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BERRY-ESSEEN BOUND AND PRECISE MODERATE
DEVIATIONS FOR BRANCHING RANDOM WALKS WITH
PRODUCTS OF RANDOM MATRICES

THI THUY BUI, ION GRAMA, AND QUANSHENG LIU

ABSTRACT. We consider a branching random walk where particles give
birth to children as a Galton-Watson process, which move in R? ac-
cording to products of independent and identically distributed random
matrices. We establish a Berry-Esseen bound and a Cramér type mod-
erate deviation expansion for the counting measure which counts the
number of particles in generation n situated in a region, as n — oo.
In the proof, we construct a new martingale, and establish its uniform
convergence as well as that of the fundamental martingale.

1. INTRODUCTION

A branching random walk in R? is a system of particles, where particles
behave independently, and each particle gives birth to a random number
of children which move in R? with independent and identically distributed
(ii.d.) displacements. One of the fundamental problems on this model is
the study of the counting measure which counts the number of particles of
generation n situated in a Borel set of R%. This problem has been studied by
many authors, see e.g. [21, 30, 1, 2, 6, 7, 16, 18, 19, 12], where central limit
theorems and large deviations have been considered. For other important
topics and closely related models, see for example the recent papers [4, 13,
24, 27, 3], the recent books [29, 14, 25| and many references therein.

In the classical branching random walk, a particle whose parent is at
position y, moves to position y 4+ [ with i.i.d. increments [’s for different
particles, so that the moving is a simple random translation. Recently, in
[10] the authors consider a branching random walk in R? with products
of random matrices, in which the position of a particle is obtained by the
action of a matrix A on the position of its parent, where the matrices A’s
corresponding to different particles are i.i.d. In other words, the positions
of particles are obtained by the action of products of random matrices on
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the position of the initial particle. This permits us to extend significantly
the domains of applications of the theory of branching random walks, but
the study of the model becomes much more involved. In [10], a central limit
theorem and a large deviation asymptotic expansion of Bahadur-Rao type
for the counting measure have been proved. In this paper, we will establish
the Berry-Esseen bound about the rate of convergence in the central limit
theorem, and a moderate deviation expansion of Cramér type.

For a precise description of the model we need some notation. Let N =
{0,1,2,...} and N* = {1,2,...}. Set U := U2 ,(N*)" where by convention
(N*)0 = {(}. A particle of generation n will be denoted by a sequence
U= u---uy = (u1,--,u,) € (N*)" of length n; the initial particle will
be denoted by the null sequence (). Assume that on a probability space
(Q, F,P) we are given a set of independent identically distributed random
variables (N, )ycu of the same law p = {py, : k € N}, and a set of independent
identically distributed d x d random matrices (A, )ycu of the same law p on
the set of d x d matrices M (d,R), where d > 2. The two families (N )yecu
and (Ay)yeu are also assumed to be independent.

A branching random walk in R? with products of random matrices is
defined as follows. At time 0, there is one initial particle () of generation
0, with initial position Y := z € R%\ {0}. At time 1, the initial particle
() is replaced by N = Ny new particles i = ()i of generation 1, located at
Y = A;Yy,1 <i < N. In general, at time n + 1, each particle u = u; ... u,
of generation n, located at Y, € R?, is replaced by N, new particles ui of
generation n + 1, located at Y,,; = A,; Yy, 1 < i < N,. Namely, the position
of the particle ui is obtained from the position of u by the action of the
matrix A,; on the vector Y,. Consequently the position Y, of a particle u
in generation n > 1 is given by the action of products of random matrices
on the position z of the initial particle (:

Y, =Gux, where G, =Ay u,- - Au- (1.1)

Denote by T the genealogical tree associated to the elements {N,, : u € U},
defined by the following properties: 1) ) € T; 2) when u € T, then for i € N,
wi € T if and only if 1 <4 < Ny; 3) wi € T implies u € T. Let

T,={ueT:|ul=n}

be the set of particles of generation n, where |u| denotes the length of the
sequence u and represents the number of generation to which u belongs; by
convention [()| = 0.

The space R? is equipped with the Euclidean norm |-|. The position G,
of the particle u is completely described by two components: its norm |G,z
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and its projection on the unit sphere S¥1 := {y € R, |y| = 1} denoted by
X7 .= Gz .
|Gz

Accordingly, we consider the following counting measure of particles of gen-
eration n which describes the configuration of the branching random walk
at time n: for measurable sets B; C S%~! and By C R,

Z3(B1,By) = Y L{xzeB . log|Gur|eBa}s (1.2)
uGTn

where for a set D, 1p denotes its indicator function.

In [10], a central limit theorem for the counting measure Z} (with the
starting point z € S%~1) was established for both the case where the ma-
trices A, are nonnegative, and the case where the matrices A, are in-
vertible. It implies that, under suitable conditions, for some constants
v, 0 explicitly defined (see (2.1) and (2.2)) , the counting measure By
Z2(S% 1 ny 4 0/nBs) on R with a suitable norming converges to the stan-
dard normal law. In [10], a precise large deviation result of Bahadur-Rao
type was also established, which gives in particular the exact asymptotic of
zZr (Sdil, [na, +oo)) for a > .

In this paper, our first objective is to strengthen the central limit theorem
in [10] to a Berry-Esseen bound for the counting measure Z; with a target
function ¢ on X?: see Theorem 2.1. With ¢ = 1, it implies that, under
suitable conditions, for any = € S*! and n > 1, we have, a.s.

M
%7
where ®(y) = \/% Y e~t/2d¢ is the distribution function of the standard
normal law and M is a finite and positive random variable.

Our second objective is to establish Cramér type moderate deviation ex-
pansion for Z7 with a target function ¢ on X;: see Theorem 2.2. From

this theorem with ¢ = 1, we know that, under suitable conditions, for any
r €S and 0 < y=o(yn), as n — oo, a.s.,

Zﬁ (Sdila ny + O—\/ﬁ(_oov y])
m WL — (y)]

where ¢ — ((t) is the Cramér series (see (2.5)).

An important step in attaining these two objectives is to establish a Berry-
Esseen bound for the Cramér type changed measure Z7,, (see (2.14)). This
will be done in Theorem 2.3. Theorem 2.1 will be obtained from Theorem
2.3 by taking s = 0, and Theorem 2.2 will be established by using Theorem
2.3 and by adapting the techniques from Petrov [28].

sup

1
2Ty + ain(—oo,]) - Way)| <
yeR

— (1.3)

S0, g

NG
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To facilitate the comprehension, let us present some ideas in the proof of
Theorem 2.3. As in [11] where the one dimensional case is considered, we
need to study the asymptotic of the characteristic function of the changed
measure Zg,,. Inspired by the approach in [11], we would like to express the
characteristic function of Z7, in terms of a martingale and a quantity that
can be controlled by the theory of products of random matrices. However, in
contrast to the one dimensional case, we cannot obtain directly an expression
of the characteristic function in terms of a martingale. Fortunately, using
the spectral gap theory for products of random matrices established in [20,
13, 15] and recently developed in [31], we have been able to define a new
martingale which is similar to the fundamental martingale and which can be
used for a suitable approximation of the characteristic function of Z7,,. We
conclude by proving the uniform convergence and analyticity with respect
to a complex parameter of the new martingale, and by using the asymptotic
properties of the eigenvalue of the pertubed transfer operator related to the
products of random matrices. See Theorem 4.3 and Lemma 5.6 for details.

The rest of the paper is organized as follows. In Section 2, we fix some
notation, introduce our assumptions on the branching products of random
matrices, and state the main results. In Section 3, we recall some spectral
gap properties on products of random matrices stated in [31]. In Section 4,
the uniform convergence and analyticity of the constructed martingale are
established. Sections 5 and 6 are devoted to the proofs of the main results.

2. MAIN RESULTS

2.1. Notation and assumptions on products of random matrices.
Note that in our model, along each branch we encounter a product of ran-
dom matrices. In this section, we introduce some notation and the necessary
assumptions on products of random matrices in order to formulate our main
results. We shall consider two cases, the case when the matrices are non-
negative and the case when the matrices are invertible.

The set M (d,R) of d x d real matrices is equipped with the operator norm:
|lal]| = sup,egi—1 |az| for a € M(d,R), where |- | is a given vectorial norm
on R, and S*! = {z € R? : |2| = 1} is the unit sphere in R?. A matrix
a € M(d,R) is said to be prorimal if it has an algebraic simple dominant
eigenvalue. Denote by M the set of matrices with nonnegative entries. A
nonnegative matrix a € M is said to be allowable if every row and every
column of a has a strictly positive entry.

Let i be a probability measure on M (d,R). Denote by I', := [supp p]
the smallest closed semigroup of M (d,R) generated by the support of . We
say that the measure p is arithmetic if there are t > 0, § € [0,27) and a
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function ¥ : Sflfl — R such that
Va € T'\Vx € V(T') : explitlog |az| — 0 + i(Jd(ax) — I(x))] = 1,

where S©1 = {2 > 0 : || = 1} is the intersection of the unit sphere with
the positive quadrant. Notice that when d = 1, we have Sflfl = {1}, and the
above arithmetic condition reduces to the following more usual form: loga
is almost surely (a.s.) concentrated on an arithmetic progression ag + a1N
for some ag,a; > 0.

We will need the following assumptions on the law .

C1.

(1) For invertible matrices:
(a) (Strong irreducibility) There is no finite union W = J_y W; of
proper subspaces 0 # W; C RY which is I -invariant (in the
sense that aVV =W for each a € T'},).
(b) (Prozimality) I, contains at least one proximal matriz.
(2) For nonnegative matrices:
(a) (Allowability) Every a € T'y, is allowable.
(b) (Positivity) T, contains at least one matriz belonging to int(M).
(¢) (Non-arithmeticity) The measure p is non-arithmetic.

For both invertible matrices and nonnegative matrices, we will need a
moment condition. For a € M(d,R), set
ar

t(a) := inf |az and a-z:=-—— whenazr#0

(a) := inf Ja], - 0,
where a - x is called the projective action of the matrix a on the vector x €
S%=1. Then «(a) > 0 for both invertible matrices and allowable nonnegative
matrices. Set, for an invertible or nonnegative matrix a,

N(a) = max{|la|,c(a)""}.
For invertible matrices we have «(a) = [|a=!||~! and N(a) = max{||a|, la=!| }.
C2. (Moment condition) There exists ny € (0,1) such that
E[N(A1)™] < 0.

We will consider the action of invertible matrices on the projective space
P?—1 which is obtained from S?! by identifying z and —z, and the action
of nonnegative matrices on S‘i‘l. For convenience we identify z € P41
with one of its representants in S*~!. To unify the exposition, we use the
symbol S to denote P4~ for invertible matrices, and Sflfl for nonnegative
matrices. The space S will be equipped with the metric d, which is the
angular distance (see [9]) for invertible matrices, and the Hilbert cross-ratio
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metric (see [22]) for nonnegative matrices. Moreover, S is a separable metric
space equipped with Borel o-field.

Let C(S) be the space of continuous complex-valued functions on S. For
B > 0 sufficiently small, we introduce the Banach space

Bs = {f €C(S) : || fllp < +o0},
equipped with the norm

1 £llg == I flloo + [£1p;
where
_ . 1f(z) = f(y)l
[ flloo == ilelglf(fv)l, | f1s -—Lyzgg#y Py

Let G,, = A,, ... A3 A; be the product of i.i.d. d x d real random matrices
A;, defined on the probability space (£, F,P), with common law u. Let
x € S be a starting point. As mentioned in the introduction, the random
walk G,z is completely determined by its log norm and its projection on S,
denoted respectively by

Gnx
G|’
with the convention that Gox = x. Since Si ; = log|A, 1 X} + S& and
X7 = Apyr - X7, the sequence (S5, X7),>0 is a Markov chain.

Denote by E the expectation with respect to P. By the law of large
numbers of Furstenberg [17], under conditions C1 and C2, we have

Sy =log|Gpz|, X :=Gpx= n >0,

1 1
lim —S; = lim —E[S}]=~ P-as., (2.1)

n—oo n n—oo n
where v = inf,en 2Elog |G, || is the upper Lyapunov exponent associated
with the product sequence (G,,). Le Page [26] and Henion [22] showed that
1
o? = lim —E (5% — ny)? (2.2)
n

n—oo

exists and is independent of = for invertible matrices and nonnegative ma-
trices, respectively. Moreover, there exists a unique p-stationary probability
measure v on S (see [20, 13]): u* v = v, that is, for any ¢ € C(S),

(s v)(0)i= [ [ plandav(de) = v(e)

where v(p) = [ ¢(x)v(dz), and this notation for the integral will be used
for any function and any measure. Define the transfer operator on C(S) as
follows: for any s € (—no,n0), and f € C(S),

P, f(x) =E[|A1z|°f(A1-2)], forallzeS. (2.3)
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It is known that under conditions C1 and C2, there exists a small constant
0 < m < no such that for any s € (—n1,m1), there are a unique probability
measure vs and a unique Holder continuous function rs on S satisfying
v(rs) =1 and

vsPs = k(s)vs and  Psrs = k(S)rs, (2.4)

where £(s) is the unique dominant eigenvalue of Ps, v4Ps is the mesure on
S such that (vsPs)(f) = vs(Psf) for all f € C(S). In particular, 7o = 1 and
k(0) = 1. For s € [0,m1), the property (2.4) is proved in [13, Proposition
3.1] and [15, Corollary 7.3] for positive matrices, and in [20, Theorem 2.6
and Corollary 3.20] for invertible matrices. For both positive matrices and
invertible matrices, the existence of ; > 0 and the property (2.4) for s €
(—m1,m1) are proved in [31, Proposition 3.1], where the following properties
are also established: the functions s — k(s) and s — rs(x) are strictly
positive and analytic in (—n1,m1), for z € S. Moreover, it is proved (see [20,
Lemma 3.5], [13, Lemma 6.2], [31, Propositions 3.12 and 3.14]) that, under
conditions C1 and C2, the function A(s) = log x(s) is finite and analytic on
(—=m1,m1), and satisfies

ANO)=~, A"0)=02>0, and A’(s)>0 Vse (—n,mn).

Denote v = A¥(0),k > 1. Throughout the paper, we write ¢ for the
Cramér series associated to A (see [28, Theorem VIII.2.2] for details):

Y3 Yaye — 33 : Y573 — 10747372 + 1573 2
672/ 243 120752

C(t) = ... (25)

which converges for |¢| small enough.

2.2. Main results. Let Z,, = Z7(S,R) be the population size at time n,
which does not depend on the starting point x, and which forms a Galton-
Watson process with Zyp = 1 and Z; = N. Denote by m = EN the expected
value of the offspring distribution. Throughout the paper, we assume that

m € (1,o0) and P(N =0)=0.

Therefore the branching process (Z,) is supercritical, and Z,, — oo a.s. as
n — o0o. It is well known that EZ,, = m"™. Let

Z,
W = lim W,, where W,="2 n>0,
n—oo

mn’
is the fundamental martingale for the Galton-Watson process (Z,,), and the
limit exists a.s. by the martingale convergence theorem. An important in-
gredient in studying Berry-Esseen bound and moderate deviation expansion
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is the fundamental martingale associated to branching random walks with
products of random matrices, defined for s € (—n1,7;) and x € S

> _ueT, es%urg (X3)
[me(s)]"rs(x)
This is a positive martingale with respect to the natural filtration

Fo=10,2} and #, = 0(Ny, Ayi 10 = 1,|u| <n) for n > 1.

Wi(s):= , n=0. (2.6)

By the martingale convergence theorem, the limit
i s T S :
W#(s) = Jim Wy (s) existsin R P-a.s.

Set A*(¢qs) = sqs — A(s) with g5 = A’(s). It is proved in [10] that under
conditions C1 and C2, if

A*(gs) —logm <0 (2.7)
and
E rl r 2.
[max Wy log, max W, | < oo, (2.8)

where log, # = max{0,logz} denotes the positive part of logx, then for all
x € S, W*(s) is non-degenerate with
E[W?(s)] = 1.
Set
J={s € (—ni,m): A*(gs) — logm < 0}, (2.9)

which is an open interval containing 0. We assume the following moment
condition slightly stronger than (2.8):

C3. There are constants vg > 1 and 0 < 19 < ”—21 with [—n2,m2) C J such
that

E{max (Wf(s))vo] <oo Vs€[—m,mnl

€S

It is clear that conditions C1-C3 (together with the hypothesis P(N = 0) =
0 that we assume always), imply that for all z € S, W*(s) > 0 a.s. and
E[W?(s)] = 1; in particular (when s = 0), W > 0 a.s. and E[W] = 1.

Our first result is the Berry-Esseen bound for the counting measure Z:

Theorem 2.1. Assume conditions C1-C3. Then, for any x € S, ¢ € Bg
and n > 1, we have, a.s.,

1 M
sup |[— (X)L (o —Wl/cpfby’é, 2.10
owp| i 32 PO s ) - WHOR0) S 210
where ®(y) = \/%7 Y e~t/2dt is the distribution function of the standard

normal law and M is a finite and positive random variable.
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This is a Berry-Esseen type bound for the counting measure Z} with
suitable norming because the sum in (2.10) is an integral with respect to
z%

T _p = Z1 1 vo—m Zz le,dZQ . 2.11
T AOD g )= [ Py 2 ). 21

Our second result is the Cramér’s moderate deviation expansion for Z;.
Theorem 2.2. Assume conditions C1-C3. Then, we have for any x € S,
¢ € Bg,0 <y =o0(y/n), asn — oo, a.s.,

3

2uet, PXi) (s -ny> oy _ FH (e )+O(y+1)], (2.12)

m"W(l — ®(y)] Vvn
and
ZueTn SO(quf)]l{Sﬁ—n <—v/noy} fy—iﬁ(f%) y+1
man)(_y)v R a7 )+0( \/ﬁ)] (2.13)

An important step in the proof of the moderate deviation expansion is to
establish a Berry-Esseen bound for the changed measure Z7,, defined by for

measurable sets B; € S ! and By C R,
e**2rg(z1)
Z%.(B1,By) = / —
saBL B = [ b e (@)
Sty (X)

& Imr()rs()

Zﬁ (dzl, dZQ)

L{xzeB, 528} (2.14)

Our third result is a Berry-Esseen bound for the changed measure Z7,:

Theorem 2.3. Assume conditions C1-C3. Then, for anyx € S and ¢ € Bg
there exists a constant 0 < n < ny such that a.s., forn > 1,

sSE T T
urS(Xu)QD(Xu) x M
sup sup 1 Z_nA (s - W (5)77 (¢)®(y) < )
s€(—nn) yeR u;r:n [me(s)]"rs(x) {75“03;}( )éy} ’ vn
(2.15)
where M is a positive and finite random variable.
This is a Berry-Esseen type bound for Z7, because, similar to the case
of Theorem 2.1, the sum in (2.15) is an mtegral with respect to Z7
Sty (XD)e(X3) |
S Ime)re(e) g
S$29
L e (a)p() 78, (d=, dzs). (2.16)

sxr [me(s)]rg(z) {%Af%)\y}
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3. PRELIMINARY RESULTS ON PRODUCTS OF RANDOM MATRICES

In this section we recall some spectral gap properties stated in [31] which
will be used for the proofs of main results.
Define the operator P, on C(S) by

P.f(x) =E[|Aiz]* f(A;x)], forallze S, zeC. (3.1)
Denote by L(Bg, Bs) the set of all bounded linear operators from Bg to Bg

equipped with the operator norm

P
| P||gs—5, := sup H fHﬁ, VP e L(Bs, Bg).
0 Ifls

We write Bj; for the topological dual of Bs endowed with the norm |[v/|| B, =
Sup||y| 51 |V()| for any linear functional v € Bj. For any n > 0, set B,(0) =

{z € C : |z| < n} for the ball with center 0 and radius 7 in the complex
plane C.

Lemma 3.1. Assume conditions C1 and C2. There exists a small n; €
(0,m0) such that for any z € By, (0) and n > 1, we have the decomposition

P! = k"(2)M, + L, (3.2)

z

where the operator M, is a rank one projection on Bg, the mappings on
By, (0),

2z k(z) €C, zw—r, € Bpg, zHyzeBlﬁ, 2w+ L, € L(Bg, Bg)

are well-defined under the normalizing conditions v,(1) = v(r,) = 1. All
these mappings are analytic in By, (0), and possess the following properties:
(1) for any z € By, (0), it holds that ML, = L, M, = 0;
(2) for any z € By, (0), Pyr, = k(2)r, and v, P, = k(2)v,;
(3) k(s) and rs are real-valued and satisfy k(s) > 0 and rs(x) > 0 for
any s € (—n1,n) and x € S;
(4) there exist two constants 0 < a; < az < 1 such that for all z € By, (0)
and all n € N*, |k(2)| > 1 — a1 and ||[L}| 5,8, < c(1 —a2)"™ .

For fixed s € (—m1,m1) and = € S, the spectral gap property (2.4) allows
to define a probability measure Q7 on (€2, F) such that for any n € N and
any bounded and measurable function h on (S x R)"*1,

()

K™ (s)rs(z)
= EQ? [h(X(g):’S(a)?v""XﬁvSZ)} ) (3'3)

WXE, S5, X5, S5

where Egs denotes the expectation with respect to Q. See [13, 15, 20] for
s >0, and [31] for s < 0.
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Under the changed measure Q?, the process (X7Z),en is a Markov chain
with the transition operator @), defined by, for any s € (—n1,71) and ¢ € Bg,

Qsp(x) = LP (prs)(z), z=€S.

K(s)rs(z)”
It has been proved in [31, Proposition 3.4] that Qs has a unique stationary
probability measure defined by 7s(p) := %, ¢ € Bg, and there exist
two constants 0 < a < 1, ¢; > 0 such that
sup  sup [Eqz[p(X2)] — ()] < cra™ (3.4)
86(7771,7')1) TES

Moreover, the perturbed operator Ry ;; defined by
Ryup(x) = Bge TN Olp(XT)], s € (—m,m,) and t € R, (3.5)
satisfies for any compact K C R\{0},n > 1 and ¢ € Bg,

sup supsup [Rg;0(z)| < |l¢llgak, 0<arx <1. (3.6)
s€(—mi,m)teK z€S

The operator R has eigenvalue Ay ;; satisfying for s € (—n1,m) and t €
(_67 5) C (_7717 771)7
Neit = eA(s-H‘t)—A(s)—A’(s)it' (37)

4. ASSOCIATED MARTINGALES

In this section, for the fundamental martingale (W;¥(s)) we first reveal a
relationship between the moments of W{(s) and W (s) := sup,>q W (s).
We next prove the uniform convergence of W7(z) for z € B,,(0). We fi-
nally introduce a new martingale and establish its similar properties; this
martingale will play a key role in the proof of the main results.

Theorem 4.1. Assume conditions C1-C8. Then there is a constant n €
(0,7m2) such that
sup sup E[WZ(s)]™ < oo. (4.1)
s€(—nn) z€S
Proof. In [10, Lemma 5.6], it is proved that if E[W?(s)] = 1, then WZ(s)
and W?(s) have similar tail behaviour for s € (—n2,,n2) and for all z € S,

ie. for s € (—n2,,m2) and for any a € (0,1), for s € (—n2,,m2), there is a
constant b > 0 such that for allt >0, forallz € S

P(W? > at) > bP(WE, > t) > bP(WE > t).

A slight modification in the proof of [10, Lemmas 5.5 and 5.6] shows that
we can choose b independent of s € (—n2,,72). (To see this, we just need to

check the proof therein, and replace W¥ by SUP e (o) W¢ in the formula
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SupyesE[Wsyl{WSy>T}] TZ152° 0 of the proof of Lemma 5.5, at the last line

of page 34.) Recall that E[W?(s)] = 1 under the hypothesis of Theorem
4.1. Thus, in order to prove (4.1), it suffices to show that there is a constant
1 € (0,m2) such that

sup sup E[W?(s)]" < oo. (4.2)
s€(—n,n) z€S
Set h(z) = 2% where § = 49 — 1 € (0,1]. Observe that
eSSy (XT)
Ta(s)=>_H ), where Hy |, = ————— %"~ (4.3)
Z [ (s) ()
Using (4.3) and the subadditivity of h, we have
z x X3
B (W21 (W ()] < B 5 12,975 o) (12,0
ueT,
En[ Z Hn,uwl (S) h‘( Z Hn,vwl (S))}
ueTy vETY

vFEU
Using Jensen’s inequality for the conditional expectation and the facts that
E, [WlX u (s)} = 1 and h is an increasing function, the second term in the

inequality above is less than W¥(s) h(W?(s)). Then taking expectations in
the two sides of the inequality above, we get

E[Wiiia(s) h(Wikia(9) | E| 30 Hi W% (s) h(H7, W7 (s)) |

ueT,
+ B[ Wi (s) h(wgf(s))] .
So by recurrence on n and Fatou’s lemma, we obtain

E[W*(s) h(W*(s))] < liminf E[W;7(s) h(W”(s))]

E[Wi(s) h(Wi(s))] + ZE[ S H (s) h(HZ Wi (s))]-

’U,ETn

To prove (4.2), it suffices to show that there is a constant n € (0,7,) such
that

sup supE{Wf(s) h(Wf(s))}g sup  Elsup Wi (s)]° < 00, (4.4)
s€(—n.m) v€S s€(-mam2) €S

and

?ugn) ZlelgnzoE{uezTn h(Hﬁ’qu(g(s))] < 0. (4.5)
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For (4.4), we see that for all s € (—n1,m1),

N
1
W$(S) _ eslog\Ai:ch (A . x)
! mek(s) ; s
o maxges [rs(2)] (% o~ log| Azl g: o2 log |Am)' (4.6)
mH(S) =1 =1

Since the functions s +— rg and s — k(s) are strictly positive and analytic
on (—m,m) and rg = 1,k(0) = 1, there are two constants dy,dz > 0 such
that

w g d1 for all s S (—771,171) (47)
minges rs(z)

and
SUPse(—ni,m) K(S)
infSG(*m,m) r(s)

Hence, from (4.6), (4.7) and (4.8), for all s € (—n1,m1),

< do. (48)

Wi (s) < dida (WY (—12) + WY ().
Therefore, by the inequality
(a+b)° <207 g™ +p1°), a,bER, (4.9)
and condition C3,

sup  E[sup W (s)]™
86[—7727772] x€eS

< (didy) 027} (B Sup[ W (=) + Esug[Wf(ng)]"m) <oo. (4.10)
xTe xre

For (4.5), we consider the general term in its series. Since h(x) = 29, we

have, by (4.7), for all s € (—n2,12)
E[ Y HE W (s) h(HE W (s))]

uETn

=E[ Y (32,7%(9) "]

uE']I‘n

<E[ Y (Hp,) " |Esup Wi (s)
€Ty, €S

o [ MK(570) \" - 20 0
<d(Gpe) EWI GBS W, (1)
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Set f(s) = [zzg;]%)o’ s € (—n2,m2). We see that f(0) = m!™ < 1 and
f is continous on (—n2,72) by the continuity of x. Hence there is a small

constant 7 > 0 with (—n,n) C (—n2,n2) such that

c1:= sup ma{sy0) <L (4.12)

s€(—n,m) [mﬁ(S)]VO

We can choose n > 0 sufficiently small so that sy € (—n1,7m1). Then
WZ(sv) is well-defined and a martingale, so E[W?(sy)] = 1. Therefore,
from (4.11), (4.12) and (4.10), we obtain

o igg;E[ugT;n Hyy Wi (s) h(Hy Vi ()

o
<dP°  sup  Esup Wi(s)" Z el < oo.
s€[-mzm2] €S n=1

This completes the proof of (4.5). Thus (4.2) is proved.

Now we consider the martingale with complex parameter:

ZuETn eszf Tz (Xi)
[mr(2)]"r=(x)
For each fixed z € By, (0), it can be easily checked that (W7 (2)) remains a
martingale with respect to (%,). Throughout, the real par of z € C will be

denoted by s, so that z = s + iIm(z).
The next theorem gives the uniform convergence of Wr(z). Let

Wy(z) := , n=0, z€ By(0). (4.13)

) mr(as)
Q}X = int {Z S an (0) : W < 1} and Q’YO = U Q}X (414)
1<a<vo
Since the derivative at 1 of the function o [Z:E?)?L is equal to A*(s)—logm

mk(as)
£ <1
) . mre(s)]
when o > 1 is close to 1. This shows that the open set {2, contains the
segment (—n2,72), so that (—n2,7n2) is the intersection of €, with the real

axis.

which is negative for s € (—n2,12), we have, for these values of s,

Theorem 4.2. Assume conditions C1-C3. Then the sequence (WE(2))n>0
converges a.s. to some complex valued random variable W*(z), uniformly
in z on any compact subset K C §1,,. Moreover, we have a.s., for alln > 0,

sup [Wi(z) — W*(z)| < Md™, (4.15)
z€K

where M is a positive and finite random variable and § € (0,1), and W*(z)
is analytic on .
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Proof. The basic ideas here are the same as those used in the proof of The-
orem 2 in Biggins [8]. To prove the uniform convergence on a compact
subset K C €1, it suffices to show that for each zy € €2,,, the uniform
convergence holds in a disc centred at zg. Given any zy € €2,,, we can find
1 < o < min{2,70} and a small 5 such that B, (z0) C Q) and

mk(as)

€1 = sup < 1. (4.16)

2€Bay(20) ‘m’{(zﬂa

For any N > n, Wi, ,(2) — W;(2) is analytic in z on Bay,(20), so by [8,
Lemme 3], we deduce that for all n > 0,

sup sup Wiy (2) = Wi()| < D0 sup [WiE(2) — Wi (2))|
N2n zeBy(z0) k—n, 2€Bn(20)
1 r2m X - .
<< 730 W) - W )t
k=n

(4.17)

where z(t) = zo + 2ne¥, 0 < t < 27. (This can be easily proved by
Cauchy’s formula.) Note that, by Fubini’s theorem, for n > 0,

oo

2 o)
E/ S OIWEL (=) = WiE(z(t)|dt < 2x sup > E[WiE(2) = Wi(2)),
(U — 2€0B2y(20) f—p,
(4.18)

where 0Bo,(20) = {2z € C : |z — 29| = 2n}. Therefore, if the right hand side
of (4.18) is finite for all n > 0, then the right-hand side of (4.17) goes to 0
a.s. as n — 0o, so that a.s. the sequence (W?Z(z)) converges uniformly on

B'rz(ZO)-
Now we prove that the right hand side of (4.18) is finite. Notice that

zSy T
e*ur, (XT)
Wi (z) —Wii(z) = —_— B
bale) =W = 2 o
Taking the a-th absolute moment at both sides of (4.19) conditional on %,
and applying Lemma 1 of Biggins [8], we obtain
ezsirz(Xﬁ)
[mi(z)]Fr(z)

(Wi(2) = 1), (4.19)

o

x T a a X3 e
Ep|Witii (2) = Wi (2)|* <27 ) ExWy(2) — 1%

u€Ty
(4.20)
Since the function z +— 7, is analytic on B, (0) and ro = 1, there is a
constant ds > 0 such that
maxses @] 0 foran - € By, (0). (4.21)

minges "r'z (.’L‘) ‘
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Recall that s is the real part of z. Because B, (z0) C QL C B,,(0) C B%l (0),

we have z, §* € Bny (0) for z € 9By, (20). It follows from (4.21) that for all
2

S 6B277(z0),

*Sir,(X3)

67

< ( m/{(as) >k eassﬁroes(Xff) ITZ(qu”aras(x)
h [

m |m/€(2)|a m/i(as)]kras(x) |TZ($)|QTQS(X$)
i (o) \* e i)
= <|mﬂ(2>\a> [m(os)]Fras(z)” (4.22)

On the other hand, from (4.9) and (4.21), we obtain the following estimation,
for all z € 0Bay(20),
B | W7 (2) = 1]°

ezsfirz(Xiq) o

< EMWTEEI ) =R Y T

v€eT1 (u)

a1 ( K(s) \° (XX (X2) €S0 g (XY 0
s? <|n<z>) Bl 3 | I (X g (X0 >m<>rs<Xﬁ>] .

< d§a2o¢—1 (

v€ETy (u)

) Esup (Wi (s))* + 2271,
x€S

Combining this with (4.20) and (4.22) gives, for all z € 9By, (20),
Ex| Wik (2) = Wi (2)*
me(as) \F Kk(s) \@ o
< c(#) Wff(as){( () ) E sup (W (s)) —i—l}.

mr(2)] k() zes

Taking expectation at both sides of this inequality and using Jensen’s in-
equality, we obtain for all z € 0Ba,(20),

52\»—‘

k
1 mr(as) \* 1/ k(s) \@
E|WE (2) — WE(z <Ca< ) Esup (W7 +1
Wi (2) = Wi (2) ) o) EsmROVEe)” +1)
From (4.16), (4.10), the analyticity of x(z) on 0Ba,(20) C By, (0) and the
fact that |k(z)| > 0 for all z € By, (0), we obtain

k
sup EIWE,(2) - WE(2)| < Cef (4.23)
ZEaBQU(ZO)
This concludes that (4.18) is finite for all n > 0. We have therefore proved
that it is a.s. that the sequence (W;7(z)) converges uniformly on B (zo)

for each zg € €1, which implies the uniform convergence on each compact
subset K C (2,.
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We now come to the speed of convergence (4.15). Clearly, it is enough to
prove that there is a 6 € (0,1) such that on each compact subset K C Q,,

S sup [WE (2) — WE(2)] "0 as. (4.24)
zeK
From (4.17), (4.18) and (4.23), we have for each zy € Q,, there is n > 0
small enough such that for all n > 0,

i k
E sup [Wii(2)— W, (2) <2ZC’Cf‘,
z€By(20) k=n

where C and ¢; are constants which may depend on zg. Since K is compact,
by Borel’s theorem, K can be covered by a finite number of open balls
By, (zi),i=1,...,ng, so that there exist two constants C; > 0 and ¢z € (0,1)
which may depend on K, such that for n > 0,

oo
Esup W, 1(2) = Wy (2)] <2 Z Clcg < Cocly. (4.25)
zeK k=n
Taking ¢ € (c2,1) and using Fubini’s theorem we see that

[e'e) . oo c n
EY " 67" sup (W (2) — Wa(2)| < 2 3 (2)" < o0,
n=0 zeK n=0 0

so that

oo
Z 0 "sup |Wi1(2) = Wi(2)| <oo as.
n=0 zeK
Therefore, (4.24) is proved. This ends the proof of (4.15).
Finally, since a.s. each W7(z) is analytic on €2, and the sequence (W7 (2))
converges uniformly on each compact set of €1, a standard result of complex

analysis (see e.g. Corollary 2.2.4 in Hérmander [23]) gives the analyticity of
W?(z) on Q. O

In the following we introduce a new martingale and prove its uniform
convergence and the analyticity of its limit. This is an important ingredient
in the proof of Theorem 2.3 about the Berry-Esseen bound for the changed
measure Z3,,, which is crucial in establishing the main results of this paper.

For z € By, (0), = € S and ¢ € Bg, set

e*5u M, (rs) (X3)
[me(2)]"rs(z)

Wi(2) =
ueTn
where M, is defined in (3.2) and (r5¢)(XY) = rs(XT)p(XT).

;o n =0,

Theorem 4.3. Assume conditions C1-C3. Then the sequence (Wr(2))n>0
is a martingale with respect to the filtration (F,) and converges a.s. to
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some complex valued random variable W“"(z), uniformly in z on any compact
subset K C Q. , and the limit W*(z) is analytic on §,.

Proof. The fact that (WZ(z),.%y)n>0 is a martingale can be easily shown:
it suffices to notice that

— e5u (rs T
E,We(:) = 3 M. (rsp)(X3)

& TR (@)

75 Mmoxxfu)}

E”[ me(z) M, (rsp)(XE)

vET (u)

where Tj(u) represents the descendants of u € T, at time n + 1. Moreover,
by the branching property, the definition of P, (3.1) and Lemma 3.1(1), we
have for u € T,

En[ 3

SN () (X ) En [ A X2 P Me(rop) (Xon)|

B M (o) (X3) R ()M (rs0) (X3)
_ POML(rg)(X5) _
K(2) M (rsp) (X))
The proof of the uniform convergence and the analyticity of the limit is the
same as in the proof of Theorem 4.2, whose details are omitted. O

5. PROOF OF THEOREMS 2.1 AND 2.3

Theorem 2.1 is a particular case of Theorem 2.3 with s = 0. Thus we
only prove Theorem 2.3. Our proof is based on Petrov’s method [28] for the
proof of the Cramér’s moderate deviation asymptotic on sums of i.i.d. real
random variables. We split the proof of Theorem 2.3 into two theorems:
Theorems 5.1 and 5.2, whose combination gives Theorem 2.3.

Theorem 5.1. Under the conditions of Theorem 2.3. Then, for any x € S
and ¢ € Bg there exists a constant n € (0,12) such that a.s., forn > 1,

esngS(Xzf)SO(XS) _ T\ n
s () O] < M

s€(=nm)  yeT,

where M is a positive and finite random variable and 6 € (0,1).

Theorem 5.2. Under the conditions of Theorem 2.3. Then, for any x € S
and ¢ € Bg there exists a constant n € (0,12) such that uniformly in s €
(=n,n) and y € R, a.s., forn > 1,

sSir (X2)p(X3) e e (XE)p(XD)
2 () (e T 2 T

where M is a positive and finite random variable (independent of s).

<M
\\/ﬁ7
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5.1. Proof of Theorem 5.1. The following decomposition which follows
from the branching property will play a key role in our approach with a
delicate choice of k for 0 < k < n,

eSi(ryp) (X2) | eSiny(X2) 50" () (X2
2 o)) Z (o) Fra(a) vemzk(u) ()" Frs(X2)
(5.1)

Recall that by our definition, for u € Ty, T, _(u) represents the descendants
of u at time n.

For each n, we choose an integer k, = [%], which is the least integer
greater than or equal to 5. For brevity, we denote for u € Ty,,,

., B 6551)’(5 (%@(Xi(i)
Yolr,(8) = Z [m(s)|nFnrg (X2)

vET ), _k,, (u)

Then by (5.1), the following decomposition holds:

esSﬁ s i
5 D) e () = An(s) + Ba(s) + Cals), (5:2)
S [mae)]r(@)

where

e (xD)
A= X G |

uETkn

Vi, (5) = En Yoy, (5)]
) — eSSiry(XT)
Bn( ) - ue;kn [m/i(s)]k"?”s(g;j |:Ekn

Cn(s) = Wi, (s) = W(s)]ms()-

By virtue of the decomposition (5.2), we shall divide the proof of Theorem
5.1 into three lemmas.

u

Vil (5) = mo()]

Lemma 5.3. Under the conditions of Theorem 2.3, there exist two constants
n € (0,m2) and 6 € (0,1) such that

57" sup  |An(s)] =0, a.s.
s€(=mm)
Proof. To prove Lemma 5.3, we will use the Borel-Cantelli Lemma. We can
obtain the required result once we prove that there exist a small n > 0 and
a constant ¢ € (0, 1) such that for any € > 0,

S P(E" sup |An(s)] > €) < oo. (5.3)
n=1 36(_771"7)
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By Markov’s inequality,

ZP(5_” sup |An(s)] >¢) < 25 "E sup |An(s)|. (5.4)
n=1 s€(=mnn) s€(=nm)

Because (),, is an open set containing 0, we can find a small p > 0 such
that B,(0) C Q, for some 1 < a < min{2,7p}. Let n € (0,4) whose value
will be fixed later. Then Bs,(0) C B,(0). We see that for every n € N, the
function

e*Sir, (X3
z = Ap(2) = Z [771/@(2)]19(“7“2()1:)[

ue’]l'kn

Yk, (2) = Bi Vi, (2)]

is well-defined as an analytic function on B, (0). Recall that s is the real
part of z. By Lemma 3 of Biggins [8], we have

1 2
sup [ Au(9) < sup [Au(2)] < — [ 1An( ()t
s€(—=n,n) 2€B,(0) T Jo

where z(t) = 2ne'*, 0 <t < 27. Note that, by Fubini’s theorem,

2T
E sup |A4,(s)| < E|A,(2(t))|dt < 2w sup E|A,(2)]. (5.5)
s€(=n.m) 0 |2l=2n

Consider now E|A,(z)| for |z| = 2n. Taking the a-th absolute moment of
A, (z) conditional on %, and applying Lemma 1 of Biggins [8], we obtain

Sur
Bk, [An(2)|* < 2% \#\ Er, [V, 1, () = Bk, Yoy, (2)]
u€Ty,
(5.6)

Because B3, (0) C B,(0) C By, (0) C B% (0), we see that if |z| = 27, then
& € B%l (0). Hence, by (4.21), we get for |z| = 2,

i (ra0) (Xip) |
[m(2)]fnr(x)

(m“(as) )kn e Firas(Xy) |7 (X5)|*ras(@)
ime(2)|* ) [mr(as)Frras(z) [ro(2)|*ras(XF)

e { mA(as) \F eSS, (X2
= (!mﬂ@l‘*) [mk(as)Frras(z) (5.7)
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We now estimate the expectation in (5.6). Using |a+b|* < 2% 1(|a|%+(b]|*) <
2(Jal* +1b|*) and (4.21), we have for |z| = 27,

Bt [Yalg, (2) = B, Yol g, (2)|* < 2EanY“_kn(Z)|”‘

S (X)X )lrs(XE) ¢ s(s) k]
= L@%@ [rss()l" s (XE) [ (X rs(X0) ()
2(d§H<PH,8)a(| fi‘) g W )]
2ol () s EOE(s)" 53)

From (5.6), (5.7) and (5.8), we have for all n > 0 small enough and |z| = 27,

o me(as) \* ( k(s) \ U o
I <e (i) (ren) B

Since as € (—n1,m1), (WZ¥(as)) is a martingale, so E[W7(as)] = 1. Taking
expectations at both sides of (5.9), we obtain for |z| = 2n,

E|An(2)]* < ¢ (m”(“))k" ( K(s) )O‘(nkn) sup E(W2(s))%.  (5.10)

[mk(2)]* |K(2)] ves
From (5.5), Jensen’s inequality and (5.10), we get that
E sup |A4n(s)]
56(_77777)
< Cé sup {(TIM(O&S))IZI e(n—kn)[A(S)—A(z)] {SUPE(WI(S))Q} ‘i} (511)
|z|=2n |m,{(z)|a €S *

From the facts that Bs,(0) C B,(0) C Q! and the definition of ), w
obtain

1 1
sup (mn(as)) P sup (mn(as)) o<l (5.12)
2| =2n \|mr(2)] 2€B,(0) \mr(2)[*

From (5.11), (5.12) and the choice of k,, which implies that k, > n — ky, we

get
1
E sup |An(s)| < i En sup {‘e(n—kn)[A(s)—A(z)} a}.
s€(=n,n) |z|=3n

[ sup E(W (s))"
€S

—

By Theorem 4.1, for n > 0 small enough,

sup supE(W7(s))* < oc. (5.14)
s€(—nn) z€S
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Note that ¢; < 1 is independent of 1. Let ¢3 € (1, %) Since A is continuous
on By, (0) and A(0) = 0, there exists a small 73 > 0 such that

A=A o, (5.15)

sup ’e[
2€Bn4(0)

Take 7 small enough such that n < n3. Since k, = [5], we have n — k, >

5 — 1. So combining (5.13), (5.14), (5.15) we obtain for all n > 0 small

enough,

n

E sup [A4,(s)| < c(clcg)”_k" < 6(0162)5_1.
s€(—n.m)

Therefore, using (5.4) and taking 6 € ((6162)%, 1), we get that

g[?(é—" sup |An(s)| >¢) < c i<(61§2)2> .

s€(—n,m) gace 4

This completes the proof of Lemma 5.3. g

Lemma 5.4. Under the conditions of Theorem 2.3, there exist two constants
n € (0,m2) and § € (0,1) such that

57" sup |Bu(s)] "= 0 a.s.
SE(—Uﬂ?)
Proof. Using the branching property and the definition of Q¥ (3.3), we have
for u € Ty,,,

55X Xy
> 5" (rep) (Xo )

Ei, Yy, (s) = Ex, ()]s (X3)

”UETn,kn (u)
Xz x
Ekn [essn—kn (’I“S()O)(X,i(_ukn)}
K (s)rs (X)
Xz
— E s lp(X5, ).

Hence

68557'5 (Xg) x
sup [Eqz [¢(X5, 1, )] — ms(9)|

‘Bn(s)‘ < mzes

uETkn
< Wi, (s) sup [Eqz [o(X5 g, )] — ms(9)].
€S
By Theorem 4.2 and the bound (3.4), for n € (0,72), there exist a constant
¢ € (0,1) and a positive finite random variable M such that for all n > 0,

sup  |Bn(s)] < M Fn < Mez ™!
36(_77777)
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Therefore the conclusion of Lemma 5.4 holds for each § € (c%7 1). O

Lemma 5.5. Under the conditions of Theorem 2.3, there exist two constants
n € (0,m2) and § € (0,1) such that
57" sup |Cu(s)] "0 as.
s€(=n,m)
Proof. This is an immediate consequence of Theorem 4.2 and the fact that
[ms(@)] < llelloe-
O

5.2. Proof of Theorem 5.2. To prove Theorem 5.2, we need the following
result.

Lemma 5.6. Under the conditions of Theorem 5.2, there is a constant
n € (0,m2) such that

zSE < Xz N oo
sup Lﬁ)(“) — W) "0 a.s. (5.16)
2€B,(0) |z, [me(2)]"rs(x)
Moreover, ), cr, % s a.s. bounded by a positive and finite ran-

dom variable uniformly in z € B,(0) and n > 0.

Proof. By the branching property, for £ < n,

Z e?Su (7'34,0) (Xlaz) B Z eszfrs (X;B) Z 62555 (7”590) (Xicqf)

[me(2)|rrs(z) S [mw(2)]Frs(2) [mrs(2)]"~Frs(XE)
(5.17)

As before, for each n, we take k,, = [§]. For brevity, we denote for u € Ty,,,

u€Th u€Ty VET,, 1 (u)

Vi@ = > 5 ryp) (X0E)
n—kn\%) = n— AN
’ VET )y, () ()] Eers (X3)
Then by (5.17), the following decomposition holds:
zSE Xz N
O XD) (s = A(5) + Bu(2) 4 Cu(2),  (5.18)

2 Tma(z)]ra(a)

where

’LLGTkn
_ e*irg(Xy) U (5) — M (rsp) (X3))
D)= 3 fraeerya) B &)~ 0
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By virtue of the decomposition (5.18), in order to prove (5.16), it suffices to
show that there is a constant 1 € (0,72) such that

sup  |An(2)] "0, as., (5.19)
z€B,(0)
sup |Bn(2)] "=70, as., (5.20)
z€By(0)
sup |Cn(2)] "0, as.. (5.21)
2€By(0)

The proof of (5.19) is similar to that of Lemma 5.3, and is omitted here. It is
clear that (5.21) is an immediate consequence of Theorem 4.3. It remains to
prove (5.20). By the branching property and the definition of the operator
P, (see (3.1)), we have

BT (B, Y S )
kntn—k,\?) = Lk, n—kn T
veTh o () M) (X)

XT z
Ekn [ezsnfkn (TSSD) ('X’IA’)L(fk‘n )j|
- R (2)rs (X))

PR () (XD)
R () (XE)

Hence, by the decomposition (3.2) and Lemma 3.1(4), for any z € B, (0),
we have

[Bn(2)| <

ZSiTS(Xg) len_k" (rs)(X3) _ MZ(TSSO)(XS)} ‘
wemy [mr(2)]Frrs(@) [ w7k (2)rs (XE) rs(X§)

<2

u€Ty,

X)Ll X
IFrra(a) R () (X)

(L2 HBB_>B,8 Z “Ts(Xx) (R(S) )’“n [
k()| S rs(z) \r(z)]/ minges rs(y)

1—as n—kn
< e (8), 5.22
e(1=2) ) (5:22)

where 0 < a1 < ag < 1 is defined in Lemma 3.1(4). In the last step we

use the fact that [|rso|ls < 3||7s|sll¢lls < ¢ and that the map s — ry is

analytic with ro = 1. Since k, = [§], we have n—ky>2%5—-12>k,—2,
—kn 2-1 kn—

SO (%:—Zf)n < G:Zi) * L (%:Zf) . Let ¢; € ( 1= ) Using the

facts that the function A is continuous on B, (0) and A(0) = 0, there exist

nlA(s) =)
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a small n € (0,71) such that

sup [\
z€By(0)

(5.23)

By Theorem 4.2, for n € (0,72) small enough, sup,e_,,) Wi (s) < M,
where M is a positive and finite random variable. This together with (5.22)
and (5.23) implies that for n € (0,72) small enough,

1-— kn
761( a2)] "Z°0  as.

sup |Bn(z)] < CQM[ o

z€By(0)
This completes the proof of (5.20). So the proof of (5.16) is finished.

=Sy Ty . . .
The uniform bound of 3°, o1 % is an immediate consequence

of (5.16) and the fact that W*(2) is analytic in z (by Theorem 4.3). O

Proof of Theorem 5.2. For simplicity, we suppose that ¢ > 0; otherwise we
can consider the positive and negative parts of ¢ to conclude. Consider the
distribution functions of ﬁnite measures:

FS,n(y) = Z (T)()]l{sgj—n/\/(s)gy}, y €R,

2 Tmr(s)ra(w) - { S

e CRulrse)(X3)
Hin(y) = u;;n (e (o) P(y), yeR,

and their characteristic functions at —¢:

fsn(t) = / e WdFs,(y), hsn(t) = / e WdH, ,(y), teR.
R R

By straightforward calculations we have

han() = 3 T rap)(XD) -2 (5.24)

’ [mk(s)]™rs(z)

(
_ 5 eSrp) (XF) s
fs n(t) - Zn [m/@(s ]”7’5(1’) (& svn

osVn

(s—iL)se
-y ° D)Xy (5.25)

u€Th [mr(s — o f)]”rs(x) ’Usf
where the last equality holds by the definition of A (see (3.7)).
Notice that Fs,(—00) = Hgpn(—00) = 0, Fyp(4+00) = Hgp(+00) =

555 x . .
ZueTn %, Fs, and Hg, are non-decreasing on R, and H, is

- T ) (X ><*@< —aZ’@a)) —
= Z it )]nrs(m_) KZ(S) e osvn
)
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differentiable on R. So by Esseen’s smoothing inequality (see [28, Theorem
V.2.2]), forall T > 0 and s € (—n1,m1),

1T fs,n(t) — hsm(t)
:LSJIGIE |Fs,n(y) - Hs,n(y)’ < ; /—T t ’dt
o~ €S (rap)(XD)
YT 2 (o)

where ¢ is a positive constant. Therefore, to prove Theorem 5.2, it suffices
to show that there exists a small 7 € (0,72) such that as n — oo, a.s.,

T fon(t) = hon(t) 1
’ —=ldt =0 —=), 5.26
56?25,77) /—T t ‘ ¢ (ﬁ) ( )
and
co "5 (r50) (XT) 1
T ————= =0(—=). 5.97
ety T & Tma(s)]rs(x) () (5.27)

In the following, we denote by M; a positive and finite random variable. Let
T := no+/n with n > 0 small enough such that the conclusion in Lemma 5.6
holds, where ¢ := inf,c(_, ;) 0s > 0. By Lemma 5.6, we have

sST Xz
I
b ) 2 k(o))
Hence (5.27) is proved since
Co e (rsp)(Xy) _ coMy
sup  — - < :

b T 2= Tn(s)rae) S v
It remains to prove (5.26). We will prove this by showing that there exists
a small n € (0,72) such that as n — oo, a.s.,

L(n) + Io(n) = o(\/lﬁ), (5.28)

where

Ii(n) = sup dt,

/ fs,n(t) — hs,n(w ’
s€(—n,n) /tI<diav/n

t

fs,n(t) - hs,n(t) ‘
t

Ir(n) = sup dt,

s€(—=n,m) /510\/5<t|<n0\/ﬁ

with 1 € (0,n) whose value will be fixed later.
Control of I1(n). Denote for z = s + it with s € (—n,n) and ¢ € R,

ezSZf e T
G = 3 )

[mr(2)]"rs(x)

ueTy,



BRANCHING RANDOM WALK WITH LINEAR TRANSFORMATIONS 27
With this notation and using (5.24) and (5.25), we have

Ii(n) < Iii(n) + Lia(n),

where
Ao it
Iu(n) = sup / 2 (Un (s — —Un(s))|dt
se€(—n.) /[t|<d1gyvn t ( ( Us\/ﬁ) )
2
(A0 s =7 7)Unls)
Iia(n) = sup / v gt
s€(—nn) JIt|<drav/n t

For I11(n), by Taylor’s formula and the fact that A”(s) = o2, we have

A, = AR AN () ]
g, —*t
Yosvn
:en Zi?A S)(a:f)k

2 [eS) A<k)(s) —it \k
:ef%en k=3 (aﬁﬁ)

(5.29)

By choosing d; small enough, we have for all s € (—n,n) and |t| < d10/n,

AP (s) o —it t2
S < o
and so, from (5.29),
t2
AT |<e (5.31)
Yosvn

Therefore, for n and d; small enough,

+2

e 4
Iii(n) < sup /
\

dt. (5.32)
s€(—n,n) Y tI<digv/n t]

U, (s - a:.\t/ﬁ> —Un(s)

By Lemma 5.6, there is a constant 74 small enough such that for all n > 0,

sup |Up(2)| < Mo. (5.33)

o=

Notice that U, is a.s. analytic on By, (0). Let n,d; > 0 be small enough
such that n+id; € B%(O). By the mean value theorem, for s € (—n,n) and
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L_ € (—d1,61), we have

osv/n
it It| . it
Un(s — —Up(s)| < U, (s —
Uals = — 7 () < mes%ﬁgl\ (s - — ﬁﬂ
i /
< sup |U,(2)]- (5.34)
0-5\/>ZEB7]4

By the Cauchy’s formula, when z € B%; (0),
1 n
U'( ) = / de.
|w|=

27i m (w— 2)?

Hence, by (5.33) and the fact that |w —z| > & for 2z € B%( ) and |w| = B,
we have

18M>
sup |Uy(2)] < :
z€Bny (0) T4
3

Combining this with (5.32), (5.34) and the fact that o5 > o for all s €
(—n,n), we obtain

18M2 7& M3
Iii(n) < sup / e Tdt < B
s€(=n,m) Tsy/NNy [t|<d1ovn vn

For I 5(n), using (5.29), the inequality |e* — 1| < |z|el*! for all z € C and
(5.30), we obtain

(5.35)

[e’e) (k) s —1
’A" —it 6_§ < e‘é e Luk=3 S )(ﬁ)k - 1’
Tosvn
AW (a \ 0o B
<e () 1], ) (=)
— k. os\/n
2| X AR(s) o —it
<e Tln o (as\/ﬁ) (5.36)
By choosing §; small enough, we have for all s € (—n,n) and |t| < d10/n,
X AR (5) , —it \F It]?
|n§ O <o, (557
From (5.36) and (5.37), we have for all s € (—n,n) and |t| < d10y/n,
+2
A, —e 2
s, —% C 2
Tt < —=tle 1. 5.38
. NG (5.38)
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By Lemma 5.6, U,(s) is a.s. bounded uniformly in s € (—n, 7). This together
2
with (5.38) and the fact that [7° t2e~ T dt < oo implies that

C SUDse(—n,n) |Un(5)| & ¢ My
Lia(n) < ’ / tPe” Tdt < —. 5.39
Putting together (5.35) and (5.39), we get [;(n) = O(ﬁ)

Control of Is(n). Using the constraint |t| > d10v/n, we have

1
Ir(n) < sup / fsm(t) — hsn(t)|dt
() 010V se(—nm) &gﬁ@ﬂ@gﬁ' () ()l

S P / fsn@) + hsn(®)Ddt — (5.40
01EVT se(—nn) 51gx/ﬁ<|t|<ngx/ﬁ(| @)1+ lhan(E)) (5.40)

By (5.24) and Lemma 5.6, for n > 0 small enough and d10v/n < [t| < nay/n,

2 2
sup |hen(t)| <e 2 sup |Uy(s)| < Mse™ 2.

s€(=mn,m) s€(=n,m)
This implies that
1 Mg
sup / g (1)t < 58
d1ay/n s€(—n,n) JIav/n<t|<ngv/n vn
Hence, from (5.40), to prove that Is(n) = O(ﬁ), it remains to show that
there exist a small € (0,72) such that as n — oo, a.s.,
1 1
sup / fon(®)]dt = O(—=). (5.41)
010V se(—nm) Jor0vas|ti<ney/n (\/ﬁ)

By the branching property, we have the following decomposition: for n > 0
and k, = [5],

Fsn(t) = Asn(t) + Bun(t), (5.42)
where
(S— it )S;I; ) ,
e’ osVn T (XTI ithnAl(s) ¢ .
A t) = S U e os/n Y’LL B t _E uw B ¢ ’
nlf) UEZTM [m(s)]Frry(z) [ sin—kn () = B, Yo g, ( )]
(5_ N )55 . ’
e osVn T (X)) itkad ()
B , (t) = S u e osv/n Eknyu _ (t),
o UEZEkn [mk(s)]Frrs(x) s;n—ky
with
. sSu XEY i oxe ,
o= Y L &) s eokone)

n—=kn x
UETnfkn (u) [mﬁ(s)] T's (Xu)
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For As,(t), using the same argument as in the proof of Lemma 5.3, we
can prove that for n > 0 small enough, there exists 6 € (0,1) such that

sup sup ST A ()] "0 as.
s€(=n.m) drov/n<|t|<nav/n

Therefore,

sup sup |Agn(t)] < M7p10™. (5.43)
s€(=nm) d1ov/n<t|<nav/n

For Bg,(t), using the branching property and the definitions of Q¥ (see
(3.3)) and Rs ;¢ (see (3.5)), we have for u € Ty,,,

sSXﬁ X ;
o e (rsp)(Xo™)  =its)
Bl Vsintn (8) = Z [mﬁ(S)]n_k"Ts(Xx)e o

VET 1, (1)

Eg, [essﬁjkn (rsgo)(Xf?kn)eﬁf}ﬁ[sﬁkn*(mkn)/\'(s)q
()]s (X7)

- E@fﬁ [@(Xffkn)ev;i/tﬁ [Sﬁkn _(”—kn)A/(S)]}

Tosvn

Therefore, by (3.6) and Theorem 4.2, there is a constant a € (0, 1) such that
for k, = [5],

sup sup |Bs.n(t)] < ||g0||/3a"_k" sup Wy (s) < Mra2 ™1,
s€(=n,m) d1ov/n<t|<nav/n s€(—n,m)
(5.44)

From (5.42), (5.43) and (5.44), we obtain for ¢; = max{é, a%},

sup sup | fsn(t)] < Msch.
s€(=n,n) d10y/n<|t|<noy/n

Thus

2(n — 01) Mgcy
01 ’

sup | fon(t)ldt <
010V se(—nm) J61av/n<|t|<nay/m
which implies (5.41). This concludes that I»(n) = O(i), which ends the

n
proof of (5.28) and (5.26). So Theorem 5.2 is proved.
U
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6. PROOF OF THEOREM 2.2

For y € [0,1], Theorem 2.2 is a direct consequence of Theorem 2.1, as we
will see in the following. For n > 1,

Zué'ﬂ‘n @(qu)]l {82 —ny=v/noy}

3 - V(SO)
mr W1 — @ (y)]e Vo) ‘

1
= u‘m”ZSOXx_iZSO ]lS—'n’y<}

Wil — @(y)]eT vl u€T, u€T,

S Wue)(1 - b))

(6.1)

Since sup,epo 1] |\y/—%§ (%)] — 0, there exists ny large enough such that for

3
all y € [0,1] and n > ny, eval(Tm) > 1/2. Using this and the fact that
1-®(y) > c:=1— (1) for all y € [0, 1], from (6.1) we get for all n > no,

ZuETn @(quf ) 1 {SZ—ny=v/noy}

WL - @ <y>]e%“ﬁ) o

< | T e - o)

+ %\ ~ mn;% PXD s ) + W () (y)|
W) - a(w)(1 - R (62)

In the last display, by Theorem 2.1, when n — oo, the two first terms are
O(ﬁ) We will show below that the third term is also O(ﬁ) In fact, us-
ing the inequality [1—e’| < [t]e’ for t € R and the fact that sup,e(q g |C(%)|
is bounded for n > ng, we obtain for y € [0, 1], as n — oo,

L) 1
e o L)
Vn
Since |V ()| < ||¢]|oo, this implies that the third term in (6.2) is O(ﬁ)

From (6.2) and the above estimations, we see that for y € [0, 1], as n — oo,

Zue'ﬂ‘n ‘10( )]I{Sz—n7>\f0y} ‘ _ (7)
" _ nC(
MWL — ®(y))eve V7
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which implies

ZUET @(Xﬁ)]l{swfnp\/ﬁay} i((i) 1
n u—ny> — evatlUm
WL~ () o)+

waoll

We now deal with the case 1 < y = o(y/n). We can suppose that ¢ > 0
by considering the positive and negative parts of ¢. We will focus on the
proof of (2.12), as the proof of (2.13) is similar. For u € (N*)", set

Ve = quf — nA,(S)
u os/n
Then we have
1
I:= mn Z @(X$)1{55—n7>y0\/ﬁ}

ueT,

—nsA’(s)
=rg(x) c

K" (s)

sSE T
—sosy/mVE € u@(Xu) ,
2« [me(s)]rs(z) Vi>Z LAl
(6.3)
Because A(s) is analytic on (—mni,71) with A(0) = 0, it has the Taylor
expansion

uETn

As) =3 gk where 7 =AW(0), s € (—ni,m),  (6.4)

N(s) =y =3 b gh! (6.5)
= (k—1)!
Consider the equation
VAN (s) = 4] = oy, (6.6)
Set t = % Using (6.5), we get
— W k—1
ot = Z ——s" (6.7)
= (k—1)!

Since 2 = 02 > 0, the equation (6.7) has the unique solution given by

g b M =33

B4 (6.8)
1/2 2 7/2 ’
72/ 273 6’72/

which converges for |t| small enough (see [28, Theorem VIII.2.2] for details).
From (6.4) and (6.5), we see that
—k—1
sN'(s) — A(s) = ,;2 x st
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Choosing s given by (6.8), we obtain

: 2 3 Py (=
SA(S)—A()—*—tC() 2n_n3/2<(\/ﬁ>’ (6.9)
where ( is the Cramér series defined in (2.5), which converges for |t| small
enough (see [28, Theorem VIII.2.2] for details). Coming back to the ex-
pression of I (cf. (6.3)), using (6.9) together with (6.6) and the fact that
e~ () p[sAY(s)—A(s)]
=e

(s

, we have

I = ry(a)e 5 $ emsoeVavi (X))
- s

— = Ny
[ma(s)]rg(@) - V=0

— () TR / e~ TVWZT (dy), (6.10)
0

where Zi’n is the finite measure on R defined by:

—a s p(Xi)
Zgn(Ba) =Y WR{WEBQ}H By CR.
u€T,

Its mass satisfies ]E H—H

Slncet:ﬁ—>0asn—>oo by(68)wehaves—>0+asn—>oo. Hence,

for sufficiently large ng and all n > ng, we have s € (0,n) where 7 is defined
in Theorem 2.3. Therefore, denoting

bs(y) = Z5p((=00,4)) = W ()ma (D) @), y e R

S

we get from Theorem 2.3 that for all n > ny,
M
sup |ln,s(y — 6.11
yeRl n,s(Y)] < N (6.11)

where M is a positive and finite random variable independent of n and s. In
the following, we write M; for a positive and finite random variable. Notice
that

/ e I VWZL (dy)
0

© W*(s)ms(prs ') [ _ 2
_ sTs\/MY s s sTs\/MY
= e dl,.s(y) + / e 2 d
/0 ) V2T 0 Y

= I} + W (s)ms(prs 1) L. (6.12)

Estimate of I;. Using the integration by parts and (6.11), we get for
n 2 no,

1] < O]+ s/ [ eV ()] dy <

2M

N (6.13)
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Estimate of Is. The integral Io appears in the proof of Cramér’s large
deviation expansion theorem for sums of i.i.d random variables (see [28,
Theorem VIII.2.2]), where the following results have been proved:

(i) there exist some positive constants c1, ca such that for all s € (—n,n)
and n large enough,

c1 < sogy/nly < cy;

(ii) the integral I admits the following asymptotic expansion:
2

L=eT[l-oy)[1+0 <\%> ] (6.14)

By the definition of o, the mapping s — o is strictly positive and contin-
uous on (—n,n). Hence, there exist constants c3, ¢4 > 0 such that

C3 § S\/ﬁfg § Cq4. (6.15)

Notice that for all s € (—n,n), W*(s) > 0 a.s. Moreover, W¥(s) is a.s.
continuous in (—n,7n) by the continuity and uniform convergence of W*(s)
on (—n,n). Combining this with (6.15), we get

Ms < sv/nW?(s)Iy < My, (6.16)

We now come back to (6.12), and let s be defined by (6.8). Recall that for
n > ng,s € (0,n). From (6.12),(6.13) and (6.16), we have, as n — oo,

. _ : I
—SIVWZT (dy) = W (s)I Dt
| e Caldy) = WD [ma (o) + ]

— z [ - S\/ﬁll
= W(s)a|ms(pr) + m}

= W (s) B[ ms(ers) + O(s)]

Substituting this into (6.10) and using (6.14), we obtain

I = @)W () 71— a1+ 0 (jﬁ) [ [ralers ) +0(s)].
(6.17)

According to Theorem 4.2, W¥(s) is analytic on (—n,n) and using the mean
theorem we see that |[W?*(s) —W?*| = |[W*(s) —W?*(0)| < Mss. On the other
hand, by [31, Lemma 6.1], we have |75 — 1||co < cs and |ms(por;t) — v(p)| =

|Vs(‘19) —v(p)| < esllollg. Since s = O(%) by (6.8), it follows from (6.17)

vs(rs)
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that
I=[1+0(s)][W"+0(s)] e%“%’[l —o@y)][1+0 (%) |[v(e) +0)]

3
z,=C(%) Yy
- vaslmli = 2
We 1= e[ +0( =)
which concludes the proof of (2.12).
The proof of (2.13) can be carried out in a similar way as that of (2.12).
The only difference is that, instead of using (6.6), we consider the equation

Vn[A'(s) = N'(0)] = —oy,

where 1 <y = o(y/n) and s € (—n,0). Since the rest of the argument is the
same as that in the proof of (2.12), we omit the details.
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