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Abstract: Consider a d-type supercritical branching process Zin = (Zin(1),
· · · , Zin(d)), n > 0, in an independent and identically distributed random en-
vironment ξ = (ξ0, ξ1, . . .), starting with one initial particle of type i. In a
previous paper we have established a Kesten-Stigum type theorem for Zin,
which implies that for any 1 6 i, j 6 d, Zin(j)/EξZin(j) → W i in probability
as n → +∞, where EξZin(j) is the conditional expectation of Zin(j) given
the environment ξ, and W i is a non-negative and finite random variable. The
goal of this paper is to obtain a necessary and sufficient condition for the con-
vergence in Lp of Zin(j)/EξZin(j), and to prove that the convergence rate is
exponential. To this end, we first establish the corresponding results for the
fundamental martingale (W i

n) associated to the branching process (Zin).

MSC 2010 subject classifications: Primary 60J80, 60K37; secondary 60J85.
Keywords and phrases: Multitype branching processes, random environ-
ment, Lp convergence, products of random matrices, fundamental martingale.

1. Introduction

A significant advancement in the theory of branching processes was made with
the introduction of a random environment such that the offspring distribution of
generation n depends on some random environment ξn at time n, in contrast to a
constant distribution assumed in the Galton-Watson process. This allows a more
adequate modeling, and turned out to be very fruitful in theoretical as well as
in practical senses. For the first fundamental results on branching processes in
random environments, see Athreya and Karlin [1, 2]. The importance of the study
of branching processes in random environments is mainly due to its wide application
background, both in theory and in practical problems. For example, Kesten, Kozlov
and Spitzer [20] used such a process to study limit properties of for random walks
in random environments; biologists are currently paying special attention to the
problems of genetic transformation, and such problems can be studied via a multi-
type branching process in a random environment; see Bansaye [4] for application in
cell contamination. Due to huge applications and important technique challenge, in
recent years, there is a great progress in the study of branching processes in random
environments, see e.g. the recent papers [26, 30, 31], the recent book by Kersting and
Vatutin [23] and many references therein. In an earlier work [11], for a supercritical
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multi-type branching process in an independent and identically distributed random
environment, we have studied the convergence of the normalized population size
and the non-degeneracy of its limit. In this paper, we will consider its convergence
in Lp.

Let Zn = (Zn(1), · · · , Zn(d)), n > 0, be a d-type branching process in an in-
dependent and identically distributed (i.i.d.) random environment ξ = (ξ0, ξ1, · · · ).
For n > 0, denote by Mn the matrix of the conditioned means of the offspring
distribution of n-th generation given the environment: the (i, j)-th entry of Mn is

Mn(i, j) = Eξ[Zn+1(j) | Zn = ei],

where Eξ denotes the conditional expectation given the environment ξ. Let M0,n =
M0 · · ·Mn be the product matrix. The process (Zn)n>0 will be denoted (Zin)n>0
when it starts with one initial particle of type i, that is when Z0 = ei, where ei is the
unit vector whose i-th component is 1 and all the others are 0. In [11] we obtained
an extension of the famous Kesten-Stigum result on the Galton-Watson process to
the multi-type branching process in random environment (MBPRE). Assume that
the MBPRE (Zin)n>0 is in the supercritical regime, in the sense that

γ := lim
n→+∞

1
n
E log ‖M0,n−1‖ > 0,

where ‖M0,n−1‖ is the L1-norm of the matrix M0,n−1. Under the Furstengerg-
Kesten condition H1 (see Section 2), we proved in [11, Theorem 2.11] that for all
1 6 i, j 6 d,

Zin(j)
EξZin(j) = Zin(j)

M0,n−1(i, j) →W i in probability, (1.1)

where W i is a non-negative random variable independent of j; moreover, W i is
non-degenerate for all i if and only if

E
(

Zi1(j)
M0(i, j) log+ Zi1(j)

M0(i, j)

)
< +∞ ∀i, j = 1, · · · , d; (1.2)

in addition EξW i = 1 almost surely (a.s.) when (1.2) holds. By Sheffé’s theorem,
it follows that Zin(j)

M0,n−1(i,j) →W i in L1 if and only if (1.2) holds.
The main objective in this paper is to find a necessary and sufficient condition

under which the normalized population size Zin(j)/M0,n−1(i, j) converges to W i in
Lp, p > 1, and to prove that the convergence rate is exponential, for all 1 6 i, j 6 d.
In the single type case, it is known that such kind of results play an important role
in the study of asymptotic properties of large deviations and Berry Esseen bounds
in the central limit theorem on the process (Zin), see [16, 10]. The situation is the
same in the multi-type case, as can be seen in the preprints [12, 13].

For a single type branching process in a random environment (Zn)n>0, Guivarc’h
and Liu [14, Theorem 1.3] established the (annealed) Lp convergence criterion: they
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showed that when d = 1, for each given p > 1, (Zn/m0,n−1)n>0 converges in Lp to
a non negative random variable W if and only if

E
(
Z1

m0

)p
< +∞ and Em1−p

0 < 1, (1.3)

wherem0,n−1 = m0 · · ·mn−1, andmk denotes the conditioned mean of the offspring
distribution at time k given the environment. Huang and Liu [17, Theorem 1.5]
proved that the Lp convergence rate is exponential: if (1.3) holds, then

lim
n→+∞

δ−n
(
E
∣∣∣∣ Zn
m0,n−1

−W
∣∣∣∣p)1/p

= 0 ∀δ > δc(p), (1.4)

with

δc(p) =
{

(Em1−p
0 )1/p if p ∈ (1, 2),

max
{

(Em1−p
0 )1/p, (Em−p/2

0 )1/p
}

if p > 2.
(1.5)

For the MBPRE’s case, the only result about the annealed Lp convergence is a
claim by Cohn [8] which concerns the L2 convergence. Assume that the supercritical
condition γ > 0 holds, that each entry of M0 is bounded a.s. from below and
above by two positive constants, and that all the conditional second moments of
the offspring distributions given the environment are bounded a.s. by a constant.
Assume also the integrability condition E| log

∑d
i=1(1−P(‖Zi1‖ = 0))| <∞. Under

these conditions Cohn [8] claimed that for each j = 1, · · · , d,

Zin(j)
EξZin(j) →W i in L2 (1.6)

under the annealed law P, where W i is a non degenerate random variable satis-
fying EW i = 1. However, the claim of Cohn [8] is false. To see this, it suffices to
notice that when d = 1, (1.6) holds if and only if E

(
Z1
m0

)2
< +∞ and Em−1

0 < 1
by the criterion (1.3) of Guivarc’h and Liu [14, Theorem 1.3]. A quantitative con-
dition (which ensures Em−1

0 < 1 for d = 1) is missing in the claim of Cohn [8].
This shows that the annealed Lp convergence is rather delicate even for p = 2.
We mention that Jones [18], Biggins, Cohn and Nerman [5] have studied respec-
tively the L2 and Lp convergence of multi-type branching processes in varying
environment. Their results give sufficient conditions for quenched Lp convergence
for multi-type branching processes in random environments. In this paper, we deal
with the annealed Lp convergence, which is in general more delicate because there
is an additional integral operation. Since we will always dear with the annealed Lp
convergence, for simplicity we will just say Lp convergence in the following.

More precisely, we will find a necessary and sufficient condition for the Lp con-
vergence which extends the criterion (1.3) to the multi-type case, and establish the
exponential convergence rate. Let p > 1 be such that EM0(i, j)1−p < +∞ for all
1 6 i, j 6 d, and define

κ(1− p) = lim
n→+∞

(
E‖M0,n−1‖1−p)1/n

.
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It will be shown that the limit exists and is finite. Under the Furstenberg-Kesten
condition H1, we will prove that Zin(j)

M0,n−1(i,j) →W i in Lp for any 1 6 i, j 6 d if and
only if

max
16i,j6d

E
(

Zi1(j)
M0(i, j)

)p
< +∞ and κ(1− p) < 1. (1.7)

(cf. Theorem 2.1); moreover, if (1.7) holds, then there exists δ ∈ (0, 1) such that

lim
n→+∞

δ−n
(
E
∣∣∣∣ Zin(j)
M0,n−1(i, j) −W

i

∣∣∣∣p)1/p
= 0 (1.8)

(cf. Theorem 2.2). For a single type branching process in random environment, we
have κ(1−p) = Em1−p

0 , so (1.7) coincides with (1.3), and (1.8) corresponds to (1.4)
but with less information on the exact exponential rate.

The proof of (1.7) and (1.8) is based on the corresponding results for the as-
sociated fundamental martingale (W i

n) introduced in [11]. Let us recall briefly its
construction. For any n, k > 0, let ρn,n+k be the spectral radius ofMn,n+k. Applying
the famous Perron-Frobenius theorem (see e.g. [3]), ρn,n+k is a positive eigenvalue
of Mn,n+k, for which there exist positive right and left eigenvectors Un,n+k and
Vn,n+k with the normalizations ‖Un,n+k‖ = 1 and 〈Vn,n+k, Un,n+k〉 = 1, where ‖x‖
denotes the L1 norm of the vector x, and 〈x, y〉 the scalar product of the vectors
x, y. Then, under certain conditions, by the results of Hennion [15, Lemma 3.3 and
Theorem 1] the limit

Un,∞ := lim
k→∞

Un,n+k (1.9)

exists a.s., with Un,∞ > 0 a.s. and ‖Un,∞‖ = 1; moreover, there exist random
scalars λn > 0 a.s. called the pseudo-spectral radii of the random matrices (Mn),
which satisfy a.s. the relation

MnUn+1,∞ = λnUn,∞. (1.10)

The relation (1.10) can be iterated to obtain

Mn,n+kUn+k+1,∞ = λn,n+kUn,∞, (1.11)

where λn,n+k =
∏n+k
r=n λr for n, k > 0. Then, the non-negative martingale (W i

n) is
defined as follows [11] :

W i
0 = 1, W i

n = 〈Zin, Un,∞〉
λ0,n−1U0,∞(i) , n > 1. (1.12)

Assume for simplicity that the Furstenberg-Kesten condition H1 is satisfied.
Assume also that p > 1 is such that EM0(i, j)1−p < +∞ for all 1 6 i, j 6 d. Then
we show that W i

n converges in Lp to the random variable W i for any 1 6 i 6 d if
and only if (1.7) holds (cf. Theorem 2.3); moreover, if (1.7) is satisfied, then

lim
n→+∞

δ−n
(
E|W i

n −W i|p
)1/p = 0 ∀δ > δc(p), (1.13)
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with

δc(p) =
{
κ(1− p)1/p if p ∈ (1, 2),
max

{
κ(1− p)1/p, κ(−p/2)1/p

}
if p > 2

(1.14)

(cf. Theorem 2.4). In the case of the single type branching process, the martingale
(Wn) coincides with the normalized population size (Zn/m0,n−1), so the relations
(1.13) and (1.14) coincide exactly with (1.4) and (1.5). It is known that when d = 1,
the critical value δc(p) is the best possible for (1.13) to hold (see Huang and Liu
[17]).

For the proof, we develop the approach in [17] where the case d = 1 was consid-
ered. In addition to the complexity related to the products of random matrices, the
main difficulty for the multi-dimensional case resides in the fact that W i

n depends
on the whole environment sequence ξ = (ξ0, ξ1, · · · ), not just on the environment se-
quence until the present (ξ0, · · · , ξn−1), contrary to the one-dimensional case. Let us
give a short description of the approach. For p ∈ (1, 2], we first control the quenched
Lp norm of the martingale differenceW i

n+1−W i
n, using the branching property and

the Marcinkiewicz-Zygmund inequality on the Lp norm of sums of independent ran-
dom variables. This permits us to obtain a bound of Eξ|W i

n+1 −W i
n|p in terms of

(λ0,n−1U0,∞(i))1−p. To overcome the difficulty related to the dependence on the
whole environment sequence, we condition on the future Tnξ = (ξn, ξn+1, · · · ) to
obtain ETnξ(λ0,n−1U0,∞(i))1−p 6 Cκ(1− p)n, which gives the correct convergence
rate in Lp for the martingale (W i

n). For p > 2, we use an argument by induction.
To get the convergence rate of the normalized population size Zin(j)/M0,n−1(i, j),
we prove that the difference Zin(j)/M0,n−1(i, j)−W i

n goes to 0 in Lp exponentially
fast, using the exponential convergence of the products of stochastic matrices due
to Seneta [28]. For the necessity, we first establish some spectral properties of the
important transfer operator Ps for s 6 0 (see Section 3).

The main results will be presented in Section 2. In Section 3 we establish the
spectral properties of the transfer operator Ps that we will need. In Section 4 we
prove the criterion for the convergence in Lp of the martingales (W i

n), as well as
their exponential convergence rate. Similar results for the normalized population
size Zin(j)/M0,n−1(i, j) are proved in Section 5.

2. Notation and main results

Let N = {0, 1, . . .} be the set of non-negative integers. The indicator of an event
A is denoted by 1A. The symbol P−→ denotes the convergence in probability with
respect to the annealed law P. For an integer d > 1, let Rd be the d-dimensional
space of vectors with real coordinates, equipped with the scalar product and the
L1-norm respectively defined by

〈x, y〉 :=
d∑
i=1

x(i) y(i) and ‖x‖ :=
d∑
i=1
|x(i)|, x, y ∈ Rd.
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Let ei be the d-dimensional vector with 1 in the i-th place and 0 elsewhere. Define
alsoMd(R) the set of d× d matrices with entries in R, and the operator norm on
Md(R):

‖M‖ := sup
‖x‖=1

‖Mx‖, M ∈Md(R).

For a matrix or a vector X, we write X > 0 to mean that each entry of X is strictly
positive.

Let us define precisely the multi-type branching process in random environment
(MBPRE). Let ξ = (ξn)n>0 be the random environment, which is an independent
and identically distributed (i.i.d.) sequence with values in an abstract space X. To
each realization of ξn, we associate d probability generating functions : for 1 6 r 6 d,

frn(s) =
∞∑

k1,··· ,kd=0
prk1,··· ,kd(ξn)sk1

1 · · · s
kd
d , s = (s1, · · · , sd) ∈ [0, 1]d.

A MBPRE (Zn) in the random environment ξ is a process with values in Nd such
that for all n > 0,

Zn+1 =
d∑
r=1

Zn(r)∑
l=1

Nr
l,n, (2.1)

where Z0 ∈ Nd is fixed, Zn(j) represents the number of particles of type j of
some population in generation n, and Nr

l,n(j) is the offspring of type j at time
n + 1 of the l-th particle of type r in generation n. The random vectors Nr

l,n =
(Nr

l,n(1), · · · , Nr
l,n(d)), indexed by l > 1, n > 0, r ∈ {1, · · · , d}, are conditionally

independent and have the same probability generating function frn, given the envi-
ronment ξ. Set fn := (f1

n, · · · , fdn). When the process starts with one initial particle
of type i, that is, when Z0 = ei, we write Zin instead of Zn.

Denote by Pξ the underline probability when the environment ξ is given; it
is called quenched law. Let τ be the law of the environment ξ. Then, the total
probability P, called annealed law, is defined by P(dx, dξ) = Pξ(dx)τ(dξ). The
expectation with respect to Pξ and P are denoted respectively by Eξ and E. By our
notation the quenched probability generating function of Nr

l,n is

frn(s) = Eξ
( d∏
j=1

s
Nrl,n(j)
j

)
, s = (s1, . . . , sd) ∈ [0, 1]d.

We introduce the random mean matrices Mn ∈ Md(R) whose entries are defined
by

Mn(i, j) := ∂f in
∂sj

(1) = Eξ
[
Zn+1(j)

∣∣Zn = ei
]
, 1 6 i, j 6 d, n > 0,

where ∂fin
∂sj

(1) is the left derivative at 1 = (1, · · · , 1) ∈ Rd of the d-dimensional
probability generating function f in with respect to sj . For each 1 6 i, j 6 d,Mn(i, j)
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represents the conditioned mean of the number of children of type j produced by a
particle of type i at time n. The sequence of random matrices (Mn) is i.i.d. (because
the sequence (ξn) is i.i.d.). We define the products of these matrices by

Mk,n := Mk · · ·Mn, 0 6 k 6 n.

Notice that we have

EξZin+1(j) = M0,n(i, j), n > 0, 1 6 i, j 6 d. (2.2)

For n, k > 0, denote by ρn,n+k the spectral radius of Mn,n+k. By the Perron-
Frobenius theorem (see e.g. [3]), ρn,n+k is an eigenvalue of Mn,n+k. Let Un,n+k
and Vn,n+k be respectively the positive right and left eigenvectors associated to the
eigenvalue ρn,n+k, with the normalizations ‖Un,n+k‖ = 1 and 〈Vn,n+k, Un,n+k〉 = 1.

Let G0
+ be the subset of the matrices of Md(R) with strictly positive entries.

According to the results of Hennion [15, Lemma 3.3 and Theorem 1], if M0 is al-
lowable in the sense that every row and column contains a strictly positive element,
and if the positivity condition

P
( ⋃
n>0

{
M0,n ∈ G0

+
})

> 0 (2.3)

holds, then the random vectors Un,∞ and the random scalars λn are well defined
by (1.9) and (1.10), and satisfy (1.11). Note that the sequences (Un,∞) and (λn)
are stationary ergodic. It is proved in [11, Theorem 1] that the sequence (W i

n)n>0
defined by (1.12) is a non-negative martingale under Pξ and P, with respect to the
filtration

F0 = σ(ξ), Fn = σ
(
ξ,Nr

l,k(j), 0 6 k 6 n− 1, 1 6 r, j 6 d, l > 1
)

for n > 1.

Thus P-a.s. for all 1 6 i 6 d, the limit

W i := lim
n→+∞

W i
n (2.4)

exists and EξW i 6 1 by Fatou’s lemma.
Now we introduce a classification of MBPRE’s. Under the following moment

condition

E log+ ‖M0‖ < +∞, (2.5)

by an argument of sub-additivity, the limite

γ := lim
n→+∞

1
n
E log ‖M0,n−1‖ = inf

n>1

1
n
E log ‖M0,n−1‖,

exists; it is called Lyapunov exponent of the sequence (Mn)n>0. Moreover, Fursten-
berg and Kesten established in [9] a strong law of large numbers for log ‖M0,n−1‖:

lim
n→+∞

1
n

log ‖M0,n−1‖ = γ P-a.s.
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We say that a MBPRE is supercritical if γ > 0, critical if γ = 0, and subcritical if
γ < 0. In this paper, the process (Zn) will always be supercritical, i.e. γ > 0, under
the conditions that we will assume.

The non-degeneracy of the limit variables W i has been studied in [11]. In par-
ticular, when γ > 0, it has been proved in [11, Theorem 2.6] that the X logX
condition

E
(

Zi1(j)
M0(i, j) log+ Zi1(j)

M0(i, j)

)
< +∞ ∀1 6 i, j 6 d (2.6)

is sufficient for the non-degeneracy of each W i in the sense that P(W i > 0) > 0,
and that this condition is also necessary under the additional condition H1 that
we will introduce below. Moreover, when W i are non-degenerate, then

Pξ(W i > 0) > 0 and EξW i = 1 a.s., and W i
n →W i in L1. (2.7)

In this paper, for a given p > 1, we study the convergence in Lp of the funda-
mental martingale (W i

n)n>0 and the normalized population size Zin(j)/EξZin(j), for
all i, j = 1, · · · , d.

We first consider the martingale (W i
n)n>0, 1 6 i 6 d. To formulate our results,

we need to introduce some notation and condition. Set

I =
{
s 6 0 : EM0(i, j)s < +∞ ∀i, j = 1, · · · , d}.

Obviously, by Hölder’s inequality, I is an interval, and if there exists s ∈ I with
s < 0, then M0 > 0 P-a.s., so that condition (2.3) is satisfied. It will be seen in
Proposition 3.1 that for s ∈ I the limit

κ(s) := lim
n→+∞

(
E‖M0,n−1‖s

)1/n (2.8)

exists, with κ(s) < +∞. Notice that κ is a log-convex function on I. We will need
the following condition of Furstenberg and Kesten [9]:

H1. There exists a constant D > 1 such that

1 6
max

16i,j6d
M0(i, j)

min
16i,j6d

M0(i, j) 6 D.

Note that condition H1 implies condition (2.3).
Our first theorem gives sufficient and necessary conditions for the Lp convergence

of the martingales (W i
n), 1 6 i 6 d.

Theorem 2.1. Let p > 1 be such that 1− p ∈ I. If

max
16i,j6d

E
(

Zi1(j)
M0(i, j)

)p
< +∞ and κ(1− p) < 1, (2.9)

then W i
n −→
n→+∞

W i in Lp for any 1 6 i 6 d. The converse is also valid when the
Furstenberg-Kesten condition H1 holds.
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It is clear that condition (2.9) implies (2.6). Moreover, (2.9) also implies the su-
percritical condition γ > 0 when condition (2.5) holds, since by Jensen’s inequality
we have log κ(1− p) > (1− p)γ.

Our second theorem shows that the Lp convergence of W i
n has an exponential

rate.
Theorem 2.2. Let p > 1 be such that 1− p ∈ I. Assume (2.9).

1. If 1 < p 6 2, then denoting δc(p) = κ(1− p)1/p we have

lim sup
n→+∞

δc(p)−n
(
E|W i

n −W i|p
)1/p

< +∞. (2.10)

2. If p > 2, then δc(p) := max
{
κ(1− p)1/p, κ(−p/2)1/p

}
< 1, and

lim
n→+∞

δ−n
(
E|W i

n −W i|p
)1/p = 0 ∀δ > δc(p). (2.11)

In the proof we shall see that in Part 1 the moment condition E
( Zi1(j)
M0(i,j)

)p
< +∞

for all 1 6 i, j 6 d can be relaxed to E(W i
1)p < +∞ for all 1 6 i 6 d.

Note that for p > 2, by applying Hölder’s inequality to E‖M0,n−1‖−p/2 and
then letting n → +∞, it is easy to see that κ(−p/2)2/p 6 κ(1 − p)1/(p−1). Thus
κ(1− p) < 1 implies κ(−p/2) < 1, so that δc(p) < 1.

Now we investigate the convergence in Lp of the normalized population size
Zin(j)

EξZin(j) = Zin(j)
M0,n−1(i,j) . Recall that under condition (2.5), H1 and the supercriticality

condition γ > 0, by the Kesten-Stigum type theorem for a supercritical MBPRE
[11, Theorem 2.11], for all 1 6 i, j 6 d,

Zin(j)
M0,n−1(i, j)

P−→
n→+∞

W i, (2.12)

and the convergence holds a.s. if additionally E(Zi1(j)/M0(i, j))p < +∞ and E‖M0‖1−p <
+∞ for some p > 1 and all 1 6 i, j 6 d (see [11, Theorem 2.13]). By [11, The-
orem 2.11] and Sheffé’s theorem, under the supercritical condition γ > 0 and the
Furstengerg-Kesten condition H1, Zin(j)

M0,n−1(i,j) →W i in L1 if and only if (2.6) holds.
From Theorem 2.1 and under condition H1, we obtain a criterion for the conver-
gence in Lp of Zin(j)

M0,n−1(i,j) .

Theorem 2.3. Assume condition H1. Let p > 1 be such that 1 − p ∈ I. Then
Zin(j)

M0,n−1(i,j) −→n→+∞
W i in Lp for any 1 6 i, j 6 d if and only if (2.9) holds.

Finally, from Theorem 2.2, we deduce an exponential rate of the convergence in
Lp of Zin(j)

M0,n−1(i,j) .

Theorem 2.4. Assume condition H1. Let p > 1 be such that 1 − p ∈ I and that
(2.9) holds. Then there exists δ ∈ (0, 1) such that

lim
n→+∞

δ−n
(
E
∣∣∣∣ Zin(j)
M0,n−1(i, j) −W

i

∣∣∣∣p)1/p
= 0. (2.13)
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3. Spectral properties of the transfer operator Ps

We start this section by giving some notation. Denote by S = {x ∈ Rd : x >
0, ‖x‖ = 1}. For x ∈ S and M ∈ G0

+ (the set of matrices with strictly positive
entries), define the projective action of M on S by M · x := Mx

‖Mx‖ . Let C(S) be the
space of continuous functions on S with real values. For any ϕ ∈ C(S), set

‖ϕ‖∞ = sup
x∈S
‖ϕx‖.

For s ∈ I, define the transfer operator Ps as follows : for all ϕ ∈ C(S),

Psϕ(x) := E
[
‖M0x‖sϕ(M0 · x)

]
, x ∈ S. (3.1)

Define also the conjugate operator P ∗s , such that for s ∈ I and ϕ ∈ C(S),

P ∗s ϕ(x) := E
[
‖MT

0 x‖sϕ(MT
0 · x)

]
, x ∈ S. (3.2)

In this section, we investigate the spectral properties of the transfer operator
Ps and its conjugate P ∗s for s 6 0. These results extend some properties known
in the case s > 0 (see [25, 6]) to the case s < 0. We also give some properties of
κ(s). The main result is given by the following proposition. We use the notation
µ(ψ) =

∫
ψdµ to denote the integral of ψ with respect the measure µ.

Proposition 3.1. Assume that s ∈ I. Then κ(s) < +∞, the spectral radius of
Ps is equal to κ(s), and there exists a probability measure νs on S and a strictly
positive function rs ∈ C(S) such that

νsPs = κ(s)νs and Psrs = κ(s)rs,

where νsPs denotes the measure on S such that (νsPs)(ψ) = νs(Psψ) for all ψ ∈
C(S). Moreover, κ(s) is also the spectral radius of P ∗s , and there exists a probability
measure ν∗s on S and a strictly positive function r∗s ∈ C(S) such that

ν∗sP
∗
s = κ(s)ν∗s and P ∗s r

∗
s = κ(s)r∗s .

To prove the above proposition, we will use the following Lemma about the
properties of κ(s), s 6 0.

Lemma 3.2. Assume that s ∈ I. Then

κ(s) = lim
n→+∞

(
E‖M0,n−1‖s

)1/n = sup
n>1

(
E‖M0,n−1‖s)

)1/n
< +∞,

and there exists Cs > 0 such that for all x, y ∈ S and n > 1,

E‖M0,n−1‖s 6 E‖M0,n−1x‖s 6 E〈M0,n−1x, y〉s 6 CsE‖M0,n−1‖s.

Proof. Notice that the sequence
(
E‖M0,n−1‖s

)
n>1 is super-multiplicative for s ∈ I,

so the limit κ(s) = limn→∞
(
E‖M0,n−1‖s

)1/n exists, and

κ(s) = sup
n>1

(
E‖M0,n−1‖s)

)1/n ∈ R+ ∪ {+∞}.
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Clearly, for all x, y ∈ S and n > 1, we have the inequalities

E‖M0,n−1‖s 6 E‖M0,n−1x‖s 6 E〈M0,n−1x, y〉s 6 E
(

max
16i,j6d

M0,n−1(i, j)s
)
. (3.3)

Moreover, since the sequence of matrices (Mn) is i.i.d, for all n, k > 1 we have

E max
16i,j6d

M0,n+k−1(i, j)s

6 E max
16i,j,l6d

(
M0,n−1(i, l)sMn,n+k−1(l, j)s

)
6 E max

16i,l6d
M0,n−1(i, l)s E max

16l,j6d
M0,k−1(l, j)s.

Hence
(
E max

16i,j6d
M0,n−1(i, j)s

)
n>1 is sub-multiplicative, so that

lim
n→+∞

(
E max

16i,j6d
M0,n−1(i, j)s

)1/n = inf
n>1

(
E max

16i,j6d
M0,n−1(i, j)s

)1/n
.

Combining this with (3.3), and letting n→ +∞, we obtain

κ(s) 6 lim
n→+∞

(
E max

16i,j6d
M0,n−1(i, j)s

)1/n
6 E max

16i,j6d
M0(i, j)s < +∞.

Furthermore by simple calculations, for all n > 3 it holds that

E max
16i,j6d

M0,n−1(i, j)s

= E max
16i,j6d

( ∑
16l1,l26d

M0(i, l1)M1,n−2(l1, l2)Mn−1(l2, j)
)s

6 E
(

min
16i,l16d

M0(i, l1) min
16l2,j6d

Mn−1(l2, j)
∑

16l1,l26d
M1,n−2(l1, l2)

)s
6

(
E max

16i,j6d
M0(i, j)s

)2 E‖M0,n−3‖s.

It follows that for all n > 3,

E max
16i,j6d

M0,n−1(i, j)s

6
(
E max

16i,j6d
M0(i, j)s

)2E(‖M0,n−3‖‖Mn−2‖‖Mn−1‖)s

(E‖M0‖s)2

6

(
Emax16i,j6d M0(i, j)s

E‖M0‖s

)2
E‖M0,n−1‖s.

This, together with (3.3), proves the inequalities of Lemma 3.2 for n > 3 with

Cs =
(
Emax16i,j6d M0(i, j)s

E‖M0‖s

)2
,

which is finite since s ∈ I. It is clear that the inequalities remain valid for 1 6 n 6 2
by modifying slightly the value of Cs (choosing it large enough). This concludes the
proof of Lemma 3.2.
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Proof of Proposition 3.1. We shall use an argument similar to that in the proof of
[6, Proposition 4.4] where the case s > 0 is considered. Let M1(S) be the set of all
probability measures on S, and M1

b (R) the set of all finite signed measures on R
equipped with the total variation norm. Since M1(S) is a compact convex subset
of the Banach space M1

b (R), by the Schauder-Tychonoff theorem applied to the
continuous map ν 7→ νPs/νPs

(
S
)
, there exists an invariant probability measure

νs ∈M1(S) of this map. Consequently, νs is an eigenmeasure of Ps:

νsPs = [νsPs
(
S
)
] νs. (3.4)

In the same way there exists an probability eigenmeasure ν∗s of the operator P ∗s ,
associated to the eigenvalue k(s) = ν∗sP

∗
s

(
S
)
:

ν∗sP
∗
s = k(s) ν∗s . (3.5)

Set

rs(x) := 1
k(s)

∫
S
E〈M0x, y〉sν∗s (dy), x ∈ S.

Since s ∈ I, it is clear that for all x ∈ S,

0 < 1
k(s)E min

16i,j6d
M0(i, j)s 6 rs(x) 6 1

k(s)E max
16i,j6d

M0(i, j)s < +∞,

and that rs ∈ C(S). Moreover, for all x ∈ S we have

rs(x) = 1
k(s)

∫
S
E〈x,MT

0 y〉sν∗s (dy)

= 1
k(s)

∫
S
E[‖MT

0 y‖s〈x,MT
0 · y〉s]ν∗s (dy)

= 1
k(s)

∫
S
〈x, y〉s(ν∗sP ∗s )(dy)

=
∫
S
〈x, y〉sν∗s (dy). (3.6)

Using Fubini’s theorem, it follows from the definition of rs and (3.6) that for all
x ∈ S,

rs(x) = 1
k(s)E

[
‖M0x‖s

∫
S
〈M0 · x, y〉sν∗s (dy)

]
= 1
k(s)E

[
‖M0x‖srs(M0 · x)

]
= 1
k(s)Psrs(x). (3.7)

So we have proved that Psrs = k(s)rs. Now we show that

k(s) = ρ(Ps) = κ(s),
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where ρ(Ps) is the spectral radius of Ps.
First we have k(s) 6 ρ(Ps), since k(s) is a positive eigenvalue of Ps.
Next, we prove that ρ(Ps) 6 κ(s). By iteration of the operator Ps (using the

fact that M0,n−1 has the same law as Mn−1 · · ·M0) and Lemma 3.2, it holds that
for all ϕ ∈ C(S) and x ∈ S,

Pns ϕ(x) = E
[
‖M0,n−1x‖sϕ(M0,n−1 · x)

]
6 Cs‖ϕ‖∞E‖M0,n−1‖s.

This implies that

ρ(Ps) = lim
n→∞

sup{‖Pns ϕ‖1/n
∞ : ‖ϕ‖∞ = 1} 6 lim

n→+∞

(
E‖M0,n−1‖s

)1/n = κ(s).

We then prove that κ(s) 6 k(s). Iterating the relation ν∗sP ∗s = k(s)ν∗s , we obtain
ν∗sP

∗
s
n = k(s)nν∗s , so that

k(s)n = ν∗sP
∗
s
n(S) =

∫
S
E‖MT

0,n−1y‖sν∗s (dy) > E‖MT
0,n−1‖s.

This implies κ(s) 6 k(s), since

κ(s) = lim
n→+∞

(
E‖M0,n−1‖s

)1/n = lim
n→+∞

(
E‖MT

0,n−1‖s
)1/n

.

So we have proved the equalities k(s) = ρ(Ps) = κ(s). This together with (3.5) and
(3.7) implies

ν∗sP
∗
s = κ(s)ν∗s and Psrs = κ(s)rs.

Changing the roles of Ps and P ∗s , by the same arguments we can prove that

νsPs = κ(s)νs and P ∗s r
∗
s = κ(s)r∗s

for some strictly positive function r∗s ∈ C(S), and that κ(s) is also the spectral
radius of P ∗s . This concludes the proof of Proposition 3.1.

4. Convergence in Lp of the martingale W i
n

In this section, we prove Theorems 2.1 and 2.2 giving sufficient and necessary
conditions for the Lp convergence of W i

n, 1 6 i 6 d, with an exponential speed.
First we formulate the following result.

Theorem 4.1. Let p > 1 be such that 1− p ∈ I. Consider the assertions:

W i
n −→
n→+∞

W i in Lp ∀i = 1, · · · , d (4.1)

E(W i
1)p < +∞ ∀i = 1, · · · , d and κ(1− p) < 1. (4.2)

E
(

Zi1(j)
M0(i, j)

)p
< +∞ ∀i, j = 1, · · · , d and κ(1− p) < 1. (4.3)

If 1 < p 6 2, then we have the implications: (4.3) ⇒ (4.1) ↔ (4.2). If p > 2, then
we have: (4.3)⇒ (4.1)⇒ (4.2). When the Furstenberg-Kesten condition H1 holds,
then for each p > 1, (4.3)↔ (4.1)↔ (4.2).
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It is clear that the assertions of Theorem 2.1 follow from Theorem 4.1. Theorem
4.1 is slightly stronger in the sense that for 1 < p 6 2, it gives a sufficient and
necessary condition without assuming the Furstenberg-Kesten condition H1.

The following Lemma will be useful to investigate the convergence in Lp, and
it is a direct consequence of the Marcinkiewicz-Zygmund inequality in [7, Theorem
1.5], as stated in [27, Lemma 1.4].

Lemma 4.2. Let (Xk)k>1 be a sequence of i.i.d. random centered variables. Then
for all n > 1 and p > 1 :

E
∣∣∣∣ n∑
k=1

Xk

∣∣∣∣p 6
{

(Bp)pE|Xk|pn, if 1 < p 6 2,
(Bp)pE|Xk|pn

p
2 , if p > 2,

where Bp = 2 min
{
k1/2 : k ∈ N, k > p

2
}

.

In a last article, we proved the following result [11, Lemma 7.1]. It gives some
properties on the products of random matrices Mn,n+k under the Furstenberg-
Kesten condition H1.

Lemma 4.3. Assume condition H1. Then:

1. for all n, k > 0 and 1 6 i, j, r 6 d, P-a.s.,

1
D

6
Mn,n+k(i, j)
Mn,n+k(i, r) 6 D and 1

D
6
Mn,n+k(i, j)
Mn,n+k(r, j) 6 D; (4.4)

2. for all n, k > 0 and 1 6 i, j 6 d, P-a.s.,

1
dD2 6

Mn,n+k(i, j)Un+k+1,∞(j)
λn,n+kUn,∞(i) 6 1. (4.5)

Proof of Theorems 4.1 and 2.2. By iterating (2.1), it is easy to see that the process
(Zn)n>0 satisfies the relation

Zn+k =
d∑
j=1

Zn(j)∑
l=1

Zjl,n,k, n > 0, k > 1, (4.6)

where Zjl,n,k(r) denotes the number of the offspring of type r at time n+k of the l-th
particle of type j in the generation n; conditional on the environment ξ, the random
vectors Zjl,n,k = (Zjl,n,k(1), · · · , Zjl,n,k(d)) indexed by l ∈ N∗ and j ∈ {1, · · · , d}
(for fixed n and k) are independent, each has the probability generating function
f jn ◦fn+1 ◦ · · · ◦fn+k−1. Combining (4.6), (1.12) and (1.11), we have, for all n, k > 0
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and 1 6 i 6 d,

W i
n+k −W i

n =
d∑
r=1

Un+k,∞(r)
λ0,n+k−1U0,∞(i)

d∑
j=1

Zin(j)∑
l=1

Zjl,n,k(r)−W i
n

=
d∑
j=1

Un,∞(j)
λ0,n−1U0,∞(i)

Zin(j)∑
l=1

d∑
r=1

Un+k,∞(r)Zjl,n,k(r)
λn,n+k−1Un,∞(j) −W

i
n

=
d∑
j=1

Un,∞(j)
λ0,n−1U0,∞(i)

Zin(j)∑
l=1

(W j
l,n,k − 1), (4.7)

where

W j
l,n,k :=

〈Zjl,n,k, Un+k,∞〉
λn,n+k−1Un,∞(j) .

Let T be the shift operator of the environment sequence:

Tξ = (ξ1, ξ2, · · · ) if ξ = (ξ0, ξ1, · · · ),

and let Tn be its n-fold iteration. It is clear that, given the environment ξ, the
random variables W j

l,n,k, l > 1, are i.i.d.; they are independent of ξ0, . . . , ξn−1 and
Zin, and have the same distribution as W j

n,k, where
(
W j
n,k

)
k>0 is the martingale

associated to a MBPRE starting with one individual of type j, in the shift random
environment Tnξ.

We divide the proof into 5 steps.
Step 1. We first prove that for 1 < p 6 2, we have the implications (4.2)⇒ (4.1)

of Theorem 4.1, and (4.2)⇒ (2.10) of Theorem 2.2. We assume that 1 < p 6 2 and
(4.2). Applying (4.7), the convexity of the function x 7→ xp (together with the fact
that

∑d
j=1 Un,∞(j) = 1), Lemma 4.2 and (1.11), for all n > 0, k > 1 and 1 6 i 6 d,

P-a.s., we have (for 1 < p 6 2),

Eξ|W i
n+k −W i

n|p 6 Eξ
( d∑
j=1

Un,∞(j)
λ0,n−1U0,∞(i)

∣∣∣∣ Z
i
n(j)∑
l=1

(
W j
l,n,k − 1

)∣∣∣∣)p

6
d∑
j=1

Un,∞(j)
(λ0,n−1U0,∞(i))pEξ

(∣∣∣∣ Z
i
n(j)∑
l=1

(
W j
l,n,k − 1

)∣∣∣∣)p

6 Bpp

d∑
j=1

Un,∞(j)
(λ0,n−1U0,∞(i))pEξZ

i
n(j)Eξ

∣∣W j
n,k − 1

∣∣p
6 Bppσn,k(p)

d∑
j=1

M0,n−1(i, j)Un,∞(j)
(λ0,n−1U0,∞(i))p

= Bppσn,k(p)(λ0,n−1U0,∞(i))1−p, (4.8)
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with

σn,k(p) = max
16j6d

Eξ
∣∣W j

n,k − 1
∣∣p. (4.9)

Using again (1.11) and Lemma 3.2 together with the fact thatM0,n−1 is independent
of Tnξ, we get that for all s ∈ I, n > 1 and 1 6 i 6 d, P-a.s.{

ETnξλs0,n−1 = ETnξ‖M0,n−1Un,∞‖s 6 Csκ(s)n;
ETnξ(λ0,n−1U0,∞(i))s = ETnξ〈M0,n−1Un,∞, ei〉s 6 Csκ(s)n.

(4.10)

Taking expectation in (4.8), by (4.10) we get that for all n > 0, k > 1 and 1 6 i 6 d,

E|W i
n+k −W i

n|p 6 BppE
[
σn,k(p)ETnξ(λ0,n−1U0,∞(i))1−p]

6 BppC1−pEσ0,k(p)κ(1− p)n. (4.11)

From condition (4.2) we have Eσ0,1(p) < +∞ and κ(1 − p) < 1. So by the tri-
angular inequality of Lp, it follows from (4.11) that for all 1 6 i 6 d, with
C = Bp[C1−pEσ0,1(p)]1/p,

sup
n>0

(
E(W i

n)p
)1/p

6 1 + C

+∞∑
n=0

κ(1− p)n/p < +∞. (4.12)

Therefore for all 1 6 i 6 d, (W i
n) is a martingale bounded in Lp, so that it converges

in Lp. This proves the implication (4.2)⇒ (4.1) of Theorem 4.1. Furthermore (4.12)
implies that supk>0 Eσ0,k(p) < +∞. So, by letting k → +∞ in (4.11) we get (2.10)
of Theorem 2.2.

Step 2. We next prove the implication (4.3) ⇒ (4.2) of Theorem 4.1 for any
p > 1, which, in particular, will conclude the proof of Theorem 4.1 for 1 < p 6 2.
By (1.10) we have 0 6 M0(i,j),U1,∞(j)

λ0U0,∞(i) 6 1 a.s. for all 1 6 i, j 6 d. So by the
triangular inequality of Lp, it follows that for p > 1 and 1 6 i 6 d,

(
E(W i

1)p
)1/p =

(
E
(
〈Zi1, U1,∞〉
λ0U0,∞(i)

)p)1/p
(4.13)

=
(
E
( d∑
j=1

M0(i, j), U1,∞(j)
λ0U0,∞(i)

Zi1(j)
M0(i, j)

)p)1/p
(4.14)

6
d∑
j=1

(
E
(

Zi1(j)
M0(i, j)

)p)1/p
. (4.15)

Therefore the implication (4.3)⇒ (4.2) of Theorem 4.1 holds.
Step 3. We now prove that for p > 2, we have the implications (4.3) ⇒ (4.1) of

Theorem 4.1, and (4.3) ⇒ (2.11) of Theorem 2.2. Assume p > 2 and (4.3). In the
following C > 0 will be a constant which may depend on p and which may differ
from line to line. Applying (4.7), the inequality (

∑d
j=1 xj)p 6 dp−1∑d

j=1 x
p
j , xj > 0
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for any 1 6 j 6 d, and Lemma 4.2, for all n > 0, k > 1 and 1 6 i 6 d, P-a.s. we
have

Eξ|W i
n+k −W i

n|p

6 dp−1Bpp

d∑
j=1

(
Un,∞(j)

λ0,n−1U0,∞(i)

)p
Eξ(Zin(j))p/2Eξ

∣∣W j
n,k − 1

∣∣p
6 Cσn,k(p)

d∑
j=1

(Un,∞(j))p/2Eξ
(
Un,∞(j)Zin(j)
λ0,n−1U0,∞(i)

)p/2
(λ0,n−1U0,∞(i))−p/2

6 Cσn,k(p)
( d∑
j=1

Un,∞(j)
)
Eξ(W i

n)p/2(λ0,n−1U0,∞(i))−p/2

6 Cσn,k(p)Eξ(W i
n)p/2(λ0,n−1U0,∞(i))−p/2, (4.16)

with σn,k(p) defined as in (4.9) (for p > 2). Set jp ∈ N the unique integer such that
1 < p

2jp 6 2. For all n > 0, 1 6 i 6 d and 1 6 j 6 jp, define

ain,j(p) := (λ0,n−1U0,∞(i))p/2j−p Eξ(W i
n)p/2j . (4.17)

Taking expectation in (4.16), we obtain that for all n > 0, k > 1 and 1 6 i 6 d,

E|W i
n+k −W i

n|p 6 CE
[
σn,k(p)ETnξain,1(p)

]
. (4.18)

To prove (4.1) of Theorem 4.1, and (2.11) of Theorem 2.2, it is enough to show that
there exists a constant C1 > 0 (which may depend on p) such that for all n > 0,
1 6 i 6 d, 1 6 j 6 jp and δ > δc(p),

δ−n
(
ETnξain,j(p)

)1/p
6 C1 P-a.s. (4.19)

In fact, combining (4.18) and (4.19) for j = 1, it follows that for all 1 6 i 6 d and
δ > δc(p),

sup
n>0

(
E(W i

n)p
)1/p

6 1 + C
(
Eσ0,1(p)

)1/p
+∞∑
n=0

δn. (4.20)

Condition (4.3) implies that Eσ0,1(p) < +∞ and δc(p) < 1. Therefore, applying
(4.20) with δ ∈ (δc(p), 1), we deduce that (W i

n) is a martingale bounded in Lp, for all
1 6 i 6 d. Hence, (W i

n), 1 6 i 6 d, converge in Lp, and we have supk>0 Eσ0,k(p) <
+∞. This proves the implication (4.3) ⇒ (4.1). Moreover, combining again (4.18)
and (4.19), and letting k → +∞, we obtain that for all n > 0, 1 6 i 6 d and
δ ∈ (δc(p), 1), (

E|W i −W i
n|p
)1/p

6 Cδn,

which implies (2.11) and ends the proof of Theorem 2.2 in the case p > 2.
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It remains to prove (4.19). We will prove it by iteration on j. First consider
the case j = jp. By definition of jp we have 1 < p/2jp 6 2. So, by the triangular
inequality in Lp/2jp under Pξ and (4.8), it follows that for all 1 6 i 6 d and n > 0
, P-a.s.,

ain,jp(p)2jp/p 6 (λ0,n−1U0,∞(i))1−2jp

+ (λ0,n−1U0,∞(i))1−2jp
n−1∑
l=0

(
Eξ|W i

l+1 −W i
l |p/2jp )2jp/p

6 (λ0,n−1U0,∞(i))1−2jp

+ C

n−1∑
l=0

[
σl,1

( p

2jp
)]2jp/p

(λ0,l−1U0,∞(i))2jp/p−2jpλ1−2jp
l,n−1 . (4.21)

Taking the Lp/2jp -norm under PTnξ on both sides, and using the triangular inequal-
ity in Lp/2jp and inequalities (4.10), we obtain that for all 1 6 i 6 d and n > 0 ,
P-a.s.,(

ETnξain,jp(p)
)2jp/p

6
(
ETnξ(λ0,n−1U0,∞(i))p/2jp−p)2jp/p

+ C

n−1∑
l=0

{
ETnξ

[
ET lξ

[
(λ0,l−1U0,∞(i))1−p

]
σl,1

( p

2jp
)
λ
p/2jp−p
l,n−1

]}2jp/p

6 C κ
( p

2jp − p
)n2jp

p + C

n−1∑
l=0

{
κ(1− p)lETnξ

[
σl,1

( p

2jp
)
λ
p/2jp−p
l,n−1

]}2jp/p
.

(4.22)

Notice that if 1 6 j 6 jp, then we have 1− p < p
2j − p < −

p
2 . Since κ is log-convexe

on I, we obtain that

max
16j6jp

{
κ
( p

2j − p
)}

6 max
{
κ(1− p), κ

(
− p

2

)}
= δc(p)p. (4.23)

We now deal with the second term in (4.22), by calculating first the conditional
expectation ET l+1ξ. By the triangular inequalities of Lp/2j under Pξ and PT l+1ξ,
and inequalities (4.10), it holds that for all l > 0 and 1 6 j 6 jp, P-a.s.,{

ET l+1ξ

(
σl,1

( p
2j
)
λ
p/2j−p
l

)}2j/p

=
{
ET l+1ξ

(
max

16r6d
Eξ
∣∣W r

l,k − 1
∣∣p/2j

λ
p/2j−p
l

)}2j/p

6
{
ET l+1ξ

(
max

16r6d
Eξ
(
W r
l,1
)p/2j

λ
p/2j−p
l

)}2j/p +
(
ET l+1ξλ

p/2j−p
l

)2j/p

6
{ d∑
r=1

ET l+1ξ

[
Eξ
(
W r
l,1
)p/2j

λ
p/2j−p
l

]}2j/p
+ C κ

( p
2j − p

)2j/p
.
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Therefore, using inequality (4.23), condition (4.3) and again the triangular inequal-
ities of Lp/2j under Pξ and PT l+1ξ, we see that for all l > 0 and 1 6 j 6 jp,
P-a.s., (

ET l+1ξ

(
σl,1

( p
2j
)
λ
p/2j−p
l

))2j/p

6 d2j/p max
16r6d

(
ET l+1ξ

[
λ−pl Eξ

(
λlW

r
l,1
)p/2j

])2j/p

+ C

6 C max
16r6d

(
ET l+1ξ

[
λ−pl Eξ

(
λlW

r
l,11{λlW r

l,161}
)p/2j

])2j/p

+C max
16r6d

(
ET l+1ξ

[
λ−pl Eξ

(
λlW

r
l,11{λlW r

l,1>1}
)p/2j

])2j/p
+ C

6 C max
16r6d

(
ET l+1ξ

[
λ1−p
l EξW r

l,1
])2j/p

+ C max
16r6d

(
ET l+1ξ

(
W r
l,1
)p)2j/p

+ C.

We know that
(
W r
l,k

)
k>0 is the martingale associated to a MBPRE starting with

one individual of type r, in the shift random environment T lξ. In particular we
have EξW r

l,1 = 1 a.s. Therefore, applying again (4.10), (4.23) and condition (4.3),
it follows that for all l > 0 and 1 6 j 6 jp, P-a.s.,(

ET l+1ξ

(
σl,1

( p
2j
)
λ
p/2j−p
l

))2j/p

6 C max
16r6d

(
ET l+1ξλ

1−p
l

)2j/p + C max
16r6d

(
ET l+1ξ

(
W r
l,1
)p)2j/p + C

6 C κ(1− p)2j/p + C max
16r6d

(
ET l+1ξ

(
W r
l,1
)p)2j/p + C

6 C
(

1 + max
16r6d

(
ET l+1ξ

(
W r
l,1
)p)2j/p

)
. (4.24)

Then, by a similar calculation as in (4.13), for all 1 6 r 6 d and l > 0, P-a.s., we
have

(
ET l+1ξ(W r

l,1)p
)1/p =

(
ET l+1ξ

(
〈Nr

l , Ul+1,∞〉
λlUl,∞(r)

)p)1/p

=
(
ET l+1ξ

( d∑
j=1

Ml(r, j)Ul+1,∞(j)
λlUl,∞(r)

Nr
l

Ml(r, j)

)p)1/p

6
d∑
j=1

(
ET l+1ξ

(
Nr
l (j)

Ml(r, j)

)p)1/p

=
d∑
j=1

(
E
(

Zr1(j)
M0(r, j)

)p)1/p
< +∞. (4.25)
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Putting together (4.24) and (4.25), we get that for all l > 0 and 1 6 j 6 jp, P-a.s.,

ET l+1ξ

(
σl,1

( p
2j
)
λ
p/2j−p
l

)
6 C. (4.26)

Therefore, for all n > 0 and 0 6 l 6 n− 1, P-a.s., (the value of the constant C may
change from line to line),

ETnξ
[
σl,1

( p

2jp
)
λ
p/2jp−p
l,n−1

]
= ETnξ

[
ET l+1ξ

(
σl,1

( p

2jp
)
λ
p/2jp−p
l

)
λ
p/2jp−p
l+1,n−1

]
6 CETnξλp/2jp−p

l+1,n−1

6 C[κ( p

2jp − p)]
n−1−l

6 Cδc(p)(n−1−l)p,

where the last two inequalities hold by (4.10) and (4.23). Combining this with (4.22)
and (4.23), we obtain that for all 1 6 i 6 d and n > 0 , P-a.s.,(

ETnξain,jp(p)
)2jp/p

6 Cδc(p)n2jp

6 Cδc(p)n2jp + C

n−1∑
l=0

(
δc(p)lpδc(p)(n−1−l)p)2jp/p

6 C(1 + δc(p)−2jpn)δc(p)n2jp .

So (4.19) holds for j = jp.
Now suppose that (4.19) holds for j + 1 6 jp with j > 1. We will prove that it

still holds for j. By recurrence this will prove that (4.19) holds for all j = 1, · · · , jp.
Since j + 1 satisfies (4.19), for all n > 0, 1 6 i 6 d, and δ > δc(p),

δ−n
(
ETnξain,j+1(p)

)1/p
6 C P-a.s. (4.27)

By definition of jp we have p/2j > 2. Corresponding to (4.22), with the same
argument as in its proof but applying (4.16) instead of (4.8), we obtain that for all
1 6 i 6 d and n > 0 , P-a.s.,(

ETnξain,j(p)
)2j/p

6 C κ
( p

2j − p
)n2j/p

+ C ×
n−1∑
l=0

{
ETnξ

[
σl,1

( p
2j
)
Eξ(W i

l )
p

2j+1 (λ0,l−1U0,∞(i))
p

2j+1−pλ
p/2j−p
l,n−1

]}2j/p

= C κ
( p

2j − p
)n2j/p

+ C

n−1∑
l=0

(
ETnξ

[
σl,1

( p
2j
)
λ
p/2j−p
l,n−1 ET lξail,j+1(p)

])2j/p
.

(4.28)
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This enables us to obtain the desired bound of ETnξain,j(p) from that of ETnξain,j+1(p).
In fact, combining this with the recurrence hypothesis (4.27), together with (4.23),
(4.26) and (4.10), we obtain that for all n > 0, 1 6 i 6 d, and δ > δc(p),(

ETnξain,j(p)
)2j/p

6 C δc(p)n2j + C×
n−1∑
l=0

δl2
j
{
ETnξ

[
ET l+1ξ

[
σl,1

( p
2j
)
λ
p/2j−p
l

]
λ
p/2j−p
l+1,n−1

]}2j/p

6 C δc(p)n2j + C

n−1∑
l=0

δl2
j

κ
( p

2j − p
)(n−1−l)2j/p

6 C
(
δc(p)n2j + nδ(n−1)2j)

6 C
(
1 + δ−2jn

)
δn2j . (4.29)

So (4.19) also holds for j. Therefore, by recurrence, we have proved that (4.19)
holds for all j = 1, · · · , jp.

Step 4. For any p > 1, we prove the implication (4.1) ⇒ (4.2) of Theorem 4.1.
Assume p > 1 and condition (4.1), that is, the martingale (W i

n)n>0 converges in
Lp, for all 1 6 i 6 d. In particular we have E(W i

1)p < +∞, E(W i)p < +∞, and
E(W i) = 1 for all 1 6 i 6 d. It was observed in [11, Theorem 2.6] that Eξ(W i) = 1
a.s. when W i are non-degenerate. In fact Eξ(W i) = 1 a.s. whenever E(W i) = 1,
because Eξ(W i) 6 1 by Fatou’s lemma.

Notice that for all 1 6 i 6 d, the limit variables W i satisfy

W i =
d∑
j=1

U1,∞(j)
λ0U0,∞(i)

Zj1∑
l=1

W j(l, T ξ) P-a.s.,

where for all 1 6 j 6 d, under the conditional law Pξ,
(
W j(l, T ξ)

)
l>1 is a se-

quence of i.i.d. random variables, also independent of Zj1 , with common distribution
Pξ(W j(l, T ξ) ∈ ·) = PTξ(W j ∈ ·). So, by the strict sub-additivity of the function
x 7→ xp on R∗+, we get that for all 1 6 i 6 d,

Eξ(W i)p >
d∑
j=1

M0(i, j)U1,∞(j)p

λp0U0,∞(i)p ETξ(W j)p P-a.s.,

using the fact that Eξ(W i) = 1 a.s. This, together with (1.10), implies that for all
1 6 i 6 d, P-a.s.,

Eξ(W i)pU0,∞(i)p−1 > λ1−p
0

d∑
j=1

M0(i, j)U1,∞(j)
λ0U0,∞(i) ETξ(W j)pU1,∞(j)p−1

> λ1−p
0 min

16j6d

(
ETξ(W j)pU1,∞(j)p−1).
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Therefore we obtain

min
16i6d

(
Eξ(W i)pU0,∞(i)p−1) > λ1−p

0 min
16i6d

(
ETξ(W i)pU1,∞(i)p−1) P-a.s. (4.30)

On the other hand, by (3.1) and (1.10), the transfer operator P1−p satisfies the
following property: for all ϕ ∈ C(S), P-a.s.,

P1−pϕ(U1,∞) = ETξ
[
‖M0U1,∞‖1−pϕ(M0 · U1,∞)

]
= ETξ

[
λ1−p

0 ϕ(U0,∞)
]
. (4.31)

Using (4.31) with ϕ = r1−p, and combining this with Proposition 3.1, we get

ETξ
[
λ1−p

0 r1−p(U0,∞)
]

= κ(1− p)r1−p(U1,∞) P-a.s. (4.32)

Moreover, by Proposition 3.1 we know that r1−p is a strictly positive continuous
function on S. This implies that

0 < E
[

min
16i6d

(
Eξ(W i)pU0,∞(i)p−1)r1−p(U0,∞)

]
6 ‖r1−p‖∞ min

16i6d
E(W i)p < +∞. (4.33)

Therefore, putting together (4.30), (4.32) and (4.33), we obtain

E
[

min
16i6d

(
Eξ(W i)pU0,∞(i)p−1)r1−p(U0,∞)

]
> E

[
ETξ

[
λ1−p

0 r1−p(U0,∞)
]

min
16i6d

(
ETξ(W i)pU1,∞(i)p−1)]

= κ(1− p)E
[

min
16i6d

(
ETξ(W i)pU1,∞(i)p−1)r1−p(U1,∞)

]
= κ(1− p)E

[
min

16i6d

(
Eξ(W i)pU0,∞(i)p−1)r1−p(U0,∞)

]
,

so κ(1− p) < 1. This ends the proof of (4.1)⇒ (4.2).
Step 5. To conclude the proof, it remains to show that under the Furstenberg-

Kesten condition H1 we have (4.2) ⇒ (4.3) for all p > 1. By (4.5) in Lemma 4.3,
we know that, under H1, we have for all n > 0 and 1 6 i, j 6 d

1
dD2 6

M0,n−1(i, j)Un,∞(j)
λ0,n−1U0,∞(i) 6 1 P-a.s.

Therefore we obtain that for all n > 0 and 1 6 i, j 6 d,

Zin(j)
M0,n−1(i, j) 6 dD2M0,n−1(i, j)Un,∞(j)

λ0,n−1U0,∞(i)
Zin(j)

M0,n−1(i, j)

= dD2 Z
i
n(j)Un,∞(j)

λ0,n−1U0,∞(i) 6 dD2W i
n. (4.34)

The implication (4.2)⇒ (4.3) follows from (4.34) with n = 1.
This ends the proof of Theorems 4.1 and 2.2.
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5. Convergence in Lp of the normalized population size Zin(j)
EξZin(j)

In this section we give proof of Theorems 2.3 and 2.4 about the convergence in
Lp of Zin(j)

EξZin(j) and its exponential convergence rate, under the Furstenberg-Kesten
condition H1.

5.1. Auxiliary results

We need some preliminary results concerning the products of random matrices
Mn,n+k. The following proposition was established by Hennion in [15, Theorem 1],
which provides an analog of the Perron-Frobenius theorem for products of random
matrices.

Proposition 5.1. Assume that M0 > 0 P-a.s. Then for all n > 0 and 1 6 i, j 6 d,
as k → +∞, P-a.s.,

Mn,n+k(i, j) ∼
k→+∞

ρn,n+kUn,n+k(i)Vn,n+k(j).

For 1 6 i 6 d, let (Πi
n)n>0 be the sequence of random matrices inMd(R) such

that for all 1 6 j, r 6 d,

Πi
0(j, r) := δi,r, Πi

n(j, r) := M0,n−1(i, r)Mn(r, j)
M0,n(i, j) , n > 1.

By definition all the entries of the i-th column of Πi
0 are equal to 1, the others are

0; each Πi
n is a stochastic matrix. For n, k > 0 let

Πi
n+k,n := Πi

n+k · · ·Πi
n

be the products of the matrices Πi
n. Clearly each Πi

n+k,n is a non-negative stochastic
random matrix. The following lemma concerns the convergence of the products
Πi
n+k,n of random matrices and its exponential rate as k → +∞, which will be

very useful for the study of the Lp convergence of the normalized population size
Zin(j)

EξZin(j) .

Lemma 5.2. Assume the Furstenberg-Kesten condition H1. Then for all n > 0
and 1 6 i 6 d, as k → +∞, the sequence (Πi

n+k,n)k>0 converges P-a.s. to the
random matrix Πi

∞,n such that:

(1) For all 1 6 j, r 6 d,

Πi
∞,0(j, r) := Πi

0(j, r), Πi
∞,n(j, r) := M0,n−1(i, r)Un,∞(r)

λ0,n−1U0,∞(i) , n > 1.

(2) There exist C > 0 and δ ∈ (0, 1) such that for all k > 0 and 1 6 i 6 d,

sup
n>0
‖Πi

n+k,n −Πi
∞,n‖ 6 Cδk P-a.s. (5.1)
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For the proof of Lemma 5.2, we will use the following result established by Seneta
[28, Theorem 4.19], which gives the convergence of products of stochastic matrices
with an exponential rate.

Lemma 5.3 ([28]). Assume that (Pn)n>0 is a sequence of stochastic matrices such
that for some ε ∈ (0, 1), all n > 0 and all 1 6 i, j 6 d,

Pn(i, j) > ε.

Then, for all n > 0 the product Pn+k,n := Pn+k · · ·Pn converges as k → +∞ to
some matrix P∞,n, and there exist two constants C > 0 and δ ∈ (0, 1) depending
only on ε such that

sup
n>0

∥∥Pn+k,n − P∞,n
∥∥ 6 Cδk.

Proof of Lemma 5.2. (1) First we show by induction on k that for all n > 1, k > 0
and 1 6 i, j, r 6 d,

Πi
n+k,n(j, r) = M0,n−1(i, r)Mn,n+k(r, j)

M0,n+k(i, j) . (5.2)

Obviously, by definition of Πi
n, (5.2) holds for k = 0. Assume that (5.2) holds for

some k > 0. Then, for all n > 1 and 1 6 i, j, r 6 d we have

Πi
n+k+1,n(j, r) =

d∑
l=1

Πi
n+k+1(j, l)Πi

n+k,n(l, r)

=
d∑
l=1

M0,n+k(i, l)Mn+k+1(l, j)
M0,n+k+1(i, j)

M0,n−1(i, r)Mn,n+k(r, l)
M0,n+k(i, l)

= M0,n−1(i, r)
M0,n+k+1(i, j)

d∑
l=1

Mn,n+k(r, l)Mn+k+1(l, j)

= M0,n−1(i, r)Mn,n+k+1(r, j)
M0,n+k+1(i, j) .

So (5.2) holds for k + 1. Therefore by reduction (5.2) holds for all k > 0.
Combining (5.2) with Proposition 5.1, we deduce that for all n > 1 and 1 6

i, j, r 6 d, P-a.s. as k → +∞,

Πi
n+k,n(j, r) ∼ M0,n−1(i, r)ρn,n+kUn,n+k(r)Vn,n+k(j)

ρ0,n+kU0,n+k(i)V0,n+k(j)

∼ ρn,n+kVn,n+k(j)
ρ0,n+kV0,n+k(j)

M0,n−1(i, r)Un,∞(r)
U0,∞(i)

=
( n−1∏
l=0

ρl+1,n+kVl+1,n+k(j)
ρl,n+kVl,n+k(j)

)M0,n−1(i, r)Un,∞(r)
U0,∞(i) . (5.3)
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By [11, Proposition 2.2] we know that for all l, n > 0 and 1 6 j 6 d,

λl = lim
k→+∞

ρl,n+kVl,n+k(j)
ρl+1,n+kVl+1,n+k(j) P-a.s.

This, together with (5.3), implies that for n > 1 and 1 6 j, r 6 d, as k → +∞,

Πi
n+k,n(j, r)→ Πi

∞,n(j, r) = M0,n−1(i, r)Un,∞(r)
λ0,n−1U0,∞(i) P-a.s.

Hence, as k →∞, P-a.s., Πi
k,0 = Πi

k,1Πi
0 → Πi

∞,1Πi
0 = Πi

∞,0, where

Πi
∞,0(j, r) =

d∑
l=1

Πi
∞,1(j, l)Πi

0(l, r) =
d∑
l=1

Πi
∞,1(j, l)δi,r = δi,r, 1 6 j, r 6 d.

(2) By (4.4) in Lemma 4.3, we have, for all n > 1 and 1 6 i, j, r 6 d,

1
Πi
n(j, r) =

d∑
l=1

M0,n−1(i, l)Mn(l, j)
M0,n−1(i, r)Mn(r, j) 6 dD2 P-a.s.,

or equivalently

Πi
n(j, r) > 1

dD2 P-a.s. (5.4)

Since (Πi
n)n>0 is a sequence of positive stochastic matrices satisfying (5.4), by

Lemma 5.3, there exist two constants C > 0 and δ ∈ (0, 1) such that for all k > 0
and 1 6 i 6 d,

sup
n>0
‖Πi

n+k,n −Πi
∞,n‖ 6 Cδk, P-a.s.

This concludes the proof of Lemma 5.2.

5.2. Proof of Theorems 2.3 and 2.4

For all n > 0 and 1 6 i, j 6 d, set

Z
i

n(j) := Zin(j)
EξZin(j) = Zin(j)

M0,n−1(i, j) .

First we show that (2.9) is a necessary condition for the convergence in Lp of the
normalized population size Zin(j), 1 6 i, j 6 d. Assume that (Zin(j))n>0 converges
in Lp for all 1 6 i, j 6 d. For n > 0 and 1 6 i 6 d we have, by the definition of W i

n

and (1.11),

W i
n =

d∑
j=1

M0,n−1(i, j)Un,∞(j)
λ0,n−1U0,∞(i) Z

i

n(j) 6 max
16j6d

Z
i

n(j).
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This implies that the martingale (W i
n)n>0, 1 6 i 6 d, is bounded in Lp, hence

convergences in Lp. So by Theorem 2.1, condition (2.9) holds.
Now we prove that (2.9) is sufficient for the convergence in Lp of Zin(j), 1 6 i, j 6

d, and establish meanwhile Theorem 2.4 about its convergence rate. Assume (2.9).
By the definition of the branching process (Zin) (cf. (4.6)), we have the following
decomposition: for all 1 6 i, j 6 d and n, k > 1,

Z
i

n+k(j) =
d∑
r=1

Mn,n+k−1(r, j)
M0,n+k−1(i, j)

Zin(r)∑
l=1

Zrl,n,k(j)
Mn,n+k−1(r, j)

=
d∑
r=1

Mn,n+k−1(r, j)
M0,n+k−1(i, j) Z

i
n(r)

+
d∑
r=1

Mn,n+k−1(r, j)
M0,n+k−1(i, j)

Zin(r)∑
l=1

(
Zrl,n,k(j)

Mn,n+k−1(r, j) − 1
)
. (5.5)

Combining (5.5) and (5.2), we get that for all 1 6 i, j 6 d and n, k > 1,

Z
i

n+k(j) =
d∑
r=1

Πi
n+k−1,n(j, r)Zin(r)

+
d∑
r=1

Πi
n+k−1,n(j, r)
M0,n−1(i, r)

Zin(r)∑
l=1

(
Zrl,n,k(j)

Mn,n+k−1(r, j) − 1
)

=
〈
Πi
n+k−1,nZ

i

n, ej
〉

+Rin,k(j), (5.6)

with

Rin,k(j) :=
d∑
r=1

Πi
n+k−1,n(j, r)
M0,n−1(i, r)

Zin(r)∑
l=1

(
Zrl,n,k(j)

Mn,n+k−1(r, j) − 1
)
.

Notice that by the definition of W i
n and that of Πi

∞,n (cf. Lemma 5.2 (1)),

W i
n =

d∑
r=1

Πi
∞,n(j, r)Zin(r) =

〈
Πi
∞,nZ

i

n, ej
〉

(5.7)

for any 1 6 i, j 6 d. Using (5.6) and (5.7), together with the triangular inequality
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in Lp under P, we obtain that for all 1 6 i, j 6 d and n, k > 1,(
E
∣∣Zin+k(j)−W i

∣∣p)1/p

=
(
E
∣∣〈Πi

n+k−1,nZ
i

n, ej
〉
−W i +Rin,k(j)

∣∣p)1/p

=
(
E
∣∣W i

n −W i +
〈
(Πi

n+k−1,n −Πi
∞,n)Zin, ej

〉
+Rin,k(j)

∣∣p)1/p

6
(
E|W i

n −W i|p
)1/p +

(
E‖(Πi

n+k−1,n −Πi
∞,n)Zin‖p

)1/p

+ max
16j6d

(
E|Rin,k(j)|p

)1/p

= J i1(n) + J i2(n, k) + J i3(n, k). (5.8)

In the following C > 0 will be a constant which may depend on p and which may
differ from line to line.

Control of J i1(n). By condition (2.9) and Theorem 2.2 we get that there exists
δ1 ∈ (δc(p), 1) such that for all n > 1 and 1 6 i 6 d,

J i1(n) =
(
E|W i

n −W i|p
)1/p

6 Cδn1 . (5.9)

Control of J i2(n, k). Applying the relation (5.1) of Lemma 5.2, we get that there
exists δ2 ∈ (0, 1) such that for all n, k > 1 and 1 6 i 6 d,

J i2(n, k) =
(
E‖(Πi

n+k−1,n −Πi
∞,n)Zin‖p

)1/p
6 C

(
E‖Zin‖p

)1/p
δk2 . (5.10)

Combining (4.34) and Theorem 2.1, and using condition (2.9), we obtain that, for
all 1 6 i 6 d,

sup
n>0

(
E‖Zin‖p

)1/p
6 d2D2 sup

n>0

(
E(W i

n)p
)1/p

< +∞. (5.11)

This, together with (5.10), implies that for all n, k > 1 and 1 6 i 6 d,

J i2(n, k) 6 Cδk2 . (5.12)

Control of J i3(n, k) for 1 < p 6 2. Assume that 1 < p 6 2. Using the convexity
of the function x 7→ xp (together with

∑d
r=1 Πi

n+k−1,n(j, r) = 1) and Lemma 4.2,
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for all n, k > 1 and 1 6 i, j 6 d, P-a.s., we have

Eξ|Rin,k(j)|p 6 Eξ
( d∑
r=1

Πi
n+k−1,n(j, r)
M0,n−1(i, r)

∣∣∣∣ Z
i
n(r)∑
l=1

(
Zrl,n,k(j)

Mn,n+k−1(r, j) − 1
)∣∣∣∣)p

6 Eξ
( d∑
r=1

Πi
n+k−1,n(j, r)
M0,n−1(i, r)p

∣∣∣∣ Z
i
n(r)∑
l=1

(
Zrl,n,k(j)

Mn,n+k−1(r, j) − 1
)∣∣∣∣p)

6 Bpp

d∑
r=1

Πi
n+k−1,n(j, r)
M0,n−1(i, r)p EξZin(r)Eξ

∣∣∣∣ Zr1,n,k(j)
Mn,n+k−1(r, j) − 1

∣∣∣∣p

= Bpp

d∑
r=1

Πi
n+k−1,n(j, r)M0,n−1(i, r)1−pEξ

∣∣∣∣ Zr1,n,k(j)
Mn,n+k−1(r, j) − 1

∣∣∣∣p
6 Bppσn,k(p) max

16r6d
M0,n−1(i, r)1−p,

where

σn,k(p) = max
16r,j6d

Eξ
∣∣∣∣ Zr1,n,k(j)
Mn,n+k−1(r, j) − 1

∣∣∣∣p.
So, by taking expectation and using the independence between σn,k(p) andM0,n−1,
we get that for all n, k > 1 and 1 6 i 6 d,

J i3(n, k)p 6 BppEσ0,k(p)
d∑
r=1

E
[
M0,n−1(i, r)1−p]. (5.13)

By (5.11) we have

sup
k>0

Eσ0,k(p) 6 d2 max
16r,j6d

sup
k>0

E
∣∣Zrk(j)− 1

∣∣p < +∞. (5.14)

Therefore, putting together the relations (5.13) and (5.14) with Lemma 3.2, we get
that for n, k > 1 and 1 6 i 6 d,

J i3(n, k)p 6 Csup
k>0

Eσ0,k(p)
d∑
r=1

E
[
〈M0,n−1er, ei〉1−p

]
6 Cκ(1− p)n

6 Cδc(p)np (5.15)

(recall that the value of C may change from line to line by our convention).

Control of J i3(n, k) for p > 2. Assume that p > 2. Similar to the preceding case,
by the convexity of x 7→ xp (together with

∑d
r=1 Πi

n+k−1,n(j, r) = 1) and Lemma
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4.2, for all n, k > 1 and 1 6 i, j 6 d, P-a.s.,

Eξ|Rin,k(j)|p 6 Eξ
( d∑
r=1

Πi
n+k−1,n(j, r)
M0,n−1(i, r)

∣∣∣∣ Z
i
n(r)∑
l=1

(
Zrl,n,k(j)

Mn,n+k−1(r, j) − 1
)∣∣∣∣)p

6 Bpp

d∑
r=1

Πi
n+k−1,n(j, r)
M0,n−1(i, r)p Eξ(Zin(r))p/2Eξ

∣∣∣∣ Zr1,n,k(j)
Mn,n+k−1(r, j) − 1

∣∣∣∣p

6 Bppσn,k(p)
d∑
r=1

Πi
n+k−1,n(j, r)Eξ

(
Z
i

n(r)
)p/2

M0,n−1(i, r)−p/2

6 Bppσn,k(p) max
16r6d

{
Eξ
(
Z
i

n(r)
)p/2

M0,n−1(i, r)−p/2
}
. (5.16)

Notice that (5.14) still holds when p > 2. Therefore, taking expectation in (5.16)
and using (5.14), we obtain that for all n, k > 1 and 1 6 i 6 d,

J i3(n, k)p 6 BppEσ0,k(p)
∑

16r6d
E
[
Eξ
(
Z
i

n(r)
)p/2

M0,n−1(i, r)−p/2
]

6 C

d∑
r=1

E
[
Eξ
(
Z
i

n(r)
)p/2

M0,n−1(i, r)−p/2
]
. (5.17)

Using (4.4) in Lemma 4.3 and (1.11), for all n > 1 and 1 6 i, r 6 d, P-a.s., we have

M0,n−1(i, r) > 1
dD
‖M0,n−1(i, ·)‖

>
1
dD
〈M0,n−1(i, ·), Un,∞〉

= 1
dD

λ0,n−1U0,∞(i).

Combining this with (5.17) and (4.34), we get that for p > 2, n, k > 1 and 1 6 i 6 d,

J i3(n, k)p 6 CE
[
Eξ(W i

n)p/2(λ0,n−1U0,∞(i))−p/2
]

= CEain,1(p),

where ain,1(p) is defined in (4.17) with j = 1. This, together with (4.19) (which
holds under condition (2.9)), implies that there exists δ3 ∈ (δc(p), 1) such that for
all n, k > 1 and 1 6 i 6 d,

J i3(n, k)p 6 Cδnp3 . (5.18)

Combining (5.8), (5.9), (5.12), (5.15) and (5.18), we obtain that for all n, k > 1
and 1 6 i, j 6 d, (

E
∣∣Zin+k(j)−W i

∣∣p)1/p
6 C(δn1 + δk2 + δn3 ).
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Applying this inequality with n replaced by bn/2c (the integral part of n/2) and
taking k = n− bn/2c, we see that for all n > 1 and 1 6 i, j 6 d,(

E
∣∣Zin(j)−W i

∣∣p)1/p
6 C(δn/2

1 + δ
n/2
2 + δ

n/2
3 ) 6 Cδn,

with δ = max{δ1/2
1 , δ

1/2
2 , δ

1/2
3 } < 1. Therefore, for any 1 6 i, j 6 d the normalized

population size Zin(j) convergences in Lp to W i with an exponential speed, which
gives (2.11). This concludes the proof of Theorems 2.3 and 2.4.
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