H(m)s−1 mod n and
u2 = rs−1 mod n. He accepts the signature if and only if (x, y) 6= O and
r = x mod n.

4.2. ECDSA Variant with Fast Verification
In this section, we propose a variant of ECDSA signatures that produces

longer signatures but allows faster deterministic verification. The idea behind
our proposed verification scheme of ECDSA is to speedup the double exponentia-
tion algorithm of u1G+u2Q, by using the point doubling and adding algorithms
with classical affine coordinates, while delegating all the inverse computations
to the signer, and verifying their values during the process.

4.2.1. Description of the Scheme
We consider the group law defined on the affine Weierstrass model (6). In

this case, the double of a point P = (xP , yP) is the point 2P = (x2P , y2P),
where:

λ0 =
3x2

P + a

2yP
, x2P = λ2

0 − 2xP , y2P = (xP − x2P)λ0 − yP

17

while the sum of two points P = (xP , yP) and V = (xV , yV) in E(Zp)\{O} is
S = P + V = (xS , yS), where :

λ1 =
yV − yP
xV − xP

, xS = λ2
1 − xV − xP , yS = (xP − xS)λ1 − yP

Thus, the doubling (resp. adding) operation costs 2S+2M+1I (resp. 1S+2M+1I).
A useful trick introduced in [18] can also be used when the point T = 2P +V =
(xT , yT) needs to be computed, by writing T = P + (P + V) = P + S. Using
the following identity :

λ2 =
yS − yP
xS − xP

=
((xP − xS)λ1 − yP)− yP

xS − xP
=

2yP
xP − xS

− λ1

we have :

xT = λ2
2 − xP − xS , yT = (xP − xT)λ2 − yP

The authors from [18] suggest that the intermediate computation of yS can
thus be omitted, leaving a total of 2S+3M+2I for a double-and-add operation.
During the double exponentiation algorithm, the simple add operation never
occurs. There is one double and one or no add at each iteration.

Computing λ0, λ1 or λ2 involves an inverse computation in Zp which is
usually too costly to perform for fast signature verification. For this reason,
alternative models are often preferable to the affine Weierstrass model. In our
scheme, we deport the computation of these inverses to the signer that would
append the values of λ0, λ1 and λ2 when needed for each step of the “double-
and-add” exponentiation algorithm. There are λ iterations in this algorithm:
if the iteration includes a simple double, the signer would join the associated
value of λ0 to the signature; if it includes a double-and-add operation, the signer
would associate the values of λ1 and λ2.

During the verification process, each inversion is then replaced by a value
check, adding no extra operations compared to the original scheme, and speeding
up the process but with an increase in the signature size. For example, if the
operation is a point addition, the signer would join the value of λ1, and the
verifier would check that

λ1(xV − xP) = (yV − yP)

If this condition is verified, then the verifier can immediately use the value of
λ1. This means that the operations 1I+1M for computing λ1 in the original
scheme, are replaced by only 1M for checking its value. Table 2 compares
the operation count for doubling and adding points on elliptic curves over Zp,
with both affine and Jacobian projective coordinates, using the best operation
count for the short Weierstrass form. We assume that S=1M, and that the
double-and-add operation with Jacobian projective coordinates is done by a
simple double followed by a simple add. Compared to the operation count with
projective coordinates, which are the coordinates usually used in practice to

18

Type of Coordinates Operation Count
Double Add Double & Add

Affine 4M+1I 3M+1I 5M+2I

Affine with Provided Inverses 4M 3M 5M

Projective Jacobian 9M 16M 25M

Table 2: Operation count for double, add and double-and-add operations for elliptic
curve of short Weierstrass form, assuming that S=1M.

avoid inversions, the proposed variant clearly offers a speedup of almost 2 for
doubling a point, and of 5 for doubling-and-adding. Thus, it is more interesting
during the double exponentiation algorithm to have as many iterations with
double-and-add instead of a simple double as possible, to increase the speed of
the computation. For that, we use another trick proposed in [2], that allows
to reduce the number of iterations in half, while making the double-and-add
operation more frequent during the execution. Consider the equation :

u1G + u2Q = R (7)

where u1 and u2 are of size λ. One can use the Euclidean algorithm as in [2], to
write u2 = u21u

−1
22 mod n, with |u21|, |u22| <

√
n (i.e. u21 and u22 are integers

with bit-length at most λ/2). Equation (7) can then be rewritten :

u1u22G + u21Q− u22R = O (8)

Then, one can write u1 = u112bλ/2c + u12 with a simple Euclidean division of
u1 by 2bλ/2c. We can finally write (7) as :

µ0G + µ1G0 + u21Q− u22R = O (9)

whereG0 = 2bλ/2cG, µ0 = u12u22, µ1 = u11u22, and the bit-length of µ0, µ1, u21

and u22 is at most λ/2. This transforms the double exponentiation algorithm,
into a quadruple exponentiation with only half the number of iterations of the
double exponentiation. In addition, simple double operation will be much less
frequent in the case of the quadruple exponentiation, making the speedup with
our proposed method be more present with the double-and-add operation. In the
best case scenario, where the number of simple double operations is negligible,
one would expect a total speedup of factor almost 9 or 10 over the use of
projective coordinates as shown in Table 2.

4.2.2. Implementation and Performances
To evaluate the performance of the proposed verification algorithm, the

ECDSA signature scheme implemented in OpenSSL [51] was used. Some mod-
ifications were added to the key generation and signing processes, and a new
verification process using the OpenSSL BIGNUM library was coded and com-
pared to the classic double exponentiation verification algorithm, and the wNAF

19

Signature
Size (in kb)

Verification Time (in ms)
Valid Invalid

OpenSSL wNAF 0.064 1.81 1.81

Double
exponentiation 0.064 2.65 2.65

Proposed variant 8.352 0.30 0.23

Table 3: Performance of the proposed progressive verification process, compared to
the basic verification, in the cases of both valid and invalid signatures, for ECDSA-256
in OpenSSL, for the curve E : y2 = x3 + 7.

algorithm used by OpenSSL. Table 3 compares the execution time for the dif-
ferent procedures. It is clear that the proposed variant, while considerably
increasing the size of the signature, offers a speedup in practice of almost 9 over
the regular double exponentiation algorithm. It is also more efficient compared
to the optimized version of the OpenSSL wNAF implementation, where a fac-
tor 6 of speedup is obtained. This shows a trade-off that can be offered, when
the verification time is more critical than the signature size for the considered
application.

Remark 3. The new scheme is less efficient than the EdDSA variant from [7]
(which produces also shorter signatures) but it is generic and works over any
prime finite field and we did not try to propose an optimized implementation.

Remark 4. A verification time / signature length trade-off can be offered with
the compression technique introduced in [13]. For a double-and-add operation,
the values λ1 and λ2 can be compressed and added to the signature in a sin-
gle value. Meanwhile, the number of multiplications required for the operation
becomes roughly 11M. This means that the trade-off reduces the signature size
by half, while allowing a decrease in the speedup factor from 5 to approximately
2.3.

4.3. ECDSA Variant with Progressive Verification
Our trick of using affine coordinates and giving the inverses in the elliptic

curve group law gives rise to a more efficient "progressive-verification" scheme
for ECDSA. It uses the same technique than for RSA: for each arithmetic oper-
ation modulo p or modulo the group order, one provides the quotient of the Eu-
clidean division and we check the equality of integers modulo some "small" prime
number of bit-length µ. This increases even more the length of the signature
but makes the verification algorithm progressive and faster. These digital signa-
tures with progressive verification called Progressive-ECDSA(µ) are very similar
to the Progressive-RSA signature scheme. The technique consists in checking all
O(λ) equalities modulo τ distinct random prime numbers of bit-length µ; if one
equality does not hold, the algorithm ProgVerify outputs ⊥ and if all equalities
hold the τ prime numbers, it outputs the real α = 1− (λ · 2−µ)τ . We leave the

20

details to the reader. We obtain readily the following security results (whose
proofs follow mutatis mutandis the proofs from Proposition 1 and Theorem 1,
respectively).

Proposition 2. Let t : N → N and ε : N → [0, 1] and A be a (t, ε)-EUF-CMA-
adversary against Progressive-ECDSA. There exist B a (t′, ε)-EUF-CMA-adversary
against ECDSA with

t′(λ) = t(λ) + qSO(λ3)

and qS denotes the number of queries made by A to its signing oracle.

Theorem 2. Let µ ∈ N with µ > 5. The digital signature scheme with progres-
sive verification Progressive-ECDSA(µ) is correct.

Progressive-ECDSA(µ) produces signature size with size O(λ2) = O(κ2)
(which are much longer than classical ECDSA signatures but still asymptoti-
cally shorter than RSA signatures that has bit-length Ω(κ3) for security level
κ). The (deterministic) fast verification algorithm has complexity O(λ3) binary
operations (similar to ECDSA signatures but with a better constant) and the
progressive verification algorithm has complexity O(τ ·λ2 ·µ) binary operations
(where the error probability of the verifier decreases exponentially with τ).

5. GPV Signatures and Variants

5.1. Lattices and GPV Signatures
We first start by providing a brief background on lattices that will be useful

for the description of the GPV signature scheme. All details are not necessary
to understand our scheme with progressive verification but we provide them
for completeness. Let p ≥ 2 be some prime integer and let A ∈ Zn×mp be a
matrix formed of n linearly independent vectors denoted A = { ~a1, . . . , ~an} with
~ai ∈ Zmp . The m-dimensional lattice associated to A is:

Λ(A) = {~x ∈ Zmp : AT s = ~x mod p for some s ∈ Znp}

and its dual Λ⊥(A) = {~e ∈ Zmp : A~e = 0 mod p}.
One usually considers n as the security parameter and p and m as functions

of n, that is p = poly(n), m = poly(n). For any ~c ∈ Rn, s ∈ R, we define the
discrete Gaussian distribution over Λ(A) as:

DΛ(A),s,~c(~x) =
ρs,~c(~x)

ρs,~c(Λ(A))
, for all ~x ∈ Λ(A)

where ρs,~c(~x) = exp (−π ‖~x− ~c‖2 /s2) is the Gaussian function centered at ~c
with parameter s over Rn (and naturally ρs,~c(Λ(A)) =

∑
~z∈Λ(A) ρs,~c(~z)). For

a given basis A = { ~a1, . . . , ~an} of a lattice, the norm of the basis is defined as
‖A‖ = max1≤i≤n ‖~ai‖ where ‖~ai‖ is the Euclidean norm of ~ai.

A variety of hard problems have been studied on lattices, of which we focus on
two, known as the Short Integer Solution (SIS) problem and the Inhomogeneous
Short Integer Solution (ISIS) problem:

21

Definition 4 (SISp,m,β). Given an integer p, a matrix A ∈ Zn×mp , and a real
β, the Short Integer Solution (SIS) problem with parameters (p,m, β) is to find
~e ∈ Λ⊥(A) such that ‖e‖ ≤ β.

Definition 5 (ISISp,m,β). Given an integer p, a matrix A ∈ Zn×mp , a vector
~u ∈ Znp and a real β, the Inhomogeneous Short Integer Solution (ISIS) problem
with parameters (p,m, β) is to find ~e ∈ Zmp such that A~e = ~u mod p and ‖e‖ ≤ β.

The GPV signature scheme [27] relies on the hardness of these problems
on average, for chosen parameters (see [27, 3] for details). To construct the
scheme, Gentry, Peikert and Vaikutanathan provided a tuple of of probabilistic
polynomial-time algorithms (TrapGen, Sample,PreImageSample) that define a
function fA : Dn → Rn (together with its domain Dn and range Rn) associated
to A with a “short” basis of Λ⊥(A) as a trapdoor for inverting fA. These
algorithms are parameterized by a bound L ≈ m1+ε for ε > 0, and a Gaussian
parameter s ≥ L.ω(

√
logm). In particular:

• TrapGen(1n) : Use a probabilistic algorithm to sample a matrix
A ∈ Zn×mp from a close-to-uniform distribution, and find a short basis
T = {~t1, . . . , ~tn} ⊂ Λ⊥(A) with ||T̃ || ≤ L, where T̃ is the Gram-Schmidt
orthogonalization of T (see [1] for details). The function fA(.) is then de-
fined as fA(~e) = A~e mod p with Dn = {~e ∈ Zmp : ‖~e‖ ≤ s

√
m}, Rn = Znp

and T is its trapdoor.

• Sample(1n) : Samples ~e ∈ Zmp at random from the input distribution
DZmp ,s,~0

conditioned by the output of fA(~e) for which the distribution is
uniform over Rn.

• PreImageSample(T , ~y) : Samples from f−1
A (~y) using the "good" trapdoor

basis T to output ~e ∈ Dn, which means that ~e is a short vector.

Without the trapdoor, sampling a short element from Dn is hard. It is proven in
[27] that these algorithms provide a one-way trapdoor function if ISISp,m,s√m
is hard. They are also collision resistant if SISp,m,2s√m is hard.

• KeyGen(1λ): Given λ, it sets the parameter n = λ and m, p, s, Dn, Rn
and fA as defined above for a pair (A,T) where A ∈ Zn×mp and T is the
trapdoor, from TrapGen(1n). The verification key is vk = (A,H) where H
is a cryptographic hash function H : {0, 1}∗ → Znp , while the signing key
is sk = (T ,H).

• Sign(sk,m): Compute ~y = H(m) ∈ Znp , and run PreImageSample(T , ~y) to
get ~u ∈ Dn. Output the signature σ = ~u.

• Verify(vk,m, σ): Compute ~y = H(m) ∈ Znp , and return 1 if A~u = ~y mod p
and ~u ∈ Dn (in other words ‖u‖ ≤ s

√
m) and 0 otherwise.

It is worth noting that since H is a hash function which output is uniformly dis-
tributed over Znp . This ensures the condition stated in the procedure Sample(1n),
where the output of fA(e) should be uniformly distributed over Rn = Znp .

22

5.2. GPV with Progressive Verification
As outlined in the paper introduction, our progressive variant of the GPV

signature scheme denoted Progressive-GPV introduces the use of linear codes
over Zp.

For this reason, we consider in the following that p is a prime number. Let
`, n ∈ N and δ ∈ [0, 1]. An (`, n, δ`) p-ary linear code C is a n-dimensional
linear subspace of Z`p in which the Hamming distance between each two distinct
vectors (called codewords) is at least δ` (δ is called the relative distance of the
code). For our purpose9, a matrix G in Z`×np is a generator matrix of C if its
columns space over Zp (i.e. the set of Zp-linear combinations of its columns) is
equal to C. The ratio R = n/` is called the rate of C.

The security analysis of the scheme will be detailed in Section 5.3. The
progressive variant Progressive-GPV of the GPV signature scheme consists of
the following three algorithms:

• KeyGen(1λ): Given λ, it sets the parameter n = λ and m, p, s, Dn, Rn
and fA as defined above for a pair (A,T) where A ∈ Zn×mp and T is
the trapdoor, from TrapGen(1n). The algorithm also sets two parameters
` ∈ N with ` > n and δ ∈ [0, 1] and generate a (`, n, δ`) linear code with
generator matrix G ∈ Z`×np . It sets A′ = G ·A. The verification key is
vk = (A′,G,H) where H is a cryptographic hash function H : {0, 1}∗ →
Znp , while the signing key is sk = (T ,H).

• Sign(sk,m): Compute ~y = H(m) ∈ Znp , and run PreImageSample(T , ~y) to
get ~u ∈ Dn. Output the signature σ = ~u.

• Verify(vk,m, σ): Compute ~y = H(m) ∈ Znp and set ~u = σ. Return 1
if A′~u = G~y mod p and ~u ∈ Dn (in other words ‖u‖ ≤ s

√
m) and 0

otherwise.

In this scheme, the signing algorithm and the signatures are not modified
(compared to the original GPV scheme). The size of the public key is increased
(from nm log(p) to `(n+m) log(p) bits) and the verification algorithm is slower
than the verification algorithm of the GPV scheme (since it requires two ma-
trix/vector multiplication instead of just one). However, the use of a “good”
error-correcting code of generating matrix G allows fast progressive verification
since a verifier can simply check the equality of random rows of A′~u and G~y
with ~y = H(m) ∈ Znp for a putative signature σ = ~u of a message m:

• ProgVerify(vk,m, σ, τ): Given a putative signature σ of a message m for
vk, compute ~y = H(m) ∈ Znp , set ~u = σ and check that ~u ∈ Dn (i.e
‖u‖ ≤ s

√
m). The algorithm picks uniformly at random τ distinct indices

j1, . . . , jτ in [`] and returns ⊥ if A′~u{ji} 6= G~y{ji} mod p for some i ∈ [τ]
and it returns α = 1− (1− δ)τ otherwise.

9Note that usually one considers a generator matrix as a matrix whose rows form a basis
of the code, but using the columns makes the presentation simpler.

23

In this algorithm, for a vector ~v ∈ Z`p and i ∈ [`], ~v{i} denotes the i-th coordinate
of ~v. In particular, for i ∈ [τ] computing A′~u{ji} is an inner-product over Zp
of vectors of length n and computing G~y{ji} is an inner-product over Zp of
vectors of length m. Note that the larger δ is, the more accurate the progressive
verification procedure, but the larger the public-key size .

5.3. Security Analysis
The signatures output by Progressive-GPV are identical to those produces

by GPV. Moreover, the algorithm Progressive-GPV.Verify accepts σ as a valid
signature on m for vk if and only if we have GPV.Verify(vk,m, σ) = 1 (since G ∈
Z`×np is of full-rank n). We thus obtain immediately the following proposition:

Proposition 3. Let t : N → N and ε : N → [0, 1], be two functions and let A
be (t, ε)-EUF-CMA-adversary against Progressive-GPV. There exist B a (t′, ε)-
EUF-CMA-adversary against GPV with t′ = t.

Following the probabilistic analysis outlined in the introduction, we can show
that the progressive verification of Progressive-GPV is correct:

Theorem 3. The signature scheme with progressive verification Progressive-GPV
is correct (i.e. it returns ⊥ only for invalid signatures and if it returns a real
number α ∈ [0, 1] on input (vk,m, σ, τ) then σ is not a signature of m for vk
with probability at most 1− α.

Proof. Given a putative signature σ of a message m for vk, σ = ~u is valid if and
only A′~u = G~y mod p where ~y = H(m) ∈ Znp . In other words, σ is valid if and
only if

G(A~u− ~y) = ~0 mod p.

If σ is valid the all τ random rows checked during the run of ProgVerify(vk,m, σ, τ)
are equal and ProgVerify(vk,m, σ, τ) does not return ⊥. Besides, if σ is not valid,
at least one row out of the ` are not equal and we haveG(A~u−~y) 6= ~0 mod p. By
construction, G(A~u−~y) is a codeword in our error-correcting code of generator
matrix G which is a (`, n, δ`) linear code. A non-zero codeword has Hamming
weight (i.e. non-zero coordinates) at least δ · ` and thus there exists at least δ`
coordinates k1, . . . , kω in [`] for ω ≥ δ` such that A′~u{ki} 6= G~y{ki} mod p for
i ∈ [ω]. The probability that each row index ji picked in ProgVerify does not
belong to {k1, . . . , kω} is upper-bounded by (` − ω)/` ≤ (` − δ`)/` = (1 − δ)
and therefore the probability that the τ row indices picked by ProgVerify does
not belong to this set is upper-bounded by (1 − δ)τ . The probability that an
invalid signature is not detected by the verification algorithm is upper-bounded
by (1− δ)τ and thus the real α = 1− (1− δ)τ output by the algorithm provides
a correct confidence level for this signature scheme.

24

5.4. Complexity, Implementation and Performances
The proposed scheme Progressive-GPV produces signature identical to those

produced by the original GPV (with the same algorithm and the same compu-
tational complexity). The verification key in Progressive-GPV is larger since it
consists of two-matrices over Zp instead of just one: the verification key size is
`(n+m) log(p) instead of nm log(p) (with ` > n). For the progressive verification
algorithm, the error probability decreases exponentially with τ the number of
verifier steps as (1− δ)τ . Its binary computational complexity of the algorithm
is O(τ(n+m) log2(p)) (compared to O(nm log2(p)) for the original GPV scheme)
and does not depend on `. It is therefore desirable to have an error-correcting
code with ` as small as possible and δ as large as possible. Since we do not need
any other specific property for our error-correcting (such as efficient decoding),
we simply use random linear error-correcting codes which achieve the so-called
Gilbert-Varshamov bound with overwhelming probability.

5.4.1. Random linear codes and Gilbert-Varshamov Bound
The Gilbert-Varshamov bound for linear codes asserts the existence of p-ary

linear codes for any relative minimum distance less than some given bound that
simultaneously have high rate. Let Hp denote the p-ary entropy function:

Hp(x) = x logp(p− 1)− x logp x− (1− x) logp(1− x).

We have the following result:

Theorem 4 ([52, 28]). Let p > 2 be some prime number. For every 0 6 δ < 1− p−1

and 0 < ε 6 1−Hp(δ), there exists a linear code with rate R > 1−Hp(δ)− ε
and relative distance at least δ.

It is worth mentioning that the existence proof of this theorem uses the
probabilistic method, and thus is not constructive. However, it can be made
explicit in the sense that the probability that a random code over Zp with a given
rate does not achieve the relative distance given by Theorem 4 is negligible:

Corollary 1 ([52]). Let p > 2 be some prime number. Let n, ` be two integers
with ` > n and let δ ∈ [0, 1]. The probability that a code defined by a generator
matrix G picked uniformly at random in Z`×np has relative distance smaller than
δ is smaller than p−`(1−Hp(δ))+n.

5.4.2. Execution Time for Progressive-GPV
In this paragraph, we consider implementation for GPV signatures for two

parameters settings for GPV signatures taken from [3] (but using a prime value
for p with similar size to the power of 2 considered in [3]). The first instantiation
provides a 78-bit security level (with a prime p with bit-length 27) while the
second one provides a 128-bit security level (with a prime p with bit-length 30).

Suppose we want an error-correcting code with rate R = 1/2. We use a
random generator matrix G ∈ Z`×np with ` = 2n (where n = 256 for the first
instantiation and n = 512 for the second instantiation). For δ = 0.45, we have

25

GPV
Configu-
ration

Security
Level

Basic
Verification
Time (in ms)

Code
Rate δ

Progressive
Verification
Time (in ms)

p ≈ 227,
n = 256,
m = 7424

78 bits 24.76
1/2 0.45 12.505
1/3 0.62 8.410
1/4 0.70 6.134

p ≈ 230,
n = 512,
m = 16384

108 bits 83.203
1/2 0.45 19.054
1/3 0.62 13.313
1/4 0.70 9.898

Table 4: Progressive Verification configuration and execution time on GPV signature
Scheme, using a randomly generated (`, n, δ`) linear code. The error bound for the
verification is fixed at 2−96. The verification is simulated using the MPFQ Finite
Fields Library [26].

in both cases Hp(δ) < 0.487 and thus the probability given by Corollary 1 is
upper-bounded by p−`(1−Hp(δ))+n = p−n(1−2Hp(δ)) ≤ p−0.026n < 2−179. We can
therefore safely assume that our random matrix generates a code with relative
distance at least δ = 0.45 even if there is no efficient way to check that this is
indeed the case. Formally, in our security analysis, we have to add this small
probability to the error probability in the progressive verification decision pro-
cedure. We also consider smaller rates R = 1/3 and R = 1/4 that increase
the size of the verification key but ensures that we have a code with the large
relative distance with overwhelming probability (namely δ ≥ 0.24 and δ ≥ 0.29
respectively). As proved above, the error probability of the progressive verifica-
tion algorithm decreases as δτ where τ is the number of random rows tested in
the procedure. For the first case with rate R = 1/2 and p a prime number of
bit-length 27, the time to check one row with our parameter is approximatively
0.112 ms using the MPFQ Finite Fields Library [26]. By checking 38 rows in
time 4.26 ms, we have an error probability at most 2−32 and if one checks 112
rows (which makes the error probability as small as 2−96), the time verification
is only 12.505 ms (compared to to 24.76 ms for the original verification of GPV
for these parameters). Table 4 summarized our obtained results for the two
instantiations and rates R ∈ {1/4, 1/3, 1/2}.

Remark 5. A possible approach to limit the public-key size increase in our
scheme is to use a matrix G with some structure in order to compress it. For
instance, one can use cyclic random linear codes or quasi-cyclic random linear
codes. Bounds similar to the Gilbert-Varshamov bound are known for such codes
(see [25] for instance) for p large enough (and with some specific arithmetical
properties). This allows to compress the verification key (but at the cost of
reducing the proven relative distance and thus the verification efficiency).

26

5.5. Wave Signatures and Progressive Verification
5.5.1. Brief description

Recently, Debris-Alazard, Sendrier and Tillich [16] presented an efficient
code-based signature scheme called Wave. We do not describe their nice scheme
in details but rather refer to [16] for details. As GPV signatures, Wave is based
on a family of trapdoor one-way preimage sampleable functions f ; the message
to be signed is hashed to produce a random element in the domain of f and
the signer uses the trapdoor to compute a pre-image of this element. Debris-
Alazard et al. proposed a code-based one way trapdoor function that meets the
preimage sampleable property (in a slighty relaxed way). Instead of a short basis
of the lattice considered in the construction as in GPV, their trapdoor consists in
choosing parity-check matrices of specific error-correcting codes over the ternary
field F3. For our purposes, it is sufficient to know that the verification algorithm
of Wave consists of a single matrix/vector multiplication and a check that the
result matches the hash value of the message (and some given random salt).
The underlying finite field in Z3 and we can use our progressive verification
technique even on this small finite field (but a smaller relative distance).

5.5.2. Execution Time for Progressive-Wave
Debris-Alazard et al. proposed several parameters and an efficient imple-

mentation and we include our progressive verification algorithm to their imple-
mentation. For a 96-bit security level, using the same notation as above the
matrix used in the (deterministic) verification algorithm is n×m with n = 2165
and m = 4203. For a rate R = 1/2, since p = 3, we cannot obtain a very
large relative distance for our random linear code, but with δ = 0.15, we have
H3(δ) ≤ 0.48 and the probability given by Corollary 1 is upper-bounded by
p−`(1−Hp(δ))+n = 3−n(1−2Hp(δ)) ≤ 3−0.04n < 2−137. We can therefore again
safely assume that our random matrix generates a code with relative distance
at least δ = 0.15. Table 5 shows the execution time of the basic and progres-
sive verification schemes. As for GPV, we present timings for a full progressive
verification that makes the error probability smaller than 2−96.

6. Conclusion and Open Problems

We revisited the concepts of progressive verification and flexible signatures.
We proposed efficient probabilistic verification procedures for RSA, ECDSA,
GPV and Wave digital signatures in which the error probability of a verifier
decreases exponentially with the verifier running time.

Our proposed scheme for ECDSA increases significantly the signature size;
an interesting open problem is to propose a scheme with efficient progressive
verification where this size is only increased by some constant factor (or prove
that none exists). It also remains open to design such verification procedures for
pairing-based signature schemes such as [10] or [9]. It may be possible to adapt
the techniques proposed in this article for pairing computation, for instance by

27

Wave
Configu-
ration

Security
Level

Basic
Verification
Time (in ms)

Code
Rate δ

Progressive
Verification
Time (in ms)

q = 3,
n = 2165,
m = 4203

96 bits 1.416
1/2 0.15 0.424
1/3 0.24 0.291
1/4 0.29 0.223

q = 3,
n = 2887,
m = 5605

128 bits 2.614
1/2 0.15 0.615
1/3 0.24 0.375
1/4 0.29 0.294

Table 5: Progressive Verification configuration and execution time for the Wave sig-
nature Scheme, using a randomly generated (`, n, δ`) linear code. The error bound for
the verification is fixed at 2−96.

appending to the signatures the coefficients arising in the lines and tangent com-
putation of the Miller functions (as it has been done for pairing outsourcing for
optimal Ate pairing on a Barreto-Naehrig curve in [31]). However this requires
a specific efficiency analysis and new ideas are probably required to keep the
signature length practical. Finally, since verification procedures are involved in
most cryptographic primitives, it is interesting to see if our techniques permit
improvement in other settings (e.g. for commitment schemes, or proof systems).

References

[1] Miklós Ajtai. Generating hard instances of the short basis problem. In In-
ternational Colloquium on Automata, Languages, and Programming, pages
1–9. Springer, 1999.

[2] Adrian Antipa, Daniel R. L. Brown, Robert Gallant, Rob Lambert, René
Struik, and Scott A. Vanstone. Accelerated verification of ECDSA signa-
tures. In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume
3897 of LNCS, pages 307–318. Springer, Heidelberg, August 2006.

[3] Rachid El Bansarkhani and Johannes Buchmann. Improvement and effi-
cient implementation of a lattice-based signature scheme. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 48–67. Springer, Heidelberg, August 2014.

[4] Mihir Bellare, Juan A. Garay, and Tal Rabin. Batch verification with
applications to cryptography and checking. In Claudio L. Lucchesi and
Arnaldo V. Moura, editors, LATIN 1998, volume 1380 of LNCS, pages
170–191. Springer, Heidelberg, April 1998.

[5] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures:
How to sign with RSA and Rabin. In Ueli M. Maurer, editor, EURO-
CRYPT’96, volume 1070 of LNCS, pages 399–416. Springer, Heidelberg,
May 1996.

28

[6] Daniel J. Bernstein. A secure public-key signature system with extremely
fast verification. unpublished, available at https://cr.yp.to/papers/
sigs.pdf, 2000.

[7] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. J. Cryptographic Engineering,
2(2):77–89, 2012.

[8] Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. http:
//www.hyperelliptic.org/EFD, download date: 2019-12-10.

[9] Dan Boneh and Xavier Boyen. Short signatures without random oracles and
the SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–
177, April 2008.

[10] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. Journal of Cryptology, 17(4):297–319, September 2004.

[11] Cecilia Boschini, Dario Fiore, and Elena Pagnin. On the efficiency and flex-
ibility of signature verifications formal model and realizations from lattices.
(in submission), 2020.

[12] Richard Brent and Paul Zimmermann. Modern Computer Arithmetic.
Cambridge University Press, New York, NY, USA, 2010.

[13] Mathieu Ciet, Marc Joye, Kristin Lauter, and Peter L Montgomery. Trad-
ing inversions for multiplications in elliptic curve cryptography. Designs,
codes and cryptography, 39(2):189–206, 2006.

[14] Ronald Cramer and Victor Shoup. Signature schemes based on the strong
RSA assumption. ACM Trans. Inf. Syst. Secur., 3(3):161–185, 2000.

[15] Ch. J. de la Vallée Poussin. Recherches analytiques sur la théorie des
nombres premiers. Brux. S. sc. 21 B, 183-256, 281-362, 363-397, 1896.

[16] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave:
A new family of trapdoor one-way preimage sampleable functions based on
codes. In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryp-
tology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, De-
cember 8-12, 2019, Proceedings, volume to appear of Lecture Notes in Com-
puter Science. Springer, 2019.

[17] Pierre Dusart. Autour de la fonction qui compte le nombre de nombres
premiers. PhD thesis, Université de Limoges, 1998.

[18] Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery. Fast elliptic
curve arithmetic and improved Weil pairing evaluation. In Marc Joye,
editor, CT-RSA 2003, volume 2612 of LNCS, pages 343–354. Springer,
Heidelberg, April 2003.

29

[19] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1(2):77–94, June 1988.

[20] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

[21] Marc Fischlin. Progressive verification: The case of message authentication:
(extended abstract). In Thomas Johansson and Subhamoy Maitra, editors,
INDOCRYPT 2003, volume 2904 of LNCS, pages 416–429. Springer, Hei-
delberg, December 2003.

[22] Marc Fischlin. Fast verification of hash chains. In Tatsuaki Okamoto,
editor, CT-RSA 2004, volume 2964 of LNCS, pages 339–352. Springer,
Heidelberg, February 2004.

[23] Cody Freitag, Rishab Goyal, Susan Hohenberger, Venkata Koppula, Eysa
Lee, Tatsuaki Okamoto, Jordan Tran, and Brent Waters. Signature schemes
with randomized verification. In Dieter Gollmann, Atsuko Miyaji, and
Hiroaki Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 373–
389. Springer, Heidelberg, July 2017.

[24] Rusins Freivalds. Probabilistic machines can use less running time. In
Bruce Gilchrist, editor, Information Processing, Proceedings of the 7th
IFIP Congress 1977, Toronto, Canada, August 8-12, 1977, pages 839–842.
North-Holland, 1977.

[25] Philippe Gaborit and Gilles Zémor. Asymptotic improvement of the
Gilbert-Varshamov bound for linear codes. IEEE Trans. Information The-
ory, 54(9):3865–3872, 2008.

[26] Pierrick Gaudry and Emmanuel Thomé. The MPFQ library and imple-
menting curve-based key exchanges, 2007.

[27] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press,
May 2008.

[28] E. N. Gilbert. A comparison of signalling alphabets. The Bell System
Technical Journal, 31(3):504–522, 1952.

[29] Marc Girault and David Lefranc. Server-aided verification: Theory and
practice. In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of
LNCS, pages 605–623. Springer, Heidelberg, December 2005.

[30] Torbjörn Granlund and et al. GNU multiple precision arithmetic library
4.1.2, December 2002. http://swox.com/gmp/.

30

[31] Aurore Guillevic and Damien Vergnaud. Algorithms for outsourcing pairing
computation. In Marc Joye and Amir Moradi, editors, Smart Card Research
and Advanced Applications - 13th International Conference, CARDIS 2014,
Paris, France, November 5-7, 2014. Revised Selected Papers, volume 8968
of Lecture Notes in Computer Science, pages 193–211. Springer, 2014.

[32] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge
protocol fitted to security microprocessor minimizing both trasmission and
memory. In C. G. Günther, editor, EUROCRYPT’88, volume 330 of LNCS,
pages 123–128. Springer, Heidelberg, May 1988.

[33] J. Hadamard. Sur la distribution des zéros de la fonction ζ(s) et ses con-
séquences arithmétiques. Bull. Soc. Math. Fr., 24:199–220, 1896.

[34] Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal
signing and verifying. In Joe Kilian, editor, CRYPTO 2001, volume 2139
of LNCS, pages 332–354. Springer, Heidelberg, August 2001.

[35] M. Jakobsson. Fractal hash sequence representation and traversal. In Pro-
ceedings IEEE International Symposium on Information Theory,, page 437,
2002.

[36] Markus Jakobsson. Fractal hash sequence representation and traversal.
Cryptology ePrint Archive, Report 2002/001, 2002. http://eprint.iacr.
org/2002/001.

[37] Markus Jakobsson, Frank Thomson Leighton, Silvio Micali, and Michael
Szydlo. Fractal Merkle tree representation and traversal. In Marc Joye,
editor, CT-RSA 2003, volume 2612 of LNCS, pages 314–326. Springer,
Heidelberg, April 2003.

[38] Don Johnson, Alfred Menezes, and Scott A. Vanstone. The elliptic curve
digital signature algorithm (ECDSA). Int. J. Inf. Sec., 1(1):36–63, 2001.

[39] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure
identification schemes based on the worst-case hardness of lattice problems.
In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages
372–389. Springer, Heidelberg, December 2008.

[40] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical Report SRI-CSL-98, SRI International Computer Science Labo-
ratory, October 1979.

[41] Duc Viet Le, Mahimna Kelkar, and Aniket Kate. Flexible signatures: Mak-
ing authentication suitable for real-time environments. In Kazue Sako,
Steve Schneider, and Peter Y. A. Ryan, editors, ESORICS 2019, Part I,
volume 11735 of LNCS, pages 173–193. Springer, Heidelberg, September
2019.

31

[42] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755. Springer, Heidelberg, April 2012.

[43] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 218–238. Springer, Heidelberg,
August 1990.

[44] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and
Jintai Ding. Design principles for HFEv-based multivariate signature
schemes. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 311–334. Springer, Heidelberg, Novem-
ber / December 2015.

[45] Jean-Jacques Quisquater and Marijke De Soete. Speeding up smart card
RSA computation with insecure coprosessors. In Proceeding of Smart Cards
2000, pages 191–197, 1989.

[46] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. Public-key iden-
tification schemes based on multivariate quadratic polynomials. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 706–723.
Springer, Heidelberg, August 2011.

[47] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, January 1991.

[48] Jerome A. Solinas. Pseudo-Mersenne prime. In Henk C. A. van Tilborg,
editor, Encyclopedia of Cryptography and Security. Springer, 2005.

[49] Jacques Stern. A new identification scheme based on syndrome decoding.
In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages
13–21. Springer, Heidelberg, August 1994.

[50] Jacques Stern. A new paradigm for public key identification. IEEE Trans.
Information Theory, 42(6):1757–1768, 1996.

[51] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS.
www.openssl.org, April 2003.

[52] R. R. Varshamov. Estimate of the number of signals in error correcting
codes) (Russian, Р. Р. Варшамов – Оценка числа сигналов в кодах с
коррекцией ошибок). Dokl. Akad. Nauk SSSR, 117:739–741, 1957.

[53] David Wagner. Shortcut digital signature verification failure. The Cryp-
tography Mailing List, June, 22nd 2002.

[54] Virginia Vassilevska Williams. Multiplying matrices faster than
coppersmith-winograd. In Howard J. Karloff and Toniann Pitassi, editors,
44th ACM STOC, pages 887–898. ACM Press, May 2012.

32

