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Introduction

Let Z n = (Z n (1), • • • , Z n (d)), n 0, be a d-type branching process (d 1) in an independent and identically distributed (i.i.d.) random environment ξ = (ξ 0 , ξ 1 , • • • ). Denote by M n be the d × d random matrix whose components are

M n (i, j) = E ξ [Z n+1 (j) | Z n = e i ], 1 i, j d,
where E ξ is the conditional expectation given the environment ξ, e i is the vector with component 1 in the i-th place and 0 elsewhere. So M n (i, j) is the conditional mean of the number of particles of type j produced by a particle of type i of nth generation, given the environment. We define the Lyapunov exponent of the sequence (M n ) as

γ := lim n→+∞ 1 n E log M 0,n-1 ,
where M 0,n-1 = M 0 • • • M n-1 is the product matrix, M 0,n-1 denotes its its operator norm with respect to the L 1 -vectorial norm (see (2.2) and (2.1)).

The study of the asymptotic behaviour of the branching process (Z n ) is a complex problem which attracts a lot of attention during the last decades. Concerning the critical case γ = 0 and subcritical case γ < 0, see for example the works of Peigné, Le Page and Pham [START_REF] Page | The survival probability of a critical multitype branching process in i.i.d. random environment[END_REF] , Vatutin and Dyakonova [START_REF] Vatutin | Multitype branching processes in a random environment: nonextinction probability in the critical case[END_REF], and Vatutin and Wachtel [START_REF] Vatutin | Multi-type subcritical branching processes in a random environment[END_REF], who studied the convergence rate of the survival probability of the branching process. For the supercritical case γ > 0, in [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF], [START_REF] Grama | Convergence in L p for a supercritical multi-type branching process in a random environment[END_REF] and [START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF] we established asymptotic properties of Z n such as Kesten-Stigum type theorem, L p convergence, harmonic moments and Berry-Esseen type theorem.

In this paper, we continue to consider the supercritical case γ > 0, for which we will give more results on the asymptotic behaviour of (Z n ). In the sequel, we always assume γ > 0. Denote by (Z i n ) the branching process (Z n ) which starts with one initial particle of type i, that is when Z 0 = e i . In [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF], under suitable conditions, we established a strong law of large numbers for log Z i n : on the explosion event

{ Z i n → +∞}, it holds that lim n→+∞ 1 n log Z i n = γ a.s. (1.1)
Then, under additional assumptions, we proved in [START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF] a central limit theorem (CLT) for log Z i n : there exists σ 0 such that for each 1 i d,

log Z i n -nγ √ n → N (0, σ 2 ) in law, (1.2) 
where N (0, σ 2 ) denotes the normal law with mean 0 and variance σ 2 . We have also established in [START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF], under further moment conditions, a Berry-Esseen type theorem for log Z i n , which gives the rate of convergence in the CLT: we showed that for all n 1,

sup x∈R P log Z i n -nγ σ √ n x -Φ(x) C √ n , ( 1.3) 
where σ 2 = lim n→+∞ 2 ] is the asymptotic variance independent of x, Φ(x) = 1 √ 2π

1 n E[(log M T 0,n-1 x -nγ)
x -∞ e -t 2 /2 dt is the standard normal distribution function, and C > 0 is a constant.

The objective of this paper is to establish a Cramér type moderate deviation expansion for log Z i n . We will prove (cf. Theorem 2.1) that uniformly in 0 x o( √ n), as n → +∞,

P log Z i n -nγ σ √ n > x 1 -Φ(x) = e x 3 √ n ζ( x √ n ) 1 + O 1 + x √ n , ( 1.4) 
where ζ is the Cramér series (for the precise definition see (2.12)). Notice that a version of this result has been proved by Grama, Liu and Miqueu in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF]Theorem 1.1] for the single type case d = 1. The expansion (1.4) is totally new for d 2. Now we explain briefly our approach for the proof of (1.4). For any s ∈ (-η, η) with η > 0 small, we define a transfer operator P s (see (2.10)) naturally occurring in the products of random matrices. Using the spectral theory on P s (see e.g. Buraczewski, Damek, Guivarc'h and Mentemeier [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF], Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], Xiao, Grama and Liu [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]), we define the changed measure P ei s (see section 3) for the branching process (Z i n ). To prove (1.4), we extend the Berry-Esseen bound (1.3) for the changed measure P ei s uniformly in s ∈ (-η, η) (cf. Theorem 4.1 in Section 4): for all n 1 and x ∈ R, sup s∈(-η,η)

P ei s log Z i n -nΛ (s) σ s √ n x -Φ(x) C √ n , ( 1.5) 
where Λ(s) = log κ(s), κ(s) is the spectral radius of P s , σ 2 s = Λ (s), and C > 0 is a constant. Then, we combine (1.5) with the standard techniques from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF] to obtain (1.4).

The Berry-Esseen bound (1.5) plays an important role in our approach. Let us explain its proof. Our method is an adaptation of the arguments that we used in the proof of (1.3) in [START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF]. The fundamental martingale (W i n ) associated to the process (Z i n ), defined in [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF], will play a central role. For each n, k 0, let ρ n,n+k be the spectral radius of the product matrix M n,n+k = M n • • • M n+k . It is well known that, by the Perron-Frobenius theorem, ρ n,n+k is an eigenvalue of M n,n+k , and there exists U n,n+k a non negative eigenvector associated to ρ n,n+k , with U n,n+k = 1. Using the results of Hennion [14, Lemma 3.3 and Theorem 1], under suitable conditions, for each n 0 the limit

U n,∞ := lim k→∞ U n,n+k (1.6) 
exists a.s., with U n,∞ > 0 (for a vector or matrix U we write U > 0 to mean that each of the components of U is strictly positive) and U n,∞ = 1; in addition, it holds that

M n U n+1,∞ = λ n U n,∞ , (1.7) 
where λ n , n 0 are positive random scalars called the pseudo-spectral radii of the random matrices (M n ). Iterating (1.7), we get

M n,n+k U n+k+1,∞ = λ n,n+k U n,∞ , n, k 0, (1.8) 
where λ 0,n := λ 0 • • • λ n . Then, the martingale (W i n ) is defined by (see [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF]):

W i 0 = 1, W i n = Z i n , U n,∞ λ 0,n-1 U 0,∞ (i)
, n 1.

(1.9)

We get from (1.9) the two following relations which make the link between log Z i n and log M 0,n-1 (i, •) : .11) We recall that (U n,∞ ) is a stationary sequence of random variables, and since (W i n ) is a non-negative martingale, the limit W i = lim n→+∞ W i n exists a.s.. It follows that, when W i is non degenerate, the terms log W i n and log U n,∞ (j) in (1.10) and (1.11) will be negligible in the limit properties that we consider. More precisely, we will use the Berry-Esseen bound under the changed measure P ei s proved in Xiao, Grama and Liu [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] to control log M 0,n-1 (i, •) ; then, by giving a tight control of the quantities log W i n and log U n,∞ (j) under P ei s , we will obtain (1.5) from the two inequalities (1.10) and (1.11). For the term log W i n , we will establish a sufficient condition for the existence of harmonic moments of the limit W i under P ei s uniformly in s ∈ (-η, η): we will show that there exists a > 0 such that for all 1 i d,

log Z i n log M 0,n-1 (i, •) + log W i n -min 1 j d log U n,∞ (j), (1.10) log Z i n log M 0,n-1 (i, •) + log W i n + min 1 j d log U n,∞ (j). ( 1 
sup s∈(-η,η) E ei s (W i ) -a < +∞, (1.12) 
(cf. Theorem 3.3). The proof of (1.12) is one of the key arguments to prove (1.5) and (1.4). The rest of the paper is organized as follows. In Section 2, we introduce some necessary notation and we formulate the Cramér type moderate deviation expansion for log Z i n . We define in Section 3 the changed measure P ei s and we study under P ei s the harmonic moments of W i . Section 4 is devoted to proof of the Berry-Esseen type theorem for log Z i n under P ei s . Finally we prove in Section 5 the Cramér type moderate deviation expansion for log Z i n . (2.1)

Notation, preliminaries and main results

For

We equip the space M d (R) with the operator norm with respect to the L 1 vectoriel norm:

M := sup x∈S M x , ( 2.2) 
where S = {x ∈ R d : x 0, x = 1} is the intersection of the unit sphere with the positive quadrant. Let 0 = (0, • • • , 0) ∈ R d be the vector with all coordinates equal to 0, and 1 = (1, • • • , 1) ∈ R d the vector with all coordinates equal to 1. Let N = {0, 1, . . .} be the set of non-negative integers. Set 1 A for the indicator function of an event A. We denote by c, C strictly positive constants which may differ from line to line. Now we define precisely a multi-type branching process in a random environment (MBPRE). The random environment ξ = (ξ n ) n 0 is an independent and identically distributed (i.i.d.) sequence of random variables with values in an abstract space X; each realization of ξ n is associated to d probability generating functions

f r n (s) = ∞ k1,••• ,k d =0 p r k1,••• ,k d (ξ n )s k1 1 • • • s k d d , s = (s 1 , . . . , s d ) ∈ [0, 1] d , 1 r d. A MBPRE Z n = (Z n (1), • • • , Z n (d)), n 0 in the random environment ξ is a sequence of random vectors in N d such that Z 0 ∈ N d is fixed, and Z n+1 = d r=1 Zn(r) l=1 N r l,n for n 0, (2.3) 
where, given the environment ξ, N r l,n = (N r l,n (1), • • • , N r l,n (d)) indexed by l 1, n 0 and 1 r d are independent random vectors with probability generating function f r n . The random variable N r l,n (j) represents the offspring of type j at time n + 1 of the l-th particle of type r in generation n, and Z n (j) denotes the number of particles of type j in generation n. As explained in the introduction, when Z 0 = e i , we write Z i n for Z n , i.e. (Z i n ) is the MBPRE which starts with one initial particle of type i.

Given the environment ξ, the underlying probability will be dented by P ξ , which is called the quenched law. Denote by τ the law of the environment ξ. The total probability P, called annealed law, can be defined as P(dx, dξ) = P ξ (dx)τ (dξ). The expectation with respect to P ξ and P are denoted respectively by E ξ and E. With our notation,

f r n (s) = E ξ d j=1 s N r l,n (j) j , s = (s 1 , . . . , s d ) ∈ [0, 1] d ,
are the quenched probability generating function of N r l,n , which represent the offspring distributions for particles of generation n. For all n 0, the mean matrix M n can be expressed in terms of

f n = (f 1 n , • • • , f d n ): M n (i, j) = ∂f i n ∂s j (1) = E ξ Z n+1 (j) Z n = e i , 1 i, j d,
where ∂f ∂sj (1) denotes the left derivative at 1 of a d-dimensional probability generating function f with respect to s j . M n is the matrix of means of the offspring distributions in the sense that M n (i, j) represents the conditioned mean of the number of children of type j produced by a particle of type i at time n. The hypothesis that the environment (ξ n ) is i.i.d. implies that (M n ) n 0 is a sequence of i.i.d. random matrices. We will use the products of these matrices:

M k,n := M k • • • M n , 0 k n. Notice that E ξ Z i n+1 (j) = M 0,n (i, j), n 0, 1 i, j d. (2.4)
Throughout the paper, we assume that the matrix M 0 satisfies the first moment condition

E log + M 0 < +∞.
(2.5) When (2.5) holds, the limit

γ := lim n→+∞ 1 n E log M 0,n-1
exists and is called the Lyapunov exponent of the sequence of matrices (M n ) n 0 ; moreover, a strong law of large numbers has been established in [START_REF] Furstenberg | Products of random matrices[END_REF]:

lim n→+∞ 1 n log M 0,n-1 = γ P-a.s.
The Lyapunov exponent γ permits a classification of MBPRE's (see e.g. [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF]): a MBPRE is subcritical if γ < 0, critical if γ = 0, and supercritical if γ > 0. We always consider the supercritical case, which means γ > 0.

The goal of the present paper is to establish a Cramér type moderate deviation expansion for log Z i n in the supercritical case. The asymptotic behaviour of the MBPRE (Z i n ), when it is supercritical, is determined by that of the product of random matrices M 0,n-1 and the fundamental martingale (W i n ) that we mentioned in the introduction. Set ρ n,n+k the spectral radius of M n,n+k . By the Perron-Frobenius theorem (see e.g. [START_REF] Athreya | Branching Processes[END_REF]), we know that ρ n,n+k is a positive eigenvalue of M n,n+k , and there exist positive right and left eigenvectors U n,n+k and V n,n+k associated to ρ n,n+k with the normalizations U n,n+k = 1 and V n,n+k , U n,n+k = 1. Let G 0 + be the set of matrices whose entries are strictly positive. Assuming that M 0 is a.s. allowable in the sense that every row and column contains a strictly positive element, and that 

P n 0 M 0,n ∈ G 0 + > 0, ( 2 
F 0 = σ(ξ), F n = σ ξ, N r l,k (j), 0 k n -1, 1 r, j d, l 1 for n 1.
Define W i := lim n→+∞ W i n , the a.s. limit of the martingale (W i n ). Under the supercritical condition γ > 0, we proved in [11, Theorem 2.6 and Corollary 2.8] that the condition

E Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) < +∞ ∀1 i, j d (2.7)
is sufficient for the non-degeneracy of each W i in the sense that P(W i > 0) > 0, with

E ξ W i = 1 and P ξ (W i > 0) = P ξ Z i n → n→+∞ +∞ = 1 -q i (ξ) > 0 a.s., (2.8) 
where q i (ξ) is the probability of extinction of the process (Z i n ). Now we introduce some conditions to formulate the Cramér type moderate deviation expansion for log Z i n . For n 0, define the vector p 0 (ξ n ) whose components are

p 0 (ξ n )(i) := f i n (0) = P ξ ( Z i 1 = 0), 1 i d.
Throughout the paper, we will assume that each individual of the population gives birth to at least one child :

H1. The vector p 0 (ξ 0 ) = (f 1 0 (0), . . . , f d 0 (0)) satisfies p 0 = 0 P-a.s.

(2.9)

Notice that when H1 and (2.7) hold, we have q i (ξ) = 0 a.s. and Z i n → +∞ a.s. as n → +∞ by (2.8). For all n 0 and p > 1 denote by

θ n (p) := max 1 i,j d E ξ N i 1,n (j) M n (i, j) -1 p .
We need the following moment conditions on the offspring distributions :

H2. There exist two constants p ∈ (1, 2] and η 0 ∈ (0, 1) such that

E M 0 η0 < +∞, max 1 i,j d
EM 0 (i, j) -η0 < +∞ and Eθ 0 (p) η0 < +∞.

Clearly, H2 implies that M 0 is a.s. allowable and (2.6) holds. We proved in [START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF]Lemma 3.11] that H2 implies (2.7). Therefore when γ > 0 and H2 holds, each W i is non-degenerate. By [24, Proposition 3.14], we know that under the condition H2, the asymptotic variance

σ 2 = lim n→+∞ 1 n E[(log M T 0,n-1 x -nγ) 2 ]
exists uniformly in x ∈ S, with 0 σ 2 < +∞. We will need the assumption H3. The asymptotic variance σ 2 satisfies σ 2 > 0.

For x ∈ S and M ∈ G 0 + , define the projective action of M on S by M • x := M x M x . Denote by µ the law of M 0 , and Γ µ = [supp µ] the semi-group generated by the support of µ. Under H2, each M ∈ Γ µ is strictly positive, hence by the Perron-Frobenius theorem the spectral radius ρ M of M is the unique eigenvalue with the largest modulus, and it is simple. Denote by u M the associated unique right eigenvector with unit norm. Set V (Γ µ ) = {±u M , M ∈ Γ µ }, where A denotes the closure of the set A. We say that µ is arithmetic if there exist t > 0, θ ∈ [0, 2π) and a function h : S → R such that for all M ∈ Γ µ and

x ∈ V (Γ µ ), exp[it log M x -iθ + ih(M • x) -ih(x)] = 1.
By [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Lemma 7.2], condition H3 holds when the probability measure µ is nonarithmetic.

We need some additional notation. Let C(S) be the space of continuous functions on S with real values. We equip C(S) with the L ∞ -norm

ϕ ∞ := sup x∈S ϕx , ϕ ∈ C(S).
Under condition H2, for any s ∈ [-η 0 , η 0 ], define the transfer operator P s as follows : for all ϕ ∈ C(S),

P s ϕ(x) := E M 0 x s ϕ(M 0 • x) , x ∈ S.
(2.10)

By [3, Proposition 3.1] and [12, Proposition 3.1], under H2, for s ∈ [-η 0 , η 0 ] the limit

κ(s) := lim n→+∞ E M 0,n-1 s 1/n (2.11) 
exists, with 0 < κ(s) < +∞, and is the spectral radius of P s . Moreover, by [START_REF] Benoist | Random walks on reductive groups[END_REF]Lemma 10.17] the function s → κ(s) is analytic in (-η, η), for η > 0 small enough. Set Λ(s) := log κ(s) and γ k := Λ (k) (0), k 1. Then γ 1 = γ and γ 2 = σ 2 (see [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Corollary 7.3]).

Denote by ζ the Cramér series associated to Λ (see [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] and [START_REF] Petrov | Sums of independent random variables[END_REF]): 

ζ(t) := γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ
P log Z i n -nγ σ √ n > x 1 -Φ(x) = e x 3 √ n ζ( x √ n ) 1 + O 1 + x √ n , ( 2.13) 
and

P log Z i n -nγ σ √ n < -x Φ(-x) = e -x 3 √ n ζ(-x √ n ) 1 + O 1 + x √ n . (2.14)
In the single type case d = 1, Grama, Liu and Miqueu established a version of this result in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF]Theorem 1.3]. Notice that when d = 1, we have γ = E log m 0 , σ 2 = E(log m 0 -γ) 2 , where m 0 = E ξ Z 1 , and the condition H2 reduces to the following: there exist two constants p ∈ (1, 2] and η 0 ∈ (0, 1) such that Em η0 0 < +∞ and Eθ 0 (p) η0 < +∞, where

θ 0 (p) = E ξ Z 1 m 0 -1 p .
From Theorem 2.1, we obtain the moderate deviation expansion for log Z i n for x = o(n 1/6 ), as n → +∞: Corollary 2.2. Assume the conditions of Theorem 2.1. Then, for all 0

x o(n 1/6 ) and 1 i d, as n → +∞,

P log Z i n -nγ σ √ n > x 1 -Φ(x) = 1 + O 1 + x √ n , ( 2.15) 
and

P log Z i n -nγ σ √ n < -x Φ(-x) = 1 + O 1 + x √ n .
(2.16)

Harmonic moments of W i

In this section, we prove the existence of harmonic moments of W i under a new measure P ei s , uniformly in s ∈ (-η, η) for a η > 0 small enough.

Definition of the change of measure P x s

We define a new probability measure called P x s , for x ∈ S, s ∈ (-η, η) with η > 0 small enough. The construction of P x s is based on several properties of the transfer operator P s defined by (2.10). For s ∈ [-η 0 , η 0 ], we introduce the conjugate operator P * s on C(S) defined by:

P * s ϕ(x) := E M T 0 x s ϕ(M T 0 • x) , x ∈ S, ∀ϕ ∈ C(S). (3.1) 
A lot of results have been established on these operators P s and P * s in recent years; in the following proposition, we list some of them established in [3, Proposition 3.1], [9, Corollary 3.20], [12, Proposition 3.1] and [24, Proposition 3.1], which will be used in the proofs of our results. Proposition 3.1. Assume condition H2. Then, for η > 0 small enough and s ∈ (-η, η), the following assertions hold:

(1) the spectral radii of P s and P * s are both equal to κ(s); (2) there exists a unique strictly positive function r s ∈ C(S) with norm r s ∞ = 1 such that

P s r s = κ(s)r s ;
(3) there exists a unique strictly positive function r * s ∈ C(S) with norm r * s ∞ = 1 such that

P * s r * s = κ(s)r * s ; (4) κ(0) = 1 and r 0 = r * 0 = 1
, where 1 denotes the constant function equal to 1 on S;

(5) the function s → κ(s) is analytic on (-η, η); [START_REF] Chow | Probability Theory : Independence, Interchangeability, Martingales[END_REF] the mappings s → r s and s → r * s are analytic on (-η, η).

For s ∈ (-η, η), x ∈ S and A ∈ G 0 + , set q s n (x, A) := Ax s r s (A • x) κ(s) n r s (x) . (3.2)
Notice that the family (q s n ) satisfies the following cocycle property: for any n, m 1 and

A 1 , A 2 ∈ G 0 + , q s n (x, A 1 )q s m (A 1 • x, A 2 ) = q s n+m (x, A 2 A 1 ). (3.3)
Denote by µ the law of the environment ξ 0 on X. It is clear that for any x ∈ S, by the assertion (2) of Proposition 3.1 and since κ(s) and r s are strictly positive,

q s n (x, M T 0,n-1 )µ(dξ 0 ) • • • µ(dξ n-1 )
, n 1, is a sequence of probability measures which forms a projective system on X N . Therefore, by the Kolmogorov extension theorem, there is a unique probability measure τ x s on X N with marginals

q s n (x, M T 0,n-1 )µ(dξ 0 ) • • • µ(dξ n-1
). Denote by P x s (dy, dξ) = P ξ (dy)τ x s (dξ) the corresponding annealed probability, and by E x s the expectation with respect to P x s . For x ∈ S define the process andX x n = M T 0,n-1 • x, n 1, which forms a Markov chain on S. Then, by definition of P x s , for n 1 and any bounded measurable function h on X n , we have

X x 0 = x,
E M T 0,n-1 x s r s (X x n ) κ(s) n r s (x) h(ξ 0 , • • • , ξ n-1 ) = E x s h(ξ 0 , • • • , ξ n-1 ) . (3.4)

Existence of harmonic moments of W i under P ei s

It is clear that, under the new measure P ei s , the sequence (W i n ) is a non negative martingale w.r.t. the filtration (F n ), hence converges P ei s -a.s. to a non negative and finite random variable W i . Denote by φ i ξ the quenched Laplace transform of W i , and by φ i s its annealed Laplace transform under P ei s : for all t 0, s ∈ (-η, η), η > 0 small, and 1 i d,

φ i ξ (t) = E ξ e -tW i and φ i s (t) = E ei s φ i ξ (t) = E ei s e -tW i .
In a last article [13, Theorem 3.10] we established the following result which gives a bound for φ i 0 , and the existence of the harmonic moments E(W i ) -a for all 1 i d and a > 0 small enough. Lemma 3.2. Assume conditions H1, H2 and γ > 0. Then there exist two constants a > 0 and C > 0 such that for all t > 0, all x > 0 and 1 i d,

φ i 0 (t) C t a , ( 3.5) 
P(W i x) Cx a and E(W i ) -a C. (3.6)
Now, we prove the corresponding results of Lemma 3.2 under the probability measure P ei s . The following theorem gives a control of φ i s uniformly in s ∈ (-η, η), and that the harmonic moments E ei s (W i ) -a are uniformly bounded in s ∈ (-η, η), for small η > 0 and a > 0.

Theorem 3.3. Assume conditions H1, H2 and γ > 0. Then, for η > 0 small enough, there exist two constants a > 0 and C > 0 such that for all t > 0, all x > 0 and 1 i d,

sup s∈(-η,η) φ i s (t) C t a , ( 3.7) 
sup s∈(-η,η)

P ei s (W i x) Cx a and sup s∈(-η,η) E ei s (W i ) -a C. (3.8)

Preliminaries to the proof of Theorem 3.3

To prove Theorem 3.3, we need some preliminary results. The first lemma below combines two results of a previous article [START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF]Lemmata 3.1 and 3.11]. It gives a link between the expectation of ϕ(W i n ) and that of ϕ(W i ) under P and P ξ , where ϕ is a positive convex function on R + . Lemma 3.4. Assume γ > 0 and ether condition H2 or (2.7). Then for all 1 i d and any convex function ϕ : R + → R + ,

lim n→+∞ E ξ ϕ(W i n ) = sup n 0 E ξ ϕ(W i n ) = E ξ ϕ(W i ), (3.9) 
and

lim n→+∞ Eϕ(W i n ) = sup n 0 Eϕ(W i n ) = Eϕ(W i ). (3.10)
The second lemma is a direct consequence of the Marcinkiewicz-Zygmund inequality in [6, Theorem 1.5], as stated in [START_REF] Liu | Local dimensions of the branching measure on a Galton-Watson tree[END_REF]Lemma 1.4]. It allows us to control the L p -moments of the martingale (W i n ) under P ξ . Lemma 3.5. Let (X k ) k∈N * be a sequence of i.i.d. random centered variables. Then for all n ∈ N * and p > 1 :

E n k=1 X k p (B p ) p E|X k | p n, if 1 < p 2, (B p ) p E|X k | p n p 2 , if p > 2,
where

B p = 2 min{k 1/2 : k ∈ N, k p 2 }.
The following result gives the convergence in L α of W i n to W i under P ei s with an exponential speed, uniformly in s ∈ (-η, η). Proposition 3.6. Assume conditions H1, H2 and γ > 0. Then, for η > 0 small enough, there exist constants C > 0, δ ∈ (0, 1) and ε > 0 such that for all n 0 and 1 i d,

sup s∈(-η,η) E ei s E ξ |W i n -W i | p ε Cδ n . (3.11) Moreover, with α = pε, W i n -→ n→+∞ W i in L α under P ei s uniformly in s ∈ (-η, η), such that for all n 0 and 1 i d, sup s∈(-η,η) E ei s |W i n -W i | α Cδ n . (3.12)
Proof. By (2.3) and (1.9), for all n 0 and 1 i d, we have

W i n+1 -W i n = d j=1 U n+1,∞ (j) λ 0,n U 0,∞ (i) d r=1 Z i n (r) l=1 N r l,n (j) -W i n = d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 d j=1 U n+1,∞ (j)N r l,n (j) λ n U n,∞ (r) -W i n = d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 (W r l,n -1), (3.13) 
where

W r l,n := N r l,n , U n+1,∞ λ n U n,∞ (r) .
Clearly, given the environment ξ, the random variables W r l,n , l 1, are i.i.d., and they are independent of ξ 0 , . . . , ξ n-1 and Z i n . Therefore, applying (3.13), the convexity of the function x → x p on R + (together with the fact that

d r=1 M0,n-1(i,r)Un,∞(r) λ0,n-1U0,∞(i)
= 1 a.s. by (1.8)) and Lemma 3.5, we get that for all n 0 and 1 i d, P-a.s.,

E ξ |W i n+1 -W i n | p E ξ d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 W r l,n -1 p = E ξ d r=1 M 0,n-1 (i, r)U n,∞ (r) λ 0,n-1 U 0,∞ (i) 1 M 0,n-1 (i, r) Z i n (r) l=1 W r l,n -1 p d r=1 M 0,n-1 (i, r)U n,∞ (r) λ 0,n-1 U 0,∞ (i) 1 M 0,n-1 (i, r) p E ξ Z i n (r) l=1 W r l,n -1 p B p p max 1 r d E ξ Z i n (r) M 0,n-1 (i, r) p E ξ |W r 1,n -1| p = B p p max 1 r d E ξ |W r 1,n -1| p max 1 j d (M 0,n-1 (i, j)) 1-p . (3.14)
Using again the convexity of x → x p , the same argument yields, for all n 0 and 1 r d, P-a.s., we have

E ξ |W r 1,n -1| p = E ξ N r 1,n , U n+1,∞ λ n U n,∞ (r) -1 p = E ξ d j=1 M n (r, j)U n+1,∞ (j) λ n U n,∞ (r) N r 1,n (j) M n (r, j) -1 p max 1 i,j d E ξ N i 1,n (j) M n (i, j) -1 p = θ n (p). (3.15) 
This, together with (3.14), implies that for all n 0 and 1 r d, P-a.s.,

E ξ |W i n+1 -W i n | p B p p θ n (p) max 1 j d M 0,n-1 (i, j) 1-p . (3.16)
Let ε > 0, and η > 0 small enough. Taking the moment of order ε under P ei s in (3.16), by (3.4) and the fact that θ n (p) and M 0,n-1 depend only on the environments ξ k for k n , we obtain that for n 0, s ∈ (-η, η) and 1 i d,

E ei s E ξ |W i n+1 -W i n | p ε (B p ) εp E ei s θ n (p) ε max 1 j d M 0,n-1 (i, j) ε(1-p) = (B p ) εp E q s n+1 e i , M T 0,n θ n (p) ε max 1 j d M 0,n-1 (i, j) ε(1-p) .
(3.17) By Proposition 3.1 we know that s → r s is a continuous map on (-η, η), and that r s is a strictly positive function in C(S) with norm r s ∞ = 1. This implies that

D := sup s∈(-η,η) sup x∈S r s (x) inf x∈S r s (x) = sup s∈(-η,η) sup x∈S r -1 s (x) < +∞, (3.18) 
where r -1 s (x) := [r s (x)] -1 for x ∈ S. Moreover, we know by H1 that M T 0,n 1 a.s., and κ is a strictly positive increasing function on (-η, η), so that κ(s) κ(-η) > 0 for all s ∈ (-η, η). This, together with (3.18) and the definition of q s 1 (x, A) (see (3.2)), implies that for all x ∈ S and s ∈ (-η, η),

q s 1 (x, M T 0 ) D κ(-η) M T 0 x s D κ(-η) M T 0 η d η D κ(-η) M 0 η P-a.s. (3.19)
Therefore, combining the relations (3.17), (3.3), (3.4) and (3.18), we get that for n 2, s ∈ (-η, η) and 1 i d,

E ei s E ξ |W i n+1 -W i n | p ε (B p ) εp E q s n-1 e i , M T 0,n-2 q s 1 X ei n-1 , M T n-1 q s 1 X ei n , M T n × θ n (p) ε max 1 j d M n-1 (i, j) ε(1-p) M 0,n-2 (i, •) ε(1-p) (B p ) εp d η D κ(-η) 2 E M 0 η θ 0 (p) ε E M 0 η max 1 i,j d M 0 (i, j) ε(1-p) × E ei s M 0,n-2 (i, •) ε(1-p) . (3.20)
Now we control the three expectations in the right side of (3.20). For the two first expectations, by Cauchy Schwarz's inequality and condition H2, for η > 0 and ε > 0 both sufficiently small such that η η0 2 and ε η0 2 , we have

E M 0 η θ 0 (p) ε E M 0 2η 1 2 Eθ 0 (p) 2ε 1 2 < +∞, (3.21) 
and

E M 0 η max 1 i,j d M 0 (i, j) ε(1-p) E M 0 2η 1 2 E max 1 i,j d M 0 (i, j) 2ε(1-p) 1 2 < +∞. (3.22)
For the third expectation, using again (3.4) and (3.18), we get that for all n 2 and s ∈ (-η, η),

E ei s M 0,n-2 (i, •) ε(1-p) = E M 0,n-2 (i, •) s+ε(1-p) r s (X ei n-1 ) κ(s) n-1 r s (e i ) D 2 κ(s + ε(1 -p)) κ(s) n-1 E M 0,n-2 (i, •) s+ε(1-p) r s+ε(1-p) (X ei n-1 ) κ(s + ε(1 -p)) n-1 r s+ε(1-p) (e i ) = D 2 e (n-1)[Λ(s+ε(1-p))-Λ(s)] , ( 3.23) 
where Λ(s) = log κ(s) (and the last equality follows from (3.4) with h = 1). By Proposition 3.1, for η > 0 small enough, the function Λ is analytic on (-η, η), with Λ(0) = 0 and Λ (0) = γ by [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Corollary 7.3]. By hypothesis we have γ > 0, so Λ is strictly increasing on [-η, η] for η > 0 small enough. Therefore, taking η > 0 and ε > 0 both sufficiently small, since Λ is continuous and strictly increasing on [-η, η], we obtain

sup s∈[-η,η] {Λ(s + ε(1 -p)) -Λ(s)} < 0. (3.24)
It follows that δ := e sup s∈(-η,η) {Λ(s+ε(1-p))-Λ(s)} ∈ (0, 1), and we deduce from (3.23) that for all n 2 and s ∈ (-η, η), 

E ei s M 0,n-2 (i, •) ε(1-p) D 2 δ n-1 . ( 3 
E ei s E ξ |W i n+1 -W i n | p ε Cδ n . (3.26)
Moreover, by similar calculation as in (3.20), for all s ∈ (-η, η) and 1 i d we have

E ei s E ξ |W i 1 -W i 0 | p ε (B p ) εp d η D κ(-η) E M 0 η θ 0 (p) ε , ( 3.27 
) and 

E ei s E ξ |W i 2 -W i 1 | p ε (B p ) εp d η D κ(-η) 2 E M 0 η θ 0 (p) ε E M 0 η max 1 i,j d M 0 (i, j) ε(1-p) . ( 3 
E ei s E ξ |W i n+1 -W i n | p ε Cδ n . (3.29)
By the triangular inequality and the sub-additivity of the function x → x ε on R + , it follows that for all n, k 0 and 1 i d,

sup s∈(-η,η) E ei s E ξ |W i n+k -W i n | p ε n+k-1 r=n sup s∈(-η,η) E ei s E ξ |W i r+1 -W i r | p ε C n+k-1 r=n δ r C 1 -δ δ n .
So, by letting k → +∞, (3.11) holds. Let α = pε > 0. Using Hölder's inequality with ε ∈ (0, 1), we obtain from (3.11) that for all n 0 and 1 i d,

sup s∈(-η,η) E ei s |W i -W i n | α sup s∈(-η,η) E ei s E ξ |W i -W i n | p ε C 1 -δ δ n .
Therefore, (3.12) holds. This concludes the proof of Proposition 3.6.

Proof of Theorem 3.3

Now we proceed to prove Theorem 3.3.

Proof of Theorem 3.3. First, we prove the implication (3.7) ⇒ (3.8). Assume that η > 0 and a > 0 are constants such that (3.7) holds. Let b ∈ (0, a). We know that for all s ∈ (-η, η) and 1 i d,

E ei s (W i ) -b = 1 Γ(b) +∞ 0 φ i s (t)t b-1 dt,
where Γ is the Gamma function. So, by (3.7) we get that for all 1 i d, 

sup s∈(-η,η) E ei s (W i ) -b C Γ(b) +∞ 0 t a-b-1 dt < +∞. ( 3 
P ei s (W i x) x -b sup s∈(-η,η) E ei s (W i ) -b . (3.31)
It is clear that (3.30) and (3.31) imply (3.8). Now we prove (3.7), which will conclude the proof of Theorem 3.3. Let η > 0 be small enough, and ε ∈ (0, 1). For all n 0, s ∈ (-η, η), t 0 and 1 i d, we have

φ i s (t) = E ei s e -tW i 1 {|W i n -W i | ε n } + E ei s e -tW i 1 {|W i n -W i |>ε n } E ei s e -t(W i n -ε n ) + E ei s 1 {|W i n -W i |>ε n } = e tε n E ei s e -tW i n + P ei s |W i n -W i | > ε n . (3.32)
By Markov's inequality and Proposition 3.6, for η > 0 small enough, there exist constants δ 0 ∈ (0, 1) and α > 0 such that for all n 0, s ∈ (-η, η) and 1 i d,

P ei s |W i n -W i | > ε n ε -αn E ei s |W i n -W i | α C δ 0 ε α n .
Taking ε ∈ (0, 1) such that ε > δ 1/α 0 , we get that for all n 0 and 1 i d, sup s∈(-η,η)

P ei s |W i n -W i | > ε n Cδ n 1 . (3.33)
where δ 1 := δ0 ε α ∈ (0, 1). We now give a bound of E ei s [e -tW i n ] uniformly in s. By definition of W i n , for all n 1 and 1 i d we have

Z i n M 0,n-1 (i, •) min 1 r d U n,∞ (r) W i n Z i n M 0,n-1 (i, •) 1 min 1 r d U n,∞ (r) . (3.34)
Moreover, by (1.7) we get that for all n 0, 1 min 

1 r d U n,∞ (r) = min 1 r d M n (r, •), U n+1,∞ M n U n+1,∞ min 1 r,j d M n (r, j) M n . ( 3 
W i n Z i n M 0,n-1 (i, •) min 1 r,j d M n (r, j) M n =: Y i n . (3.36)
The interesting point here is that

Y i n is independent of the future (ξ n+1 , ξ n+2 ,• • • ). Set β > 0.
Recall that Λ(s) = log κ(s). By (3.36), (3.4) and (3.18), we obtain that for all n 0, s ∈ (-η, η), t 0 and 1 i d,

E ei s e -tW i n E ei s e -tY i n 1 {log M0,n(i,•) β(n+1)} + 1 {log M0,n(i,•) >β(n+1)} E M 0,n (i, •) s r s X ei n+1 κ(s) n+1 r s (e i ) e -tY i n 1 {log M0,n(i,•) β(n+1)} + P ei s log M 0,n (i, •) > β(n + 1) D e (n+1)[βs-Λ(s)] E e -tY i n + P ei s log M 0,n (i, •) > β(n + 1) . ( 3.37) 
We have to control all the terms on the right side of (3.37). First, we give a suitable bound of E[e -tY i n ]. For all n 0, t > 0 and 1 i d, we have

E[e -tY i n ] = 1 u=0 P e -tY i n u du = 1 u=0 P Y i n - log u t du. (3.38)
We will give a suitable bound of P(Y i n x) for any x > 0, to obtain the decay rate of E[e -tY i n ]. To this end we will estimate the harmonic moments of Y i n . By [13, Lemma 3.11], condition H2 implies (2.7). Therefore, applying Lemma 3.4 with the convex function x → x -a on R + and Lemma 3.2, there exists a constant a > 0 such that for all 1 i d, 

sup n 0 E(W i n ) -a = E(W i ) -a < +∞. ( 3 
E(Y i n ) -b E (W i n ) -b M n b max 1 r,j d M n (r, j) -b E(W i n ) -3b 1 3 E M 0 3b 1 3 E max 1 r,j d M 0 (r, j) -
sup n 0 E(Y i n ) -b C.
By Markov's inequality, this implies that for all x > 0 and 1 i d,

sup n 0 P Y i n x x b sup n 0 E(Y i n ) -b Cx b . (3.41)
Combining the inequalities (3.38) and (3.41), we deduce that for all t > 0 and 1 i d,

sup n 0 E[e -tY i n ] Ct -b 1 u=0 (-log u) b du Ct -b . (3.42)
We next control the probability term in (3.37). Let q > 0 be a small constant. By Markov's inequality, (3.18) and (3.4), for all n 1, s ∈ (-η, η) and 1 i d, we have

P ei s log M 0,n (i, •) > β(n + 1) e -βq(n+1) E ei s M 0,n (i, •) q = e -βq(n+1) E M 0,n (i, •) s+q r s X ei n+1 κ(s) n+1 r s (e i ) D 2 κ(s + q) n+1 κ(s) n+1 e -βq(n+1) E M 0,n (i, •) s+q r s+q X ei n+1 κ(s + q) n+1 r s+q (e i )
= D 2 e (n+1)(Λ(s+q)-Λ(s)-βq) .

(3.43)

We know by Proposition 3.1 that Λ is analytic on (-η, η) for η > 0 small. From now, we choose β > sup s∈(-η,η) Λ (s). Then, by the mean value theorem, it holds that for all s, q ∈ (-η/2, η/2),

Λ(s + q) -Λ(s) -βq = (Λ (c) -β)q q sup s∈(-η,η) Λ (s) -β < 0, (3.44) 
where c is a point between s and s + q. Combining this with (3.43), we get that for η > 0 small enough (half of the previous value), there exists a constant δ 2 ∈ (0, 1) such that for all n 1 and 1 i d, sup s∈(-η,η)

P ei s log M 0,n (i, •) > β(n + 1) Cδ n 2 . (3.45)
We then deal with the term e (n+1)[βs-Λ(s)] in (3.37). Using the mean value theorem with Λ(0) = 0, we get that for all s ∈ (-η, η), |Λ(s)| = |Λ(s) -Λ(0)| sup c∈(-η,η) Λ (c)|s| < β|s|, so that βs -Λ(s) 2β|s|. It follows that for all n 1 and s ∈ (-η, η), e (n+1)[βs-Λ(s)] e 2β|s|(n+1) e 2βη(n+1) .

( 

φ i s (t) C e tε n e 2βη(n+1) t -b + δ n 2 + Cδ n 1 .
Taking δ = max e 2βη ε b δ 1 , δ 2 , δ 1 , this implies that for all n 1, t ε -n and 1 i d,

sup s∈(-η,η) φ i s (t) Cδ n , ( 3.47) 
with δ ∈ (0, 1) for η > 0 small enough. Define

N (t) := - log t log ε + 1, t 1 ε .
It is clear that when t 1 ε , we have N (t) 1, t ε -N (t) and N (t) -log t/ log ε. Therefore, using the inequality (3.47) with n = N (t), we get that for all t 1 ε and 1 i d,

sup s∈(-η,η) φ i s (t) Cδ N (t) Cδ -log t log ε = Ct -log δ log ε ,
where log δ log ε > 0. So (3.7) holds. This concludes the proof of Theorem 3.3.

Berry-Esseen bound for log Z i n under P ei s

In this section, we establish a Berry-Esseen bound for log Z i n , the logarithm of the population size

Z i n = Z i n (1) + • • • + Z i n (d)
, under the changed measure P ei s , uniformly in s ∈ (-η, η).

Recall that by Proposition 3.1, under condition H2, the function s → Λ(s) = log κ(s) is analytic on (-η, η), hence Λ (s) and σ s := Λ (s) are well defined and analytic on s ∈ (-η, η). From [24, Proposition 3.12], we have a strong law of large numbers for log M T 0,n-1 x under the changed measure P x s : for s ∈ (-η, η), and x ∈ S,

1 n log M T 0,n-1 x → n→+∞ Λ (s) P x s -a.s.
Moreover, by [24, Proposition 3.14], uniformly in s ∈ (-η, η) and x ∈ S, we have

σ 2 s = lim n→+∞ 1 n E x s [(log M T 0,n-1 x -nγ) 2 ] ∈ [0, ∞).
When condition H3 holds, since the function s → σ s is continuous on (-η, η) and σ 0 = σ > 0, it follows that for η > 0 small enough, inf s∈(-η,η)

σ s > 0. (4.1)
Now, we formulate a Berry-Esseen bound for log Z i n under the changed measure P ei s , uniformly in s ∈ (-η, η).

Theorem 4.1. Assume conditions H1, H2, H3 and γ > 0. Then, for η > 0 small enough, there exists a constant C > 0 such that for all n 1 and x ∈ R, sup s∈(-η,η)

P ei s log Z i n -nΛ (s) σ s √ n x -Φ(x) C √ n .
Notice that when s = 0, Theorem 4.1 reduces to the Berry-Essen bound (1.3) under the initial measure P, which has been proved in a previous article [START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF]Theorem 2.4].

For the proof of Theorem 4.1, we need several preliminary results. We start by the following lemma which gives the convergence in L 1 of log W i n to log W i under P ei s with an exponential rate, uniformly in s. Lemma 4.2. Assume conditions H1, H2 and γ > 0. Then, for η > 0 small enough, there exist two constants C > 0 and δ ∈ (0, 1) such that for all n 0 and 1 i d,

sup s∈(-η,η) E ei s | log W i n -log W i | Cδ n .
Proof. For all n 0 and 1 i d, we have

log W i n -log W i = log(1 + R i n ), (4.2) 
where

R i n := W i n W i -1.
Let η > 0 small, and K ∈ (0, 1). Then, taking the L 1 -norm under the changed measure P ei s in (4.2), we get that for all n 0, s ∈ (-η, η) and 1 i d,

E ei s log W i n -log W i = E ei s log(1 + R i n )1 {R i n -K} + E ei s log(1 + R i n )1 {R i n <-K} . (4.
3) Let ε ∈ (0, 1] be small enough. Notice that x → x -ε log(1+x) is a bounded function on [-K, +∞). So, for all n 0, s ∈ (-η, η) and 1 i d,

E ei s | log(1 + R i n )1 {R i n -K} | CE ei s |R i n | ε . (4.4)
On the other hand, by Theorem 3.3 there exist constants η > 0 and a > 0 such that E ei s (W i ) -a C for any 1 i d and uniformly in s ∈ (-η, η). Therefore, using H2 and Lemma 3.4 with the convex function x → x -a , we obtain that for all s ∈ (-η, η) and 1 i d,

sup n 0 E ei s (W i n ) -a E ei s sup n 0 E ξ (W i n ) -a = E ei s (W i ) -a C. (4.5)
We know that | log x| 2 C(x + x -a ) for all x > 0. So from (4.2), Fatou's lemma and (4.5), we get that for all s ∈ (-η, η) and 1 i d,

sup n 0 E ei s | log(1 + R i n )| 2 1 2 sup n 0 E ei s | log W i n | 2 1 2 + E ei s | log W i | 2 1 2 2 sup n 0 E ei s | log W i n | 2 1 2 C sup n 0 E ei s W i n + E ei s (W i n ) -a 1 2 C. (4.6)
Therefore, by Cauchy-Schwarz's inequality, (4.6) and Markov's inequality, we obtain that for all n 0, s ∈ (-η, η) and 1 i d,

E ei s | log(1 + R i n )1 {R i n <-K} | E ei s | log(1 + R i n )| 2 1 2 E ei s 1 {R i n <-K} 1 2 sup k 0 E ei s | log(1 + R i k )| 2 1 2 P ei s (|R i n | > K) 1 2 C(E ei s |R i n | ε ) 1 2 . (4.7)
Putting together the relations (4.3), (4.4) and (4.7), we get that for all n 0, s ∈ (-η, η) and 1 i d,

E ei s | log W i n -log W i | CE ei s |R i n | ε + C E ei s |R i n | ε 1 2 . (4.8)
By the definition of R i n and Cauchy-Schwarz's inequality, for all n 0, s ∈ (-η, η) and 1 i d, we have

E ei s |R i n | ε = E ei s (W i ) -ε |W i n -W i | ε E ei s (W i ) -2ε 1 2 E ei s |W i n -W i | 2ε 1 2 .
Therefore, by (4.5) and (3.12) in Proposition 3.6, for ε > 0 and η > 0 small enough, there exists a constant δ ∈ (0, 1) such that for all n 0 and 1 i d,

sup s∈(-η,η) E ei s |R i n | ε Cδ 2n . (4.9)
Combining (4.8) and (4.9), we obtain that for all n 0 and 1 i d,

sup s∈(-η,η) E ei s | log W i n -log W i | Cδ n .
This concludes the proof of Lemma 4.2.

Now we formulate the Berry-Esseen bound for log M T 0,n-1 y under the changed measure P y s , for any y ∈ S and uniformly in s ∈ (-η, η). This result was established by Xiao, Grama and Liu in [24, Theorem 5.1], and will play a crucial role in proving Theorem 4.1. Recall that Φ(x) = 1 √ 2π

x -∞ e -t 2 /2 dt is the standard normal distribution function.

Lemma 4.3. Assume conditions H2 and H3. Then, for η > 0 small enough, there exists a constant C > 0 such that for all n 1, y ∈ S and x ∈ R, sup s∈(-η,η)

P y s log M T 0,n-1 y -nΛ (s) σ s √ n x -Φ(x) C √ n .
The next lemma gives, for any 1 i d, a control of the joint law log Z i n , log M 0,n-1 (i, •) under P ei s , uniformly in s ∈ (-η, η). Lemma 4.4. Assume conditions H1, H2, H3 and γ > 0. Then, for η > 0 small enough, there exists a constant C > 0 such that for all n 1, s ∈ (-η, η) and x ∈ R,

P ei s log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n > x C √ n , ( 4 

.10)

and

P ei s log Z i n -nΛ (s) σ s √ n > x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x C √ n . ( 4 

.11)

Proof. Since the proof of (4.11) is similar to that of (4.10), we will only prove (4.10).

Let s ∈ (-η, η), where η > 0 is small enough such that (4.1) holds. For all n 1, x ∈ R and 1 i d, set

F i n (x) := P ei s log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n > x .
As before, we write that C > 0 for a constant independent of s and n, which may differ from line to line. For 0 m < n, y ∈ S and 1 i d, set

S y m,n := log M T m,n-1 y -(n -m)Λ (s) σ s √ n and L i m,n := log W i m σ s √ n . (4.12)
By (3.34), for all n 1, x ∈ R and 1 i d, we have

F i n (x) P ei s S ei 0,n + L i n,n + min 1 r d log U n,∞ (r) σ s √ n x, S ei 0,n > x . (4.13) Set m := m(n) = √ n
, where x is the integer part of x. By Markov's inequality and Lemma 4.2, for η > 0 small enough, there exists a constant δ ∈ (0, 1) such that for all n 1 and 1 i d,

P ei s |L i n,n -L i m,n | > 1 √ n √ nE ei s L i n,n -L i m,n = 1 σ s E ei s | log W i n -log W i m | 1 σ s E ei s | log W i n -log W i | + E ei s | log W i m -log W i | C σ s (δ n + δ m ). (4.14) Notice that δ n + δ m = o( 1 √ n ) as n → +∞.
Combining this with (4.1) and (4.14), we get that for all n 1 and 1 i d,

P ei s |L i n,n -L i m,n | > 1 √ n C √ n .
This, together with (4.13), implies that for all n 1, x ∈ R and 1 i d,

F i n (x) P ei s S ei 0,n + L i m,n + min 1 r d log U n,∞ (r) σ s √ n x + 1 √ n , S ei 0,n > x + P ei s |L i n,n -L i m,n | > 1 √ n P ei s S ei 0,n + L i m,n + min 1 r d log U n,∞ (r) σ s √ n x + 1 √ n , S ei 0,n > x + C √ n .
(4.15)

For any n 1 and 1 i d, we have the following decomposition: 

S ei 0,n = log M T m+1,n-1 (M T 0,m e i ) -nγ σ s √ n = log M T 0,m e i + log M T m+1,n-1 T 0,m • e i ) -nγ σ s √ n = m + 1 n S ei 0,m+1 + S X e i m+1
     L i m,n 1 σs √ n log Z i m M0,m-1(i,•) -1 σs √ n min 1 r,j d log Mm(r,j) Mm , L i m,n 1 σs √ n log Z i m M0,m-1(i,•) + 1 σs √ n min 1 r,j d
log Mm(r,j) Mm .

(4.17)

Therefore, combining the relations (4.15)-(4.17), we obtain that for all n 1, x ∈ R and 1 i d,

F i n (x) P ei s m + 1 n S ei 0,m+1 + S X e i m+1 m+1,n + B i m,n x + 1 √ n , m + 1 n S ei 0,m+1 + S X e i m+1 m+1,n > x + C √ n , (4.18)
where 

B i m,n : = 1 σ s √ n log Z i m M 0,m-1 (i, •) + 1 σ s √ n min 1 r,j d log M m (r, j) M m + 1 σ s √ n min 1 r,j d log M n (r, j) M n . ( 4 
F i n (x) E q s n+1 (e i , M T 0,n )1 √ m+1 n S e i 0,m+1 +S X e i m+1 m+1,n +B i m,n x+ 1 √ n , √ m+1 n S e i 0,m+1 +S X e i m+1 m+1,n >x + C √ n . ( 4.20) 
For all n 1, y ∈ S and x ∈ R, set

G y m,n (x) = P ei s (S y m,n
x).

For each n 1, denote by h n the function on S × R × R defined as follows: for all y ∈ S, z ∈ R, and t ∈ R,

h n (y, z, t) := P y s S y m+1,n + z + t 1 √ n , S y m+1,n + z > 0 . (4.21)
Notice that X ei m+1 , S ei 0,m+1 and B i m,n are independent of the environments ξ m+1 • • • ξ n-1 , so they are independent of S y m+1,n for any y ∈ S. Therefore, by (

, we see that for all n 1, x ∈ R and 1 i d,

F i n (x) E q s m+1 (e i , M T 0,m )q s n-m-1 (X ei m+1 , M T m+1,n-1 )q s 1 (X ei n , M T n ) 1 √ m+1 n S e i 0,m+1 +S X e i m+1 m+1,n +B i m,n x+ 1 √ n , √ m+1 n S e i 0,m+1 +S X e i m+1 m+1,n >x + C √ n E q s m+1 (e i , M T 0,m ) sup u∈S q s 1 (u, M T n )h n X ei m+1 , m + 1 n S ei 0,m+1 -x, B i m,n + C √ n . ( 4.22) 
Now we give a bound of the function h n . It is clear that for all n 1, y ∈ S, z ∈ R, and t ∈ R,

0 h n (y, z, t) = G y m+1,n 1 √ n -z -t -G y m+1,n (-z) 1 t 1 √ n . ( 4.23) 
Since the matrices M n , n 0, are i.i.d., for all n 1, y ∈ S and x ∈ R we have

G y m+1,n (x) = P y s log M T 0,n-m-1 y -(n -m -1)Λ (s) σ s √ n x = G y 0,n-m-1 (a n x),
where

a n = n n-m-1 . It is clear that a n = (1 -m+1 n ) -1/2 = 1 + O( m n ) = 1 + O( 1 √ n )
as n → +∞. Therefore, using Lemma 4.3 we obtain that, for η > 0 small enough and all n 1, y ∈ S and x ∈ R,

G y m+1,n (x) -Φ(a n x) = G y 0,n-m-1 (a n x) -Φ(a n x) C √ n -m -1 = Ca n √ n C √ n . ( 4.24) 
Moreover, applying the mean value theorem on t → Φ(tx), for all n 1 and x ∈ R, we have

|Φ(a n x) -Φ(x)| |a n -1| sup t 1 |xΦ (tx)| C √ n sup z∈R |zΦ (z)| C √ n , ( 4.25) 
where we have used the fact that z → |zΦ (z)| is a bounded function on R. Combining the relations (4.23)-(4.25), we get that for all n 1, y ∈ S, z ∈ R, and t ∈ R,

h n (y, z, t) Φ 1 √ n -z -t -Φ(-z) 1 t 1 √ n + C √ n . ( 4.26) 
Using again the mean value theorem, since sup x∈R |Φ (x)| 1, for all x, z ∈ R we have

|Φ(x + z) -Φ(x)| |z|. (4.27) 
This, together with (4.26), implies that for all n 1, y ∈ S, z ∈ R, and t ∈ R,

h n (y, z, t) 1 √ n + t + C √ n |t| + C √ n . ( 4.28) 
By (4.22) and (4.28), we obtain that for all n 1, x ∈ R and 1 i d,

F i n (x) E q s m+1 (e i , M T 0,m ) sup u∈S q s 1 (u, M T n ) B i m,n + C √ n + C √ n = E q s m+1 (e i , M T 0,m ) sup u∈S q s 1 (u, M T n ) B i m,n + 1 √ n E sup u∈S q s 1 (u, M T 0 ) + C √ n . ( 4.29) 
Then, combining (4.29), (3.19) and the definition of B i m,n (see (4.19)), we get that for all n 1, x ∈ R and 1 i d,

F i n (x) C σ s √ n E q s m+1 (e i , M T 0,m ) M n η log Z i m M 0,m-1 (i, •) + C σ s √ n E q s m+1 (e i , M T 0,m ) M n η max 1 r,j d log M m (r, j) M m + C σ s √ n E q s m+1 (e i , M T 0,m ) M n η max 1 r,j d log M n (r, j) M n + C √ n .
By condition H2, (4.1) and (4.17), this implies that for all n 1, x ∈ R and 1 i d,

F i n (x) C √ n E ei s log Z i m M 0,m-1 (i, •) + C √ n E ei s max 1 r,j d log M m (r, j) M m + C √ n E M 0 η max 1 r,j d log M 0 (r, j) M 0 + C √ n C √ n E ei s log W i m + C √ n E ei s max 1 r,j d log M m (r, j) M m + C √ n E M 0 η max 1 r,j d log M 0 (r, j) M 0 + C √ n . ( 4.30) 
Now we give a bound of the three expectations in (4.30). First, by Lemma 4.2 we get that, for η > 0 small enough and all n 1 and 1 i d,

E ei s log W i m C. (4.31)
Next, using (3.3) and (3.19), we obtain that for all n 1 and 1 i d,

E ei s max 1 r,j d log M m (r, j) M m = E q s m (e i , M T 0,m-1 )q s 1 (M T 0,m-1 • e i , M T m ) max 1 r,j d log M m (r, j) M m CE q s m (e i , M T 0,m-1 ) M m η max 1 r,j d log M m (r, j) M m = CE M 0 η max 1 r,j d log M 0 (r, j) M 0 . (4.32)
Then, by the inequality | log x| C(x η + x -η ) for x > 0 and Cauchy-Schwarz's inequality, we have

E M 0 η max 1 r,j d log M 0 (r, j) M 0 CE max 1 r,j d M 0 (r, j) η + CE M 0 2η max 1 r,j d M 0 (r, j) -η CE M 0 η + C E M 0 4η 1 2 E max 1 r,j d M 0 (r, j) -2η 1 2 . (4.33)
Taking η > 0 small enough, by H2 it follows that Proof of Theorem 4.1. Let η > 0 be sufficiently small such that (4.1) holds. For all n 1, s ∈ (-η, η), x > 0 and 1 i d, we have

E M 0 η max 1 r,j d log M 0 (r, j) M 0 C. ( 4 
P ei s log Z i n -nΛ (s) σ s √ n x = P ei s log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x + P ei s log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n > x = P ei s log M 0,n-1 (i, •) -nΛ (s) σ s √ n x -P ei s log Z i n -nΛ (s) σ s √ n > x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x + P ei s log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n > x .
Therefore, using the Berry-Essen bound in lemma 4.3 and Lemma 4.4, by taking η > 0 small enough, we get that for all n 1, s ∈ (-η, η), x > 0 and 1 i d,

P ei s log Z i n -nΛ (s) σ s √ n x -Φ(x) P ei s log M 0,n-1 (i, •) -nΛ (s) σ s √ n x -Φ(x) + P ei s log Z i n -nΛ (s) σ s √ n > x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x + P ei s log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n > x C √ n .
This concludes the proof of Theorem 4.1.

Proof of Cramér's moderate deviation expansion

In this section, we prove Theorem 2.1. The proof is based on a control of the joint law of log Z i n , log M 0,n-1 (i, •) under P ei s , uniformly in s ∈ (-η, η). We already have a control in Lemma 4.4. Unfortunately this is not sufficient, and we need additional information. For 0 < x < y, set Φ([x, y]) = Φ(y) -Φ(x). The first result below about the convergence to the normal distribution is a consequence of Theorem 4.1 and Lemma 4.4. Lemma 5.1. Assume conditions H1, H2, H3 and γ > 0. Then, for η > 0 small enough, there exists a constant C > 0 such that for all n 1, s ∈ (-η, η), x > 0 and 1 i d,

P ei s log Z i n -nΛ (s) σ s √ n > 0, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x -Φ([0, x]) C √ n , ( 5.1) 
and

P ei s log Z i n -nΛ (s) σ s √ n < 0, log M 0,n-1 (i, •) -nΛ (s) σ s √ n -x -Φ([-x, 0]) C √ n . (5.2)
Proof. Let η > 0 be small enough such that (4.1) holds. For all n 1, s ∈ (-η, η),

x > 0 and 1 i d, we have

P ei s log Z i n -nΛ (s) σ s √ n > 0, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x = P ei s 0 < log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x + P ei s log Z i n -nΛ (s) σ s √ n > x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x = P ei s 0 < log Z i n -nΛ (s) σ s √ n x -P ei s 0 < log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n > x + P ei s log Z i n -nΛ (s) σ s √ n > x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x .
Then, applying the Berry-Essen bound in Theorem 4.1 and the inequalities in Lemma 4.4, when η > 0 is sufficiently small, we obtain that for all n 1, s ∈ (-η, η), x > 0 and 1 i d,

P ei s log Z i n -nΛ (s) σ s √ n > 0, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x -Φ([0, x]) P ei s log Z i n -nΛ (s) σ s √ n x -Φ([0, x]) + P ei s log Z i n -nΛ (s) σ s √ n x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n > x + P ei s log Z i n -nΛ (s) σ s √ n > x, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x C √ n .
Therefore, (5.1) holds. It is clear that (5.2) can be proved by similar calculations. This conclude the proof of Lemma 5.1.

The second result gives a control of the probabilities in Lemma 5.1 when x < 0, uniformly in s ∈ (-η, η). Lemma 5.2. Assume conditions H1, H2, H3 and γ > 0. Then, for η > 0 small enough, there exist constants C > 0, α > 0, β > 0 and δ ∈ (0, 1) such that for all n 1, s ∈ (-η, η), x > 0 and 1 i d,

P ei s log Z i n -nΛ (s) σ s √ n > 0, log M 0,n-1 (i, •) -nΛ (s) σ s √ n -x C √ n e -αx √ n +C min e -βx √ n , x -1 2 n -1 4 δ √ n , (5.3) and P ei s log Z i n -nΛ (s) σ s √ n < 0, log M 0,n-1 (i, •) -nΛ (s) σ s √ n x C √ n e -αx √ n +C min e -βx √ n , x -1 2 n -1 4 δ √ n . (5.4)
Proof. We only prove (5.3), since the second assertion (5.4) can be proved in the same way.

We use the same notation as in the proof of Lemma 5.1. Let η > 0 be small enough such that (4.1) holds. Let s ∈ (-η, η). As before, C > 0 will be a constant independent of s and n, which may differ from line to line.

By (3.34), we get that for all n 1, x > 0 and 1 i d,

P ei s log Z i n -nΛ (s) σ s √ n > 0, log M 0,n-1 (i, •) -nΛ (s) σ s √ n -x P ei s S ei 0,n + L i n,n -min 1 r d log U n,∞ (r) σ s √ n > 0, S 0,n -x P ei s S ei 0,n + L i m,n -min 1 r d log U n,∞ (r) σ s √ n > - x 2 , S 0,n -x + P ei s |L i n,n -L i m,n | > x 2 =: A i 1 (x, n) + A i 2 (x, n). ( 5.5) 
Now, we give a bound for the two terms

A i 1 (x, n) and A i 2 (x, n). Control of A i 1 (x, n).
Using the relations (4.16) and (4.17), we obtain that for all n 1, x > 0 and 1 i d,

A i 1 (x, n) P ei s m + 1 n S ei 0,m+1 + S X e i m+1 m+1,n + K i m,n > - x 2 , m + 1 n S ei 0,m+1 + S X e i m+1 m+1,n -x ,
where

K i m,n : = 1 σ s √ n log Z i m M 0,m-1 (i, •) - 1 σ s √ n min 1 r,j d log M m (r, j) M m - 1 σ s √ n min 1 r,j d log M n (r, j) M n .
For each n 1 and x > 0, let h n,x be the function on S × R × R defined by: for all y ∈ S, z ∈ R, and t ∈ R, h n,x (y, z, t) := P y s S y m+1,n + z + t > -x 2 , S y m+1,n + z -x .

(5.6)

By an argument similar to the proof of (4.20) and (4.22), we obtain that for all n 1, x > 0 and 1 i d,

A i 1 (x, n) E q s m+1 (e i , M T 0,m )q s n-m-1 (X ei m+1 , M T m+1,n-1 )q s 1 (X ei n , M T n ) 1 √ m+1 n S e i 0,m+1 +S X e i m+1 m+1,n +K i m,n >-x 2 , √ m+1 n S e i 0,m+1 +S X e i m+1 m+1,n -x E q s m+1 (e i , M T 0,m ) sup u∈S q s 1 (u, M T n )h n,x X ei m+1 , m + 1 n S ei 0,m+1 , K i m,n
.

(5.7)

Using (4.24), (4.25) and (4.27), we have that for all n 1, x > 0, y ∈ S, z ∈ R, and t ∈ R,

0 h n,x (y, z, t) = G y m+1,n (-x -z) -G y m+1,n - x 2 -z -t 1 {t x 2 } t - x 2 + C √ n 1 {t x 2 } t + C √ n 1 {t x 2 } .
Combining this with (5.7), we get that for all n 1, x > 0 and 1 i d,

A i 1 (x, n) E q s m+1 (e i , M T 0,m ) sup u∈S q s 1 (u, M T n ) K i m,n + C √ n 1 {K i m,n x 2 } . (5.8)
We will slightly change the expression of the above expectation in order to facilitate the passage to the expectation with respect to the new measure P ei s . For any n 1 and 1

i d, set Ki m,n : = 1 σ s √ n log Z i m M 0,m-1 (i, •) - 1 σ s √ n min 1 r,j d log M m (r, j) M m - 1 σ s √ n min 1 r,j d log M m+1 (r, j) M m+1 .
Notice that the expectation in (5.8) remains the same if the environment ξ n is replaced by ξ m+1 due to the independence structure. So in (5.8) we can replace (M n , K i m,n ) by (M m+1 , Ki m,n ). This, together with (3.18), yields that for all n 1, x > 0 and 1 i d,

A i 1 (x, n) E q s m+1 (e i , M T 0,m ) sup u∈S q s 1 (u, M T m+1 ) Ki m,n + C √ n 1 { Ki m,n x 2 } D 2 E q s m+1 (e i , M T 0,m )q s 1 (X ei m+1 , M T m+1 ) Ki m,n + C √ n 1 { Ki m,n x 2 } CE ei s Ki m,n 1 { Ki m,n x 2 } + C √ n P ei s Ki m,n x 2 .
(5.9)

Let ε ∈ (0, 1) be arbitrary fixed. By Markov's inequality and (3.19), for all n 1, x > 0 and 1 i d we have

P ei s Ki m,n x 2 = P ei s e εσs √ n Ki m,n e εσs 2 x √ n e -εσs 2 x √ n E q s m (e i , M T 0,m-1 )q s 1 (X ei m , M T m )q s 1 (X ei m+1 , M T m+1 ) e εσs √ n Ki m,n C e -εσs 2 x √ n E q s m (e i , M T 0,m-1 ) Z i m M 0,m-1 (i, •) ε × E M m η+ε min 1 r,j d M m (r, j) ε E M m+1 η+ε min 1 r,j d M m+1 (r, j) ε C e -εσs 2 x √ n E ei s Z i m M 0,m-1 (i, •) ε E M 0 η+ε min 1 r,j d M 0 (r, j) -ε 2 .
(5.10)

Notice that

E ei s Z i m M0,m-1(i,•)
= 1. Therefore, using Jensen's and Cauchy-Shwartz's inequalities and condition H2, by taking η > 0 and ε ∈ (0, 1) sufficiently small, we get from (5.10) that for all n 1, x > 0 and 1 i d,

P ei s Ki m,n x 2 C e -εσs 2 x √ n E ei s Z i m M 0,m-1 (i, •) ε × E M 0 2(η+ε) 1 2 E min 1 r,j d M 0 (r, j) -2ε 1 2 C e -εσs 2 x √ n .
(5.11)

Then, using again Cauchy-Shwartz's inequality and (5.11), for all n 1, x > 0 and 1 i d we have

E ei s Ki m,n 1 { Ki m,n x 2 } E ei s Ki m,n 2 1 2 P ei s Ki m,n x 2 1 2 C e -εσs 4 x √ n E ei s Ki m,n 2 1 2 .
(5.12)

Then, by the triangular inequality in L 2 under P ei s and (4.17), we obtain that for all n 1 and 1 i d,

E ei s Ki m,n 2 1 2 1 σ s √ n E ei s log W i m 2 1 2 + 2 E ei s max 1 r,j d log M m (r, j) M m 2 1 2 + E ei s max 1 r,j d log M m+1 (r, j) M m+1 2 1 2 .
(5.13)

Notice that we have proved in (4.6) that for all n 1 and 1 i d,

E ei s log W i n 2 1 2
C.

(5.14)

By an argument similar to the proof of (4.32)-(4.34) with the inequality | log x| 2 C(x η + x -η ) for x > 0, we get that for all n 1 and 1 i d,

E ei s max 1 r,j d log M n (r, j) M n 2 1 2 C. (5.15)
Therefore, combining the inequalities (5.12)-(5.15) and (4.1), we see that for all n 1, x > 0 and 1 i d,

E ei s Ki m,n 1 { Ki m,n x 2 } C √ n e -εσs 4 x √ n .
(5.16)

Putting together (5.9), (5.11), (5.16) and (4.1), we obtain that, with α = ε 4 inf s∈(-η,η) σ s > 0, for all n 1, x > 0 and 1 i d,

A i 1 (x, n) C √ n e -αx √ n .
(5.17)

Control of A i 2 (x, n).
First, by Markov's and Jensen's inequalities, and using (4.1) and Lemma 4.2, we see that for η > 0 small enough, there exists a constant δ 0 ∈ (0, 1) such that for all n 1, x > 0 and 1 i d,

A i 2 (x, n) = P ei s | log W i n -log W i m | 1 2 > σ s 2 1 2 x 1 2 n 1 4 σ s 2 -1 2 x -1 2 n -1 4 E ei s | log W i n -log W i m | 1 2 Cx -1 2 n -1 4 E ei s | log W i n -log W i | + E ei s | log W i m -log W i | 1 2 Cx -1 2 n -1 4 δ m 2 0 .
Taking δ = δ 1 2 0 ∈ (0, 1), since m = √ n , it follows that for all n 1, x > 0 and 1 i d,

A i 2 (x, n) Cx -1 2 n -1 4 δ √ n . ( 5.18) 
On the other hand, by Markov's inequality we have that for any a ∈ (0, 1), and for all n 1, x > 0 and 1 i d,

A i 2 (x, n) = P ei s e a| log W i n -log W i m | > e aσs 2 x √ n e -aσs 2 x √ n E ei s e a| log W i n -log W i m | e -aσs 2 x √ n E ei s W i n W i m a + E ei s W i m W i n a . ( 5 

.19)

By Cauchy-Schwarz's and Jensen's inequalities, and using (4.5), for η > 0 and a ∈ 0, 1 2 small enough we get that for all n, k 1 and 1 i d,

E ei s W i n W i k a E ei s (W i n ) 2a 1 2 E ei s (W i k ) -2a 1 2 E ei s W i n a E ei s (W i ) -2a 1 2 C.
This, together with (5.19) and (4.1), implies that with β = a 2 inf s∈(-η,η) σ s > 0, for all n 1, x > 0 and 1 i d,

A i 2 (x, n) C e -βx √ n .
(5.20)

Combining (5.5), (5.17) and (5.20), we get (5.3). This concludes the proof of Lemma 5.2. Now we proceed to the proof of Theorem 2.1. It is based on the control of the joint law of log Z i n , log M 0,n-1 (i, •) in Lemmas 5.1 and 5.2, together with standard techniques from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF].

Proof of Theorem 2.1. Notice that, when x ∈ (0, 1], Theorem 2.1 is a direct consequence of the Berry-Esseen bound for log Z i n (Theorem 4.1 with s = 0). So, it remains to prove Theorem 2.1 for x 1 such that x = o( √ n), as n → +∞. We first prove (2.13). Let η > 0 be a small constant. Using the changed measure P ei s , for all n 1, s ∈ (-η, η) and 1 i d we have Recall that, by Proposition 3.1, the function Λ is analytic on (-η, η) for η > 0 small enough, so that Λ(s) = +∞ k=1 γ k k! s k for s ∈ (-η, η), where γ k := Λ (k) (0), k 1. From [START_REF] Petrov | Sums of independent random variables[END_REF] (5.27) Therefore, using (5.27) and the definition of J i (n), we deduce that for all 1 i d, as n → +∞, Then, using Fubini's theorem and the integration by parts, we obtain the following decomposition for J i 1 (n): Taking ε small enough such that δ e ε < 1, it follows that for n sufficiently large,

P log Z i n -nγ σ √ n > x =
J i (n) = J i 1 (n) 1 + O x √ n , ( 5 
J i 1 (n) = E ei s R
J i 3 (n) C √ n .
(5.37) Now, combining (5.29), (5.35) and (5.37) we get that, as n → +∞,

J i 1 (n) = e x 2 2 (1 -Φ(x)) + O 1 + x √ n .
Therefore, using (5.26) and (5.28), we obtain that, as n → +∞,

P log Z i n -nγ σ √ n > x = e -x 2 2 + x 3 √ n ζ( x √ n ) e x 2 2 (1 -Φ(x)) + O 1 + x √ n 1 + O x √ n = e x 3 √ n ζ( x √ n ) (1 -Φ(x)) 1 + O 1 + x √ n .

d 1 ,

 1 let M d (R) be the set of d × d matrices with entries in R. The ddimensional space of vectors R d will be equipped with the scalar product and the L 1 -norm respectively defined by x, y := d i=1 x(i) y(i) and x := d i=1 |x(i)|, x, y ∈ R d .

  .25) Now, combining the inequalities (3.20), (3.21), (3.22) and (3.25), there exists a constant C > 0 such that for all n 2 and 1 i d, sup s∈(-η,η)

  .28) Therefore, putting together the inequalities (3.21), (3.22), (3.29), (3.27) and (3.28), by taking C > 0 sufficiently large, it holds that for all n 0 and 1 i d, sup s∈(-η,η)

  .39) Using (3.34),(3.35) and Hölder's inequality, we obtain that for all b > 0, n 0 and 1 i d,

  3b 

  40) with b = 1 3 min{a, η 0 } > 0, by(3.39) and condition H2 we get that for all 1 i d,

  34) and(3.35), for all n 1 and 1 i d we have

  .34) Therefore, combining the ineqalities (4.30)-(4.34), we get (4.10). This concludes the proof of Lemma 4.4. Now we shall prove Theorem 4.1.

  r s (e i )κ(s) n E ei s r -1 s (X ei n ) e -s log M0,n-1(i,•) 1 {log Z i n -nγ>σx √ n} . (5.21)Since Λ = log κ, we get from (5.21), (4.12) and (4.1) that, for η > 0 small enough and all n 1, s ∈ (-η, η) and 1 i d,P log Z i n -nγ σ √ n > x = r s (e i ) e -n[sΛ (s)-Λ(s)]

2 2 ( 1 -

 21 Control of J i2 (n). For any n 1, setI(n) := sσ s √ n +∞ 0 e -sσs √ nu Φ([0, u])du.(5.30) By (5.1) in Lemma 5.1, we get that for all n 1 and 1 i d, remains to estimate I(n). Applying an integration by parts, for all n 1 we have analytic on (-η, η) with Λ (0) = γ and σ 2 s = Λ (s) > 0 by (4.1), by Taylor's formula we have Λ (s) -γ = sσ 2 + O(s 2 ) and σ 2 s = σ 2 + O(s). Using (5.23) and the fact that s = O x Φ(x)).So we deduce that, as n → +∞, (5.31), we get that, as n → +∞,Control of J i 3 (n). By the definition of J i 3 (n) (see(5.29)) and the bound (5.3) in Lemma 5.2, there exist some constants α > 0, β > 0 and δ ∈ (0, 1) such that for all n 1 and 1 i d, J i 3 (n) Csσ s ε ∈ 0, min{α, β} . By (5.33) we have sσ s → 0 as n → +∞, hence sσ s ε for n large enough. Implementing this in (5.36), we obtain that for n sufficiently large,

Theorem 2.1. Assume conditions H1, H2, H3 and

  

			2 120γ 9/2	3 3	t 2 + • • • ,	(2.12)
	which converges for |t| small enough.		
	The following theorem gives a Cramér type moderate deviation expansion for log Z i n . Recall that Φ(x) := 1 √ 2π x -∞ e -t 2 /2 dt, x ∈ R.
	o(	√	n) and any 1 i d, as n → +∞,	γ > 0. Then, for 0	x

  depend only on the environments ξ 0 , ξ 1 , • • • , ξ n (but not on ξ n+1 , ξ n+2 , • • • ), by (4.18) and (3.4) we get that for all n 1, x ∈ R and 1 i d,

	Since S ei 0,m+1 , S m+1,n and B i X e i m+1 m,n
	.19)

  , we know that for x = o( √ n) as n → +∞, x 1, and n 1 sufficiently large, the equation√ n[Λ (s) -γ] = σx, (5.23)has a unique root s(x, n) ∈ (0, η) which has the expression is the Cramér series defined in (2.12) (entirely determined by the function Λ), which converges for |t| small enough. Therefore, combining (5.22), (5.23) and (5.25), we get that for n 1 large enough and 1 i d,

	s(x, n) =	t √ γ 2	-	γ 3 2γ 2 2	t 2 -	γ 4 γ 2 -3γ 2 3 6γ 7/2 2	t 3 + • • • ,	with t =	x √ n	.	(5.24)
	From now, let s = s(x, n). Again from [20], we have the equality:
					sΛ (s) -Λ(s) =	x 2 2n	-	x 3 n 3/2 ζ	x √ n	,	(5.25)
	where ζ(t) P	log Z i n -nγ σ √ n	> x		
	= r s (e i ) e -x 2 2 + x 3 √ n ζ( x √ n )	E ei s r -1 s (X ei n ) e -sσs	√	nS 0,n 1 log Z i e i n -nΛ (s) σs √ n	>0
	= e	-x 2 2 + x 3 √ n ζ( x √ n ) J i (n),			(5.26)
	where										
	J										

i (n) := r s (e i )E ei s r -1 s (X ei n ) e -sσs √ nS e i 0,n 1 log Z i n -nΛ (s) σs √ n >0

.

By Proposition 3.1, for η > 0 small enough the map s → r s is analytic on (-η, η), with r 0 = 1. Since s = O x √ n as n → +∞ by (5.24), we obtain

r s -1 ∞ C|s| Cx √ n .

This, together with (3.18), implies that for all y 1 , y 2 ∈ S,

r s (y 1 ) r s (y 2 ) -1 r -1 s (y 2 ) |r s (y 1 ) -1| + |r s (y 2 ) -1| 2D r s -1 ∞ Cx √ n .

This concludes the proof of (2.13).

The proof of (2.14) is very similar to that of (2.13). We just need to consider the unique root of the equation √ n[Λ (s) -γ] = -σx instead of (5.23), and apply the inequality (5.2) instead of (5.1), and (5.4) instead of (5.3). This ends the proof of Theorem 2.1.