Médésu Sogbohossou
email: medesu.sogbohossou@epac.uac.bj

Antoine Vianou
email: antoine.vianou@epac.uac.bj

Translation of hierarchical GRAFCET charts into time Petri nets

Keywords: Modelling language, GRAFCET, hierarchical structure, time Petri nets (TPN) MOTS-CLÉS : langage de modélisation, GRAFCET, structure hiérarchique, réseaux de Petri temporels

The GRAFCET standard (IEC60848) is one of the specification tools used during the conception of complex discrete-event systems, especially to model the industrial automation processes. Since being just a semi-formal language with lack of rigorous semantics, the practice to validate a specification by model-checking consists in translating it into a formal language such as time Petri nets (TPN). A recent work about TPN just deals with non hierarchical GRAFCET charts. The first goal of this paper is to make the necessary clarifications on the standard about structuring and hierarchy with this standard. The second goal aims to extend the translation rules into TPN, previously defined only for non hierarchical GRAFCET charts, by taking into account structuring. The third goal is to propose the formal semantics for GRAFCET charts with structuring.

RÉSUMÉ. La norme GRAFCET (CIE60848) est l'un des outils de spécification utilisés lors de la conception des systèmes à événement discret complexes, surtout pour modéliser les processus des automatismes industriels. Cette norme n'étant qu'un langage semi-formel manquant d'une sémantique rigoureuse, la validation d'une spécification GRAFCET par model-checking nécessite sa traduction dans un langage formel tel que les réseaux de Petri temporels. Des travaux récents portant sur ce choix de traduction se limitent aux diagrammes GRAFCET non hiérarchiques. Le premier objectif de cet article est de faire les clarifications nécessaires sur la norme à propos de la prise en compte de la structuration et de la hiérarchie. Le second objectif est d'étendre les règles de traduction du GRAFCET en réseaux de Petri temporels, règles précédemment définies uniquement pour les diagrammes GRAFCET non hiérarchiques, en prenant ici en compte la structuration. Le dernier objectif est d'étendre la sémantique formelle pour prendre en compte la structuration.

Introduction

The GRAFCET standard [1] is one of the well-known graphical tools used in the specification phase of complex discrete-event dynamic systems, because providing rich visual information and user-friendliness [START_REF] Hrúz | Modeling and control of discrete-event dynamic systems: With petri nets and other tools[END_REF]. The expressive power is comparable to another popupar graphical language, namely Statecharts [START_REF] Harel | The statemate semantics of statecharts[END_REF]. The GRAFCET favorite field of usage is the modelling of industrial processes to specify the behaviour for automated systems.

IEC60848 standard [1] describes GRAFCET specification language by means of sequential function charts. A GRAFCET chart (grafcet for short) is an extended statetransition system similar to Petri nets [START_REF] Hrúz | Modeling and control of discrete-event dynamic systems: With petri nets and other tools[END_REF], but specifically providing synchronous firings of the transitions, and the composing parts of a grafcet may be in a hierarchical relationship thanks to the concepts of enclosure, expansion and forcing order. Furthermore, it provides interpretation with variables (input, output, clocks, ...) appearing in the actions linked to the local states (called steps) and in the conditions linked to the transitions or the actions.

The shortcoming of IEC60848 standard is that the interpretation may be a source of ambiguities, especially in the case of conflicting actions to perform from parallel steps during an execution. Many works, for instance in [START_REF] Cassez | Formal Semantics for Reactive GRAFCET[END_REF][START_REF] Provost | A formal semantics for grafcet specifications[END_REF], have given a formalisation of the syntax and the semantics to be the basis to verify and validate any specification, but only by taking into account the standard partially. The recent works [START_REF] Julius | Transformation of grafcet to PLC code including hierarchical structures[END_REF][START_REF] Julius | A meta-model based environment for grafcet specifications[END_REF] are more complete in terms of structuring concepts, but there are restricted to sound grafcets, and the authors have not given a clear choice about remaining confusing interpretation related to conflicting actions which may result from the structuring concepts. Indeed, these last works are intended for translation of a GRAFCET chart into PLC code for the IEC61131 standard [START_REF]Programmable controllers -part 3: Programming languages[END_REF] used for implementation purposes: for instance, the reference [START_REF] Julius | Transformation of grafcet to PLC code including hierarchical structures[END_REF] is interested in generating code for ST (Structured Text) language, whereas the reference [START_REF] Julius | A meta-model based environment for grafcet specifications[END_REF] focuses on the definition of a static GRAFCET meta-model as an UML class diagram to be the basis of a GRAFCET syntax verification for a graphical editor.

Recently, time Petri nets (TPN) were proposed as a target formalism to validate by model-checking a GRAFCET-based specification [START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF][START_REF] Sogbohossou | Formal modeling of grafcets with Time Petri nets[END_REF] by limiting the work to non hierarchical (but not necessarily sound) GRAFCET charts. With the so-called ε-TPN, infinitesimal delay ε is introduced to cope with the distinction of the consecutive simultaneous firings during a GRAFCET evolution. To avoid state space explosion induced by the interleaving semantics of TPN, a partial order execution is adopted for ε-TPN.

The first goal of these contributions is to make complementary clarifications about the IEC60848 standard, concerning structuring concepts and their consequences on the application of actions (continuous and stored actions, and forcing orders) unambiguously. The second goal is to extend the previous translation rules into ε-TPN by taking into account structuring while relying on the choices made in our complementary clarifications.

In the next section are given a summary and some illustrations about the GRAFCET standard. Section 3 makes the suitable clarifications regarding hierarchy in the standard and states about the related impacts on the actions interpretation. In Section 4 are defined the complementary translation rules for ε-TPN resulting from the choices made about structuring concepts. Section 5 defines formally the semantics for ε-TPN with structuring and describes the incidence of hierarchy on state-space computing. At last, the conclusion section sums up the contributions and outlines some perspectives.

Summary about IEC60848

The combination of the active steps of a GRAFCET chart is called a situation. From the initial situation (defined by a set of initial steps), the chart may evolve consecutively from situation to situation, by firing (or clearing) the transitions enabled by their active preceding steps, simultaneously when several transitions are fireable from a current situation (according to the Rule 4 in the standard [1]): actions related to active steps are performed in each reached situation. For the simple example of chart at Fig. 1, the two steps 1 and 2 get a continuous action for the outputs O 1 and O 2 respectively, the initial situation is the singleton {1}, and the conditions of the transitions (1) and (2) involve respectively the logical state of the timed variable 1s/X 1 and the input variable I 1 . In the initial situation, the transition (1) is enabled and is fired after 1s duration spent in step (1).

A newly reached situation (or in particular the initial situation) is stable if no enabled transition may be currently fired from it, due to unsatisfied (i.e. false) condition for the transition enabled by the active steps. A newly reached situation is unstable when it allows immediately fireable transitions, which are simultaneously fired. A transient evolution is made of the successive unstable intermediate situations between two stable situations: a step may only be passed through during an evolution, and is qualified as virtually activated.

Many kinds of actions may be related to a step: continuous actions and stored actions. Continuous actions are only performed during a stable situation. Stored actions are classified into three categories: actions on activation of the step, actions on deactivation of the step, and actions on event during the step activeness.

To manage the complexity of a system to model by a GRAFCET chart, a partition into several so-called partial grafcets may be considered. Each partial grafcet is one of the following three kinds, respectively related to the two specific types of steps, the macrostep and the enclosing step, and a specific action, the forcing order of a partial grafcet:

-An expansion: it is the detail part of a macro-step, characterized by one entry step and one exit step. The relation between an expansion G M and the corresponding macrostep M is one-to-one. At the activation of M , the entry step of G M is activated; and the activation of the exit step of G M is a condition of enabling the succeeding transitions of M . Thus, the deactivation of the macro-step M implies deactivation of the exit step of G M . An expansion may participate in the initial situation of the overall GRAFCET chart (independently with the entry step activation), even if a macro-step has no specific graphical symbol for that in the standard. -An enclosure: a hierarchical relation exists between an enclosure G E and its enclosing step E, and E may get multiple enclosures (one-to-many relationship). Each enclosure G E defines its set of steps to be activated when E is activated, which are graphically identified by an asterisk called activation link. At the deactivation of E (of which succeeding transitions enabling is independent of any step of G E , contrary to a macrostep), all steps of G E are immediately deactivated). If E is an initial step, G E would get a set of initial steps, independently with the defined activation links.

-An ordinary partial grafcet: it may be a simple structuring part with execution independent from other partial grafcets, unlike enclosures and expansions. An active step of any partial grafcet G may enforce an ordinary partial grafcet G O (G O = G), by redefining the situation of G O (to the initial situation of G O or to another fixed situation, or to a void situation with no active step) and by freezing this new situation, or by freezing the current situation of G O : this special kind of action, called forcing order, behaves like a continuous action which is valid in a stable situation. The forcing order disappears as soon as the related step of G becomes inactive 1 , so G O will resume the execution from the new situation.

Among these three structuring concepts, it should be noticed that only the pair macrostep/expansion does not really define a hierarchical relationship since a macro-step deactivation depends on the exit step of the corresponding expansion: a macro-step and the corresponding expansion are at the same hierarchical level.

The second example of chart at Fig. 2 is made of four partial grafcets: the main one G 1 has the highest priority and may force G 2 to reset at step 2. And G 2 gets a macro-step M 1 related to the expansion G 3 and an enclosing step 4 related to the enclosure G 4 with one activation link at step 7.

1. Contrary to a continuous action which requires that the ordering step becomes really inactive.

Clarifying the ambiguities

Sources of ambiguities

With non hierarchical GRAFCET, we make the same choices as in [START_REF] Sogbohossou | Formal modeling of grafcets with Time Petri nets[END_REF] concerning the aspects of the standard requiring clarifications:

-an active step in the initial situation is not considered immediately stable (so continuous actions are not performed in case of initial instability); -stored actions on activation for an initial active step are performed; -no input edge may be true in the initial state; -Boolean inputs are assumed independent; -and a time variable related to a step S n (T 1 /X n or T 1 /X n /T 2) becomes instantly false each time this step is deactivated.

Despite these choices in order to clarify the semantics, two sources of nondeterminism are inherent to the standard and related to simultaneous action orders:

-The first one is related to ordering stored actions: two stored actions in the same situation may execute conflicting instructions, set and reset of the same output for instance. The reference [START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF] deals with this problem for the non hierarchical grafcets.

-The second one is related to hierarchical GRAFCET with forcing orders: two different forcing orders into some situation may be addressed to same partial grafcet.

Hierarchy interference with nondeterminism may seem an outlet every time when priority application is conceivable, but hierarchy with GRAFCET is just implicit and may sometimes become confusing: for instance, it is not forbidden to get two partial grafcets with an action of forcing each other. Some choices related to these issues have to be made.

Additional choices about GRAFCET semantics and syntax

To address issues arising from confusing action orders, we make the following choices about the grafcet semantics:

(1) Confusing stored action orders: we always consider that this case is a modelling misconception, even if the steps of the orders emanate from partial grafcets in a hierarchical relationship, precisely with direct or indirect enclosing relation; indeed, depending on the user viewpoint, priority may be given either to an enclosure or to a higher level of partial grafcet. This choice concerning the hierarchical relationships will also ease the modeling with ε-TPN in the sequel. Model-checking will detect and allow the correction of such a confusion.

(2) Confusing forcing orders are resolved by giving precedence to the highest level of ordering partial grafcets. With this in mind, a precedence relation, denoted ≺ (with transitive, irreflexive and antisymetric properties) is defined on the partition of the partial grafcets. This relation is based on the direct hierarchical relationship from enclosing and forcing order relations: two partial grafcets G 1 and G 2 such as G 2 ≺ G 1 means that either G 2 is an enclosure of a enclosing step in G 1 or G 2 is directly commanded by a forcing order in G 1 , or they are in such a transitive hierarchical relationship. The resulting graph should be an acyclic one to validate a well-defined GRAFCET partition: for the example at Fig. 2, the acyclic directed graph is given at the right, G 1 being the highest level partial grafcet; for instance,

G 2 ≺ G 1 and G 4 ≺ G 1 , but G 3 ≺ G 2 .
In general, if despite an acyclic graph for the defined partial grafcets, two forcing orders in a situation emanate from two partial grafcets not in a hierarchical relationship (or emanate from the same partial grafcet), then it is considered to be a modelling misconception to solve by modelchecking.

Other assumptions in the sequel and related to modularity (i.e. with GRAFCET partitioning) require to be made. (3) Firings in partial grafcets respect priorities defined by ≺. Indeed, from each newly reached situation (including the initial situation), the next simultaneous firings of the enabled transitions are not handled independently in the corresponding partial grafcets: a partial grafcet may depend on a hierarchically higher one preventing the current local firings and possibly redefining instantaneously its local situation, especially set or reset the situation of an enclosure. So, precedence relationship is not only used to solve confusing forcing orders, but also to take into account priority arising from enclosing. (4) Case of nested forcing orders: let be three partial grafcets G 1 , G 2 , and G 3 such as

G 3 ≺ G 2 ≺ G 1 . If G 1 forces directly G 2 ,
the GRAFCET standard which denotes by G i {new_situation} such a forcing order on a chart G i , does not tell if G 3 will be impacted or not by the higher forcing order. Here, we allow and distinguish two possible interpretations: action G 2 {new_situation} in G 1 will denote that G 3 behaves independently with this forcing order; and G 2 * {new_situation} in G 1 will denote that G 3 will be freezed during the forcing order, as well as any nested lower level partial grafcets. Therefore, any intention to force differently a lower level ordinary partial grafcet should be explicitly expressed by specific action in conjunction. Of course, if G 3 ≺ G 2 defines also a forcing relation, G 1 order prevails over G 2 one. Generalisation follows for more nested levels. (5) Reset of a module (enclosure or expansion): for an enclosure, the rule is to reset the local situation when the corresponding enclosing step is deactivated. No such rule is imposed for an expansion which may get one or several remaining active steps other than the exit step: that provides a kind of memory for the next activation of the corresponding macro-step. The following supplementary choices are also made about the modular grafcet syntax: (6) Permitted actions for macro-steps and enclosing steps: the standard does not explicitly show the possibility to associate actions to these kinds of steps, but nothing seems to prevent it. (7) Stored action on activation for an implicitly initial macro-step: since the standard does not define explicitly initial macro-step, and at the same time allows to define an initial situation for an expansion (possibly different from the single activation of the entry step), an associated stored action on activation may be applied initially to such a macro-step M 1 . If the corresponding expansion is not with an initial situation, but the entry step of this expansion is a macro-step M 2 , the inner expansion should be tested initial or not, and so on recursively, to decide finally if stored action on activation for M 1 should be applied or not. For the sake of simplicity, we choose in the sequel to explicitly allow the definition of initial macro-step (with a double-squared outline in the graphical symbol as for ordinary initial steps), and to not search if the inner expansion or the expansions of nested entry macro-steps are initial or not: thus, stored action on activation is performed in the initial situation if and only if M 1 is explicitly initial by its graphical symbol. Obviously, the expansion of an initial macro-step must get an explicit initial situation.

-→ Q + ∪ {∞}).
Graphically, a regular arc is represented by an ordinary arrow; here, a read arc ends with a small circle and an inhibitor arc ends with a bullet. Each arc carries a weight (1 by default).

A transition t is enabled by a marking M :

P -→ N if ∀p ∈ P, (M (p) ≥ W (p, t) ∧ M (p) ≥ W R (p, t)) ∧ p ∈ P, M (p) ≥ W I (p, t).
The set of transitions enabled by M is denoted En(M). The quantitative time information [ED(t), LD(t)] borne by each transition t specifies the delay after which t is fireable from the instant it becomes enabled or re-enabled: t cannot be fired before ED(t) and must be fired before LD(t).

The kind of TPN called ε-TPN [START_REF] Sogbohossou | Formal modeling of grafcets with Time Petri nets[END_REF][START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF] was defined to allow a translation from GRAFCET charts. The infinitesimal delay ε 0 is defined as a constant comparable to 0 + . The set of used infinitesimal delays are

E def = {ε 0 , ε 1 , ε 2 } such as ε n def = ε 0 × (n + 1), with the ex- tended set E 0 def = E ∪ {0}. For ε n ∈ E and any d ∈ R + * , it is considered that 0 < ε n < d and d ± ε n ≈ d. Definition 2. A ε-TPN is a TPN such that: 1) ED : T -→ E ∪ Q + ; 2) LD : T -→ E ∪ Q + ∪ {∞}; 3) T = T E0 ∪ T T ∪ {t ∞ } with: a) for t ∈ T E0 , ED(t) = LD(t) ∈ E 0 ; b) for t ∈ T T , ED(t) = LD(t) ∈ Q + * ; c) for 2 t = t ∞ , ED(t) = 0 and LD(t) = ∞.
Transitions in the set T E0 model synchronous firings during an evolution phase, whereas transitions in the set {t ∞ }∪T T model external 3 events triggering an evolution phase from 2. t∞ is the transition Change_input, as shown at Fig. 3 in the so-called phase sequencer, to allow time spending in a stable state before an input change.

3. external to the processor of the control part of the system.

a stable phase (T T allows delay events for the timed variables). In the sequel, δ(t) denotes the static delay of a transition t ∈ T E0 ∪ T T .

In the context of translating a non hierarchical grafcet into ε-TPN, the works [10, 9] made some restrictions in order to simplify the translation rules:

-Two occurrences of external events, among the input changes and the timed variable changes, happening in the same instant are handled by the control part in a total order. This means that the reaction of the control part is assumed always completed between two consecutive occurrences of external events. Moreover, only one event of input changes may occur at the same time.

-Edges of variables 4 only concern input variables.

-Timed variables are only related to steps: either T 1 /X n or T 1 /X n /T 2 (for the state X n of a step S n , and the constant delays T 1 and T 2).

-Predicates concern only nonnegative counters, with comparison operations (<, ≥, =, and =) between a counter variable and a nonnegative integer.

-No stored action on event is allowed. With Petri nets, simultaneous firings (called subsequently a stage) do not exit, and have to be simulated by a total interleaving in the same instant. That is why an infinitesimal delay (ε 0) is introduced [START_REF] Sogbohossou | Formal modeling of grafcets with Time Petri nets[END_REF] to allow consecutive firing stages during a transient evolution without any interference between them. In ε-TPN, a grafcet execution is simulated by a cyclic sequence of one occurrence of an external event followed by the induced evolution phase. Precisely, four types of stage are defined [START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF]: update stage, firing stage, into-stability stage and out-stability stage. At the system start-up (from the initial situation), a first update stage (the set of TPN transitions fired as variables updating, variables related to: step states, stored actions, input edge resetting) initialises diverse variables, which may trigger a firing stage modelling the simultaneous firings in the grafcet (ε 0 delay after the previous update stage), then another update stage (ε 0 delay after the previous firing stage) occurs, and so on, until a stable situation is reached. Entering a stable situation allows setting the outputs for continuous actions via the into-stability stage (that is synchronous firings to set outputs for continuous actions). At the occurrence of an external event, the out-stability stage updates variables related to changing an input or a timed variable state, and also variables related to resetting outputs for continuous actions, before beginning a new evolution phase: a firing stage is followed by the subsequent update stage, and so on.

To have a concrete illustration, Fig. 3 gives an example of translation of the grafcet at Fig. 1 into ε-TPN. A grafcet, eventually formed from several partial grafcets, is translated into ε-TPN by generating the modules (as shown the example at Fig. 3) in a certain sequence. The specific module called phase sequencer allows alternation between an occurrence of an external event (place Stable is marked to produce an external event) and the subsequent transient evolution phase (place Evolution is marked) without any interference. The other modules at Fig. 3 are related to the two steps, the two transitions, the input I 1 , the continuous actions on the outputs O 1 and O 2 and the timed variable 1s/X 1 . To illustrate an execution, we consider the sequence of the ten first stages (with the indication of the time gap between two consecutive stages) in the case where the input I 1 changes just one time from false to true in the absolute time interval]1s, 2s[: 1) first update stage at time 0: a first update stage is always an empty set of firing (the ε-TPN is just initialised by marking the places related to the initial step states and the initial stored actions on activation);

2) first into-stability stage after a delay ε 2 = 3ε 0 : {Evolution_end, O_1_true};

3) first out-stability stage after a delay 1s: {1s_X_1_to_true, T ime_out}; 4) first firing stage after a delay ε 0 : {tr_1, F iring}; 5) second update stage after a delay ε 0 : {Deactivate_Step_1, Activate_Step_2, 1s_X_1_to_f alse}; 6) second into-stability stage after a delay 2ε 0 : {Evolution_end, O_1_f alse, O_2_true}; 7) second out-stability stage after a delay in]0s, 1s[: {Change_input, I_1_to_true}; 8) second firing stage after a delay ε 0 : {tr_2, F iring}; 9) third update stage after a delay ε 0 : {Deactivate_Step_2, Activate_Step_1}; 10) third into-stability stage after a delay 2ε 0 : {Evolution_end, O_1_true, O_2_f alse}.

TPN modules of the partial grafcets

To translate a partition of partial grafcets into ε-TPN, several TPN modules may be considered relatively independent of the partial grafcets: the phase sequencer, litteral variables (such as inputs, counters, time variables) and stored or continuous actions (with their related output variables). With the introduction of priority between the partial grafcets (based on the acyclic precedence graph infered from a well-defined GRAFCET partition), the previous TPN modules may be supposed to have the highest level of priority; except the modules for forcing actions which are closely related to the priority of the ordering partial grafcet. The supplement modules resulting from the partial grafcets are the translation of their steps and transitions.

In practice, priority matters during the overall chart execution, precisely when the transitions of the diverse modules have to be fired in the same instant. So, priority assignation may be restricted to the transitions of the modules: a transition inherits the same priority of the corresponding partial grafcet (by their steps, transitions and forcing actions) or the corresponding aforementioned independent TPN modules.

By taking into account a grafcet structuring, creation of the TPN modules may follow the following suitable order in four steps, justified by the fact that some complete module creations depend on other modules elements, in order to create the specific arcs from a prior module: 1) phase sequencer, steps, counters and outputs;

2) inputs, timed variables, stored actions, forcing action statements, unconditional continuous actions;

3) conditional continuous actions, grafcet transitions; 4) inter-structural elements: macro-step -expansion arcs and hierarchical nodes and arcs (between modules of different partial grafcet translations).

The new modules related to structuring are the forcing action statements and the interstructural elements: they are detailed in the next subsections. We use these specific graphical notations here to define the elements of the TPN modules: dashed lines are used for inter-structural arcs, and previously created elements in other modules are represented in gray.

Forcing order

Let be a partial grafcet G 1 with a forcing action on another partial grafcet G 2 : it is denoted G 2 {local_situation}. Any forcing action at a step i of G 1 is first modelled by the same unique forcing statement module at Fig. 4(a): the place X_i_f orcing becomes marked only when step i is active in a stable situation, and this marking allows to set the local situation of G 2 model. The specified steps in local_situation must be activated (if not currently active) and the other steps of G 2 must be deactivated (if not currently inactive): this is done respectively by the modules at Fig. 4(b) and Fig. 4(c) where the step j in G 2 model is respectively activated and deactivated if applicable in the current situation for G 2 . These two kinds of module (in fact, simple transitions with the connected arcs) belong to G 1 model with the same priority. In the particular case of simple freezing of the current situation of G 2 (by the forcing action G 2 { * }), no such modules are required. To maintain the forcing, every grafcet transition model tr_j for G 2 is prevented to be fired while X_i_f orcing is marked, as shown at Fig. 4(a), with the inhibitor arc between X_i_f orcing and tr_j. The transition X_i_Activate_Step_j (resp. X_i_Deactivate_Step_j) gets the same output arcs and the related target places as the transition Activate_Step_j (resp. the transition Deactivate_Step_j) in the model of step j in order to execute the same stored actions on activation (resp. on deactivation).

Let be a partial grafcet G 1 containing a step k also with a forcing action on G 2 ; possibly,

G 1 = G 1 with k = i. If G 1 ≺ G 1 ,
then the step k of G 1 will inhibit the forcing action at the step i of G 1 by the inhibitor arc defined between the place X_k and the transition X_i_to_f orcing, as shown at Fig. 4(a). The intention is to give priority on G 1 if G 1 ≺ G 1 , according to the adopted choice (4) in Subsection 3.2. In the case of no hierarchical relationship between G 1 and G 1 , G 1 and G 1 will inhibit the forcing order of each other to prevent any inconsistent set of situation on G 2 : that fits for the stated choice (2) in Subsection 3.2, similar to the implementation of conflicting stored actions in [START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF], letting model-checking to detect such non executed forcing actions and then solve the related conflict.

In the case of a forcing order of the kind G 2 * {local_situation}, tr_j is not only for G 2 , but is also every grafcet transition model of a partial grafcet G 2 such as G 2 ≺ G 2 , according to the choice (4) in Subsection 3.2.

During an execution of the global ε-TPN, transition X_i_to_f orcing will be fired in an into-stability stage (when step i is really activated after firing transition Evolution_end) at the same time as transitions X_i_Activate_Step_j and X_i_Deactivate_Step_j; the transition X_i_end_f orcing will be fired in an update stage (as soon as step i is deactivated by firing transition Deactivate_Step_i).

Handling an enclosure

The activation of a (non initial) enclosing step i must activate the steps with activation links of each corresponding enclosure G i : this is implemented at Fig. 4(d) for each step j with activation link in G i . The difference with step activation by a forcing order at Fig. 4(b) is the addition of the place Set_X_j_done and the transition X_j_end_set: indeed, after activating each step j with activation link, G i is executed until the deactivation of i, without allowing another firing of X_i_Activate_Step_j meanwhile; at the deactivation of step i, X_j_end_set is fired instantly to unmark the place Set_X_j_done until a future reactivation of step i. Given that the enclosing step i is inactive means that every step of G i is inactive, deactivation for steps with no activation link in G i is unecessary at the activation of step i (contrary to a forcing order). At the deactivation of step i, every eventually active step in G i has to be deactivated: this is taken into account by the module at Fig. 4(e) for every step j in G i model.

These two kinds of module (at Fig. (d) and (e)) belong to the partial grafcet model where the step i is defined, with the implied priority inheritance. The remark in the previous subsection about the output arcs of the transitions X_i_Activate_Step_j and X_i_Deactivate_Step_j is also applicable.

During an execution of the global ε-TPN, transition X_i_Activate_Step_j will be fired in an update stage (when the state of step i is set by firing Activate_Step_i), and transitions X_j_end_set and X_i_Deactivate_Step_j at the same time will also be fired in an update stage (when the state of step i is reset by firing Deactivate_Step_i).

Handling an expansion

At the activation of a macro-step i, the entry step j of the corresponding expansion must be marked: a module similar to the one at Fig. 4(d) may be used to allow especially the implementation of the stored actions on activation for the step j, in the same instant as the activation of the macro-step i; except that all the transitions modeling the elements of the expansion have the same priority level as the macro-step i. The usual transition Activate_Step_j for step j is no more useful since step j is only activable by the macrostep i; if step j (and therefore macro-step i) is initial, then the place Set_X_j_done has to be initially marked, and the marking to model initial stored action on activation of step j have to be set. The usual transition Deactivate_Step_j remains useful for eventual stored action on deactivation of step j. The case of a nested entry step when step j is also a macro-step is straight.

On the other hand, at the deactivation of a macro-step i, the exit step j of the corresponding expansion must be unmarked: now, the model of step j is just the ordinary one (with the usual transitions Activate_Step_j and Deactivate_Step_j) with no added node, and the succeeding grafcet transition models for the macro-step i are also considered for the step j in the manner of the macro-step i via the corresponding inter-structural arcs. Thus, the firing of these grafcet transition models depends as well on the marking of the exit step j as the marking of the macro-step i. Moreover, in the case where the step j is a macro-step too, any nested exit step is considered in the same way vis-à-vis the succeeding transitions of the step i.

During an execution of the global ε-TPN, transition X_i_Activate_Step_j will be fired in an update stage (when transition Activate_Step_i is fired), and X_j_end_set will also be fired in an update stage (when transition Deactivate_Step_i is fired).

Complexity and execution issues

With non hierarchical GRAFCET, the spatial complexity of the generated ε-TPN is proved globally polynomial with the number of nodes, variables and literal terms in the original chart [START_REF] Sogbohossou | Formal modeling of grafcets with Time Petri nets[END_REF]. Here, the extension to hierarchical GRAFCET does not increase the complexity order. Indeed, from the above definitions about structuring modules:

-the TPN model of a directly forced partial grafcet with n steps is just increased by 2 × n transitions, and there is no growth of nodes on any indirectly forced chart; -the model of an enclosure with n steps is increased at most by 3 × n transitions and n places; -and for each expansion, just three nodes related to the entry step are added. Obviously, the number of arcs (of three kinds) due to inter-module connections may be large, but remains polynomially bounded by 6 × n × p for any TPN with n transitions and p places.

The example at Fig. 2 produces a ε-TPN with 55 places and 61 transitions, of which 2 places and 9 transitions due to expression of priority between the partial grafcets.

With ε-TPN [START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF], enabled transitions with infinitesimal or zero delay static time (belonging to the set denoted T E0) have always priority on the others (in the set T ∞ ∪ T T) which model external events occurrences. Here is introduced supplement levels of priority by implicitly classifying the set T E0 according to the ≺ relationship: when several transitions are fireable in the same instant, the arbitrary interleaving adopted to fire them will impose firstly a choice of a transition with a highest priority among the remaining transitions to fire. In this way, lower priority partial grafcet models will never call into question the orders of the higher ones which will always preempt the local firings thanks to the newly defined structuring modules.

Priority due to hierarchy is relevant during the update stage concerning the deactivation of an enclosing step: the enclosure model will always be reset timely to prevent any independent evolution. Indeed, a transition of the kind X_i_Deactivate_Step_j has priority on the ordinary transitions Deactivate_Step_j and Activate_Step_j for an enclosure. In fact, to be true to the choice (3) in Subsection 3.2, any transition firing in an enclosure should be prevented as soon as the related enclosing step is deactivated by a succeeding transition. But it is not worth that our current modelling rules allows nevertheless a concomitant firing stage for the enclosure: in a firing stage of a ε-TPN, the translations of the grafcet transitions remain fireable independently of the enclosing concept. Fortunately, the resulting states and actions of such a firing stage will be preempted by the firings of type X_i_Deactivate_Step_j in the subsequent update stage.

Formal definitions

Here, we first extend the operational semantics of ε-TPN defined in [START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF] for hierarchical GRAFCET. Then, the incidence of the new definitions is discussed with regard to the state-space computing.

Operational semantics

TPN semantics is defined as a timed transition system, where a state q is a couple (M, v) of a marking M and a vector v getting its values in E ∪ R + : v ∈ (E ∪ R +) T . For t ∈ T , v(t) represents the transition local clock, that is the quantity of elapsed time since t becomes fireable.

In a current state q = (M, v), the set of fireable transitions in the subset T E0 denoted T E0,q is such as t ∈ T E0,q if and only if t ∈ En(M) and ED(t) ≤ v(t) ≤ LD(t). By extension, T + E0,q defines the subset of transitions with the highest priorities in T E0,q , meaning that no transition in T + E0,q gets another transition in T + E0,q related to a higher priority partial grafcet. Definition 3. (Q, {q 0 }, T, →) for a marked ε-TPN is defined by:

1) the initial state is q 0 = (M 0 , v 0) ∈ Q, with v 0 def = (0) T ; 2) the set of states reachable from q 0 are Q ⊆ (N) P × (E ∪ R +) T ;
3) the alphabet of the discrete transitions is T ;

4) → ⊆ Q × (T ∪ E ∪ R + *) × Q is the
E ∪ R + such as (M, v) d → (M, v): i) if d ∈ E (infinitesimal time elapse), then:            ∃t ∈ En(M) ∩ T E ∀t j ∈ T,        if t j ∈ T E0 then v (t j) def = v(t j) + d, else v (t j) def = v(t j) t j ∈ En(M) ⇒ v (t j) ≤ LD(t j) ii) if d ∈ R + * (non-infinitesimal time elapse), then:    t ∈ En(M) ∩ T E0 v def = v + d ∀t j ∈ En(M) ⇒ v (t j) ≤ LD(t j) b) and an instantaneous firing t i ∈ En(M) such as (M, v) ti → (M , v) iff:            t i ∈ T + E0,q ∨ (t j ∈ En(M) ∩ T E0) ∧ (t i ∈ T T ∪ {t ∞ }) M def = M \ • t i ∪ t • i ∀t j ∈ T, v (t j) def =    0 if t j ∈ En(M) ∧ (t j / ∈ En(M \ • t j) ∨ t j = t i) v(t j) else
In a state q, either a time delay is elapsed (item 4.a) or a transition is fired (item 4.b). A time d elapse is possible only if ∀t ∈ T, v(t) < LD(t) and a transition t firing is possible when v(t) ≥ ED(t). Time elapse is necessarily discrete in E if ∃t ∈ En(M) ∩ T E ; otherwise, the time elapse is dense and concerns a transition in T T ∪ {t ∞ } from a stable situation. In the case of a transition firing (transitions in T E0 implicitly have firing priority on those in T T ∪ {t ∞ }), the new marking M is produced: the notation • t (resp. t •) denotes the preset (resp. postset) places for transition t with respect to the corresponding weights by the relation W of the regular arcs; and the clocks value of the transitions in En(M) are updated with v , following the standard semantics of TPN.

The only change comparatively to the semantics definition in [START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF] concerns firing (item 4.b) when many transitions in T E0 are fireable: the transition to fire must be in the set T + E0,q , to take into account priority relationship between the related partial grafcets. The transitions in T T ∪ {t ∞ } are not touched by this change since they express external events not subject to hierarchical relationship between modules.

About state-space computing

State-space is infinite when time progression may be dense, as it is the case for timed grafcets. For a bounded TPN (that is when the corresponding grafcet gets only finite counter values), a finite abstraction [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF][START_REF] Boucheneb | CTL* model checking for time Petri nets[END_REF] is computable, basing on the agglomeration of some possibly infinite equivalent states into one super-state called state class. Here, we just focus on the required change in the way of computing the successor classes via the transitions fireable from a given state class, by taking into account the firing priority due to hierarchy between partial grafcets.

A composite state class C [9] is a triplet of a marking M , a clock domain D and specifically a set of discrete clock values V for the enabled transitions in T E0 . For a current class C, if En(M) ∩ T E0 is not empty, a transition t f to fire had to be in the set T E0,C = {t f | ∀(t f , t i) ∈ (En(M) ∩ T E0) 2 , δ(t f) -ν f ≤ δ(t i) -ν i }, where the clock variable of a transition t k appearing in the set V is denoted by ν k . Now, with the introduction of precedence between ε-TPN modules, precisely with possible priority between transitions in the set T E0 , two transitions t 1 and t 2 are in precedence relation denoted t 1 ≺ t 2 means that t 2 belongs to a higher level module than t 1 ; of course, t 1 ≺ t 2 means that the module level of t 2 is not higher than the one of t 1 . If En(M) ∩ T E0 = ∅, a fireable transition t f has to be now in the set T + E0,C = {t f | ∀(t f , t i) ∈ (En(M) ∩ T E0) 2 , t i ≺ t f ∧ δ(t f) -ν f ≤ δ(t i) -ν i }.

So, whereas the set T E0,C defines fireable transitions from a class C with a non hierarchical grafcet model, T + E0,C imposes that such transitions get the highest possible priorities with a hierarchical grafcet model.

To cope with the state explosion problem with ε-TPN, firings in T E0 done in the same instant from class are gathered in a multiset T s from only one interleaving of these firings: the partial order set T s labels an arc between two successive classes of the state-space abstraction. Here, the stage of firings T s is computed by just respecting priority during the adopted firing interleaving.

Updating of the algorithms presented in [START_REF] Sogbohossou | ε-TPN: definition of a Time Petri Net formalism simulating the behaviour of the timed grafcets[END_REF] to generate different levels of abstraction is therefore trivial and does not require more comments in this paper.

Conclusion

In this paper, we firstly provide some clarifications and choices about confusion arising from the application of actions in the context of hierarchy with IEC60848 standard. Then, the extension of the rules to generate a ε-TPN is proposed to take into account GRAFCET structuring concepts: the resulting flat TPN may be used to validate by modelchecking [START_REF] Clarke | Introduction to model checking[END_REF] a GRAFCET specification on the basis of common algorithms available for ordinary TPN. An illustration of translation is also given, and the formal semantics for the hierarchical extension is defined.

Precedence relationship is used for two applications. Firstly, it helps to identify confusing forcing orders and then to generate correctly the corresponding ε-TPN of a hierarchical grafcet. Secondly, it serves to respect firing priority induced by hierarchy during an execution: in a stage, an enclosing step module firing predominates on the one of the corresponding enclosure modules.

Several perspectives may arise from the current work. First, the implementation of these contributions may use an available GRAFCET design tools which provides an open exchange format, as developped by the authors of [START_REF] Julius | A meta-model based environment for grafcet specifications[END_REF]. But in order to implement exactly the choices presented in this paper (and also to take into account non sound grafcets) to be closer to the IEC60848 standard, creating a specific graphical software seems unavoidable. This project of tool will implement the translation into ε-TPN, to enable modelchecking and the subsequent model corrections on a chart. So, another perspective is to adapt model-checking algorithms for the intermediate ε-TPN model, particularly by allowing for efficient quantitative time properties verification as enabled with TCTL modelchecking on ordinary TPN [START_REF] Boucheneb | TCTL model checking of time petri nets[END_REF]. A third perspective is to prove formally the bisimulation between a grafcet and the corresponding ε-TPN: the achievement of this goal goes through the definition of a complete formal semantics of the GRAFCET standard.

Figure 1 .

 1 Figure 1. An example of chart.

Figure 2 .

 2 Figure 2. A GRAFCET partition: G3 is the expansion of the macro-step M1 in G2, G4 is the enclosure of the enclosing step 4 in G2.

4 .

 4 ε-TPN modules for structuring 4.1. Reminder: translation of a non hierarchical GRAFCET chart into Time Petri nets Before reminding how a non hierarchical grafcet is translated into time Petri net (TPN), the structural definition about TPN with extension by inhibitor arcs and read arcs is recalled: Definition 1. A Time Petri net (TPN) [9] is a tuple (P, T, W, W I , W R , ED, LD, M 0) such as: -the nodes are the set of places P and the set of transitions T (P ∩ T = ∅); -W : P × T ∪ T × P -→ N defines the regular arcs (and the corresponding weights between nodes); -W R : P × T -→ N defines the read arcs; -W I : P × T -→ N * ∪ {∞} defines the inhibitor arcs; -M 0 : P -→ N specifies the initial marking; -each transition t ∈ T gets a static interval [ED(t), LD(t)], such as the lower bound ED(t) is called the earliest firing delay of t (ED : T -→ Q +) and the upper bound LD(t) (LD(t) ≥ ED(t)) is called the latest firing delay of t (LD : T

Figure 3 .

 3 Figure 3. The translation of the chart at Fig. 1 into ε-TPN.

Figure 4 .

 4 Figure 4. Hierarchical modules.

 relation of the timed and instantaneous transitions, with: a) a timed transition by a delay d ∈

In general, edges may be used in formulae, in a transition condition or in the condition of a stored action on event.