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BERRY-ESSEEN BOUND AND PRECISE MODERATE
DEVIATIONS FOR BRANCHING RANDOM WALKS WITH

PRODUCTS OF RANDOM MATRICES

THI THUY BUI, ION GRAMA, AND QUANSHENG LIU

Abstract. We consider a branching random walk where particles give
birth to children as a Galton-Watson process, which move in Rd ac-
cording to products of independent and identically distributed random
matrices. We establish a Berry-Esseen bound and a Cramér type mod-
erate deviation expansion for the counting measure which counts the
number of particles in generation n situated in a region, as n → ∞.
In the proof, we construct a new martingale, and establish its uniform
convergence as well as that of the fundamental martingale.

1. Introduction

A branching random walk in Rd is a system of particles, where particles
behave independently, and each particle gives birth to a random number
of children which move in Rd with independent and identically distributed
(i.i.d.) displacements. One of the fundamental problems on this model is
the study of the counting measure which counts the number of particles of
generation n situated in a Borel set of Rd. This problem has been studied by
many authors, see e.g. [21, 30, 1, 2, 6, 7, 16, 18, 19, 12], where central limit
theorems and large deviations have been considered. For other important
topics and closely related models, see for example the recent papers [4, 13,
24, 27, 3], the recent books [29, 14, 25] and many references therein.

In the classical branching random walk, a particle whose parent is at
position y, moves to position y + l with i.i.d. increments l’s for different
particles, so that the moving is a simple random translation. Recently, in
[10] the authors consider a branching random walk in Rd with products
of random matrices, in which the position of a particle is obtained by the
action of a matrix A on the position of its parent, where the matrices A’s
corresponding to different particles are i.i.d. In other words, the positions
of particles are obtained by the action of products of random matrices on
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the position of the initial particle. This permits us to extend significantly
the domains of applications of the theory of branching random walks, but
the study of the model becomes much more involved. In [10], a central limit
theorem and a large deviation asymptotic expansion of Bahadur-Rao type
for the counting measure have been proved. In this paper, we will establish
the Berry-Esseen bound about the rate of convergence in the central limit
theorem, and a moderate deviation expansion of Cramér type.

For a precise description of the model we need some notation. Let N =
{0, 1, 2, . . .} and N∗ = {1, 2, . . .}. Set U := ∪∞n=0(N∗)n, where by convention
(N∗)0 = {∅}. A particle of generation n will be denoted by a sequence
u = u1 · · ·un = (u1, · · · , un) ∈ (N∗)n of length n; the initial particle will
be denoted by the null sequence ∅. Assume that on a probability space
(Ω,F ,P) we are given a set of independent identically distributed random
variables (Nu)u∈U of the same law p = {pk : k ∈ N}, and a set of independent
identically distributed d× d random matrices (Au)u∈U of the same law µ on
the set of d × d matrices M(d,R), where d > 2. The two families (Nu)u∈U
and (Au)u∈U are also assumed to be independent.

A branching random walk in Rd with products of random matrices is
defined as follows. At time 0, there is one initial particle ∅ of generation
0, with initial position Y∅ := x ∈ Rd \ {0}. At time 1, the initial particle
∅ is replaced by N = N∅ new particles i = ∅i of generation 1, located at
Yi = AiY∅, 1 6 i 6 N . In general, at time n+ 1, each particle u = u1 . . . un
of generation n, located at Yu ∈ Rd, is replaced by Nu new particles ui of
generation n+ 1, located at Yui = AuiYu, 1 6 i 6 Nu. Namely, the position
of the particle ui is obtained from the position of u by the action of the
matrix Aui on the vector Yu. Consequently the position Yu of a particle u
in generation n > 1 is given by the action of products of random matrices
on the position x of the initial particle ∅:

Yu = Gux, where Gu = Au1...un . . . Au1 . (1.1)

Denote by T the genealogical tree associated to the elements {Nu : u ∈ U},
defined by the following properties: 1) ∅ ∈ T; 2) when u ∈ T, then for i ∈ N,
ui ∈ T if and only if 1 6 i 6 Nu; 3) ui ∈ T implies u ∈ T. Let

Tn = {u ∈ T : |u| = n}

be the set of particles of generation n, where |u| denotes the length of the
sequence u and represents the number of generation to which u belongs; by
convention |∅| = 0.

The space Rd is equipped with the Euclidean norm | · |. The position Gux
of the particle u is completely described by two components: its norm |Gux|
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and its projection on the unit sphere Sd−1 := {y ∈ Rd, |y| = 1} denoted by

Xx
u := Gux

|Gux|
.

Accordingly, we consider the following counting measure of particles of gen-
eration n which describes the configuration of the branching random walk
at time n: for measurable sets B1 ⊂ Sd−1 and B2 ⊂ R,

Zxn(B1, B2) =
∑
u∈Tn

1{Xx
u∈B1, log |Gux|∈B2}, (1.2)

where for a set D, 1D denotes its indicator function.
In [10], a central limit theorem for the counting measure Zxn (with the

starting point x ∈ Sd−1) was established for both the case where the ma-
trices Au are nonnegative, and the case where the matrices Au are in-
vertible. It implies that, under suitable conditions, for some constants
γ, σ explicitly defined (see (2.1) and (2.2)) , the counting measure B2 7→
Zxn(Sd−1, nγ+σ

√
nB2) on R with a suitable norming converges to the stan-

dard normal law. In [10], a precise large deviation result of Bahadur-Rao
type was also established, which gives in particular the exact asymptotic of
Zxn

(
Sd−1, [na,+∞)

)
for a > γ.

In this paper, our first objective is to strengthen the central limit theorem
in [10] to a Berry-Esseen bound for the counting measure Zxn with a target
function ϕ on Xx

u : see Theorem 2.1. With ϕ = 1, it implies that, under
suitable conditions, for any x ∈ Sd−1 and n > 1, we have, a.s.

sup
y∈R

∣∣∣∣ 1
mn

Zxn

(
Sd−1, nγ + σ

√
n(−∞, y]

)
−WΦ(y)

∣∣∣∣ 6 M√
n
, (1.3)

where Φ(y) = 1√
2π
∫ y
−∞ e

−t2/2dt is the distribution function of the standard
normal law and M is a finite and positive random variable.

Our second objective is to establish Cramér type moderate deviation ex-
pansion for Zxn with a target function ϕ on Xx

u : see Theorem 2.2. From
this theorem with ϕ = 1, we know that, under suitable conditions, for any
x ∈ Sd−1 and 0 6 y = o(

√
n), as n→∞, a.s.,

Zxn

(
Sd−1, nγ + σ

√
n(−∞, y]

)
mnW [1− Φ(y)] = e

y3
√
n
ζ( y√

n
)[1 +O

(y + 1√
n

)]
, (1.4)

where t 7→ ζ(t) is the Cramér series (see (2.5)).
An important step in attaining these two objectives is to establish a Berry-

Esseen bound for the Cramér type changed measure Zxs,n (see (2.14)). This
will be done in Theorem 2.3. Theorem 2.1 will be obtained from Theorem
2.3 by taking s = 0, and Theorem 2.2 will be established by using Theorem
2.3 and by adapting the techniques from Petrov [28].
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To facilitate the comprehension, let us present some ideas in the proof of
Theorem 2.3. As in [11] where the one dimensional case is considered, we
need to study the asymptotic of the characteristic function of the changed
measure Zxs,n. Inspired by the approach in [11], we would like to express the
characteristic function of Zxs,n in terms of a martingale and a quantity that
can be controlled by the theory of products of random matrices. However, in
contrast to the one dimensional case, we cannot obtain directly an expression
of the characteristic function in terms of a martingale. Fortunately, using
the spectral gap theory for products of random matrices established in [20,
13, 15] and recently developed in [31], we have been able to define a new
martingale which is similar to the fundamental martingale and which can be
used for a suitable approximation of the characteristic function of Zxs,n. We
conclude by proving the uniform convergence and analyticity with respect
to a complex parameter of the new martingale, and by using the asymptotic
properties of the eigenvalue of the pertubed transfer operator related to the
products of random matrices. See Theorem 4.3 and Lemma 5.6 for details.

The rest of the paper is organized as follows. In Section 2, we fix some
notation, introduce our assumptions on the branching products of random
matrices, and state the main results. In Section 3, we recall some spectral
gap properties on products of random matrices stated in [31]. In Section 4,
the uniform convergence and analyticity of the constructed martingale are
established. Sections 5 and 6 are devoted to the proofs of the main results.

2. Main results

2.1. Notation and assumptions on products of random matrices.
Note that in our model, along each branch we encounter a product of ran-
dom matrices. In this section, we introduce some notation and the necessary
assumptions on products of random matrices in order to formulate our main
results. We shall consider two cases, the case when the matrices are non-
negative and the case when the matrices are invertible.

The setM(d,R) of d×d real matrices is equipped with the operator norm:
‖a‖ = supx∈Sd−1 |ax| for a ∈ M(d,R), where | · | is a given vectorial norm
on Rd, and Sd−1 = {x ∈ Rd : |x| = 1} is the unit sphere in Rd. A matrix
a ∈ M(d,R) is said to be proximal if it has an algebraic simple dominant
eigenvalue. Denote byM+ the set of matrices with nonnegative entries. A
nonnegative matrix a ∈ M+ is said to be allowable if every row and every
column of a has a strictly positive entry.

Let µ be a probability measure on M(d,R). Denote by Γµ := [supp µ]
the smallest closed semigroup ofM(d,R) generated by the support of µ. We
say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and a
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function ϑ : Sd−1
+ → R such that

∀a ∈ Γ, ∀x ∈ V (Γ) : exp[it log |ax| − iθ + i(ϑ(a·x)− ϑ(x))] = 1,

where Sd−1
+ = {x > 0 : |x| = 1} is the intersection of the unit sphere with

the positive quadrant. Notice that when d = 1, we have Sd−1
+ = {1}, and the

above arithmetic condition reduces to the following more usual form: log a
is almost surely (a.s.) concentrated on an arithmetic progression a0 + a1N
for some a0, a1 > 0.

We will need the following assumptions on the law µ.

C1.
(1) For invertible matrices:

(a) (Strong irreducibility)There is no finite union W =
⋃n
i=1Wi of

proper subspaces 0 6= Wi ( Rd which is Γµ-invariant (in the
sense that aW =W for each a ∈ Γµ).

(b) (Proximality) Γµ contains at least one proximal matrix.
(2) For nonnegative matrices:

(a) (Allowability) Every a ∈ Γµ is allowable.
(b) (Positivity) Γµ contains at least one matrix belonging to int(M+).
(c) (Non-arithmeticity) The measure µ is non-arithmetic.

For both invertible matrices and nonnegative matrices, we will need a
moment condition. For a ∈M(d,R), set

ι(a) := inf
x∈S
|ax|, and a · x := ax

|ax| when ax 6= 0,

where a · x is called the projective action of the matrix a on the vector x ∈
Sd−1. Then ι(a) > 0 for both invertible matrices and allowable nonnegative
matrices. Set, for an invertible or nonnegative matrix a,

N(a) = max{‖a‖, ι(a)−1}.

For invertible matrices we have ι(a) = ‖a−1‖−1 andN(a) = max{‖a‖, ‖a−1‖}.

C2. (Moment condition) There exists η0 ∈ (0, 1) such that

E[N(A1)η0 ] <∞.

We will consider the action of invertible matrices on the projective space
Pd−1 which is obtained from Sd−1 by identifying x and −x, and the action
of nonnegative matrices on Sd−1

+ . For convenience we identify x ∈ Pd−1

with one of its representants in Sd−1. To unify the exposition, we use the
symbol S to denote Pd−1 for invertible matrices, and Sd−1

+ for nonnegative
matrices. The space S will be equipped with the metric d, which is the
angular distance (see [9]) for invertible matrices, and the Hilbert cross-ratio
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metric (see [22]) for nonnegative matrices. Moreover, S is a separable metric
space equipped with Borel σ-field.

Let C(S) be the space of continuous complex-valued functions on S. For
β > 0 sufficiently small, we introduce the Banach space

Bβ = {f ∈ C(S) : ‖f‖β < +∞},

equipped with the norm

‖f‖β := ‖f‖∞ + |f |β,

where

‖f‖∞ := sup
x∈S
|f(x)|, |f |β := sup

x,y∈S,x 6=y

|f(x)− f(y)|
dβ(x, y) .

Let Gn = An . . . A2A1 be the product of i.i.d. d× d real random matrices
Ai, defined on the probability space (Ω,F ,P), with common law µ. Let
x ∈ S be a starting point. As mentioned in the introduction, the random
walk Gnx is completely determined by its log norm and its projection on S,
denoted respectively by

Sxn := log |Gnx|, Xx
n := Gn·x = Gnx

|Gnx|
, n > 0,

with the convention that G0x = x. Since Sxn+1 = log |An+1X
x
n | + Sxn and

Xx
n+1 = An+1 ·Xx

n , the sequence (Sxn, Xx
n)n>0 is a Markov chain.

Denote by E the expectation with respect to P. By the law of large
numbers of Furstenberg [17], under conditions C1 and C2, we have

lim
n→∞

1
n
Sxn = lim

n→∞
1
n
E[Sxn] = γ P-a.s., (2.1)

where γ = infn∈N 1
nE log ‖Gn‖ is the upper Lyapunov exponent associated

with the product sequence (Gn). Le Page [26] and Henion [22] showed that

σ2 = lim
n→∞

1
n
E (Sxn − nγ)2 (2.2)

exists and is independent of x for invertible matrices and nonnegative ma-
trices, respectively. Moreover, there exists a unique µ-stationary probability
measure ν on S (see [20, 13]): µ ∗ ν = ν, that is, for any ϕ ∈ C(S),

(µ ∗ ν)(ϕ) :=
∫
S

∫
Γµ
ϕ(a·x)µ(da)ν(dx) = ν(ϕ),

where ν(ϕ) =
∫
S ϕ(x)ν(dx), and this notation for the integral will be used

for any function and any measure. Define the transfer operator on C(S) as
follows: for any s ∈ (−η0, η0), and f ∈ C(S),

Psf(x) = E[|A1x|sf(A1·x)], for all x ∈ S. (2.3)
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It is known that under conditions C1 and C2, there exists a small constant
0 < η1 < η0 such that for any s ∈ (−η1, η1), there are a unique probability
measure νs and a unique Hölder continuous function rs on S satisfying
ν(rs) = 1 and

νsPs = κ(s)νs and Psrs = κ(s)rs, (2.4)

where κ(s) is the unique dominant eigenvalue of Ps, νsPs is the mesure on
S such that (νsPs)(f) = νs(Psf) for all f ∈ C(S). In particular, r0 = 1 and
κ(0) = 1. For s ∈ [0, η1), the property (2.4) is proved in [13, Proposition
3.1] and [15, Corollary 7.3] for positive matrices, and in [20, Theorem 2.6
and Corollary 3.20] for invertible matrices. For both positive matrices and
invertible matrices, the existence of η1 > 0 and the property (2.4) for s ∈
(−η1, η1) are proved in [31, Proposition 3.1], where the following properties
are also established: the functions s 7→ κ(s) and s 7→ rs(x) are strictly
positive and analytic in (−η1, η1), for x ∈ S. Moreover, it is proved (see [20,
Lemma 3.5], [13, Lemma 6.2], [31, Propositions 3.12 and 3.14]) that, under
conditions C1 and C2, the function Λ(s) = log κ(s) is finite and analytic on
(−η1, η1), and satisfies

Λ′(0) = γ, Λ′′(0) = σ2 > 0, and Λ′′(s) > 0 ∀s ∈ (−η1, η1).

Denote γk = Λk(0), k > 1. Throughout the paper, we write ζ for the
Cramér series associated to Λ (see [28, Theorem VIII.2.2] for details):

ζ(t) = γ3

6γ3/2
2

+ γ4γ2 − 3γ2
3

24γ3
2

t+ γ5γ
2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + . . . (2.5)

which converges for |t| small enough.

2.2. Main results. Let Zn = Zxn(S,R) be the population size at time n,
which does not depend on the starting point x, and which forms a Galton-
Watson process with Z0 = 1 and Z1 = N . Denote by m = EN the expected
value of the offspring distribution. Throughout the paper, we assume that

m ∈ (1,∞) and P(N = 0) = 0.

Therefore the branching process (Zn) is supercritical, and Zn → ∞ a.s. as
n→∞. It is well known that EZn = mn. Let

W = lim
n→∞

Wn, where Wn = Zn
mn

, n > 0,

is the fundamental martingale for the Galton-Watson process (Zn), and the
limit exists a.s. by the martingale convergence theorem. An important in-
gredient in studying Berry-Esseen bound and moderate deviation expansion
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is the fundamental martingale associated to branching random walks with
products of random matrices, defined for s ∈ (−η1, η1) and x ∈ S

W x
n (s) :=

∑
u∈Tn e

sSxurs(Xx
u)

[mκ(s)]nrs(x) , n > 0. (2.6)

This is a positive martingale with respect to the natural filtration
F0 = {∅,Ω} and Fn = σ(Nu, Aui : i > 1, |u| < n) for n > 1.

By the martingale convergence theorem, the limit
W x(s) := lim

n→∞
W x
n (s) exists in R P-a.s.

Set Λ∗(qs) = sqs − Λ(s) with qs = Λ′(s). It is proved in [10] that under
conditions C1 and C2, if

Λ∗(qs)− logm < 0 (2.7)
and

E[max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1] <∞, (2.8)

where log+ x = max{0, log x} denotes the positive part of log x, then for all
x ∈ S, W x(s) is non-degenerate with

E[W x(s)] = 1.
Set

J = {s ∈ (−η1, η1) : Λ∗(qs)− logm < 0}, (2.9)
which is an open interval containing 0. We assume the following moment
condition slightly stronger than (2.8):

C3. There are constants γ0 > 1 and 0 < η2 <
η1
2 with [−η2, η2] ⊂ J such

that
E
[

max
x∈S

(
W x

1 (s)
)γ0]

<∞ ∀ s ∈ [−η2, η2].

It is clear that conditions C1-C3 (together with the hypothesis P(N = 0) =
0 that we assume always), imply that for all x ∈ S, W x(s) > 0 a.s. and
E[W x(s)] = 1; in particular (when s = 0), W > 0 a.s. and E[W ] = 1.

Our first result is the Berry-Esseen bound for the counting measure Zxn:

Theorem 2.1. Assume conditions C1-C3. Then, for any x ∈ S, ϕ ∈ Bβ
and n > 1, we have, a.s.,

sup
y∈R

∣∣∣∣ 1
mn

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ

σ
√
n
6y
} −Wν(ϕ)Φ(y)

∣∣∣∣ 6 M√
n
, (2.10)

where Φ(y) = 1√
2π
∫ y
−∞ e

−t2/2dt is the distribution function of the standard
normal law and M is a finite and positive random variable.
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This is a Berry-Esseen type bound for the counting measure Zxn with
suitable norming because the sum in (2.10) is an integral with respect to
Zxn: ∑

u∈Tn
ϕ(Xx

u)1{Sxu−nγ
σ
√
n
6y
} =

∫
S×R

ϕ(z1)1{ z2−nγ
σ
√
n
6y
}Zxn(dz1, dz2). (2.11)

Our second result is the Cramér’s moderate deviation expansion for Zxn.

Theorem 2.2. Assume conditions C1-C3. Then, we have for any x ∈ S,
ϕ ∈ Bβ, 0 6 y = o(

√
n), as n→∞, a.s.,∑

u∈Tn ϕ(Xx
u)1{Sxu−nγ>

√
nσy}

mnW [1− Φ(y)] = e
y3
√
n
ζ( y√

n
)[
ν(ϕ) +O

(y + 1√
n

)]
, (2.12)

and∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ6−
√
nσy}

mnWΦ(−y) = e
− y3
√
n
ζ(− y√

n
)[
ν(ϕ) +O

(
y + 1√
n

) ]
. (2.13)

An important step in the proof of the moderate deviation expansion is to
establish a Berry-Esseen bound for the changed measure Zxs,n defined by for
measurable sets B1 ⊂ Sd−1 and B2 ⊂ R,

Zxs,n(B1, B2) =
∫
B1×B2

esz2rs(z1)
[mκ(s)]nrs(x)Z

x
n(dz1, dz2)

=
∑
u∈Tn

esS
x
urs(Xx

u)
[mκ(s)]nrs(x)1{X

x
u∈B1,Sxu∈B2}. (2.14)

Our third result is a Berry-Esseen bound for the changed measure Zxs,n:

Theorem 2.3. Assume conditions C1-C3. Then, for any x ∈ S and ϕ ∈ Bβ
there exists a constant 0 < η < η2 such that a.s., for n > 1,

sup
s∈(−η,η)

sup
y∈R

∣∣∣∣∣∣
∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) 1{Sxu−nΛ′(s)
σs
√
n
6y
} −W x(s)πs(ϕ)Φ(y)

∣∣∣∣∣∣ 6 M√
n
,

(2.15)

where M is a positive and finite random variable.

This is a Berry-Esseen type bound for Zxs,n because, similar to the case
of Theorem 2.1, the sum in (2.15) is an integral with respect to Zxs,n:∑

u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) 1{Sxu−nΛ′(s)
σs
√
n
6y
}

=
∫
S×R

esz2rs(z1)ϕ(z1)
[mκ(s)]nrs(x) 1

{
z2−nΛ′(s)
σs
√
n
6y
}Zxs,n(dz1, dz2). (2.16)
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3. Preliminary results on products of random matrices

In this section we recall some spectral gap properties stated in [31] which
will be used for the proofs of main results.

Define the operator Pz on C(S) by

Pzf(x) = E[|A1x|zf(A1·x)], for all x ∈ S, z ∈ C. (3.1)

Denote by L(Bβ,Bβ) the set of all bounded linear operators from Bβ to Bβ
equipped with the operator norm

‖P‖Bβ→Bβ := sup
f 6=0

‖Pf‖β
‖f‖β

, ∀P ∈ L(Bβ, Bβ).

We write B′β for the topological dual of Bβ endowed with the norm ‖ν‖B′
β

=
sup‖ϕ‖β=1 |ν(ϕ)| for any linear functional ν ∈ B′β. For any η > 0, set Bη(0) =
{z ∈ C : |z| < η} for the ball with center 0 and radius η in the complex
plane C.

Lemma 3.1. Assume conditions C1 and C2. There exists a small η1 ∈
(0, η0) such that for any z ∈ Bη1(0) and n > 1, we have the decomposition

Pnz = κn(z)Mz + Lz, (3.2)

where the operator Mz is a rank one projection on Bβ, the mappings on
Bη1(0),

z 7→ κ(z) ∈ C, z 7→ rz ∈ Bβ, z 7→ νz ∈ B′β, z 7→ Lz ∈ L(Bβ,Bβ)

are well-defined under the normalizing conditions νz(1) = ν(rz) = 1. All
these mappings are analytic in Bη1(0), and possess the following properties:

(1) for any z ∈ Bη1(0), it holds that MzLz = LzMz = 0;
(2) for any z ∈ Bη1(0), Pzrz = κ(z)rz and νzPz = κ(z)νz;
(3) κ(s) and rs are real-valued and satisfy κ(s) > 0 and rs(x) > 0 for

any s ∈ (−η1, η) and x ∈ S;
(4) there exist two constants 0 < a1 < a2 < 1 such that for all z ∈ Bη1(0)

and all n ∈ N∗, |κ(z)| > 1− a1 and ‖Lnz ‖Bβ→Bβ 6 c(1− a2)n .

For fixed s ∈ (−η1, η1) and x ∈ S, the spectral gap property (2.4) allows
to define a probability measure Qx

s on (Ω,F) such that for any n ∈ N and
any bounded and measurable function h on (S × R)n+1,

E
[esSxnrs(Xx

n)
κn(s)rs(x) h(Xx

0 , S
x
0 , . . . , X

x
n , S

x
n)
]

= EQxs [h(Xx
0 , S

x
0 , . . . , X

x
n , S

x
n)] , (3.3)

where EQxs denotes the expectation with respect to Qx
s . See [13, 15, 20] for

s > 0, and [31] for s < 0.
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Under the changed measure Qx
s , the process (Xx

n)n∈N is a Markov chain
with the transition operator Qs defined by, for any s ∈ (−η1, η1) and ϕ ∈ Bβ,

Qsϕ(x) = 1
κ(s)rs(x)Ps(ϕrs)(x), x ∈ S.

It has been proved in [31, Proposition 3.4] that Qs has a unique stationary
probability measure defined by πs(ϕ) := νs(ϕrs)

νs(rs) , ϕ ∈ Bβ, and there exist
two constants 0 < a < 1, c1 > 0 such that

sup
s∈(−η1,η1)

sup
x∈S
|EQxs [ϕ(Xx

n)]− πs(ϕ)| 6 c1a
n. (3.4)

Moreover, the perturbed operator Rs,it defined by

Rs,itϕ(x) = EQxs

[
eit[S

x
1−Λ′(s)]ϕ(Xx

1 )
]
, s ∈ (−η1, η1, ) and t ∈ R, (3.5)

satisfies for any compact K ⊂ R\{0}, n > 1 and ϕ ∈ Bβ,
sup

s∈(−η1,η1)
sup
t∈K

sup
x∈S
|Rns,itϕ(x)| 6 ‖ϕ‖βanK , 0 < aK < 1. (3.6)

The operator Rs,it has eigenvalue λs,it satisfying for s ∈ (−η1, η1) and t ∈
(−δ, δ) ⊂ (−η1, η1),

λs,it = eΛ(s+it)−Λ(s)−Λ′(s)it. (3.7)

4. Associated martingales

In this section, for the fundamental martingale (W x
n (s)) we first reveal a

relationship between the moments of W x
1 (s) and W x

∗ (s) := supn>0W
x
n (s).

We next prove the uniform convergence of W x
n (z) for z ∈ Bη2(0). We fi-

nally introduce a new martingale and establish its similar properties; this
martingale will play a key role in the proof of the main results.

Theorem 4.1. Assume conditions C1-C3. Then there is a constant η ∈
(0, η2) such that

sup
s∈(−η,η)

sup
x∈S

E[W x
∗ (s)]γ0 <∞. (4.1)

Proof. In [10, Lemma 5.6], it is proved that if E[W x(s)] = 1, then W x
∗ (s)

and W x(s) have similar tail behaviour for s ∈ (−η2, , η2) and for all x ∈ S,
i.e. for s ∈ (−η2, , η2) and for any a ∈ (0, 1), for s ∈ (−η2, , η2), there is a
constant b > 0 such that for all t > 0, for all x ∈ S

P(W x
s > at) > bP(W x

s,∗ > t) > bP(W x
s > t).

A slight modification in the proof of [10, Lemmas 5.5 and 5.6] shows that
we can choose b independent of s ∈ (−η2, , η2). (To see this, we just need to
check the proof therein, and replace W y

s by sups∈(−η2,η2)W
y
s in the formula
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supy∈S E
[
W y
s 1{W y

s >T}

]
T→+∞−→ 0 of the proof of Lemma 5.5, at the last line

of page 34.) Recall that E[W x(s)] = 1 under the hypothesis of Theorem
4.1. Thus, in order to prove (4.1), it suffices to show that there is a constant
η ∈ (0, η2) such that

sup
s∈(−η,η)

sup
x∈S

E[W x(s)]γ0 <∞. (4.2)

Set h(x) = xδ where δ = γ0 − 1 ∈ (0, 1]. Observe that

W x
n+1(s) =

∑
u∈Tn

Hx
n,uW

Xx
u

1 (s), where Hx
n,u = esS

x
urs(Xx

u)
[mκ(s)]nrs(x) . (4.3)

Using (4.3) and the subadditivity of h, we have

En
[
W x
n+1(s) h

(
W x
n+1(s)

)]
6 En

[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

+ En
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
( ∑
v∈Tn
v 6=u

Hx
n,vW

Xx
v

1 (s)
)]
.

Using Jensen’s inequality for the conditional expectation and the facts that
En
[
W

Xx
u

1 (s)
]

= 1 and h is an increasing function, the second term in the
inequality above is less than W x

n (s) h(W x
n (s)). Then taking expectations in

the two sides of the inequality above, we get

E
[
W x
n+1(s) h

(
W x
n+1(s)

)]
6 E

[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

+ E
[
W x
n (s) h

(
W x
n (s)

)]
.

So by recurrence on n and Fatou’s lemma, we obtain

E
[
W x(s) h

(
W x(s)

)]
6 lim inf

n→∞
E
[
W x
n (s) h

(
W x
n (s)

)]
6 E

[
W x

1 (s) h
(
W x

1 (s)
)]

+
∞∑
n=1

E
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]
.

To prove (4.2), it suffices to show that there is a constant η ∈ (0, η2) such
that

sup
s∈(−η,η)

sup
x∈S

E
[
W x

1 (s) h
(
W x

1 (s)
)]
6 sup

s∈(−η2,η2)
E[sup
x∈S

W x
1 (s)]γ0 <∞, (4.4)

and

sup
s∈(−η,η)

sup
x∈S

∞∑
n=0

E
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]
<∞. (4.5)
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For (4.4), we see that for all s ∈ (−η1, η1),

W x
1 (s) = 1

mκ(s)

N∑
i=1

es log |Aix|rs(Ai · x)

6
maxx∈S |rs(x)|

mκ(s)
( N∑
i=1

e−η2 log |Aix| +
N∑
i=1

eη2 log |Aix|
)
. (4.6)

Since the functions s 7→ rs and s 7→ κ(s) are strictly positive and analytic
on (−η1, η1) and r0 = 1, κ(0) = 1, there are two constants d1, d2 > 0 such
that

maxx∈S rs(x)
minx∈S rs(x) 6 d1 for all s ∈ (−η1, η1) (4.7)

and
sups∈(−η1,η1) κ(s)
infs∈(−η1,η1) κ(s) 6 d2. (4.8)

Hence, from (4.6), (4.7) and (4.8), for all s ∈ (−η1, η1),

W x
1 (s) 6 d1d2

(
W x

1 (−η2) +W x
1 (η2)

)
.

Therefore, by the inequality

(a+ b)γ0 6 2γ0−1(aγ0 + bγ0), a, b ∈ R, (4.9)

and condition C3,

sup
s∈[−η2,η2]

E[sup
x∈S

W x
1 (s)]γ0

6 (d1d2)γ02γ0−1
(
E sup
x∈S

[W x
1 (−η2)]γ0 + E sup

x∈S
[W x

1 (η2)]γ0
)

<∞. (4.10)

For (4.5), we consider the general term in its series. Since h(x) = xδ, we
have, by (4.7), for all s ∈ (−η2, η2)

E
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

= E
[ ∑
u∈Tn

(
Hx
n,uW

Xx
u

1 (s)
)γ0]

6 E
[ ∑
u∈Tn

(
Hx
n,u

)γ0
]
E sup
x∈S

W x
1 (s)γ0

6 d2γ0
1

( mκ(sγ0)
[mκ(s)]γ0

)n
E[W x

n (sγ0)]E sup
x∈S

W x
1 (s)γ0 . (4.11)
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Set f(s) = mκ(sγ0)
[mκ(s)]γ0 , s ∈ (−η2, η2). We see that f(0) = m1−γ0 < 1 and

f is continous on (−η2, η2) by the continuity of κ. Hence there is a small
constant η > 0 with (−η, η) ⊂ (−η2, η2) such that

c1 := sup
s∈(−η,η)

mκ(sγ0)
[mκ(s)]γ0

< 1. (4.12)

We can choose η > 0 sufficiently small so that sγ0 ∈ (−η1, η1). Then
W x
n (sγ0) is well-defined and a martingale, so E[W x

n (sγ0)] = 1. Therefore,
from (4.11), (4.12) and (4.10), we obtain

sup
s∈(−η,η)

sup
x∈S

∞∑
n=1

E
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

6 d2γ0
1 sup

s∈[−η2,η2]
E sup
x∈S

W x
1 (s)γ0

∞∑
n=1

cn1 <∞.

This completes the proof of (4.5). Thus (4.2) is proved.
�

Now we consider the martingale with complex parameter:

W x
n (z) :=

∑
u∈Tn e

zSxurz(Xx
u)

[mκ(z)]nrz(x) , n > 0, z ∈ Bη1(0). (4.13)

For each fixed z ∈ Bη1(0), it can be easily checked that (W x
n (z)) remains a

martingale with respect to (Fn). Throughout, the real par of z ∈ C will be
denoted by s, so that z = s+ iIm(z).

The next theorem gives the uniform convergence of W x
n (z). Let

Ω1
α = int

{
z ∈ Bη2(0) : mκ(αs)

|mκ(z)|α < 1
}

and Ωγ0 =
⋃

1<α6γ0

Ω1
α. (4.14)

Since the derivative at 1 of the function α 7→ mκ(αs)
[mκ(s)]α is equal to Λ∗(s)−logm

which is negative for s ∈ (−η2, η2), we have, for these values of s, mκ(αs)
[mκ(s)]α < 1

when α > 1 is close to 1. This shows that the open set Ωγ0 contains the
segment (−η2, η2), so that (−η2, η2) is the intersection of Ωγ0 with the real
axis.

Theorem 4.2. Assume conditions C1-C3. Then the sequence (W x
n (z))n>0

converges a.s. to some complex valued random variable W x(z), uniformly
in z on any compact subset K ⊂ Ωγ0. Moreover, we have a.s., for all n > 0,

sup
z∈K
|W x

n (z)−W x(z)| 6Mδn, (4.15)

where M is a positive and finite random variable and δ ∈ (0, 1), and W x(z)
is analytic on Ωγ0.
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Proof. The basic ideas here are the same as those used in the proof of The-
orem 2 in Biggins [8]. To prove the uniform convergence on a compact
subset K ⊂ Ωγ0 , it suffices to show that for each z0 ∈ Ωγ0 , the uniform
convergence holds in a disc centred at z0. Given any z0 ∈ Ωγ0 , we can find
1 < α 6 min{2, γ0} and a small η such that B2η(z0) ⊂ Ω1

α and

c1 = sup
z∈B2η(z0)

mκ(αs)
|mκ(z)|α < 1. (4.16)

For any N > n, W x
N+1(z) − W x

n (z) is analytic in z on B2η(z0), so by [8,
Lemme 3], we deduce that for all n > 0,

sup
N>n

sup
z∈Bη(z0)

|W x
N+1(z)−W x

n (z)| 6
∞∑
k=n

sup
z∈Bη(z0)

|W x
k+1(z)−W x

k (z)|

6
1
π

∫ 2π

0

∞∑
k=n
|W x

k+1
(
z(t)

)
−W x

k

(
z(t)

)
|dt,

(4.17)

where z(t) = z0 + 2ηeit, 0 6 t 6 2π. (This can be easily proved by
Cauchy’s formula.) Note that, by Fubini’s theorem, for n > 0,

E
∫ 2π

0

∞∑
k=n
|W x

k+1(z(t))−W x
k (z(t))|dt 6 2π sup

z∈∂B2η(z0)

∞∑
k=n

E|W x
k+1(z)−W x

k (z)|,

(4.18)

where ∂B2η(z0) = {z ∈ C : |z − z0| = 2η}. Therefore, if the right hand side
of (4.18) is finite for all n > 0, then the right-hand side of (4.17) goes to 0
a.s. as n → ∞, so that a.s. the sequence (W x

n (z)) converges uniformly on
Bη(z0).

Now we prove that the right hand side of (4.18) is finite. Notice that

W x
k+1(z)−W x

k (z) =
∑
u∈Tk

ezS
x
urz(Xx

u)
[mκ(z)]krz(x)

(
W

Xx
u

1 (z)− 1
)
. (4.19)

Taking the α-th absolute moment at both sides of (4.19) conditional on Fk

and applying Lemma 1 of Biggins [8], we obtain

Ek|W x
k+1(z)−W x

k (z)|α 6 2α
∑
u∈Tk

∣∣∣∣∣ ezS
x
urz(Xx

u)
[mκ(z)]krz(x)

∣∣∣∣∣
α

Ek|W
Xx
u

1 (z)− 1|α.

(4.20)

Since the function z 7→ rz is analytic on Bη1(0) and r0 = 1, there is a
constant d3 > 0 such that

maxx∈S |rz(x)|
minx∈S |rz(x)| 6 d3 for all z ∈ Bη1(0). (4.21)
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Recall that s is the real part of z. Because B3η(z0) ⊂ Ω1
α ⊂ Bη2(0) ⊂ B η1

2
(0),

we have z, αs2 ∈ B η1
2

(0) for z ∈ ∂B2η(z0). It follows from (4.21) that for all
z ∈ ∂B2η(z0),∣∣∣∣∣ ezS

x
urz(Xx

u)
[mκ(z)]krz(x)

∣∣∣∣∣
α

6
(
mκ(αs)
|mκ(z)|α

)k eαsS
x
urαs(Xx

u)
[mκ(αs)]krαs(x)

|rz(Xx
u)|αrαs(x)

|rz(x)|αrαs(Xx
u)

6 dα+1
3

(
mκ(αs)
|mκ(z)|α

)k eαsS
x
urαs(Xx

u)
[mκ(αs)]krαs(x) . (4.22)

On the other hand, from (4.9) and (4.21), we obtain the following estimation,
for all z ∈ ∂B2η(z0),

Ek|W
Xx
u

1 (z)− 1|α

6 2α−1
(
Ek|W

Xx
u

1 (z)|α + 1
)

= 2α−1Ek
∣∣∣ ∑
v∈T1(u)

ezS
Xxu
v rz(XXx

u
v )

mκ(z)rz(Xx
u)

∣∣∣α + 2α−1

6 2α−1
(
κ(s)
|κ(z)|

)α
Ek
[ ∑
v∈T1(u)

|rz(XXx
u

v )|rs(Xx
u)

|rz(Xx
u)|rs(XXx

u
v )

esS
Xxu
v rs(XXx

u
v )

mκ(s)rs(Xx
u)
]α

+ 2α−1

6 d2α
3 2α−1

(
κ(s)
|κ(z)|

)α
E sup
x∈S

(W x
1 (s))α + 2α−1.

Combining this with (4.20) and (4.22) gives, for all z ∈ ∂B2η(z0),

Ek|W x
k+1(z)−W x

k (z)|α

6 c
( mκ(αs)
|mκ(z)|α

)k
W x
n (αs)

[( κ(s)
|κ(z)|

)α
E sup
x∈S

(W x
1 (s))α + 1

]
.

Taking expectation at both sides of this inequality and using Jensen’s in-
equality, we obtain for all z ∈ ∂B2η(z0),

E|W x
k+1(z)−W x

k (z)| 6 c
1
α

(
mκ(αs)
|mκ(z)|α

) k
α [( κ(s)
|κ(z)|

)α
E sup
x∈S

(W x
1 (s))α + 1

] 1
α
.

From (4.16), (4.10), the analyticity of κ(z) on ∂B2η(z0) ⊂ Bη1(0) and the
fact that |κ(z)| > 0 for all z ∈ Bη1(0), we obtain

sup
z∈∂B2η(z0)

E|W x
k+1(z)−W x

k (z)| 6 Cc
k
α
1 , (4.23)

This concludes that (4.18) is finite for all n > 0. We have therefore proved
that it is a.s. that the sequence (W x

n (z)) converges uniformly on Bη(z0)
for each z0 ∈ Ωγ0 , which implies the uniform convergence on each compact
subset K ⊂ Ωγ0 .
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We now come to the speed of convergence (4.15). Clearly, it is enough to
prove that there is a δ ∈ (0, 1) such that on each compact subset K ⊂ Ωγ0 ,

δ−n sup
z∈K
|W x

n+1(z)−W x
n (z)| n→∞→ 0 a.s. (4.24)

From (4.17), (4.18) and (4.23), we have for each z0 ∈ Ωγ0 , there is η > 0
small enough such that for all n > 0,

E sup
z∈Bη(z0)

|W x
n+1(z)−W x

n (z)| 6 2
∞∑
k=n

Cc
k
α
1 ,

where C and c1 are constants which may depend on z0. Since K is compact,
by Borel’s theorem, K can be covered by a finite number of open balls
Bηi(zi), i = 1, . . . , n0, so that there exist two constants C1 > 0 and c2 ∈ (0, 1)
which may depend on K, such that for n > 0,

E sup
z∈K
|W x

n+1(z)−W x
n (z)| 6 2

∞∑
k=n

C1c
k
2 6 C2c

n
2 . (4.25)

Taking δ ∈ (c2, 1) and using Fubini’s theorem we see that

E
∞∑
n=0

δ−n sup
z∈K
|W x

n+1(z)−W x
n (z)| 6 C2

∞∑
n=0

(c2
δ

)n
<∞,

so that
∞∑
n=0

δ−n sup
z∈K
|W x

n+1(z)−W x
n (z)| <∞ a.s.

Therefore, (4.24) is proved. This ends the proof of (4.15).
Finally, since a.s. eachW x

n (z) is analytic on Ωγ0 and the sequence (W x
n (z))

converges uniformly on each compact set of Ωγ0 , a standard result of complex
analysis (see e.g. Corollary 2.2.4 in Hörmander [23]) gives the analyticity of
W x(z) on Ωγ0 . �

In the following we introduce a new martingale and prove its uniform
convergence and the analyticity of its limit. This is an important ingredient
in the proof of Theorem 2.3 about the Berry-Esseen bound for the changed
measure Zxs,n, which is crucial in establishing the main results of this paper.
For z ∈ Bη1(0), x ∈ S and ϕ ∈ Bβ, set

W̃ x
n (z) =

∑
u∈Tn

ezS
x
uMz(rsϕ)(Xx

u)
[mκ(z)]nrs(x) , n > 0,

where Mz is defined in (3.2) and (rsϕ)(Xx
u) := rs(Xx

u)ϕ(Xx
u).

Theorem 4.3. Assume conditions C1-C3. Then the sequence (W̃ x
n (z))n>0

is a martingale with respect to the filtration (Fn) and converges a.s. to
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some complex valued random variable W̃ x(z), uniformly in z on any compact
subset K ⊂ Ωγ0, and the limit W̃ x(z) is analytic on Ωγ0.

Proof. The fact that (W̃ x
n (z),Fn)n>0 is a martingale can be easily shown:

it suffices to notice that

EnW̃ x
n+1(z) =

∑
u∈Tn

ezS
x
uMz(rsϕ)(Xx

u)
[mκ(z)]nrs(x) En

[ ∑
v∈T1(u)

ezS
Xxu
v Mz(rsϕ)(XXx

u
v )

mκ(z)Mz(rsϕ)(Xx
u)
]
,

where T1(u) represents the descendants of u ∈ Tn at time n+ 1. Moreover,
by the branching property, the definition of Pz (3.1) and Lemma 3.1(1), we
have for u ∈ Tn,

En
[ ∑
v∈T1(u)

ezS
Xxu
v Mz(rsϕ)(XXx

u
v )

mκ(z)Mz(rsϕ)(Xx
u)
]

=
En
[
|Au1X

x
u |zMz(rsϕ)(XXx

u
u1 )

]
κ(z)Mz(rsϕ)(Xx

u)

= Pz(Mz(rsϕ))(Xx
u)

κ(z)Mz(rsϕ)(Xx
u) = 1.

The proof of the uniform convergence and the analyticity of the limit is the
same as in the proof of Theorem 4.2, whose details are omitted. �

5. Proof of Theorems 2.1 and 2.3

Theorem 2.1 is a particular case of Theorem 2.3 with s = 0. Thus we
only prove Theorem 2.3. Our proof is based on Petrov’s method [28] for the
proof of the Cramér’s moderate deviation asymptotic on sums of i.i.d. real
random variables. We split the proof of Theorem 2.3 into two theorems:
Theorems 5.1 and 5.2, whose combination gives Theorem 2.3.

Theorem 5.1. Under the conditions of Theorem 2.3. Then, for any x ∈ S
and ϕ ∈ Bβ there exists a constant η ∈ (0, η2) such that a.s., for n > 1,

sup
s∈(−η,η)

∣∣∣ ∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) −W x(s)πs(ϕ)
∣∣∣ 6Mδn,

where M is a positive and finite random variable and δ ∈ (0, 1).

Theorem 5.2. Under the conditions of Theorem 2.3. Then, for any x ∈ S
and ϕ ∈ Bβ there exists a constant η ∈ (0, η2) such that uniformly in s ∈
(−η, η) and y ∈ R, a.s., for n > 1,∣∣∣∣∣∣
∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) 1{Sxu−nΛ′(s)
σs
√
n
6y
} − ∑

u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) Φ(y)

∣∣∣∣∣∣ 6 M√
n
,

where M is a positive and finite random variable (independent of s).
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5.1. Proof of Theorem 5.1. The following decomposition which follows
from the branching property will play a key role in our approach with a
delicate choice of k for 0 < k 6 n,

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) =

∑
u∈Tk

esS
x
urs(Xx

u)
[mκ(s)]krs(x)

∑
v∈Tn−k(u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−krs(Xx
u) .

(5.1)

Recall that by our definition, for u ∈ Tk, Tn−k(u) represents the descendants
of u at time n.

For each n, we choose an integer kn = dn2 e, which is the least integer
greater than or equal to n

2 . For brevity, we denote for u ∈ Tkn ,

Y u
n−kn(s) =

∑
v∈Tn−kn (u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−knrs(Xx
u) .

Then by (5.1), the following decomposition holds:∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) −W

x(s)πs(ϕ) = An(s) +Bn(s) + Cn(s), (5.2)

where

An(s) =
∑
u∈Tkn

esS
x
urs(Xx

u)
[mκ(s)]knrs(x)

[
Y u
n−kn(s)− EknY u

n−kn(s)
]
,

Bn(s) =
∑
u∈Tkn

esS
x
urs(Xx

u)
[mκ(s)]knrs(x)

[
EknY u

n−kn(s)− πs(ϕ)
]
,

Cn(s) = [W x
kn(s)−W x(s)]πs(ϕ).

By virtue of the decomposition (5.2), we shall divide the proof of Theorem
5.1 into three lemmas.

Lemma 5.3. Under the conditions of Theorem 2.3, there exist two constants
η ∈ (0, η2) and δ ∈ (0, 1) such that

δ−n sup
s∈(−η,η)

|An(s)| n→∞→ 0, a.s.

Proof. To prove Lemma 5.3, we will use the Borel-Cantelli Lemma. We can
obtain the required result once we prove that there exist a small η > 0 and
a constant δ ∈ (0, 1) such that for any ε > 0,

∞∑
n=1

P(δ−n sup
s∈(−η,η)

|An(s)| > ε) <∞. (5.3)
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By Markov’s inequality,

∞∑
n=1

P(δ−n sup
s∈(−η,η)

|An(s)| > ε) 6 1
ε

∞∑
n=1

δ−nE sup
s∈(−η,η)

|An(s)|. (5.4)

Because Ωγ0 is an open set containing 0, we can find a small ρ > 0 such
that Bρ(0) ⊂ Ω1

α for some 1 < α 6 min{2, γ0}. Let η ∈ (0, ρ3) whose value
will be fixed later. Then B3η(0) ⊂ Bρ(0). We see that for every n ∈ N, the
function

z 7→ An(z) =
∑
u∈Tkn

ezS
x
urz(Xx

u)
[mκ(z)]knrz(x)

[
Y u
n−kn(z)− EknY u

n−kn(z)
]

is well-defined as an analytic function on Bη1(0). Recall that s is the real
part of z. By Lemma 3 of Biggins [8], we have

sup
s∈(−η,η)

|An(s)| 6 sup
z∈Bη(0)

|An(z)| 6 1
π

∫ 2π

0
|An(z(t))|dt,

where z(t) = 2ηeit, 0 6 t 6 2π. Note that, by Fubini’s theorem,

E sup
s∈(−η,η)

|An(s)| 6
∫ 2π

0
E|An(z(t))|dt 6 2π sup

|z|=2η
E|An(z)|. (5.5)

Consider now E|An(z)| for |z| = 2η. Taking the α-th absolute moment of
An(z) conditional on Fk and applying Lemma 1 of Biggins [8], we obtain

Ekn |An(z)|α 6 2α
∑
u∈Tkn

∣∣∣ ezS
x
urz(Xx

u)
[mκ(z)]knrz(x)

∣∣∣αEkn |Y u
n−kn(z)− EknY u

n−kn(z)|α.

(5.6)

Because B3η(0) ⊂ Bρ(0) ⊂ Bη2(0) ⊂ B η1
2

(0), we see that if |z| = 2η, then
z, αs2 ∈ B η1

2
(0). Hence, by (4.21), we get for |z| = 2η,

∣∣∣ ezSxu(rzϕ)(Xx
u)

[mκ(z)]knrz(x)

∣∣∣α 6 ( mκ(αs)
|mκ(z)|α

)kn eαsS
x
urαs(Xx

u)
[mκ(αs)]knrαs(x)

|rz(Xx
u)|αrαs(x)

|rz(x)|αrαs(Xx
u)

6 d1+α
3

(
mκ(αs)
|mκ(z)|α

)kn eαsS
x
urαs(Xx

u)
[mκ(αs)]knrαs(x) . (5.7)
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We now estimate the expectation in (5.6). Using |a+b|α 6 2α−1(|a|α+|b|α) 6
2(|a|α + |b|α) and (4.21), we have for |z| = 2η,

Ekn |Y u
n−kn(z)− EknY u

n−kn(z)|α 6 2Ekn |Y u
n−kn(z)|α

6 2Ekn

[ ∑
v∈Tn−kn (u)

esS
Xxu
v rs(XXx

u
v )

[mκ(s)]n−knrs(Xx
u)
|rzϕ(XXx

u
v )|rs(Xx

u)
|rz(Xx

u)|rs(XXx
u

v )

( κ(s)
|κ(z)|

)n−kn]α

6 2(d2
3‖ϕ‖β)α

( κ(s)
|κ(z)|

)α(n−kn)
Ekn

[
W

Xx
u

n−kn(s)
]α

6 2(d2
3‖ϕ‖β)α

( κ(s)
|κ(z)|

)α(n−kn)
sup
x∈S

E(W x
∗ (s))α. (5.8)

From (5.6), (5.7) and (5.8), we have for all η > 0 small enough and |z| = 2η,

Ekn |An(z)|α 6 c
(
mκ(αs)
|mκ(z)|α

)kn ( κ(s)
|κ(z)|

)α(n−kn)
W x
kn(αs) sup

x∈S
E(W x

∗ (s))α.

(5.9)
Since αs ∈ (−η1, η1), (W x

n (αs)) is a martingale, so E[W x
n (αs)] = 1. Taking

expectations at both sides of (5.9), we obtain for |z| = 2η,

E|An(z)|α 6 c
(
mκ(αs)
|mκ(z)|α

)kn ( κ(s)
|κ(z)|

)α(n−kn)
sup
x∈S

E(W x
∗ (s))α. (5.10)

From (5.5), Jensen’s inequality and (5.10), we get that
E sup
s∈(−η,η)

|An(s)|

6 c
1
α sup
|z|=2η

{( mκ(αs)
|mκ(z)|α

) kn
α
∣∣∣e(n−kn)[Λ(s)−Λ(z)]

∣∣∣[ sup
x∈S

E(W x
∗ (s))α

] 1
α

}
. (5.11)

From the facts that B3η(0) ⊂ Bρ(0) ⊂ Ω1
α and the definition of Ω1

α, we
obtain

sup
|z|=2η

(
mκ(αs)
|mκ(z)|α

) 1
α

6 sup
z∈Bρ(0)

(
mκ(αs)
|mκ(z)|α

) 1
α

=: c1 < 1. (5.12)

From (5.11), (5.12) and the choice of kn which implies that kn > n− kn, we
get

E sup
s∈(−η,η)

|An(s)| 6 ccn−kn1 sup
|z|=3η

{ ∣∣∣e(n−kn)[Λ(s)−Λ(z)]
∣∣∣ [ sup

x∈S
E(W x

∗ (s))α
] 1
α
}
.

(5.13)
By Theorem 4.1, for η > 0 small enough,

sup
s∈(−η,η)

sup
x∈S

E(W x
∗ (s))α <∞. (5.14)
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Note that c1 < 1 is independent of η. Let c2 ∈ (1, 1
c1

). Since Λ is continuous
on Bη1(0) and Λ(0) = 0, there exists a small η3 > 0 such that

sup
z∈Bη3 (0)

∣∣∣e[Λ(s)−Λ(z)]
∣∣∣ 6 c2. (5.15)

Take η small enough such that η < η3. Since kn = dn2 e, we have n − kn >
n
2 − 1. So combining (5.13), (5.14), (5.15) we obtain for all η > 0 small
enough,

E sup
s∈(−η,η)

|An(s)| 6 c(c1c2)n−kn 6 c(c1c2)
n
2−1.

Therefore, using (5.4) and taking δ ∈
(
(c1c2)

1
2 , 1
)
, we get that

∞∑
n=1

P(δ−n sup
s∈(−η,η)

|An(s)| > ε) 6 c

εc1c2

∞∑
n=1

(
(c1c2)

1
2

δ

)n
<∞.

This completes the proof of Lemma 5.3. �

Lemma 5.4. Under the conditions of Theorem 2.3, there exist two constants
η ∈ (0, η2) and δ ∈ (0, 1) such that

δ−n sup
s∈(−η,η)

|Bn(s)| n→∞→ 0 a.s.

Proof. Using the branching property and the definition of Qx
s (3.3), we have

for u ∈ Tkn ,

EknY u
n−kn(s) = Ekn

∑
v∈Tn−kn (u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−knrs(Xx
u)

=
Ekn

[
esS

Xxu
n−kn (rsϕ)(XXx

u
n−kn)

]
κn−kn(s)rs(Xx

u)
= E

QX
x
u

s
[ϕ(XXx

u
n−kn)].

Hence

|Bn(s)| 6
∑
u∈Tkn

esS
x
urs(Xx

u)
[mκ(s)]knrs(x) sup

x∈S
|EQxs [ϕ(Xx

n−kn)]− πs(ϕ)|

6W x
kn(s) sup

x∈S
|EQxs [ϕ(Xx

n−kn)]− πs(ϕ)|.

By Theorem 4.2 and the bound (3.4), for η ∈ (0, η2), there exist a constant
c ∈ (0, 1) and a positive finite random variable M such that for all n > 0,

sup
s∈(−η,η)

|Bn(s)| 6Mcn−kn 6Mc
n
2−1.
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Therefore the conclusion of Lemma 5.4 holds for each δ ∈ (c
1
2 , 1). �

Lemma 5.5. Under the conditions of Theorem 2.3, there exist two constants
η ∈ (0, η2) and δ ∈ (0, 1) such that

δ−n sup
s∈(−η,η)

|Cn(s)| n→∞→ 0 a.s.

Proof. This is an immediate consequence of Theorem 4.2 and the fact that
|πs(ϕ)| 6 ‖ϕ‖∞.

�

5.2. Proof of Theorem 5.2. To prove Theorem 5.2, we need the following
result.
Lemma 5.6. Under the conditions of Theorem 5.2, there is a constant
η ∈ (0, η2) such that

sup
z∈Bη(0)

∣∣∣∣∣∣
∑
u∈Tn

ezS
x
u(rsϕ)(Xx

u)
[mκ(z)]nrs(x) − W̃

x(z)

∣∣∣∣∣∣ n→∞→ 0 a.s. (5.16)

Moreover,
∑
u∈Tn

ezS
x
u (rsϕ)(Xx

u)
[mκ(z)]nrs(x) is a.s. bounded by a positive and finite ran-

dom variable uniformly in z ∈ Bη(0) and n > 0.
Proof. By the branching property, for k 6 n,

∑
u∈Tn

ezS
x
u(rsϕ)(Xx

u)
[mκ(z)]nrs(x) =

∑
u∈Tk

ezS
x
urs(Xx

u)
[mκ(z)]krs(x)

∑
v∈Tn−k(u)

ezS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(z)]n−krs(Xx
u) .

(5.17)
As before, for each n, we take kn = dn2 e. For brevity, we denote for u ∈ Tkn ,

Ỹ u
n−kn(z) =

∑
v∈Tn−kn (u)

ezS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(z)]n−knrs(Xx
u) .

Then by (5.17), the following decomposition holds:∑
u∈Tn

ezS
x
u(rsϕ)(Xx

u)
[mκ(z)]nrs(x) − W̃

x(s) = An(z) +Bn(z) + Cn(z), (5.18)

where

An(z) =
∑
u∈Tkn

ezS
x
urs(Xx

u)
[mκ(z)]knrs(x)

[
Ỹ u
n−kn(z)− Ekn Ỹ u

n−kn(z)
]
,

Bn(z) =
∑
u∈Tkn

ezS
x
urs(Xx

u)
[mκ(z)]knrs(x)

[
Ekn Ỹ u

n−kn(z)− Mz(rsϕ)(Xx
u)

rs(Xx
u)

]
,

Cn(z) = W̃ x
kn(z)− W̃ x(z).
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By virtue of the decomposition (5.18), in order to prove (5.16), it suffices to
show that there is a constant η ∈ (0, η2) such that

sup
z∈Bη(0)

|An(z)| n→∞→ 0, a.s., (5.19)

sup
z∈Bη(0)

|Bn(z)| n→∞→ 0, a.s., (5.20)

sup
z∈Bη(0)

|Cn(z)| n→∞→ 0, a.s.. (5.21)

The proof of (5.19) is similar to that of Lemma 5.3, and is omitted here. It is
clear that (5.21) is an immediate consequence of Theorem 4.3. It remains to
prove (5.20). By the branching property and the definition of the operator
Pz (see (3.1)), we have

Ekn Ỹ u
n−kn(z) = Ekn

∑
v∈Tn−kn (u)

ezS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(z)]n−knrs(Xx
u)

=
Ekn

[
ezS

Xxu
n−kn (rsϕ)(XXx

u
n−kn)

]
κn−kn(z)rs(Xx

u)

= Pn−knz (rsϕ)(Xx
u)

κn−kn(z)rs(Xx
u) .

Hence, by the decomposition (3.2) and Lemma 3.1(4), for any z ∈ Bη1(0),
we have

|Bn(z)| 6
∣∣∣∣∣ ∑
u∈Tkn

ezS
x
urs(Xx

u)
[mκ(z)]knrs(x)

[
Pn−knz (rsϕ)(Xx

u)
κn−kn(z)rs(Xx

u) −
Mz(rsϕ)(Xx

u)
rs(Xx

u)

]∣∣∣∣∣
6

∑
u∈Tkn

∣∣∣∣∣ ezS
x
urs(Xx

u)
[mκ(z)]knrs(x)

Ln−knz (rsϕ)(Xx
u)

κn−kn(z)rs(Xx
u)

∣∣∣∣∣
6
‖Ln−knz ‖Bβ→Bβ
|k(z)|n−kn

∑
u∈Tkn

esS
x
urs(Xx

u)
[mκ(s)]knrs(x)

( κ(s)
|κ(z)|

)kn ‖rsϕ‖β
miny∈S rs(y)

6 c
(1− a2

1− a1

)n−kn ∣∣∣ekn[Λ(s)−Λ(z)]
∣∣∣W x

kn(s), (5.22)

where 0 < a1 < a2 < 1 is defined in Lemma 3.1(4). In the last step we
use the fact that ‖rsϕ‖β 6 3‖rs‖β‖ϕ‖β 6 c and that the map s 7→ rs is
analytic with r0 = 1. Since kn = dn2 e, we have n − kn > n

2 − 1 > kn − 2,

so
(

1−a2
1−a1

)n−kn
6
(

1−a2
1−a1

)n
2−1
6
(

1−a2
1−a1

)kn−2
. Let c1 ∈

(
1, 1−a1

1−a2

)
. Using the

facts that the function Λ is continuous on Bη1(0) and Λ(0) = 0, there exist
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a small η ∈ (0, η1) such that

sup
z∈Bη(0)

∣∣∣e[Λ(s)−Λ(z)]
∣∣∣ 6 c1. (5.23)

By Theorem 4.2, for η ∈ (0, η2) small enough, sups∈(−η,η)W
x
kn

(s) 6 M,

where M is a positive and finite random variable. This together with (5.22)
and (5.23) implies that for η ∈ (0, η2) small enough,

sup
z∈Bη(0)

|Bn(z)| 6 c2M
[c1(1− a2)

1− a1

]kn n→∞→ 0 a.s.

This completes the proof of (5.20). So the proof of (5.16) is finished.
The uniform bound of

∑
u∈Tn

ezS
x
u (rsϕ)(Xx

u)
[mκ(z)]nrs(x) is an immediate consequence

of (5.16) and the fact that W̃ x(z) is analytic in z (by Theorem 4.3). �

Proof of Theorem 5.2. For simplicity, we suppose that ϕ > 0; otherwise we
can consider the positive and negative parts of ϕ to conclude. Consider the
distribution functions of finite measures:

Fs,n(y) =
∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) 1

{
Sxu−nΛ′(s)
σs
√
n
6y
}, y ∈ R,

Hs,n(y) =
∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) Φ(y), y ∈ R,

and their characteristic functions at −t:

fs,n(t) =
∫
R
e−itydFs,n(y), hs,n(t) =

∫
R
e−itydHs,n(y), t ∈ R.

By straightforward calculations we have

hs,n(t) =
∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) e

− t
2
2 (5.24)

fs,n(t) =
∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) e

−itS
x
u−nΛ′(s)
σs
√
n

=
∑
u∈Tn

e
(s− it

σs
√
n

)Sxu(rsϕ)(Xx
u)

[mκ(s− it
σs
√
n

)]nrs(x)

(
κ(s− it

σs
√
n

)
κ(s)

)n
e
itnΛ′(s)
σs
√
n

=
∑
u∈Tn

e
(s− it

σs
√
n

)Sxu(rsϕ)(Xx
u)

[mκ(s− it
σs
√
n

)]nrs(x)
λn
s, −it
σs
√
n

, (5.25)

where the last equality holds by the definition of λs,it (see (3.7)).
Notice that Fs,n(−∞) = Hs,n(−∞) = 0, Fs,n(+∞) = Hs,n(+∞) =∑
u∈Tn

esS
x
u (rsϕ)(Xx

u)
[mκ(s)]nrs(x) , Fs,n and Hs,n are non-decreasing on R, and Hs,n is
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differentiable on R. So by Esseen’s smoothing inequality (see [28, Theorem
V.2.2.]), for all T > 0 and s ∈ (−η1, η1),

sup
y∈R
|Fs,n(y)−Hs,n(y)| 6 1

π

∫ T

−T

∣∣∣∣fs,n(t)− hs,n(t)
t

∣∣∣∣ dt
+ c0
T

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) ,

where c0 is a positive constant. Therefore, to prove Theorem 5.2, it suffices
to show that there exists a small η ∈ (0, η2) such that as n→∞, a.s.,

sup
s∈(−η,η)

∫ T

−T

∣∣∣∣fs,n(t)− hs,n(t)
t

∣∣∣∣ dt = O
( 1√

n

)
, (5.26)

and

sup
s∈(−η,η)

c0
T

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) = O

( 1√
n

)
. (5.27)

In the following, we denote byMi a positive and finite random variable. Let
T := ησ

√
n with η > 0 small enough such that the conclusion in Lemma 5.6

holds, where σ := infs∈(−η,η) σs > 0. By Lemma 5.6, we have

sup
s∈(−η,η)

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) 6M1.

Hence (5.27) is proved since

sup
s∈(−η,η)

c0
T

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) 6

c0M1
ησ
√
n
.

It remains to prove (5.26). We will prove this by showing that there exists
a small η ∈ (0, η2) such that as n→∞, a.s.,

I1(n) + I2(n) = O
( 1√

n

)
, (5.28)

where

I1(n) = sup
s∈(−η,η)

∫
|t|<δ1σ

√
n

∣∣∣∣fs,n(t)− hs,n(t)
t

∣∣∣∣ dt,
I2(n) = sup

s∈(−η,η)

∫
δ1σ
√
n6|t|6ησ

√
n

∣∣∣∣fs,n(t)− hs,n(t)
t

∣∣∣∣ dt,
with δ1 ∈ (0, η) whose value will be fixed later.

Control of I1(n). Denote for z = s+ it with s ∈ (−η, η) and t ∈ R,

Un(z) =
∑
u∈Tn

ezS
x
u(rsϕ)(Xx

u)
[mκ(z)]nrs(x) .
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With this notation and using (5.24) and (5.25), we have

I1(n) 6 I11(n) + I12(n),

where

I11(n) = sup
s∈(−η,η)

∫
|t|<δ1σ

√
n

∣∣∣∣∣
λn
s, −it
σs
√
n

t

(
Un
(
s− it

σs
√
n

)
− Un(s)

)∣∣∣∣∣dt
I12(n) = sup

s∈(−η,η)

∫
|t|<δ1σ

√
n

∣∣∣∣∣
(
λn
s, −it
σs
√
n

− e−
t2
2
)
Un(s)

t

∣∣∣∣∣dt.
For I11(n), by Taylor’s formula and the fact that Λ′′(s) = σ2

s , we have

λn
s, −it
σs
√
n

= e
n[Λ(s− it

σs
√
n

)−Λ(s)+Λ′(s) it
σs
√
n

]

= e
n
∑∞

k=2
Λ(k)(s)
k! ( −it

σs
√
n

)k

= e−
t2
2 e

n
∑∞

k=3
Λ(k)(s)
k! ( −it

σs
√
n

)k
. (5.29)

By choosing δ1 small enough, we have for all s ∈ (−η, η) and |t| < δ1σ
√
n,

∣∣∣ ∞∑
k=3

Λ(k)(s)
k!

( −it
σs
√
n

)k∣∣∣ 6 t2

4n, (5.30)

and so, from (5.29), ∣∣∣λn
s, −it
σs
√
n

∣∣∣ 6 e− t24 . (5.31)

Therefore, for η and δ1 small enough,

I11(n) 6 sup
s∈(−η,η)

∫
|t|<δ1σ

√
n

e−
t2
4

|t|

∣∣∣∣∣Un(s− it

σs
√
n

)
− Un(s)

∣∣∣∣∣dt. (5.32)

By Lemma 5.6, there is a constant η4 small enough such that for all n > 0,

sup
|z|= η4

2

|Un(z)| 6M2. (5.33)

Notice that Un is a.s. analytic on Bη1(0). Let η, δ1 > 0 be small enough
such that η+ iδ1 ∈ B η4

3
(0). By the mean value theorem, for s ∈ (−η, η) and
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t
σs
√
n
∈ (−δ1, δ1), we have∣∣∣Un(s− it

σs
√
n

)− Un(s)
∣∣∣ 6 |t|

σs
√
n

sup
t∈(−δ1,δ1)

∣∣∣U ′n(s− it

σs
√
n

)
∣∣∣

6
|t|

σs
√
n

sup
z∈B η4

3
(0)
|U ′n(z)|. (5.34)

By the Cauchy’s formula, when z ∈ B η4
2

(0),

U ′n(z) = 1
2πi

∫
|w|= η4

2

Un(w)
(w − z)2dw.

Hence, by (5.33) and the fact that |w−z| > η4
6 for z ∈ B η4

3
(0) and |w| = η4

2 ,
we have

sup
z∈B η4

3
(0)
|U ′n(z)| 6 18M2

η4
.

Combining this with (5.32), (5.34) and the fact that σs > σ for all s ∈
(−η, η), we obtain

I11(n) 6 sup
s∈(−η,η)

18M2
σs
√
nη4

∫
|t|<δ1σ

√
n
e−

t2
4 dt 6

M3√
n
. (5.35)

For I12(n), using (5.29), the inequality |ez − 1| 6 |z|e|z| for all z ∈ C and
(5.30), we obtain∣∣∣λn

s, −it
σs
√
n

− e−
t2
2

∣∣∣ 6 e− t22 ∣∣∣en∑∞k=3
Λ(k)(s)
k! ( −it

σs
√
n

)k − 1
∣∣∣

6 e
− t

2
2 +
∣∣∣n∑∞

k=3
Λ(k)(s)
k!

(
−it
σs
√
n

)k∣∣∣ ∣∣∣∣∣n
∞∑
k=3

Λ(k)(s)
k!

( −it
σs
√
n

)k∣∣∣∣∣
6 e−

t2
4

∣∣∣∣∣n
∞∑
k=3

Λ(k)(s)
k!

( −it
σs
√
n

)k∣∣∣∣∣ . (5.36)

By choosing δ1 small enough, we have for all s ∈ (−η, η) and |t| < δ1σ
√
n,∣∣∣∣∣n

∞∑
k=3

Λ(k)(s)
k!

( −it
σs
√
n

)k∣∣∣∣∣ 6 C( |t|3√n
)
. (5.37)

From (5.36) and (5.37), we have for all s ∈ (−η, η) and |t| < δ1σ
√
n,

∣∣∣∣∣
λn
s, −it
σs
√
n

− e−
t2
2

t

∣∣∣∣∣ 6 C√
n
t2e−

t2
4 . (5.38)
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By Lemma 5.6, Un(s) is a.s. bounded uniformly in s ∈ (−η, η). This together
with (5.38) and the fact that

∫∞
0 t2e−

t2
4 dt <∞ implies that

I12(n) 6
C sups∈(−η,η) |Un(s)|

√
n

∫ ∞
0

t2e−
t2
4 dt 6

M4√
n
. (5.39)

Putting together (5.35) and (5.39), we get I1(n) = O
(

1√
n

)
.

Control of I2(n). Using the constraint |t| > δ1σ
√
n, we have

I2(n) 6 1
δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n6|t|6ησ

√
n
|fs,n(t)− hs,n(t)|dt

6
1

δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n6|t|6ησ

√
n
(|fs,n(t)|+ |hs,n(t)|)dt (5.40)

By (5.24) and Lemma 5.6, for η > 0 small enough and δ1σ
√
n 6 |t| 6 ησ

√
n,

sup
s∈(−η,η)

|hs,n(t)| 6 e−
t2
2 sup
s∈(−η,η)

|Un(s)| 6M5e
− t

2
2 .

This implies that
1

δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n6|t|6ησ

√
n
|hs,n(t)|dt 6 M6√

n
.

Hence, from (5.40), to prove that I2(n) = O
(

1√
n

)
, it remains to show that

there exist a small η ∈ (0, η2) such that as n→∞, a.s.,
1

δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n6|t|6ησ

√
n
|fs,n(t)|dt = O

( 1√
n

)
. (5.41)

By the branching property, we have the following decomposition: for n > 0
and kn = dn2 e,

fs,n(t) = As,n(t) +Bs,n(t), (5.42)
where

As,n(t) =
∑
u∈Tkn

e
(s− it

σs
√
n

)Sxurs(Xx
u)

[mκ(s)]knrs(x) e
itknΛ′(s)
σs
√
n

[
Ŷ u
s,n−kn(t)− Ekn Ŷ u

s,n−kn(t)
]
,

Bs,n(t) =
∑
u∈Tkn

e
(s− it

σs
√
n

)Sxurs(Xx
u)

[mκ(s)]knrs(x) e
itknΛ′(s)
σs
√
n Ekn Ŷ u

s,n−kn(t),

with

Ŷ u
s,n−kn(t) =

∑
v∈Tn−kn (u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−knrs(Xx
u)e

−it
σs
√
n

[SX
x
u

v −(n−kn)Λ′(s)]
.
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For As,n(t), using the same argument as in the proof of Lemma 5.3, we
can prove that for η > 0 small enough, there exists δ ∈ (0, 1) such that

sup
s∈(−η,η)

sup
δ1σ
√
n6|t|6ησ

√
n

δ−n|As,n(t)| n→∞→ 0 a.s.

Therefore,

sup
s∈(−η,η)

sup
δ1σ
√
n6|t|6ησ

√
n

|As,n(t)| 6M11δ
n. (5.43)

For Bs,n(t), using the branching property and the definitions of Qx
s (see

(3.3)) and Rs,it (see (3.5)), we have for u ∈ Tkn ,

Ekn Ŷ u
s,n−kn(t) = Ekn

∑
v∈Tn−kn (u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−knrs(Xx
u)e

−it
σs
√
n

[SX
x
u

v −(n−kn)Λ′(s)]

=
Ekn

[
esS

Xxu
n−kn (rsϕ)(XXx

u
n−kn)e

−it
σs
√
n

[SX
x
u

n−kn−(n−kn)Λ′(s)]]
[κ(s)]n−knrs(Xx

u)

= E
QX

x
u

s

[
ϕ(XXx

u
n−kn)e

−it
σs
√
n

[SX
x
u

n−kn−(n−kn)Λ′(s)]]
= Rn−kn

s, −it
σs
√
n

ϕ(Xx
u).

Therefore, by (3.6) and Theorem 4.2, there is a constant a ∈ (0, 1) such that
for kn = dn2 e,

sup
s∈(−η,η)

sup
δ1σ
√
n6|t|6ησ

√
n

|Bs,n(t)| 6 ‖ϕ‖βan−kn sup
s∈(−η,η)

W x
kn(s) 6M7a

n
2−1.

(5.44)

From (5.42), (5.43) and (5.44), we obtain for c1 = max{δ, a
1
2 },

sup
s∈(−η,η)

sup
δ1σ
√
n6|t|6ησ

√
n

|fs,n(t)| 6M8c
n
1 .

Thus

1
δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n6|t|6ησ

√
n
|fs,n(t)|dt 6 2(η − δ1)M8c

n
1

δ1
,

which implies (5.41). This concludes that I2(n) = O
(

1√
n

)
, which ends the

proof of (5.28) and (5.26). So Theorem 5.2 is proved.
�
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6. Proof of Theorem 2.2

For y ∈ [0, 1], Theorem 2.2 is a direct consequence of Theorem 2.1, as we
will see in the following. For n > 1,
∣∣∣∑u∈Tn ϕ(Xx

u)1{Sxu−nγ>
√
nσy}

mnW [1− Φ(y)]e
y3
√
n
ζ( y√

n
)
− ν(ϕ)

∣∣∣
= 1

W [1− Φ(y)]e
y3
√
n
ζ( y√

n
)

∣∣∣ 1
mn

∑
u∈Tn

ϕ(Xx
u)− 1

mn

∑
u∈Tn

ϕ(Xx
u)1

{S
x
u−nγ
σ
√
n
6y}

−Wν(ϕ)(1− Φ(y))e
y3
√
n
ζ( y√

n
)
∣∣∣. (6.1)

Since supy∈[0,1] |
y3
√
n
ζ( y√

n
)| → 0, there exists n0 large enough such that for

all y ∈ [0, 1] and n > n0, e
y3
√
n
ζ( y√

n
)
> 1/2. Using this and the fact that

1− Φ(y) > c := 1− Φ(1) for all y ∈ [0, 1], from (6.1) we get for all n > n0,∣∣∣∑u∈Tn ϕ(Xx
u)1{Sxu−nγ>

√
nσy}

mnW [1− Φ(y)]e
y3
√
n
ζ( y√

n
)
− ν(ϕ)

∣∣∣
6

2
cW

∣∣∣ 1
mn

∑
u∈Tn

ϕ(Xx
u)−Wν(ϕ)

∣∣∣
+ 2
cW

∣∣∣− 1
mn

∑
u∈Tn

ϕ(Xx
u)1

{S
x
u−nγ
σ
√
n
6y}

+Wν(ϕ)Φ(y)
∣∣∣

+ 2
cW

∣∣∣Wν(ϕ)(1− Φ(y))
(
1− e

y3
√
n
ζ( y√

n
))∣∣∣. (6.2)

In the last display, by Theorem 2.1, when n → ∞, the two first terms are
O
(

1√
n

)
. We will show below that the third term is also O

(
1√
n

)
. In fact, us-

ing the inequality |1−et| 6 |t|et for t ∈ R and the fact that supy∈[0,1] |ζ( y√
n

)|
is bounded for n > n0, we obtain for y ∈ [0, 1], as n→∞,

∣∣∣1− e y3
√
n
ζ( y√

n
)
∣∣∣ 6 ∣∣∣ y3

√
n
ζ( y√

n
)
∣∣∣e y3
√
n
ζ( y√

n
) = O

( 1√
n

)
.

Since |ν(ϕ)| 6 ‖ϕ‖∞, this implies that the third term in (6.2) is O
(

1√
n

)
.

From (6.2) and the above estimations, we see that for y ∈ [0, 1], as n→∞,

∣∣∣∑u∈Tn ϕ(Xx
u)1{Sxu−nγ>

√
nσy}

mnW [1− Φ(y)]e
y3
√
n
ζ( y√

n
)
− ν(ϕ)

∣∣∣ = O
( 1√

n

)
,
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which implies∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ>
√
nσy}

mnW [1− Φ(y)] = e
y3
√
n
ζ( y√

n
)[
ν(ϕ) +O

( 1√
n

)]
.

We now deal with the case 1 < y = o(
√
n). We can suppose that ϕ > 0

by considering the positive and negative parts of ϕ. We will focus on the
proof of (2.12), as the proof of (2.13) is similar. For u ∈ (N∗)n, set

V x
u = Sxu − nΛ′(s)

σs
√
n

.

Then we have

I := 1
mn

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ>yσ

√
n}

= rs(x)e
−nsΛ′(s)

κ−n(s)
∑
u∈Tn

e−sσs
√
nV xu

esS
x
uϕ(Xx

u)
[mκ(s)]nrs(x)1{V xu >σy

σs
+
√
n[γ−Λ′(s)]

σs
}.

(6.3)
Because Λ(s) is analytic on (−η1, η1) with Λ(0) = 0, it has the Taylor
expansion

Λ(s) =
∞∑
k=1

γk
k! s

k, where γk = Λ(k)(0), s ∈ (−η1, η1), (6.4)

which implies that

Λ′(s)− γ =
∞∑
k=2

γk
(k − 1)!s

k−1. (6.5)

Consider the equation
√
n[Λ′(s)− γ] = σy. (6.6)

Set t = y√
n
. Using (6.5), we get

σt =
∞∑
k=2

γk
(k − 1)!s

k−1. (6.7)

Since γ2 = σ2 > 0, the equation (6.7) has the unique solution given by

s = t

γ
1/2
2
− γ3

2γ2
2
t2 − γ4γ2 − 3γ2

3

6γ7/2
2

t3 + . . . , (6.8)

which converges for |t| small enough (see [28, Theorem VIII.2.2] for details).
From (6.4) and (6.5), we see that

sΛ′(s)− Λ(s) =
∞∑
k=2

k − 1
k! γks

k.
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Choosing s given by (6.8), we obtain

sΛ′(s)− Λ(s) = t2

2 − t
3ζ(t) = y2

2n −
y3

n3/2 ζ

(
x√
n

)
, (6.9)

where ζ is the Cramér series defined in (2.5), which converges for |t| small
enough (see [28, Theorem VIII.2.2] for details). Coming back to the ex-
pression of I (cf. (6.3)), using (6.9) together with (6.6) and the fact that
e−nsΛ

′(s)

κ−n(s) = e−n[sΛ′(s)−Λ(s)], we have

I = rs(x)e−
y2
2 + y3

√
n
ζ( y√

n
) ∑
u∈Tn

e−sσs
√
nV xu

esS
x
uϕ(Xx

u)
[mκ(s)]nrs(x)1{V

x
u >0}

= rs(x)e−
y2
2 + y3

√
n
ζ( y√

n
)
∫ ∞

0
e−sσs

√
nyZ

x
s,n(dy), (6.10)

where Zxs,n is the finite measure on R defined by:

Z
x
s,n(B2) =

∑
u∈Tn

esS
x
uϕ(Xx

u)
[mκ(s)]nrs(x)1{V

x
u ∈B2}, B2 ⊂ R.

Its mass satisfies E[Zxs,n(R)] 6
∥∥∥ ϕrs ∥∥∥∞.

Since t = y√
n
→ 0 as n→∞, by (6.8) we have s→ 0+ as n→∞. Hence,

for sufficiently large n0 and all n > n0, we have s ∈ (0, η) where η is defined
in Theorem 2.3. Therefore, denoting

ln,s(y) = Z
x
s,n

(
(−∞, y]

)
−W x(s)πs

( ϕ
rs

)
Φ(y), y ∈ R,

we get from Theorem 2.3 that for all n > n0,

sup
y∈R
|ln,s(y)| 6 M√

n
, (6.11)

whereM is a positive and finite random variable independent of n and s. In
the following, we write Mi for a positive and finite random variable. Notice
that ∫ ∞

0
e−sσs

√
nyZ

x
s,n(dy)

=
∫ ∞

0
e−sσs

√
nydln,s(y) + W x(s)πs(ϕr−1

s )√
2π

∫ ∞
0

e−sσs
√
ny− y

2
2 dy

=: I1 +W x(s)πs(ϕr−1
s )I2. (6.12)

Estimate of I1. Using the integration by parts and (6.11), we get for
n > n0,

|I1| 6 |ln,s(0)|+ sσs
√
n

∫ ∞
0

e−sσs
√
ny|ln,s(y)|dy 6 2M√

n
. (6.13)
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Estimate of I2. The integral I2 appears in the proof of Cramér’s large
deviation expansion theorem for sums of i.i.d random variables (see [28,
Theorem VIII.2.2]), where the following results have been proved:

(i) there exist some positive constants c1, c2 such that for all s ∈ (−η, η)
and n large enough,

c1 6 sσs
√
nI2 6 c2;

(ii) the integral I2 admits the following asymptotic expansion:

I2 = e
y2
2 [1− Φ(y)]

[
1 +O

(
y√
n

) ]
. (6.14)

By the definition of σs, the mapping s 7→ σs is strictly positive and contin-
uous on (−η, η). Hence, there exist constants c3, c4 > 0 such that

c3 6 s
√
nI2 6 c4. (6.15)

Notice that for all s ∈ (−η, η),W x(s) > 0 a.s. Moreover, W x(s) is a.s.
continuous in (−η, η) by the continuity and uniform convergence of W x

n (s)
on (−η, η). Combining this with (6.15), we get

M3 6 s
√
nW x(s)I2 6M4. (6.16)

We now come back to (6.12), and let s be defined by (6.8). Recall that for
n > n0, s ∈ (0, η). From (6.12),(6.13) and (6.16), we have, as n→∞,∫ ∞

0
e−sσs

√
nyZ

x
s,n(dy) = W x(s)I2

[
πs(ϕr−1

s ) + I1
W x(s)I2

]
= W x(s)I2

[
πs(ϕr−1

s ) + s
√
nI1

s
√
nW x(s)I2

]
= W x(s)I2

[
πs(ϕr−1

s ) +O(s)
]
.

Substituting this into (6.10) and using (6.14), we obtain

I = rs(x)W x(s)e
y3
√
n
ζ( y√

n
)[1− Φ(y)]

[
1 +O

(
y√
n

) ][
πs(ϕr−1

s ) +O(s)
]
.

(6.17)

According to Theorem 4.2, W x(s) is analytic on (−η, η) and using the mean
theorem we see that |W x(s)−W x| = |W x(s)−W x(0)| 6M5s. On the other
hand, by [31, Lemma 6.1], we have ‖rs− 1‖∞ 6 cs and |πs(ϕr−1

s )− ν(ϕ)| =
| νs(ϕ)
νs(rs) − ν(ϕ)| 6 cs‖ϕ‖β. Since s = O

(
y√
n

)
by (6.8), it follows from (6.17)
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that

I =
[
1 +O(s)

][
W x +O(s)

]
e
y3
√
n
ζ( y√

n
)[1− Φ(y)]

[
1 +O

(
y√
n

) ][
ν(ϕ) +O(s)

]
= W xe

y3
√
n
ζ( y√

n
)[1− Φ(y)]

[
ν(ϕ) +O

( y√
n

)]
,

which concludes the proof of (2.12).
The proof of (2.13) can be carried out in a similar way as that of (2.12).

The only difference is that, instead of using (6.6), we consider the equation
√
n[Λ′(s)− Λ′(0)] = −σy,

where 1 < y = o(
√
n) and s ∈ (−η, 0). Since the rest of the argument is the

same as that in the proof of (2.12), we omit the details.
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