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Introduction

A branching random walk in R d is a system of particles, where particles behave independently, and each particle gives birth to a random number of children which move in R d with independent and identically distributed (i.i.d.) displacements. One of the fundamental problems on this model is the study of the counting measure which counts the number of particles of generation n situated in a Borel set of R d . This problem has been studied by many authors, see e.g. [START_REF] Harris | The theory of branching processes[END_REF][START_REF] Stam | On a conjecture by Harris[END_REF][START_REF] Asmussen | Branching random walks (I)[END_REF][START_REF] Asmussen | Branching random walks (II)[END_REF][START_REF] Biggins | Growth rates in the branching random walk[END_REF][START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF][START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF][START_REF] Chen | On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements[END_REF], where central limit theorems and large deviations have been considered. For other important topics and closely related models, see for example the recent papers [START_REF] Barral | On exact scaling log-infinitely divisible cascades[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Hu | How big is the minimum of a branching random walk?[END_REF][START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF][START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF], the recent books [START_REF] Shi | Branching random walks[END_REF][START_REF] Buraczewski | Stochastic models with power-law tails: The equation X = AX + B[END_REF][START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes[END_REF] and many references therein.

In the classical branching random walk, a particle whose parent is at position y, moves to position y + l with i.i.d. increments l's for different particles, so that the moving is a simple random translation. Recently, in [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF] the authors consider a branching random walk in R d with products of random matrices, in which the position of a particle is obtained by the action of a matrix A on the position of its parent, where the matrices A's corresponding to different particles are i.i.d. In other words, the positions of particles are obtained by the action of products of random matrices on the position of the initial particle. This permits us to extend significantly the domains of applications of the theory of branching random walks, but the study of the model becomes much more involved. In [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF], a central limit theorem and a large deviation asymptotic expansion of Bahadur-Rao type for the counting measure have been proved. In this paper, we will establish the Berry-Esseen bound about the rate of convergence in the central limit theorem, and a moderate deviation expansion of Cramér type.

For a precise description of the model we need some notation. Let N = {0, 1, 2, . . .} and N * = {1, 2, . . .}. Set U := ∪ ∞ n=0 (N * ) n , where by convention (N * ) 0 = {∅}. A particle of generation n will be denoted by a sequence

u = u 1 • • • u n = (u 1 , • • • , u n ) ∈ (N *
) n of length n; the initial particle will be denoted by the null sequence ∅. Assume that on a probability space (Ω, F, P) we are given a set of independent identically distributed random variables (N u ) u∈U of the same law p = {p k : k ∈ N}, and a set of independent identically distributed d × d random matrices (A u ) u∈U of the same law µ on the set of d × d matrices M (d, R), where d 2. The two families (N u ) u∈U and (A u ) u∈U are also assumed to be independent.

A branching random walk in R d with products of random matrices is defined as follows. At time 0, there is one initial particle ∅ of generation 0, with initial position Y ∅ := x ∈ R d \ {0}. At time 1, the initial particle ∅ is replaced by N = N ∅ new particles i = ∅i of generation 1, located at

Y i = A i Y ∅ , 1 i N .
In general, at time n + 1, each particle u = u 1 . . . u n of generation n, located at Y u ∈ R d , is replaced by N u new particles ui of generation n + 1, located at Y ui = A ui Y u , 1 i N u . Namely, the position of the particle ui is obtained from the position of u by the action of the matrix A ui on the vector Y u . Consequently the position Y u of a particle u in generation n 1 is given by the action of products of random matrices on the position x of the initial particle ∅:

Y u = G u x,
where G u = A u 1 ...un . . . A u 1 .

(1.1)

Denote by T the genealogical tree associated to the elements {N u : u ∈ U}, defined by the following properties: 1) ∅ ∈ T; 2) when u ∈ T, then for i ∈ N, ui ∈ T if and only if 1 i N u ; 3) ui ∈ T implies u ∈ T. Let T n = {u ∈ T : |u| = n} be the set of particles of generation n, where |u| denotes the length of the sequence u and represents the number of generation to which u belongs; by convention |∅| = 0.

The space R d is equipped with the Euclidean norm | • |. The position G u x of the particle u is completely described by two components: its norm |G u x| and its projection on the unit sphere S d-1 := {y ∈ R d , |y| = 1} denoted by

X x u := G u x |G u x| .
Accordingly, we consider the following counting measure of particles of generation n which describes the configuration of the branching random walk at time n: for measurable sets B 1 ⊂ S d-1 and B 2 ⊂ R,

Z x n (B 1 , B 2 ) = u∈Tn 1 {X x u ∈B 1 , log |Gux|∈B 2 } , (1.2) 
where for a set D, 1 D denotes its indicator function.

In [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF], a central limit theorem for the counting measure Z x n (with the starting point x ∈ S d-1 ) was established for both the case where the matrices A u are nonnegative, and the case where the matrices A u are invertible. It implies that, under suitable conditions, for some constants γ, σ explicitly defined (see (2.1) and (2.2)) , the counting measure B 2 → Z x n (S d-1 , nγ + σ √ nB 2 ) on R with a suitable norming converges to the standard normal law. In [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF], a precise large deviation result of Bahadur-Rao type was also established, which gives in particular the exact asymptotic of

Z x n S d-1 , [na, +∞) for a > γ.
In this paper, our first objective is to strengthen the central limit theorem in [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF] to a Berry-Esseen bound for the counting measure Z x n with a target function ϕ on X x u : see Theorem 2.1. With ϕ = 1, it implies that, under suitable conditions, for any x ∈ S d-1 and n 1, we have, a.s.

sup y∈R 1 m n Z x n S d-1 , nγ + σ √ n(-∞, y] -W Φ(y) M √ n , ( 1.3) 
where Φ(y) = 1 √ 2π y -∞ e -t 2 /2 dt is the distribution function of the standard normal law and M is a finite and positive random variable.

Our second objective is to establish Cramér type moderate deviation expansion for Z x n with a target function ϕ on X x u : see Theorem 2.2. From this theorem with ϕ = 1, we know that, under suitable conditions, for any x ∈ S d-1 and 0 y = o( √ n), as n → ∞, a.s.,

Z x n S d-1 , nγ + σ √ n(-∞, y] m n W [1 -Φ(y)] = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n , ( 1.4) 
where t → ζ(t) is the Cramér series (see (2.5)). An important step in attaining these two objectives is to establish a Berry-Esseen bound for the Cramér type changed measure Z x s,n (see (2.14)). This will be done in Theorem 2.3. Theorem 2.1 will be obtained from Theorem 2.3 by taking s = 0, and Theorem 2.2 will be established by using Theorem 2.3 and by adapting the techniques from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF].

To facilitate the comprehension, let us present some ideas in the proof of Theorem 2.3. As in [START_REF] Bui | Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk[END_REF] where the one dimensional case is considered, we need to study the asymptotic of the characteristic function of the changed measure Z x s,n . Inspired by the approach in [START_REF] Bui | Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk[END_REF], we would like to express the characteristic function of Z x s,n in terms of a martingale and a quantity that can be controlled by the theory of products of random matrices. However, in contrast to the one dimensional case, we cannot obtain directly an expression of the characteristic function in terms of a martingale. Fortunately, using the spectral gap theory for products of random matrices established in [START_REF] Guivarc'h | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] and recently developed in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviation for products of random matrices[END_REF], we have been able to define a new martingale which is similar to the fundamental martingale and which can be used for a suitable approximation of the characteristic function of Z x s,n . We conclude by proving the uniform convergence and analyticity with respect to a complex parameter of the new martingale, and by using the asymptotic properties of the eigenvalue of the pertubed transfer operator related to the products of random matrices. See Theorem 4.3 and Lemma 5.6 for details.

The rest of the paper is organized as follows. In Section 2, we fix some notation, introduce our assumptions on the branching products of random matrices, and state the main results. In Section 3, we recall some spectral gap properties on products of random matrices stated in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviation for products of random matrices[END_REF]. In Section 4, the uniform convergence and analyticity of the constructed martingale are established. Sections 5 and 6 are devoted to the proofs of the main results.

Main results

Notation and assumptions on products of random matrices.

Note that in our model, along each branch we encounter a product of random matrices. In this section, we introduce some notation and the necessary assumptions on products of random matrices in order to formulate our main results. We shall consider two cases, the case when the matrices are nonnegative and the case when the matrices are invertible.

The set M (d, R) of d×d real matrices is equipped with the operator norm:

a = sup x∈S d-1 |ax| for a ∈ M (d, R), where | • | is a given vectorial norm on R d , and S d-1 = {x ∈ R d : |x| = 1} is the unit sphere in R d . A matrix a ∈ M (d, R
) is said to be proximal if it has an algebraic simple dominant eigenvalue. Denote by M + the set of matrices with nonnegative entries. A nonnegative matrix a ∈ M + is said to be allowable if every row and every column of a has a strictly positive entry.

Let µ be a probability measure on M (d, R). Denote by Γ µ := [supp µ] the smallest closed semigroup of M (d, R) generated by the support of µ. We say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and a function ϑ :

S d-1 + → R such that ∀a ∈ Γ, ∀x ∈ V (Γ) : exp[it log |ax| -iθ + i(ϑ(a•x) -ϑ(x))] = 1,
where S d-1 + = {x 0 : |x| = 1} is the intersection of the unit sphere with the positive quadrant. Notice that when d = 1, we have S d-1 + = {1}, and the above arithmetic condition reduces to the following more usual form: log a is almost surely (a.s.) concentrated on an arithmetic progression a 0 + a 1 N for some a 0 , a 1 > 0.

We will need the following assumptions on the law µ. For both invertible matrices and nonnegative matrices, we will need a moment condition. For invertible matrices we have ι(a) = a -1 -1 and N (a) = max{ a , a -1 }.

C1. (1) For invertible matrices: (a) (Strong irreducibility)There is no finite union

W = n i=1 W i of proper subspaces 0 = W i R d which is Γ µ -invariant (in the sense that aW = W for each a ∈ Γ µ ). (b) (Proximality) Γ µ contains

C2. (Moment condition)

There exists η 0 ∈ (0, 1) such that

E[N (A 1 ) η 0 ] < ∞.
We will consider the action of invertible matrices on the projective space P d-1 which is obtained from S d-1 by identifying x and -x, and the action of nonnegative matrices on S d-1

+ . For convenience we identify x ∈ P d-1 with one of its representants in S d-1 . To unify the exposition, we use the symbol S to denote P d-1 for invertible matrices, and S d-1 + for nonnegative matrices. The space S will be equipped with the metric d, which is the angular distance (see [START_REF] Bougerol | Products of Random Matrices with Applications to Schödinger Operators[END_REF]) for invertible matrices, and the Hilbert cross-ratio metric (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) for nonnegative matrices. Moreover, S is a separable metric space equipped with Borel σ-field.

Let C(S) be the space of continuous complex-valued functions on S. For β > 0 sufficiently small, we introduce the Banach space

B β = {f ∈ C(S) : f β < +∞},
equipped with the norm

f β := f ∞ + |f | β ,
where

f ∞ := sup x∈S |f (x)|, |f | β := sup x,y∈S,x =y |f (x) -f (y)| d β (x, y) .
Let G n = A n . . . A 2 A 1 be the product of i.i.d. d × d real random matrices A i , defined on the probability space (Ω, F, P), with common law µ. Let x ∈ S be a starting point. As mentioned in the introduction, the random walk G n x is completely determined by its log norm and its projection on S, denoted respectively by

S x n := log |G n x|, X x n := G n •x = G n x |G n x| , n 0, with the convention that G 0 x = x. Since S x n+1 = log |A n+1 X x n | + S x n and X x n+1 = A n+1 • X x n , the sequence (S x n , X x n ) n 0 is a Markov chain.
Denote by E the expectation with respect to P. By the law of large numbers of Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF], under conditions C1 and C2, we have

lim n→∞ 1 n S x n = lim n→∞ 1 n E[S x n ] = γ P-a.s., (2.1) 
where γ = inf n∈N 1 n E log G n is the upper Lyapunov exponent associated with the product sequence (G n ). Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] and Henion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] showed that

σ 2 = lim n→∞ 1 n E (S x n -nγ) 2 (2.2)
exists and is independent of x for invertible matrices and nonnegative matrices, respectively. Moreover, there exists a unique µ-stationary probability measure ν on S (see [START_REF] Guivarc'h | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]): µ * ν = ν, that is, for any ϕ ∈ C(S),

(µ * ν)(ϕ) := S Γµ ϕ(a•x)µ(da)ν(dx) = ν(ϕ),
where ν(ϕ) = S ϕ(x)ν(dx), and this notation for the integral will be used for any function and any measure. Define the transfer operator on C(S) as follows: for any s ∈ (-η 0 , η 0 ), and f ∈ C(S),

P s f (x) = E[|A 1 x| s f (A 1 •x)], for all x ∈ S. (2.3)
It is known that under conditions C1 and C2, there exists a small constant 0 < η 1 < η 0 such that for any s ∈ (-η 1 , η 1 ), there are a unique probability measure ν s and a unique Hölder continuous function r s on S satisfying ν(r s ) = 1 and 

ν s P s = κ(s)
Λ (0) = γ, Λ (0) = σ 2 > 0, and Λ (s) > 0 ∀s ∈ (-η 1 , η 1 ). Denote γ k = Λ k (0), k 1.
Throughout the paper, we write ζ for the Cramér series associated to Λ (see [START_REF] Petrov | Sums of independent random variables[END_REF]Theorem VIII.2.2] for details):

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ 3 3 120γ 9/2 2 t 2 + . . . (2.5)
which converges for |t| small enough.

Main results.

Let Z n = Z x n (S, R) be the population size at time n, which does not depend on the starting point x, and which forms a Galton-Watson process with Z 0 = 1 and Z 1 = N . Denote by m = EN the expected value of the offspring distribution. Throughout the paper, we assume that m ∈ (1, ∞) and P(N = 0) = 0.

Therefore the branching process (Z n ) is supercritical, and

Z n → ∞ a.s. as n → ∞. It is well known that EZ n = m n . Let W = lim n→∞ W n , where W n = Z n m n , n 0,
is the fundamental martingale for the Galton-Watson process (Z n ), and the limit exists a.s. by the martingale convergence theorem. An important ingredient in studying Berry-Esseen bound and moderate deviation expansion is the fundamental martingale associated to branching random walks with products of random matrices, defined for s ∈ (-η 1 , η 1 ) and x ∈ S

W x n (s) := u∈Tn e sS x u r s (X x u ) [mκ(s)] n r s (x) , n 0. (2.6)
This is a positive martingale with respect to the natural filtration

F 0 = {∅, Ω} and F n = σ(N u , A ui : i 1, |u| < n) for n 1.
By the martingale convergence theorem, the limit

W x (s) := lim n→∞ W x n (s) exists in R P-a.s. Set Λ * (q s ) = sq s -Λ(s) with q s = Λ (s). It is proved in [10] that under conditions C1 and C2, if Λ * (q s ) -log m < 0 (2.7)
and

E[max x∈S W x s,1 log + max x∈S W x s,1 ] < ∞, (2.8) 
where log + x = max{0, log x} denotes the positive part of log x, then for all x ∈ S, W x (s) is non-degenerate with

E[W x (s)] = 1. Set J = {s ∈ (-η 1 , η 1 ) : Λ * (q s ) -log m < 0}, (2.9) 
which is an open interval containing 0. We assume the following moment condition slightly stronger than (2.8):

C3. There are constants γ 0 > 1 and 0 < η

2 < η 1 2 with [-η 2 , η 2 ] ⊂ J such that E max x∈S W x 1 (s) γ 0 < ∞ ∀ s ∈ [-η 2 , η 2 ].
It is clear that conditions C1-C3 (together with the hypothesis P(N = 0) = 0 that we assume always), imply that for all x ∈ S, W x (s) > 0 a.s. and E[W x (s)] = 1; in particular (when s = 0), W > 0 a.s. and

E[W ] = 1.
Our first result is the Berry-Esseen bound for the counting measure Z x n : Theorem 2.1. Assume conditions C1-C3. Then, for any x ∈ S, ϕ ∈ B β and n 1, we have, a.s.,

sup y∈R 1 m n u∈Tn ϕ(X x u )1 S x u -nγ σ √ n y -W ν(ϕ)Φ(y) M √ n , (2.10)
where

Φ(y) = 1 √ 2π y -∞ e -t 2 /2
dt is the distribution function of the standard normal law and M is a finite and positive random variable. This is a Berry-Esseen type bound for the counting measure Z x n with suitable norming because the sum in (2.10) is an integral with respect to

Z x n : u∈Tn ϕ(X x u )1 S x u -nγ σ √ n y = S×R ϕ(z 1 )1 z 2 -nγ σ √ n y Z x n (dz 1 , dz 2 ). (2.11)
Our second result is the Cramér's moderate deviation expansion for Z x n . Theorem 2.2. Assume conditions C1-C3. Then, we have for any

x ∈ S, ϕ ∈ B β , 0 y = o( √ n), as n → ∞, a.s., u∈Tn ϕ(X x u )1 {S x u -nγ √ nσy} m n W [1 -Φ(y)] = e y 3 √ n ζ( y √ n ) ν(ϕ) + O y + 1 √ n , ( 2.12 
)

and u∈Tn ϕ(X x u )1 {S x u -nγ - √ nσy} m n W Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + O y + 1 √ n . (2.13)
An important step in the proof of the moderate deviation expansion is to establish a Berry-Esseen bound for the changed measure Z x s,n defined by for measurable sets

B 1 ⊂ S d-1 and B 2 ⊂ R, Z x s,n (B 1 , B 2 ) = B 1 ×B 2 e sz 2 r s (z 1 ) [mκ(s)] n r s (x) Z x n (dz 1 , dz 2 ) = u∈Tn e sS x u r s (X x u ) [mκ(s)] n r s (x) 1 {X x u ∈B 1 ,S x u ∈B 2 } . (2.14)
Our third result is a Berry-Esseen bound for the changed measure Z x s,n : Theorem 2.3. Assume conditions C1-C3. Then, for any x ∈ S and ϕ ∈ B β there exists a constant 0 < η < η 2 such that a.s., for n 1,

sup s∈(-η,η) sup y∈R u∈Tn e sS x u r s (X x u )ϕ(X x u ) [mκ(s)] n r s (x) 1 S x u -nΛ (s) σs √ n y -W x (s)π s (ϕ)Φ(y) M √ n , (2.15)
where M is a positive and finite random variable.

This is a Berry-Esseen type bound for Z x s,n because, similar to the case of Theorem 2.1, the sum in (2.15) is an integral with respect to Z x s,n :

u∈Tn e sS x u r s (X x u )ϕ(X x u ) [mκ(s)] n r s (x) 1 S x u -nΛ (s) σs √ n y = S×R e sz 2 r s (z 1 )ϕ(z 1 ) [mκ(s)] n r s (x) 1 z 2 -nΛ (s) σs √ n y Z x s,n (dz 1 , dz 2 ).
(2.16)

Preliminary results on products of random matrices

In this section we recall some spectral gap properties stated in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviation for products of random matrices[END_REF] which will be used for the proofs of main results.

Define the operator P z on C(S) by

P z f (x) = E[|A 1 x| z f (A 1 •x)], for all x ∈ S, z ∈ C. (3.1)
Denote by L(B β , B β ) the set of all bounded linear operators from B β to B β equipped with the operator norm

P B β →B β := sup f =0 P f β f β , ∀P ∈ L(B β , B β ).
We write B β for the topological dual of B β endowed with the norm ν B β = sup ϕ β =1 |ν(ϕ)| for any linear functional ν ∈ B β . For any η > 0, set B η (0) = {z ∈ C : |z| < η} for the ball with center 0 and radius η in the complex plane C.

Lemma 3.1. Assume conditions C1 and C2.

There exists a small η 1 ∈ (0, η 0 ) such that for any z ∈ B η 1 (0) and n 1, we have the decomposition

P n z = κ n (z)M z + L z , (3.2) 
where the operator M z is a rank one projection on B β , the mappings on

B η 1 (0), z → κ(z) ∈ C, z → r z ∈ B β , z → ν z ∈ B β , z → L z ∈ L(B β , B β )
are well-defined under the normalizing conditions ν z (1) = ν(r z ) = 1. All these mappings are analytic in B η 1 (0), and possess the following properties:

(1) for any z ∈ B η 1 (0), it holds that M z L z = L z M z = 0;

(2) for any z ∈ B η 1 (0), P z r z = κ(z)r z and ν z P z = κ(z)ν z ;

(3) κ(s) and r s are real-valued and satisfy κ(s) > 0 and r s (x) > 0 for any s ∈ (-η 1 , η) and x ∈ S; (4) there exist two constants 0 < a 1 < a 2 < 1 such that for all z ∈ B η 1 (0)

and all n ∈ N * , |κ(z)| > 1 -a 1 and L n z B β →B β c(1 -a 2 ) n .
For fixed s ∈ (-η 1 , η 1 ) and x ∈ S, the spectral gap property (2.4) allows to define a probability measure Q x s on (Ω, F) such that for any n ∈ N and any bounded and measurable function

h on (S × R) n+1 , E e sS x n r s (X x n ) κ n (s)r s (x) h(X x 0 , S x 0 , . . . , X x n , S x n ) = E Q x s [h(X x 0 , S x 0 , . . . , X x n , S x n )] , (3.3) 
where E Q x s denotes the expectation with respect to Q x s . See [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Guivarc'h | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for s 0, and [START_REF] Xiao | Berry-Esseen bound and precise moderate deviation for products of random matrices[END_REF] for s < 0.

Under the changed measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator Q s defined by, for any s ∈ (-η 1 , η 1 ) and ϕ ∈ B β ,

Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x), x ∈ S.
It has been proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviation for products of random matrices[END_REF]Proposition 3.4] that Q s has a unique stationary probability measure defined by π s (ϕ) := νs(ϕrs) νs(rs) , ϕ ∈ B β , and there exist two constants 0 < a < 1,

c 1 > 0 such that sup s∈(-η 1 ,η 1 ) sup x∈S |E Q x s [ϕ(X x n )] -π s (ϕ)| c 1 a n . (3.4)
Moreover, the perturbed operator R s,it defined by

R s,it ϕ(x) = E Q x s e it[S x 1 -Λ (s)] ϕ(X x 1 ) , s ∈ (-η 1 , η 1 , ) and t ∈ R, (3.5) 
satisfies for any compact K ⊂ R\{0}, n 1 and

ϕ ∈ B β , sup s∈(-η 1 ,η 1 ) sup t∈K sup x∈S |R n s,it ϕ(x)| ϕ β a n K , 0 < a K < 1. (3.6)
The operator R s,it has eigenvalue λ s,it satisfying for s ∈ (-η 1 , η 1 ) and t ∈ (-δ, δ) ⊂ (-η 1 , η 1 ),

λ s,it = e Λ(s+it)-Λ(s)-Λ (s)it . ( 3.7) 

Associated martingales

In this section, for the fundamental martingale (W x n (s)) we first reveal a relationship between the moments of W x 1 (s) and W x * (s) := sup n 0 W x n (s). We next prove the uniform convergence of W x n (z) for z ∈ B η 2 (0). We finally introduce a new martingale and establish its similar properties; this martingale will play a key role in the proof of the main results. 

sup x∈S E[W x * (s)] γ 0 < ∞. (4.1) Proof. In [10, Lemma 5.6], it is proved that if E[W x (s)] = 1, then W x * ( 
s) and W x (s) have similar tail behaviour for s ∈ (-η 2 , , η 2 ) and for all x ∈ S, i.e. for s ∈ (-η 2 , , η 2 ) and for any a ∈ (0, 1), for s ∈ (-η 2 , , η 2 ), there is a constant b > 0 such that for all t > 0, for all x ∈ S

P(W x s at) bP(W x s, * t) bP(W x s t).
A slight modification in the proof of [10, Lemmas 5.5 and 5.6] shows that we can choose b independent of s ∈ (-η 2 , , η 2 ). (To see this, we just need to check the proof therein, and replace W y s by sup s∈(-η 2 ,η 2 ) W y s in the formula

sup y∈S E W y s 1 {W y s >T } T →+∞
-→ 0 of the proof of Lemma 5.5, at the last line of page 34.) Recall that E[W x (s)] = 1 under the hypothesis of Theorem 4.1. Thus, in order to prove (4.1), it suffices to show that there is a constant η ∈ (0, η 2 ) such that sup s∈(-η,η)

sup x∈S E[W x (s)] γ 0 < ∞. (4.2) Set h(x) = x δ where δ = γ 0 -1 ∈ (0, 1]. Observe that W x n+1 (s) = u∈Tn H x n,u W X x u 1 (s), where H x n,u = e sS x u r s (X x u ) [mκ(s)] n r s (x) . (4.3)
Using (4.3) and the subadditivity of h, we have

E n W x n+1 (s) h W x n+1 (s) E n u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) + E n u∈Tn H x n,u W X x u 1 (s) h v∈Tn v =u H x n,v W X x v 1 (s) .
Using Jensen's inequality for the conditional expectation and the facts that

E n W X x u 1 (s) = 1
and h is an increasing function, the second term in the inequality above is less than W x n (s) h(W x n (s)). Then taking expectations in the two sides of the inequality above, we get

E W x n+1 (s) h W x n+1 (s) E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) + E W x n (s) h W x n (s) .
So by recurrence on n and Fatou's lemma, we obtain

E W x (s) h W x (s) lim inf n→∞ E W x n (s) h W x n (s) E W x 1 (s) h W x 1 (s) + ∞ n=1 E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) .
To prove (4.2), it suffices to show that there is a constant η ∈ (0, η 2 ) such that sup s∈(-η,η)

sup x∈S E W x 1 (s) h W x 1 (s) sup s∈(-η 2 ,η 2 ) E[sup x∈S W x 1 (s)] γ 0 < ∞, (4.4) and sup s∈(-η,η) sup x∈S ∞ n=0 E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) < ∞. (4.5)
For (4.4), we see that for all s ∈ (-η 1 , η 1 ),

W x 1 (s) = 1 mκ(s) N i=1 e s log |A i x| r s (A i • x) max x∈S |r s (x)| mκ(s) N i=1 e -η 2 log |A i x| + N i=1 e η 2 log |A i x| . (4.6)
Since the functions s → r s and s → κ(s) are strictly positive and analytic on (-η 1 , η 1 ) and r 0 = 1, κ(0) = 1, there are two constants

d 1 , d 2 > 0 such that max x∈S r s (x) min x∈S r s (x) d 1 for all s ∈ (-η 1 , η 1 ) (4.7)
and

sup s∈(-η 1 ,η 1 ) κ(s) inf s∈(-η 1 ,η 1 ) κ(s) d 2 . (4.8)
Hence, from (4.6), (4.7) and (4.8), for all s ∈ (-η 1 , η 1 ),

W x 1 (s) d 1 d 2 W x 1 (-η 2 ) + W x 1 (η 2 ) .
Therefore, by the inequality

(a + b) γ 0 2 γ 0 -1 (a γ 0 + b γ 0 ), a, b ∈ R, (4.9) 
and condition C3,

sup s∈[-η 2 ,η 2 ] E[sup x∈S W x 1 (s)] γ 0 (d 1 d 2 ) γ 0 2 γ 0 -1 E sup x∈S [W x 1 (-η 2 )] γ 0 + E sup x∈S [W x 1 (η 2 )] γ 0 < ∞. (4.10)
For (4.5), we consider the general term in its series. Since h(x) = x δ , we have, by (4.7), for all s ∈ (-η 2 , η 2 )

E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) = E u∈Tn H x n,u W X x u 1 (s) γ 0 E u∈Tn H x n,u γ 0 E sup x∈S W x 1 (s) γ 0 d 2γ 0 1 mκ(sγ 0 ) [mκ(s)] γ 0 n E[W x n (sγ 0 )]E sup x∈S W x 1 (s) γ 0 . (4.11) Set f (s) = mκ(sγ 0 ) [mκ(s)] γ 0 , s ∈ (-η 2 , η 2 )
. We see that f (0) = m 1-γ 0 < 1 and f is continous on (-η 2 , η 2 ) by the continuity of κ. Hence there is a small constant η > 0 with (-η, η) ⊂ (-η 2 , η 2 ) such that

c 1 := sup s∈(-η,η) mκ(sγ 0 ) [mκ(s)] γ 0 < 1.
(4.12)

We can choose η > 0 sufficiently small so that sγ 0 ∈ (-η 1 , η 1 ). Then W x n (sγ 0 ) is well-defined and a martingale, so E[W x n (sγ 0 )] = 1. Therefore, from (4.11), (4.12) and (4.10), we obtain

sup s∈(-η,η) sup x∈S ∞ n=1 E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) d 2γ 0 1 sup s∈[-η 2 ,η 2 ] E sup x∈S W x 1 (s) γ 0 ∞ n=1 c n 1 < ∞.
This completes the proof of (4.5). Thus (4.2) is proved.

Now we consider the martingale with complex parameter:

W x n (z) := u∈Tn e zS x u r z (X x u ) [mκ(z)] n r z (x) , n 0, z ∈ B η 1 (0). (4.13) 
For each fixed z ∈ B η 1 (0), it can be easily checked that (W x n (z)) remains a martingale with respect to (F n ). Throughout, the real par of z ∈ C will be denoted by s, so that z = s + iIm(z).

The next theorem gives the uniform convergence of W x n (z). Let

Ω 1 α = int z ∈ B η 2 (0) : mκ(αs) |mκ(z)| α < 1 and Ω γ 0 = 1<α γ 0 Ω 1 α . (4.14)
Since the derivative at 1 of the function α → mκ(αs) [mκ(s)] α is equal to Λ * (s)-log m which is negative for s ∈ (-η 2 , η 2 ), we have, for these values of s, mκ(αs) [mκ(s)] α < 1 when α > 1 is close to 1. This shows that the open set Ω γ 0 contains the segment (-η 2 , η 2 ), so that (-η 2 , η 2 ) is the intersection of Ω γ 0 with the real axis.

Theorem 4.2. Assume conditions C1-C3. Then the sequence (W x n (z)) n 0 converges a.s. to some complex valued random variable W x (z), uniformly in z on any compact subset K ⊂ Ω γ 0 . Moreover, we have a.s., for all n 0,

sup z∈K |W x n (z) -W x (z)| M δ n , (4.15)
where M is a positive and finite random variable and δ ∈ (0, 1), and W x (z) is analytic on Ω γ 0 .

Proof. The basic ideas here are the same as those used in the proof of Theorem 2 in Biggins [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]. To prove the uniform convergence on a compact subset K ⊂ Ω γ 0 , it suffices to show that for each z 0 ∈ Ω γ 0 , the uniform convergence holds in a disc centred at z 0 . Given any z 0 ∈ Ω γ 0 , we can find 1 < α min{2, γ 0 } and a small η such that B 2η (z 0 ) ⊂ Ω 1 α and

c 1 = sup z∈B 2η (z 0 ) mκ(αs) |mκ(z)| α < 1. (4.16) For any N n, W x N +1 (z) -W x n (z) is analytic in z on B 2η (z 0 )
, so by [8, Lemme 3], we deduce that for all n 0, sup

N n sup z∈Bη(z 0 ) |W x N +1 (z) -W x n (z)| ∞ k=n sup z∈Bη(z 0 ) |W x k+1 (z) -W x k (z)| 1 π 2π 0 ∞ k=n |W x k+1 z(t) -W x k z(t) |dt, (4.17) 
where z(t) = z 0 + 2ηe it , 0 t 2π. (This can be easily proved by Cauchy's formula.) Note that, by Fubini's theorem, for n 0,

E 2π 0 ∞ k=n |W x k+1 (z(t)) -W x k (z(t))|dt 2π sup z∈∂B 2η (z 0 ) ∞ k=n E|W x k+1 (z) -W x k (z)|, (4.18) 
where ∂B 2η (z 0 ) = {z ∈ C : |z -z 0 | = 2η}. Therefore, if the right hand side of (4.18) is finite for all n 0, then the right-hand side of (4.17) goes to 0 a.s. as n → ∞, so that a.s. the sequence (W x n (z)) converges uniformly on B η (z 0 ). Now we prove that the right hand side of (4.18) is finite. Notice that

W x k+1 (z) -W x k (z) = u∈T k e zS x u r z (X x u ) [mκ(z)] k r z (x) W X x u 1 (z) -1 . (4.19)
Taking the α-th absolute moment at both sides of (4.19) conditional on F k and applying Lemma 1 of Biggins [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], we obtain

E k |W x k+1 (z) -W x k (z)| α 2 α u∈T k e zS x u r z (X x u ) [mκ(z)] k r z (x) α E k |W X x u 1 (z) -1| α . (4.20) Since the function z → r z is analytic on B η 1 (0) and r 0 = 1, there is a constant d 3 > 0 such that max x∈S |r z (x)| min x∈S |r z (x)| d 3 for all z ∈ B η 1 (0). (4.21)
Recall that s is the real part of z.

Because B 3η (z 0 ) ⊂ Ω 1 α ⊂ B η 2 (0) ⊂ B η 1 2 (0), we have z, αs 2 ∈ B η 1 2
(0) for z ∈ ∂B 2η (z 0 ). It follows from (4.21) that for all z ∈ ∂B 2η (z 0 ),

e zS x u r z (X x u ) [mκ(z)] k r z (x) α mκ(αs) |mκ(z)| α k e αsS x u r αs(X x u )
[mκ(αs)] k r αs (x)

|r z (X x u )| α r αs (x) |r z (x)| α r αs (X x u ) d α+1 3 mκ(αs) |mκ(z)| α k e αsS x u r αs(X x u ) [mκ(αs)] k r αs (x) . (4.22)
On the other hand, from (4.9) and (4.21), we obtain the following estimation, for all z ∈ ∂B 2η (z 0 ),

E k |W X x u 1 (z) -1| α 2 α-1 E k |W X x u 1 (z)| α + 1 = 2 α-1 E k v∈T 1 (u) e zS X x u v r z (X X x u v ) mκ(z)r z (X x u ) α + 2 α-1 2 α-1 κ(s) |κ(z)| α E k v∈T 1 (u) |r z (X X x u v )|r s (X x u ) |r z (X x u )|r s (X X x u v ) e sS X x u v r s (X X x u v ) mκ(s)r s (X x u ) α + 2 α-1 d 2α 3 2 α-1 κ(s) |κ(z)| α E sup x∈S (W x 1 (s)) α + 2 α-1 .
Combining this with (4.20) and (4.22) gives, for all z ∈ ∂B 2η (z 0 ),

E k |W x k+1 (z) -W x k (z)| α c mκ(αs) |mκ(z)| α k W x n (αs) κ(s) |κ(z)| α E sup x∈S (W x 1 (s)) α + 1 .
Taking expectation at both sides of this inequality and using Jensen's inequality, we obtain for all z ∈ ∂B 2η (z 0 ),

E|W x k+1 (z) -W x k (z)| c 1 α mκ(αs) |mκ(z)| α k α κ(s) |κ(z)| α E sup x∈S (W x 1 (s)) α + 1 1 α .
From (4.16), (4.10), the analyticity of κ(z) on ∂B 2η (z 0 ) ⊂ B η 1 (0) and the fact that |κ(z)| > 0 for all z ∈ B η 1 (0), we obtain sup

z∈∂B 2η (z 0 ) E|W x k+1 (z) -W x k (z)| Cc k α 1 , (4.23) 
This concludes that (4.18) is finite for all n 0. We have therefore proved that it is a.s. that the sequence (W x n (z)) converges uniformly on B η (z 0 ) for each z 0 ∈ Ω γ 0 , which implies the uniform convergence on each compact subset K ⊂ Ω γ 0 .

We now come to the speed of convergence (4.15). Clearly, it is enough to prove that there is a δ ∈ (0, 1) such that on each compact subset K ⊂ Ω γ 0 ,

δ -n sup z∈K |W x n+1 (z) -W x n (z)| n→∞ → 0 a.s. (4.24)
From (4.17), (4.18) and (4.23), we have for each z 0 ∈ Ω γ 0 , there is η > 0 small enough such that for all n 0,

E sup z∈Bη(z 0 ) |W x n+1 (z) -W x n (z)| 2 ∞ k=n Cc k α 1 ,
where C and c 1 are constants which may depend on z 0 . Since K is compact, by Borel's theorem, K can be covered by a finite number of open balls B η i (z i ), i = 1, . . . , n 0 , so that there exist two constants C 1 > 0 and c 2 ∈ (0, 1) which may depend on K, such that for n 0,

E sup z∈K |W x n+1 (z) -W x n (z)| 2 ∞ k=n C 1 c k 2 C 2 c n 2 . (4.25)
Taking δ ∈ (c 2 , 1) and using Fubini's theorem we see that

E ∞ n=0 δ -n sup z∈K |W x n+1 (z) -W x n (z)| C 2 ∞ n=0 c 2 δ n < ∞, so that ∞ n=0 δ -n sup z∈K |W x n+1 (z) -W x n (z)| < ∞ a.s.
Therefore, (4.24) is proved. This ends the proof of (4.15). Finally, since a.s. each W x n (z) is analytic on Ω γ 0 and the sequence (W x n (z)) converges uniformly on each compact set of Ω γ 0 , a standard result of complex analysis (see e.g. Corollary 2.2.4 in Hörmander [START_REF] Hörmander | An introduction to complex analysis in several complex variables[END_REF]) gives the analyticity of W x (z) on Ω γ 0 .

In the following we introduce a new martingale and prove its uniform convergence and the analyticity of its limit. This is an important ingredient in the proof of Theorem 2.3 about the Berry-Esseen bound for the changed measure Z x s,n , which is crucial in establishing the main results of this paper. For z ∈ B η 1 (0), x ∈ S and ϕ ∈ B β , set

W x n (z) = u∈Tn e zS x u M z (r s ϕ)(X x u ) [mκ(z)] n r s (x)
, n 0, where M z is defined in (3.2) and (r s ϕ)(X x u ) := r s (X x u )ϕ(X x u ).

Theorem 4.3. Assume conditions C1-C3. Then the sequence ( W x n (z)) n 0 is a martingale with respect to the filtration (F n ) and converges a.s. to some complex valued random variable W x (z), uniformly in z on any compact subset K ⊂ Ω γ 0 , and the limit W x (z) is analytic on Ω γ 0 .

Proof. The fact that ( W x n (z), F n ) n 0 is a martingale can be easily shown: it suffices to notice that

E n W x n+1 (z) = u∈Tn e zS x u M z (r s ϕ)(X x u ) [mκ(z)] n r s (x) E n v∈T 1 (u) e zS X x u v M z (r s ϕ)(X X x u v ) mκ(z)M z (r s ϕ)(X x u )
, where T 1 (u) represents the descendants of u ∈ T n at time n + 1. Moreover, by the branching property, the definition of P z (3.1) and Lemma 3.1(1), we have for u ∈ T n ,

E n v∈T 1 (u) e zS X x u v M z (r s ϕ)(X X x u v ) mκ(z)M z (r s ϕ)(X x u ) = E n |A u1 X x u | z M z (r s ϕ)(X X x u u1 ) κ(z)M z (r s ϕ)(X x u ) = P z (M z (r s ϕ))(X x u ) κ(z)M z (r s ϕ)(X x u ) = 1.
The proof of the uniform convergence and the analyticity of the limit is the same as in the proof of Theorem 4.2, whose details are omitted.

Proof of Theorems 2.1 and 2.3

Theorem 2.1 is a particular case of Theorem 2.3 with s = 0. Thus we only prove Theorem 2.3. Our proof is based on Petrov's method [START_REF] Petrov | Sums of independent random variables[END_REF] for the proof of the Cramér's moderate deviation asymptotic on sums of i.i.d. real random variables. We split the proof of Theorem 2.3 into two theorems: Theorems 5.1 and 5.2, whose combination gives Theorem 2.3. Theorem 5.1. Under the conditions of Theorem 2.3. Then, for any x ∈ S and ϕ ∈ B β there exists a constant η ∈ (0, η 2 ) such that a.s., for n 1, sup s∈(-η,η) u∈Tn

e sS x u r s (X x u )ϕ(X x u ) [mκ(s)] n r s (x) -W x (s)π s (ϕ) M δ n ,
where M is a positive and finite random variable and δ ∈ (0, 1).

Theorem 5.2. Under the conditions of Theorem 2.3. Then, for any x ∈ S and ϕ ∈ B β there exists a constant η ∈ (0, η 2 ) such that uniformly in s ∈ (-η, η) and y ∈ R, a.s., for n 1,

u∈Tn e sS x u r s (X x u )ϕ(X x u ) [mκ(s)] n r s (x) 1 S x u -nΛ (s) σs √ n y - u∈Tn e sS x u r s (X x u )ϕ(X x u ) [mκ(s)] n r s (x) Φ(y) M √ n ,
where M is a positive and finite random variable (independent of s).

Proof of Theorem 5.1.

The following decomposition which follows from the branching property will play a key role in our approach with a delicate choice of k for 0 < k n,

u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) = u∈T k e sS x u r s (X x u ) [mκ(s)] k r s (x) v∈T n-k (u) e sS X x u v (r s ϕ)(X X x u v ) [mκ(s)] n-k r s (X x u )
.

(5.1)

Recall that by our definition, for u ∈ T k , T n-k (u) represents the descendants of u at time n.

For each n, we choose an integer k n = n 2 , which is the least integer greater than or equal to n 2 . For brevity, we denote for u ∈ T kn ,

Y u n-kn (s) = v∈T n-kn (u) e sS X x u v (r s ϕ)(X X x u v ) [mκ(s)] n-kn r s (X x u )
.

Then by (5.1), the following decomposition holds:

u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) -W x (s)π s (ϕ) = A n (s) + B n (s) + C n (s), (5.2) 
where

A n (s) = u∈T kn e sS x u r s (X x u ) [mκ(s)] kn r s (x) Y u n-kn (s) -E kn Y u n-kn (s) , B n (s) = u∈T kn e sS x u r s (X x u ) [mκ(s)] kn r s (x) E kn Y u n-kn (s) -π s (ϕ) , C n (s) = [W x kn (s) -W x (s)]π s (ϕ)
. By virtue of the decomposition (5.2), we shall divide the proof of Theorem 5.1 into three lemmas. Lemma 5.3. Under the conditions of Theorem 2.3, there exist two constants η ∈ (0, η 2 ) and δ ∈ (0, 1) such that

δ -n sup s∈(-η,η) |A n (s)| n→∞ → 0, a.s.
Proof. To prove Lemma 5.3, we will use the Borel-Cantelli Lemma. We can obtain the required result once we prove that there exist a small η > 0 and a constant δ ∈ (0, 1) such that for any ε > 0,

∞ n=1 P(δ -n sup s∈(-η,η) |A n (s)| > ε) < ∞.
(5.3) By Markov's inequality,

∞ n=1 P(δ -n sup s∈(-η,η) |A n (s)| > ε) 1 ε ∞ n=1 δ -n E sup s∈(-η,η)
|A n (s)|.

(5.4)

Because Ω γ 0 is an open set containing 0, we can find a small ρ > 0 such that B ρ (0) ⊂ Ω 1 α for some 1 < α min{2, γ 0 }. Let η ∈ (0, ρ 3 ) whose value will be fixed later. Then B 3η (0) ⊂ B ρ (0). We see that for every n ∈ N, the function

z → A n (z) = u∈T kn e zS x u r z (X x u ) [mκ(z)] kn r z (x) Y u n-kn (z) -E kn Y u n-kn (z)
is well-defined as an analytic function on B η 1 (0). Recall that s is the real part of z. By Lemma 3 of Biggins [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], we have

sup s∈(-η,η) |A n (s)| sup z∈Bη(0) |A n (z)| 1 π 2π 0 |A n (z(t))|dt,
where z(t) = 2ηe it , 0 t 2π. Note that, by Fubini's theorem, 

E sup s∈(-η,η) |A n (s)|
E kn |A n (z)| α 2 α u∈T kn e zS x u r z (X x u ) [mκ(z)] kn r z (x) α E kn |Y u n-kn (z) -E kn Y u n-kn (z)| α . (5.6) Because B 3η (0) ⊂ B ρ (0) ⊂ B η 2 (0) ⊂ B η 1 2 (0), we see that if |z| = 2η, then z, αs 2 ∈ B η 1 2
(0). Hence, by (4.21), we get for |z| = 2η,

e zS x u (r z ϕ)(X x u ) [mκ(z)] kn r z (x) α mκ(αs) |mκ(z)| α kn e αsS x u r αs (X x u ) [mκ(αs)] kn r αs (x) |r z (X x u )| α r αs (x) |r z (x)| α r αs (X x u ) d 1+α 3 mκ(αs) |mκ(z)| α kn e αsS x u r αs (X x u ) [mκ(αs)] kn r αs (x)
.

(5.7)

We now estimate the expectation in (5.6). Using |a+b| α 2 α-1 (|a| α +|b| α ) 2(|a| α + |b| α ) and (4.21), we have for |z| = 2η,

E kn |Y u n-kn (z) -E kn Y u n-kn (z)| α 2E kn |Y u n-kn (z)| α 2E kn v∈T n-kn (u) e sS X x u v r s (X X x u v ) [mκ(s)] n-kn r s (X x u ) |r z ϕ(X X x u v )|r s (X x u ) |r z (X x u )|r s (X X x u v ) κ(s) |κ(z)| n-kn α 2(d 2 3 ϕ β ) α κ(s) |κ(z)| α(n-kn) E kn W X x u n-kn (s) α 2(d 2 3 ϕ β ) α κ(s) |κ(z)| α(n-kn) sup x∈S E(W x * (s)) α .
(5.8)

From (5.6), (5.7) and (5.8), we have for all η > 0 small enough and |z| = 2η,

E kn |A n (z)| α c mκ(αs) |mκ(z)| α kn κ(s) |κ(z)| α(n-kn) W x kn (αs) sup x∈S E(W x * (s)) α .
(5.9)

Since αs ∈ (-η 1 , η 1 ), (W x n (αs)) is a martingale, so E[W x n (αs)] = 1. Taking expectations at both sides of (5.9), we obtain for |z| = 2η,

E|A n (z)| α c mκ(αs) |mκ(z)| α kn κ(s) |κ(z)| α(n-kn) sup x∈S E(W x * (s)) α . ( 5.10) From (5.5) 
, Jensen's inequality and (5.10), we get that

E sup s∈(-η,η) |A n (s)| c 1 α sup |z|=2η mκ(αs) |mκ(z)| α kn α e (n-kn)[Λ(s)-Λ(z)] sup x∈S E(W x * (s)) α 1 α
. (5.11) From the facts that B 3η (0) ⊂ B ρ (0) ⊂ Ω 1 α and the definition of Ω 1 α , we obtain

sup |z|=2η mκ(αs) |mκ(z)| α 1 α sup z∈Bρ(0) mκ(αs) |mκ(z)| α 1 α =: c 1 < 1.
(5.12)

From (5.11), (5.12) and the choice of k n which implies that k n n -k n , we get

E sup s∈(-η,η) |A n (s)| cc n-kn 1 sup |z|=3η e (n-kn)[Λ(s)-Λ(z)] sup x∈S E(W x * (s)) α 1 α .
(5.13) By Theorem 4.1, for η > 0 small enough, sup s∈(-η,η)

sup x∈S E(W x * (s)) α < ∞. (5.14) Note that c 1 < 1 is independent of η. Let c 2 ∈ (1, 1 c 1 )
. Since Λ is continuous on B η 1 (0) and Λ(0) = 0, there exists a small η 3 > 0 such that sup

z∈Bη 3 (0) e [Λ(s)-Λ(z)] c 2 .
(5.15)

Take η small enough such that η < η 3 . Since k n = n 2 , we have n -k n n 2 -1. So combining (5.13), (5.14), (5.15) we obtain for all η > 0 small enough,

E sup s∈(-η,η) |A n (s)| c(c 1 c 2 ) n-kn c(c 1 c 2 ) n 2 -1 .
Therefore, using (5.4) and taking δ ∈ (c 1 c 2 )

1 2 , 1 , we get that ∞ n=1 P(δ -n sup s∈(-η,η) |A n (s)| > ε) c εc 1 c 2 ∞ n=1 (c 1 c 2 ) 1 2 δ n < ∞.
This completes the proof of Lemma 5.3. Lemma 5.4. Under the conditions of Theorem 2.3, there exist two constants η ∈ (0, η 2 ) and δ ∈ (0, 1) such that

δ -n sup s∈(-η,η) |B n (s)| n→∞ → 0 a.s.
Proof. Using the branching property and the definition of

Q x s (3.3), we have for u ∈ T kn , E kn Y u n-kn (s) = E kn v∈T n-kn (u) e sS X x u v (r s ϕ)(X X x u v ) [mκ(s)] n-kn r s (X x u ) = E kn e sS X x u n-kn (r s ϕ)(X X x u n-kn ) κ n-kn (s)r s (X x u ) = E Q X x u s [ϕ(X X x u n-kn )]. Hence |B n (s)| u∈T kn e sS x u r s (X x u ) [mκ(s)] kn r s (x) sup x∈S |E Q x s [ϕ(X x n-kn )] -π s (ϕ)| W x kn (s) sup x∈S |E Q x s [ϕ(X x n-kn )] -π s (ϕ)|.
By Theorem 4.2 and the bound (3.4), for η ∈ (0, η 2 ), there exist a constant c ∈ (0, 1) and a positive finite random variable M such that for all n 0, sup s∈(-η,η)

|B n (s)| M c n-kn M c n 2 -1 .
Therefore the conclusion of Lemma 5.4 holds for each δ ∈ (c 1 2 , 1). Lemma 5.5. Under the conditions of Theorem 2.3, there exist two constants η ∈ (0, η 2 ) and δ ∈ (0, 1) such that

δ -n sup s∈(-η,η) |C n (s)| n→∞ → 0 a.s.
Proof. This is an immediate consequence of Theorem 4.2 and the fact that

|π s (ϕ)| ϕ ∞ .
5.2. Proof of Theorem 5.2. To prove Theorem 5.2, we need the following result.

Lemma 5.6. Under the conditions of Theorem 5.2, there is a constant η ∈ (0, η 2 ) such that

sup z∈Bη(0) u∈Tn e zS x u (r s ϕ)(X x u ) [mκ(z)] n r s (x) -W x (z) n→∞ → 0 a.s. (5.16)
Moreover, u∈Tn e zS x u (rsϕ)(X x u )

[mκ(z)] n rs(x) is a.s. bounded by a positive and finite random variable uniformly in z ∈ B η (0) and n 0.

Proof. By the branching property, for k n,

u∈Tn e zS x u (r s ϕ)(X x u ) [mκ(z)] n r s (x) = u∈T k e zS x u r s (X x u ) [mκ(z)] k r s (x) v∈T n-k (u) e zS X x u v (r s ϕ)(X X x u v ) [mκ(z)] n-k r s (X x u )
.

(5.17)

As before, for each n, we take k n = n 2 . For brevity, we denote for u ∈ T kn ,

Ỹ u n-kn (z) = v∈T n-kn (u) e zS X x u v (r s ϕ)(X X x u v ) [mκ(z)] n-kn r s (X x u )
.

Then by (5.17), the following decomposition holds:

u∈Tn e zS x u (r s ϕ)(X x u ) [mκ(z)] n r s (x) -W x (s) = A n (z) + B n (z) + C n (z), (5.18) 
where

A n (z) = u∈T kn e zS x u r s (X x u ) [mκ(z)] kn r s (x) Ỹ u n-kn (z) -E kn Ỹ u n-kn (z) , B n (z) = u∈T kn e zS x u r s (X x u ) [mκ(z)] kn r s (x) E kn Ỹ u n-kn (z) - M z (r s ϕ)(X x u ) r s (X x u ) , C n (z) = W x kn (z) -W x (z).
By virtue of the decomposition (5.18), in order to prove (5.16), it suffices to show that there is a constant η ∈ (0, η 2 ) such that sup

z∈Bη(0) |A n (z)| n→∞ → 0, a.s., (5.19) 
sup

z∈Bη(0) |B n (z)| n→∞ → 0, a.s., (5.20) 
sup

z∈Bη(0) |C n (z)| n→∞ → 0, a.s.. (5.21) 
The proof of (5. [START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF]) is similar to that of Lemma 5.3, and is omitted here. It is clear that (5.21) is an immediate consequence of Theorem 4.3. It remains to prove (5.20). By the branching property and the definition of the operator P z (see (3.1)), we have

E kn Ỹ u n-kn (z) = E kn v∈T n-kn (u) e zS X x u v (r s ϕ)(X X x u v ) [mκ(z)] n-kn r s (X x u ) = E kn e zS X x u n-kn (r s ϕ)(X X x u n-kn ) κ n-kn (z)r s (X x u ) = P n-kn z (r s ϕ)(X x u ) κ n-kn (z)r s (X x u )
.

Hence, by the decomposition (3.2) and Lemma 3.1(4), for any z ∈ B η 1 (0), we have

|B n (z)|
u∈T kn e zS x u r s (X x u ) [mκ(z)] kn r s (x)

P n-kn z (r s ϕ)(X x u ) κ n-kn (z)r s (X x u ) - M z (r s ϕ)(X x u ) r s (X x u )
u∈T kn e zS x u r s (X x u ) [mκ(z)] kn r s (x)

L n-kn z (r s ϕ)(X x u ) κ n-kn (z)r s (X x u ) L n-kn z B β →B β |k(z)| n-kn u∈T kn e sS x u r s (X x u ) [mκ(s)] kn r s (x) κ(s) |κ(z)| kn r s ϕ β min y∈S r s (y) c 1 -a 2 1 -a 1 n-kn e kn[Λ(s)-Λ(z)] W x kn (s), (5.22) 
where 0 < a 1 < a 2 < 1 is defined in Lemma 3.1(4). In the last step we use the fact that r s ϕ β 3 r s β ϕ β c and that the map s → r s is analytic with r 0 = 1. Since

k n = n 2 , we have n -k n n 2 -1 k n -2, so 1-a 2 1-a 1 n-kn 1-a 2 1-a 1 n 2 -1 1-a 2 1-a 1 kn-2 . Let c 1 ∈ 1, 1-a 1 1-a 2 .
Using the facts that the function Λ is continuous on B η 1 (0) and Λ(0) = 0, there exist a small η ∈ (0, η 1 ) such that sup z∈Bη(0) e [Λ(s)-Λ(z)] c 1 .

(5.23) By Theorem 4.2, for η ∈ (0, η 2 ) small enough, sup s∈(-η,η) W x kn (s) M, where M is a positive and finite random variable. This together with (5.22) and (5.23) implies that for η ∈ (0, η 2 ) small enough, sup

z∈Bη(0) |B n (z)| c 2 M c 1 (1 -a 2 ) 1 -a 1 kn n→∞ → 0 a.s.
This completes the proof of (5.20). So the proof of (5.16) is finished.

The uniform bound of u∈Tn e zS x u (rsϕ)(X x u )

[mκ(z)] n rs(x) is an immediate consequence of (5.16) and the fact that W x (z) is analytic in z (by Theorem 4.3).

Proof of Theorem 5.2. For simplicity, we suppose that ϕ 0; otherwise we can consider the positive and negative parts of ϕ to conclude. Consider the distribution functions of finite measures:

F s,n (y) = u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) 1 S x u -nΛ (s) σs √ n y , y ∈ R, H s,n (y) = u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) Φ(y), y ∈ R,
and their characteristic functions at -t: (5.24) 

f s,n (t) = R e -
f s,n (t) = u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) e -it S x u -nΛ (s) σs √ n = u∈Tn e (s-it σs √ n )S x u (r s ϕ)(X x u ) [mκ(s -it σs √ n )] n r s (x) κ(s -it σs √ n ) κ(s) n e itnΛ (s) σs √ n = u∈Tn e (s-it σs √ n )S x u (r s ϕ)(X x u ) [mκ(s -it σs √ n )] n r s (x) λ n s, -it σs √ n , ( 5 
c 0 T u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) = O 1 √ n .
(5.27)

In the following, we denote by M i a positive and finite random variable. Let T := ησ √ n with η > 0 small enough such that the conclusion in Lemma 5.6 holds, where σ := inf s∈(-η,η) σ s > 0. By Lemma 5.6, we have sup s∈(-η,η) u∈Tn

e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) M 1 .
Hence (5.27) is proved since sup s∈(-η,η)

c 0 T u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) c 0 M 1 ησ √ n .
It remains to prove (5.26). We will prove this by showing that there exists a small η ∈ (0, η 2 ) such that as n → ∞, a.s.,

I 1 (n) + I 2 (n) = O 1 √ n , ( 5.28) 
where

I 1 (n) = sup s∈(-η,η) |t|<δ 1 σ √ n f s,n (t) -h s,n (t) t dt, I 2 (n) = sup s∈(-η,η) δ 1 σ √ n |t| ησ √ n f s,n (t) -h s,n (t) t dt,
with δ 1 ∈ (0, η) whose value will be fixed later. Control of I 1 (n). Denote for z = s + it with s ∈ (-η, η) and t ∈ R,

U n (z) = u∈Tn e zS x u (r s ϕ)(X x u ) [mκ(z)] n r s (x)
.

With this notation and using (5.24) and (5.25), we have

I 1 (n) I 11 (n) + I 12 (n),
where

I 11 (n) = sup s∈(-η,η) |t|<δ 1 σ √ n λ n s, -it σs √ n t U n s - it σ s √ n -U n (s) dt I 12 (n) = sup s∈(-η,η) |t|<δ 1 σ √ n λ n s, -it σs √ n -e -t 2 2 U n (s) t dt.
For I 11 (n), by Taylor's formula and the fact that Λ (s) = σ 2 s , we have

λ n s, -it σs √ n = e n[Λ(s-it σs √ n )-Λ(s)+Λ (s) it σs √ n ] = e n ∞ k=2 
Λ (s) k! ( -it σs √ n ) k = e -t 2 e n ∞ k=3 
Λ (k) (s) k! ( -it σs √ n ) k . ( 5.29) 
By choosing δ 1 small enough, we have for all s ∈ (-η, η) and |t| < δ

1 σ √ n, ∞ k=3 Λ (k) (s) k! -it σ s √ n k t 2 4n , ( 5.30) 
and so, from (5.29),

λ n s, -it σs √ n e -t 2 4 .
(5.31)

Therefore, for η and δ 1 small enough, 

I 11 (n) sup s∈(-η,η) |t|<δ 1 σ √ n e -t 2 4 |t| U n s - it σ s √ n -U n (s) dt. ( 5 
U n (s - it σ s √ n ) -U n (s) |t| σ s √ n sup t∈(-δ 1 ,δ 1 ) U n (s - it σ s √ n ) |t| σ s √ n sup z∈B η 4 3 (0) 
|U n (z)|.

(5.34)

By the Cauchy's formula, when z ∈ B η 4 2 (0),

U n (z) = 1 2πi |w|= η 4 2 n (w) (w -z) 2 dw.
Hence, by (5.33) and the fact that |w -z| η 4 6 for z ∈ B η 4 3 (0) and |w| = η 4 2 , we have sup

z∈B η 4 3 (0) |U n (z)| 18M 2 η 4 .
Combining this with (5.32), (5.34) and the fact that σ s > σ for all s ∈ (-η, η), we obtain

I 11 (n) sup s∈(-η,η) 18M 2 σ s √ nη 4 |t|<δ 1 σ √ n e -t 2 4 dt M 3 √ n . ( 5.35) 
For I 12 (n), using (5.29), the inequality |e z -1| |z|e |z| for all z ∈ C and (5.30), we obtain

λ n s, -it σs √ n -e -t 2 2 e -t 2 2 e n ∞ k=3 
Λ (k) (s) k! ( -it σs √ n ) k -1 e -t 2 2 + n ∞ k=3 Λ (k) (s) k! -it σs √ n k n ∞ k=3 Λ (k) (s) k! -it σ s √ n k e -t 2 4 n ∞ k=3 Λ (k) (s) k! -it σ s √ n k .
(5.36)

By choosing δ 1 small enough, we have for all s ∈ (-η, η) and |t| < δ 

1 σ √ n, n ∞ k=3 Λ (k) (s) k! -it σ s √ n k C |t| 3 √ n . ( 5 
(n) = O 1 √ n . Control of I 2 (n). Using the constraint |t| δ 1 σ √ n, we have I 2 (n) 1 δ 1 σ √ n sup s∈(-η,η) δ 1 σ √ n |t| ησ √ n |f s,n (t) -h s,n (t)|dt 1 δ 1 σ √ n sup s∈(-η,η) δ 1 σ √ n |t| ησ √ n (|f
|U n (s)| M 5 e -t 2 2 .
This implies that 1

δ 1 σ √ n sup s∈(-η,η) δ 1 σ √ n |t| ησ √ n |h s,n (t)|dt M 6 √ n .
Hence, from (5.40), to prove that

I 2 (n) = O 1
√ n , it remains to show that there exist a small η ∈ (0, η 2 ) such that as n → ∞, a.s., 1

δ 1 σ √ n sup s∈(-η,η) δ 1 σ √ n |t| ησ √ n |f s,n (t)|dt = O 1 √ n .
(5.41)

By the branching property, we have the following decomposition: for n 0 and

k n = n 2 , f s,n (t) = A s,n (t) + B s,n (t), (5.42) 
where

A s,n (t) = u∈T kn e (s-it σs √ n )S x u r s (X x u ) [mκ(s)] kn r s (x) e itknΛ (s) σs √ n Ŷ u s,n-kn (t) -E kn Ŷ u s,n-kn (t) , B s,n (t) = u∈T kn e (s-it σs √ n )S x u r s (X x u ) [mκ(s)] kn r s (x) e itknΛ (s) σs √ n E kn Ŷ u s,n-kn (t), with Ŷ u s,n-kn (t) = v∈T n-kn (u) e sS X x u v (r s ϕ)(X X x u v ) [mκ(s)] n-kn r s (X x u ) e -it σs √ n [S X x u v -(n-kn)Λ (s)] .

Proof of Theorem 2.2

For y ∈ [0, 1], Theorem 2.2 is a direct consequence of Theorem 2.1, as we will see in the following. For n 1, 1/2. Using this and the fact that 1 -Φ(y) c := 1 -Φ(1) for all y ∈ [0, 1], from (6.1) we get for all n n 0 ,

u∈Tn ϕ(X x u )1 {S x u -nγ √ nσy} m n W [1 -Φ(y)]e y 3 √ n ζ( y √ n ) -ν(ϕ) = 1 W [1 -Φ(y)]e y 3 √ n ζ( y √ n ) 1 m n u∈Tn ϕ(X x u ) - 1 m n u∈Tn ϕ(X x u )1 { S x u -nγ σ √ n y} -W ν(ϕ)(1 -Φ(y))e y 3 √ n ζ( y √ n ) . ( 6 
u∈Tn ϕ(X x u )1 {S x u -nγ √ nσy} m n W [1 -Φ(y)]e y 3 √ n ζ( y √ n ) -ν(ϕ) 2 cW 1 m n u∈Tn ϕ(X x u ) -W ν(ϕ) + 2 cW - 1 m n u∈Tn ϕ(X x u )1 { S x u -nγ σ √ n y} + W ν(ϕ)Φ(y) + 2 cW W ν(ϕ)(1 -Φ(y)) 1 -e y 3 √ n ζ( y √ n ) . (6.2)
In the last display, by Theorem 2.1, when n → ∞, the two first terms are O 1 √ n . We will show below that the third term is also O 1 √ n . In fact, using the inequality |1 -e t | |t|e t for t ∈ R and the fact that sup y∈

[0,1] |ζ( y √ n )| is bounded for n n 0 , we obtain for y ∈ [0, 1], as n → ∞, 1 -e y 3 √ n ζ( y √ n ) y 3 √ n ζ( y √ n ) e y 3 √ n ζ( y √ n ) = O 1 √ n .
Since |ν(ϕ)| ϕ ∞ , this implies that the third term in (6.2) is O 1 √ n . From (6.2) and the above estimations, we see that for y ∈ [0, 1], as n → ∞, We now deal with the case 1 < y = o( √ n). We can suppose that ϕ 0 by considering the positive and negative parts of ϕ. We will focus on the proof of (2.12), as the proof of (2.13) is similar. For u ∈ (N * ) n , set

V x u = S x u -nΛ (s) σ s √ n .
Then we have Since γ 2 = σ 2 > 0, the equation (6.7) has the unique solution given by where ζ is the Cramér series defined in (2.5), which converges for |t| small enough (see [28, Theorem VIII.2.2] for details). Coming back to the expression of I (cf. (6.3)), using (6.9) together with (6.6) and the fact that where M is a positive and finite random variable independent of n and s. In the following, we write M i for a positive and finite random variable. Notice that Estimate of I 2 . The integral I 2 appears in the proof of Cramér's large deviation expansion theorem for sums of i.i.d random variables (see [START_REF] Petrov | Sums of independent random variables[END_REF]Theorem VIII.2.2]), where the following results have been proved: (i) there exist some positive constants c 1 , c 2 such that for all s ∈ (-η, η)

I := 1 m n u∈Tn ϕ(X x u )1
s = t γ 1/2 2 - γ 3 2γ 2 
and n large enough, c 1 sσ s √ nI 2 c 2 ;

(ii) the integral I 2 admits the following asymptotic expansion: Notice that for all s ∈ (-η, η), W x (s) > 0 a.s. Moreover, W x (s) is a.s. continuous in (-η, η) by the continuity and uniform convergence of W x n (s) on (-η, η). Combining this with (6.15), we get

I 2 = e
M 3 s √ nW x (s)I 2 M 4 . ( 6.16) 
We now come back to (6.12), and let s be defined by (6.8). Recall that for n n 0 , s ∈ (0, η). From (6.12),(6.13) and (6. Substituting this into (6.10) and using (6.14), we obtain 

I = r s (x)W x (s)e

  For a ∈ M (d, R), set ι(a) := inf x∈S |ax|, and a • x := ax |ax| when ax = 0, where a • x is called the projective action of the matrix a on the vector x ∈ S d-1 . Then ι(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an invertible or nonnegative matrix a, N (a) = max{ a , ι(a) -1 }.

Theorem 4 . 1 .

 41 Assume conditions C1-C3. Then there is a constant η ∈ (0, η 2 ) such that sup s∈(-η,η) 

5 )

 5 Consider now E|A n (z)| for |z| = 2η. Taking the α-th absolute moment of A n (z) conditional on F k and applying Lemma 1 of Biggins[START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], we obtain

. 1 )

 1 Since sup y∈[0,1] | y 3 √ n ζ( y √ n )| → 0,there exists n 0 large enough such that for all y ∈ [0, 1] and n n 0 , e y 3 √ n ζ( y √ n )

  s) is analytic on (-η 1 , η 1 ) with Λ(0) = 0, it has the Taylor expansionΛ(s) = ∞ k=1 γ k k! s k , where γ k = Λ (k) (0), s ∈ (-η 1 , η 1

e 2 2 + y 3 √

 23 -nsΛ (s) κ -n (s) = e -n[sΛ (s)-Λ(s)] , we haveI = r s (x)ey is the finite measure on R defined by:Z x s,n (B 2 ) = u∈Tn e sS x u ϕ(X x u ) [mκ(s)] n r s (x) 1 {V x u ∈B 2 } , B 2 ⊂ R.Its mass satisfies E[Zx s,n (R)]

  n → ∞, by (6.8) we have s → 0 + as n → ∞. Hence, for sufficiently large n 0 and all n n 0 , we have s ∈ (0, η) where η is defined in Theorem 2.3. Therefore, denotingl n,s (y) = Z x s,n (-∞, y] -W x (s)π s ϕ r s Φ(y), y ∈ R,we get from Theorem 2.3 that for all n n 0 ,

√=: I 1 +. 12 )

 112 ny dl n,s (y) + W x (s)π s (ϕr -1 s ) W x (s)π s (ϕr -1 s )I 2 . (6Estimate of I 1 . Using the integration by parts and (6.11), we get for n n 0 ,|I 1 | |l n,s (0)| + sσ s √ n

  of σ s , the mapping s → σ s is strictly positive and continuous on (-η, η). Hence, there exist constants c 3 , c 4 > 0 such thatc 3 s √ nI 2 c 4 . (6.15) 

2 = 2 =

 22 [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF], we have, as n → ∞, (dy) = W x (s)I 2 π s (ϕr -1 s ) +I 1 W x (s)I W x (s)I 2 π s (ϕr -1 s ) + s √ nI 1 s √ nW x (s)I W x (s)I 2 π s (ϕr -1 s ) + O(s) .

2 ,

 2 W x (s) is analytic on (-η, η) and using the mean theorem we see that|W x (s) -W x | = |W x (s) -W x (0)| M 5 s.On the other hand, by [31, Lemma 6.1], we have r s -1 ∞ cs and |π s (ϕr -1 s ) -ν(ϕ)| = | νs(ϕ) νs(rs) -ν(ϕ)| cs ϕ β . Since s = O y √n by (6.8), it follows from (6.17

  )

  ity dF s,n (y), h s,n (t) =

	By straightforward calculations we have
	h s,n (t) =	u∈Tn	e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x)	e -t 2 2

R

e -ity dH s,n (y), t ∈ R.

  , F s,n and H s,n are non-decreasing on R, and H s,n is differentiable on R. So by Esseen's smoothing inequality (see [28, Theorem V.2.2.]), for all T > 0 and s ∈ (-η 1 , η 1 ),

	.25) Notice that F s,n (-∞) = H s,n (-∞) = 0, F s,n (+∞) = H s,n (+∞) = where the last equality holds by the definition of λ s,it (see (3.7)). u∈Tn e sS x u (rsϕ)(X x u ) y∈R |F s,n (y) -H s,n (y)| 1 π T -T f s,n (t) -h s,n (t) t dt + c 0 T u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) , where c 0 is a positive constant. Therefore, to prove Theorem 5.2, it suffices to show that there exists a small η ∈ (0, η 2 ) such that as n → ∞, a.s., sup s∈(-η,η) T -T f s,n (t) -h s,n (t) t dt = O 1 √ n , (5.26) and sup [mκ(s)] n rs(x) sup s∈(-η,η)

For A s,n (t), using the same argument as in the proof of Lemma 5.3, we can prove that for η > 0 small enough, there exists δ ∈ (0, 1) such that sup s∈ (-η,η) sup

(5.43)

For B s,n (t), using the branching property and the definitions of Q x s (see (3.3)) and R s,it (see (3.5)), we have for u ∈ T kn ,

Therefore, by (3.6) and Theorem 4.2, there is a constant a ∈ (0, 1) such that for

(5.44) From (5.42), (5.43) and (5.44), we obtain for c 1 = max{δ, a

which implies (5.41). This concludes that

√ n , which ends the proof of (5.28) and (5.26). So Theorem 5.2 is proved. that

which concludes the proof of (2.12). The proof of (2.13) can be carried out in a similar way as that of (2.12). The only difference is that, instead of using (6.6), we consider the equation

where 1 < y = o( √ n) and s ∈ (-η, 0). Since the rest of the argument is the same as that in the proof of (2.12), we omit the details.
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