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In this paper we systematically study a recently proposed model of spherically symmetric polymer black/
white holes by Bodendorfer, Mele, and Münch (BMM), which generically possesses five free parameters.
However, we find that, out of these five parameters, only three independent combinations of them are
physical and uniquely determine the local and global properties of the spacetimes. After exploring the
whole 3-dimensional (3D) parameter space, we show that the model has very rich physics, and depending
on the choice of these parameters, various possibilities exist, including: (i) spacetimes that have the
standard black/white hole structures, that is, spacetimes that are free of spacetime curvature singularities
and possess two asymptotically flat regions, which are connected by a transition surface (throat) with a
finite and nonzero geometric radius. The black/white hole masses measured by observers in the two
asymptotically flat regions are all positive, and the surface gravity of the black (white) hole is positive
(negative). In this case, there also exist possibilities in which the two horizons coincide, and the
corresponding surface gravity vanishes identically. (ii) Spacetimes that have wormholelike structures, in
which the two masses measured in the two asymptotically flat regions are all positive, but no horizons exist,
neither a trapped (black hole) horizon nor an anti-trapped (white hole) horizon. (iii) Spacetimes that still
possess curvature singularities, which can be either hidden inside trapped regions or naked. However, such
spacetimes correspond to only some limit cases. In particular, the necessary (but not sufficient) condition is
that at least one of the two “polymerization” parameters vanishes. These results are not in conflict to the
Hawking-Penrose singularity theorems, as the effective energy-momentum tensor, purely geometric and
resulted from the “polymerization” quantization, satisfies none of the three (weak, strong or dominant)
energy conditions in any of the two asymptotically flat regions for any choice of the three independent free
parameters, although they can hold at the throat and/or at the two horizons for some particular choices of
them. In addition, it is true that quantum gravitational effects are mainly concentrated in the region near the
throat, however, in this model even for solar mass black/white holes, such effects can be still very large at
the black/white hole horizons, again depending on the choice of the parameters. Moreover, in principle the
ratio of the two masses (for both of the black/white hole and wormhole spacetimes) can be arbitrarily large.

DOI: 10.1103/PhysRevD.102.124030

I. INTRODUCTION

There are few beacons on the road to the quantum theory
of gravity. Among them singularities in classical general
relativity (GR) are always the key one that any quantum
theory of gravity needs to address properly. It is generally
believed that spacetime singularities can be resolved once
quantum gravity effects are taken into considerations. One

of most successful and heuristic examples is the resolution
of the big bang singularity in cosmology with the use of an
effective tool developed by loop quantum cosmology
(LQC) in the past few years (see, e.g., [1,2]).
Inspired by the remarkable achievements made in LQC,

attempts to extend the approaches developed in LQC to
black hole singularities, the ones inside black hole interiors,
have recently attracted considerable attention in the loop
quantum gravity (LQG) community, see, for example, [3–
36] and references therein (See also [37–39] for a somehow
different approach). Among these studies, most attention
was paid to the Schwarzschild black hole. This is on one
hand because it is the simplest black hole in GR, and on the
other hand it is because the interior of the Schwarzschild
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black hole is isometric to the Kantowski-Sachs cosmologi-
cal model. Actually, it is this similarity that stimulates ones
to borrow similar techniques from LQC to deal with
singularities in the Schwarzschild black hole. In fact, the
Kantowski-Sachs spacetime can be written in the form,

ds2 ¼ −N2
τdτ2 þ

p2
b

jpcjL2
0

dx2 þ jpcjd2Ω; ð1:1Þ

where d2Ω≡ d2θ þ sin2θd2ϕ, and L0 is the length of the
fiducial cell with x ∈ ð0; L0Þ. The quantities b; c; pb and pc
represent the dynamical variables with the commutation
relations,

fc; pcg ¼ 2Gγ; fb; pbg ¼ Gγ; ð1:2Þ

where b and c are the conjugate momenta of the canonical
variables pb and pc, G denotes the Newtonian constant,
and γ the Barbero-Immirzi parameter, arising in the
passage from classical to quantum theory. Its value is
generally fixed to be γ ≃ 0.2375 using black hole entropy
considerations [40]. Choosing (classically) the lapse
function Nτ as

Ncl
τ ¼ γ sgnðpcÞjpcj1=2

b
; ð1:3Þ

the corresponding Hamiltonian is given by

Hcl ¼ −
1

2Gγ

�
2cpc þ

�
bþ γ2

b

�
pb

�
: ð1:4Þ

A key procedure in constructing effective quantum
geometry which solves the classical singularity is the so-
called “polymerization” [41] in the LQG literature, which is
characterized by two quantum parameters δb and δc for
spherical spacetimes [42]. It is related to the fact that in
LQG, there is minimal area gap Δpl, which is nonzero and

given by Δpl ≡ 4
ffiffiffi
3

p
πγl2

Pl, where lPl denotes the Planck
length. The basic idea is that the effective quantum theory
can be achieved by replacing the canonical variables (b, c)
in the phase space with their regularized ones,

b →
sinðδbbÞ

δb
; c →

sinðδccÞ
δc

; ð1:5Þ

where δb and δc are the so-called “polymerization scales,”
which control the onset of quantum effects. With the above
replacement, the effective Hamiltonian is given by [22],

Heff ¼ −
1

2Gγ

�
2
sinðδccÞ

δc
jpcj

þ
�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
pb

�
: ð1:6Þ

Clearly, as δb and δc approach 0, the classical limit is
recovered. When quantum effects are supposed to become
relevant, the above replacement effectively cures the
classical divergence, suggesting that the polymerization
scales are at the Planck one.
However, due to the lack of the full theory of quantum

gravity, a complete route map on the choice of δb and δc is
still absent. In the literature there are many different
choices. Generally speaking they can be divided into the
following three broad classes:

(i) μ0-scheme: In this approach, the two quantum param-
eters δb and δc are simply taken as constants. This is
the case studied, for example, in [3–5,9,25,26].

(ii) Generalized μ0-scheme: In this approach, the quan-
tum parameters δb and δc are considered as the Dirac
observables, i.e., they are phase space variables, but
are constants along the effective trajectories of the
system [14,17,21,22,32].

(iii) μ̄-scheme: In this approach, the two quantum
parameters δb and δc are the phase space functions,
and their functional dependence on the canonical
variables depends on the specific ways to carry out
the quantization, which have been explored in detail
in [6,7,10,11,13,15,16,24].

Table I summarizes these studies. In some of these
schemes, the fiducial structure may appear in the final results
[3–5],while in other approaches, thequantumeffects could be
large even in the semiclassical region [6,10,14,16,17]. See
[32,42–45] for the debates over these issues.
In addition, in classical Hamiltonian mechanics, a

canonical transformation

ðqi; piÞ → ðQi; PiÞ; ð1:7Þ

is always allowed, and does not change the physics of
the system, where Qi ¼ Qiðqk; pk; tÞ, Pi ¼ Piðqk; pk; tÞ,

TABLE I. Three broad classes of the choices of the quantum parameters δb, δc. The parameters α and β are constants with the values
α ¼ 1 or β ¼ 1 or αβ ¼ 1. r0 is the Schwarzschild radius, L0 is the fiducial length to be specified. γ is the Barbero-Immirzi parameter,
Δpl ¼ 4

ffiffiffi
3

p
πγl2pl is LQG area gap. m ¼ GM, where M is the (classical) Schwarzschild black hole mass.

μ0 scheme Generalized μ0 scheme μ̄ scheme

δb; δc ¼ Constant
δb ¼ α

ffiffiffiffiffi
Δpl

p
r0

, δc ¼ β
ffiffiffiffiffi
Δpl

p
L0

δb ¼ ð
ffiffiffiffiffi
Δpl

pffiffiffiffi
2π

p
γ2m

Þ1=3, δc ¼ 1
2
ð γΔ

2
pl

4π2mÞ1=3 δb ¼
ffiffiffiffiffi
Δpl

p
pb

, δc ¼
ffiffiffiffiffi
Δpl

p
pc

δb ¼
ffiffiffiffiffi
Δpl

p
pc

, δc ¼
ffiffiffiffiffiffiffiffiffi
pcΔpl

p
pb

[3–5,9,25,26] [14,17] [21,22,32] [7,10] [6,7,10,11,13,15,16]
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qi ¼ ðb; cÞ, and pi ¼ ðpb; pcÞ [46]. However, the polym-
erization (1.5) depends on the choice of the canonical
variables, and different canonical variables in general lead
to different effective theories. It was exactly along this vein,
Bodendorfer, Mele, and Münch (BMM) considered the
following transformation [47,48],

v1 ≡ 1

24
jpcj3=2; v2 ≡ −

1

8
p2
b; ð1:8Þ

for which the corresponding conjugate momenta are
denoted by P1 and P2, respectively. Then, instead of
Eq. (1.5), now the polymerizations are carried out via
the replacements [47],

P1 →
sinðλ1P1Þ

λ1
; P2 →

sinðλ2P2Þ
λ2

; ð1:9Þ

where λ1 and λ2 play the same role as δb and δc. In this
approach, the polymerization scales (λ1, λ2) are taken as
constants, but as pointed out in [48], this choice of
polymerization scales does not correspond to μ0-scheme
in terms of the variables (b, c), instead, when translated
back to (b, c), they correspond to a specific μ̄-scheme.
It must be noted that the BMM model is based on a

set of new canonical variables (vi, Pi). Although the
canonical transformation (1.7) is always allowed clas-
sically, the corresponding loop quantization has not been
carried out yet in terms of these new variables. As a
result, it is not clear what are relations of such effective
theory [obtained by simply the replacement of Eq. (1.9)]
to LQG. Therefore, to be distinguished with the effec-
tive theory obtained from LQG by taking only the
leading order of quantum corrections into account, we
refer such black holes as polymer black holes.
Additional questions related to this issue can be found
from [3,49].
With the above caveat in mind, in this paper, we shall

systematically study the local and global properties of the
model proposed in [47]. In particular, we find that, out of
the five parameters appearing in the model, only three
independent combinations of them are physically rel-
evant, and uniquely determine the properties of the
spacetimes. In this 3D phase space, there exist regions,
in which the solutions can represent two asymptotically
flat regions connected by a throat with a finite and
nonzero geometric radius, and the masses read off in
these two asymptotically flat regions are all positive. In
such case, a black/white horizon exists or not also
depending on the choice of the three free parameters.
When they do exist, the surface gravity at the black
(white) hole horizon can be positive (negative). When
they do not exist, the spacetimes have wormhole struc-
tures. In all these solutions, spacetime curvature singu-
larities are absent, which does not contradict to the
Hawking-Penrose singularity theorems [50], as now the

effective energy-momentum tensor does not satisfy any of
the three energy conditions in the two asymptotically flat
regions, despite the fact that the masses measured by
observers in these two asymptotical regions are all
positive. This is mainly due to the fact that the relativistic
Komar energy density [51] is still positive in a large
region of the spacetime. The violation of the three energy
conditions in the asymptotically flat regions is a generic
feature of the model, independent of the choice of the
parameters of the solutions. Spacetime curvature singu-
larities can occur, but the necessary (not sufficient)
condition is at least one of the two “polymerization”
parameters vanishes. In addition, although it is true that
quantum gravitational effects are mainly concentrated in
the region near the throat, in this model such effects still
can be very large at the black/white hole horizons even
for solar mass black/white holes, again depending on the
choice of the free parameters. Moreover, in principle the
ratio of the two masses (for both of the black/white hole
and wormhole spacetimes) can be arbitrarily large.
It should be noted that, despite the fact that in this

paper we consider only a particular model, we believe the
main conclusions should hold for more general cases. In
particular, the Schwarzschild solution is the unique
vacuum solution of GR with a single parameter—the
black hole mass, according to the Birkhoff theorem [52].
However, due to the polymerization process, two more
free parameters, δb and δc (or in the present case, λ1 and
λ2), are introduced. So, the resulted spacetimes should be
characterized physically by only three free parameters,
although the two polymerization parameters may be
completely fixed, when the quantization is carried out
explicitly, such as in the case considered in [21,22].
Clearly, in order for this to be consistent with the
Birkhoff theorem, effective matter must be present, purely
due to the quantum geometric effects. In addition, to be
in harmony with the Hawking-Penrose singularity theo-
rems [50], the effective energy-momentum tensor neces-
sarily violates the weak/strong energy conditions.
The rest of the paper is organized as follows: In

Sec. II, we first review the model built in [47] and then
write the corresponding solutions in terms of only three
independent combinations of the original five parameters,
which are denoted by D; C; x0, defined explicitly in
Eq. (2.6). Then, we study the model in detail over the
whole parameter space in Secs. III–V, respectively, for
Δ > 0, Δ ¼ 0, and Δ < 0, as in each case the spacetimes
have quite different properties, where Δ is defined by
Eq. (2.10). The main results in each of these sections are
summarized, respectively, in Tables II–IV. The paper is
ended up in Sec. VI, in which we summarize our main
conclusions. An appendix is also included, in which the
general expressions of the energy density and pressures
of the effective energy-momentum tensor are given
explicitly.
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TABLE II. The main properties of the solutions given by Eqs. (2.7)–(2.10) with Δ > 0 in various cases, where bhH ≡ black hole
horizon, whH ≡ white hole horizon, ECs ≡ energy conditions, SAF ≡ spacetime is asymptotical flat, SCS ≡ spacetime curvature
singularity, and Sch.S ≡ Schwarzschild solution. In addition, “✓” means yes, “✗” means no, while “N/A” means not applicable.

Δ > 0

D > 0 D < 0

Properties
C ≠ 0,
x0 ≠ 0

C ≠ 0,
x0 ¼ 0

C ¼ 0,
x0 ≠ 0

C ¼ x0 ¼ 0
(Sch.S)

C ≠ 0,
x0 ≠ 0

C ≠ 0,
x0 ¼ 0

C ¼ 0,
x0 ≠ 0

C ¼ x0 ¼ 0
(Sch.S)

bhH exists? ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
ECs at bhH Eq. (3.2) ✓ Eq. (3.56) ✓ N/A N/A N/A N/A
whH exists? ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
ECs at whH Eq. (3.2) N/A Eq. (3.56) N/A N/A N/A N/A N/A
Throat exists? ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
ECs at throat Eq. (3.10) C ¼ 2D N/A N/A ✗ ✗ N/A N/A
ECs at x ¼ ∞ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓
Mass at x ¼ ∞ D D D D D D D D
ECs at x ¼ −∞ ✗ N/A (x ≥ 0) ✗ N/A (x ≥ 0) ✗ N/A (x ≥ 0) ✗ N/A (x ≥ 0)
Mass at x ¼ −∞ DC2

x2
0

SAF at x ¼ 0 SCS SCS at x ¼ 0 DC2

x2
0

SAF at x ¼ 0 SCS SCS at x ¼ 0

TABLE III. The main properties of the solutions given by Eqs. (2.7)–(2.10) with Δ ¼ 0, for which we have x�H ¼ 0, and the white and
black hole horizons always coincide. Here bhH ≡ black hole horizon, whH ≡ white hole horizon, ECs ≡ energy conditions, SAF ≡
spacetime is asymptotical flat, and SCS≡ spacetime curvature singularity. In addition, “✓” means yes, “✗” means no, while “N/A”
means not applicable.

Δ ¼ 0

D > 0 D ¼ 0 D < 0

Properties C ≠ 0 C ¼ 0 C ≠ 0 C ¼ 0 C ≠ 0 C ¼ 0

bhH/whH exists? ✓ ✓ ✓ (Minkowski) ✗ ✗
ECs at bhH/whH ✓ ✓ ✗ N/A N/A N/A
Throat exists? ✓ ✗ ✓ N/A ✓ ✗
ECs at throat Eq. (4.9) N/A ✗ N/A ✗ N/A
ECs at x ¼ ∞ ✗ ✗ ✗ N/A ✗ ✗
Mass at x ¼ ∞ D D 0 0 D D
ECs at x ¼ −∞ ✗ ✗ N/A (x ≥ 0) N/A ✗ ✗
Mass at x ¼ −∞ C2

D
SCS (bð−∞Þ ¼ 0) SAF (x ¼ 0) N/A C2

D
SCS (bð−∞Þ ¼ 0)

TABLE IV. The main properties of the solutions given by Eqs. (2.7)–(2.10) with Δ < 0, for which no horizons exist in all these
solutions. Here bhH≡ black hole horizon, whH≡ white hole horizon, ECs≡ energy conditions, SAF≡ spacetime is asymptotical flat,
and SCS ≡ spacetime curvature singularity. In addition, “✓” means yes, “✗” means no, while “N/A” means not applicable.

Δ < 0

D > 0 D ¼ 0 D < 0

Properties Cx0 ≠ 0 C ¼ 0; x0 ≠ 0 x0C ≠ 0 C ¼ 0; x0 ≠ 0 Cx0 ≠ 0, C ¼ 0; x0 ≠ 0

bhH/whH exists? ✗ ✗ ✗ ✗ ✗ ✗
Throat exists? ✓ ✗ ✓ ✗ ✓ ✗
ECs at throat Eq. (5.5) N/A ✗ N/A ✗ N/A
ECs at x ¼ ∞ ✗ ✗ ✗ ✗ ✗ ✗
Mass at x ¼ ∞ D D −x20 −x20 (SAF) D D
ECs at x ¼ −∞ ✗ ✗ ✗ ✗ ✗ ✗
Mass at x ¼ −∞ DC2

x2
0

SCS − C4

x2
0

SCS DC2

x2
0

SCS
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Before proceeding further, we would like to point out
that some solutions of the current model were lately studied
in [53], including their perturbations and the associated
quasinormal modes of massless scalar field perturbations,
electromagnetic perturbations, and axial gravitational
perturbations. In particular, the authors found that the
corresponding quasinormal frequencies of perturbations
with different spins share the same qualitative tendency
with respect to the change of the quantum parameters
involved in this model. For more details, we refer readers
to [53].

II. SPHERICALLY SYMMETRIC POLYMER
BLACK HOLES

Studying spherically symmetric spacetimes inside
black holes, Bodendorfer, Mele, and Münch recently
obtained the following spherically symmetric black hole
solutions [47],

ds̄2 ¼ −
āðxÞ
L2
0

dt̄2 þ L2
0

āðxÞ dx
2 þ b̄2ðxÞdΩ2; ð2:1Þ

where L0 ¼
ffiffiffi
n

p
, x ∈ ð−∞;∞Þ, and

āðxÞ ¼ n

�
λ2ffiffiffi
n

p
�

4
�
1þ nx2

λ22

��
1 −

3CD

2λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nx2

λ2
2

q �

×

�
λ62

16C2λ21n
3

� ffiffiffi
n

p
x

λ2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nx2

λ22

s �
6

þ 1

�
−2=3

×

�
1

3C2Dλ21

�
2=3

� ffiffiffi
n

p
x

λ2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nx2

λ22

s �
2

;

b̄ðxÞ ¼
ffiffiffi
n

p ð3C2Dλ21Þ1=3
λ2

×
½ λ6

2

16C2λ2
1
n3 ð

ffiffi
n

p
x

λ2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nx2

λ2
2

q
Þ6 þ 1�1=3ffiffi

n
p

x
λ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nx2

λ2
2

q ; ð2:2Þ

where λ1; λ2; n; C, and D are real constants with n > 0.
As shown in [47], there are two independent Dirac

observables, FQ and F̄Q, which are constants along the
trajectories of the effective dynamics, and their on-shell
values are given by,

FQ ¼
�
3D
2

�
4=3

�
Cffiffiffi
n

p
�
;

F̄Q ¼ 3CD
ffiffiffi
n

p
λ22

ð3DC2λ21Þ1=3: ð2:3Þ

It can be shown that both of them are invariant under a
fiducial cell rescaling. As a result, the integration constants

C and D are independent. In fact, at the limits, x → �∞,
we have

āðxÞ ∝
(
1 − FQ

b̄
; x → ∞;

1 − F̄Q

b̄
; x → −∞:

ð2:4Þ

Thus, they are essentially related to the black and white
hole masses via the relations,

M̄BH ¼ 1

2
FQ ¼

�
3D
2

�
4=3

�
C

2
ffiffiffi
n

p
�
;

M̄WH ¼ 1

2
F̄Q ¼ 3CD

ffiffiffi
n

p
2λ22

ð3DC2λ21Þ1=3: ð2:5Þ

Introducing the quantities,

D≡ 3CD
2

ffiffiffi
n

p ; C≡ ð16C2λ21Þ1=6; x0 ≡ λ2ffiffiffi
n

p ; ð2:6Þ

we find that the metric (2.1) takes the form,

ds̄2 ¼
�
3D
16

�
2=3

ds2

≡
�
3D
16

�
2=3

�
−aðxÞdt2 þ dx2

aðxÞ þ b2ðxÞdΩ2

�
; ð2:7Þ

with t≡ ð ffiffiffi
n

p
=L0Þð16=3DÞ2=3t̄, and

aðxÞ ¼ ðx2 − ΔÞXY2

ðX þDÞZ2
; bðxÞ ¼ Z

Y
; ð2:8Þ

where

X ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

q
; Y ≡ xþ X;

Z≡ ðY6 þ C6Þ1=3; ð2:9Þ

and

Δ≡D2 − x20 ¼
9C2D2 − 4λ22

4n
: ð2:10Þ

Since ds2 is related to ds̄2 only by a conformal constant
factor ð3D=16Þ2=3,1 without loss of generality, we shall
consider only the spacetimes described by ds2. Then, we
can see that only three independent combinations of the five
parameters λ1; λ2; n; C, and D appear in the metric coef-
ficients, as defined by Eq. (2.6).
It is remarkable to note that in GR, due to the Birkhoff

theorem [52], the black hole mass is the only free
parameter. However, in LQG, due to the polymerizations

1Under this rescaling, the Ricci and Kretschmann scalars are
scaling, respectively, as R¼ð3D=16Þ2=3R̄ andK ¼ ð3D=16Þ4=3K̄.
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(1.9), two new parameters λ1 and λ2 are introduced, so now
the solutions generically depend on three free parameters.
When setting λ1 ¼ λ2 ¼ 0 (or C ¼ x0 ¼ 0), the above
solutions reduce precisely to the Schwarzschild solution
with D as the black hole mass.
One of our goals in this paper is to understand their

physical and geometrical meanings. To this goal, let us first
note the following:

(i) Since x ∈ ð−∞;∞Þ, from Eq. (2.9) we find that

X ≥ x0; Y > 0; Z > C2: ð2:11Þ
(ii) In [47,48] it was assumed that

D > 0; Δ > 0; ð2:12Þ
so that two metric horizons always exist at x�H≡
� ffiffiffiffi

Δ
p

, and the asymptotic limits of Eq. (2.4) are
always true (See also [53]).

(iii) The solutions were initially derived only in the region
−x−H < x < xþH, in which the spacetime is homo-
geneous, and the Killing vector ξ≡ ∂t is spacelike.
The horizon at x ¼ xþH is referred to as the black hole
horizon, while the one at x ¼ x−H is referred to as the
white hole horizon, although in between them, no
spacetime singularities exist at all [21,22]. However,
following the standard process of extensions, one can
easily extend the solutions beyond these horizons
to the regions jxj > ffiffiffiffi

Δ
p

. In the extended regions
x < x−H and x > xþH, the metrics will take the same
form as that given by Eqs. (2.7)–(2.9), but now the
Killing vector ∂t becomes timelike.

In this paper, we shall not impose the conditions (2.12),
except that we still assume that C and D are real. In
particular, since C;D; n; λ1, and λ2 are arbitrary constants,
in principle, they can take any real values. However, since
ds2 ¼ ð3D=16Þ2=3ds̄2, we shall assume that D ¼ 0 holds
only in the limiting sense. In addition, the two constants λ1
and λ2 originate from the polymerization (1.9), so we also
assume that λ1λ2 ≠ 0, and consider the case λ1λ2 ¼ 0 only
as some limit cases, as to be explained explicitly below.
Recall that we also assumed n > 0 in order to have the
metric be real.
Then, the geometric radius bðxÞ and the ranges of x all

depend on the choices of the two parameters x0 and C,
which are shown explicitly in Fig. 1. In particular, when
Cx0 ≠ 0, we find that x ∈ ð−∞;∞Þ, and a minimal point
(the throat) of bðxÞ always exists, with bð�∞Þ ¼ ∞, as
shown by the upper panel of Fig. 1. When C ≠ 0, x0 ¼ 0,
the range of x is restricted to x ∈ ð0;∞Þwith bð0Þ ¼ ∞ and
bð∞Þ ¼ ∞. In this case, a minimum (throat) of bðxÞ also
exists, as shown explicitly in the middle panel of Fig. 1].
When C ¼ 0, x0 ≠ 0, the range of x is x ∈ ð−∞;∞Þ, but
now bðxÞ is a monotonically increasing function of x with
bð−∞Þ ¼ 0 and bð∞Þ ¼ ∞, and a throat does not exists
[cf. the bottom panel of Fig. 1].

In this paper, we shall study the main properties of
these spherical polymer black hole solutions. In particular,
we shall pay particular attention to the locations of the
throat and horizons, and the asymptotic behaviors of the
spacetimes.

4 2 2 4
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(b)
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(c)

FIG. 1. The geometric radius bðxÞ vs x. (a) Upper panel:
Cx0 ≠ 0. When plotting this curve, we had set x0 ¼ 1, C ¼ 1.
(b) Middle panel: C ≠ 0, x0 ¼ 0. When plotting this curve, we
had set C ¼ 2. (c) Bottom panel: C ¼ 0, x0 ≠ 0. When plotting
this curve, we had set x0 ¼ 1.

GAN, SANTOS, SHU, and WANG PHYS. REV. D 102, 124030 (2020)

124030-6



To these purposes, let us first notice that the effective
energy-momentum tensor Tμν, defined as Tμν ≡ κ−1Gμν,
can be cast in the form,

Tμν ¼ ρuμuν þ prvμvν þ pθðθμθν þ ϕμϕνÞ; ð2:13Þ

where

uþμ ¼ −a1=2ðxÞδtμ; vþμ ¼ a−1=2ðxÞδxμ;
θμ ¼ b1=2ðxÞδθμ; ϕμ ¼ b1=2ðxÞ sin θδϕμ ; ða > 0Þ;

ð2:14Þ

and

κρþ ¼ −
1

b2
½bðxÞð2ab00 þ a0b0Þ þ ab02 − 1�;

κpþ
r ¼ 1

b2
½ba0b0 þ ab02 − 1�;

κpθ ¼
1

2b
½ba00 þ 2ab00 þ 2a0b0�; ða > 0Þ; ð2:15Þ

with κ ≡ 8πG=c4, a0 ≡ daðxÞ=dx, and so on.
It should be noted that in writing down Eqs. (2.14) and

(2.15) we had assumed that aðxÞ > 0, as already indicated
in these equations, so the coordinate t is timelike. However,
if a (black/white) horizon exists, across this horizon aðxÞ
becomes negative, and the two coordinates t and x
exchange their roles. Then, in the region aðxÞ < 0, the
effective energy-momentum tensor can be still cast in the
form (2.13), but now with

u−μ ¼ jaj−1=2δxμ; v−μ ¼ −jaj1=2δtμ;

κρ− ¼ −
1

b2
½ba0b0 þ ab02 − 1�; ða < 0Þ;

κp−
r ¼ 1

b2
½bðxÞð2ab00 þ a0b0Þ þ ab02 − 1�; ð2:16Þ

while θμ;ϕμ, and pθ are still given by Eqs. (2.14) and
(2.15).
It should be also noted that, although the effective

energy-momentum tensor in both of the regions a > 0
and a < 0 is written in the same form given by Eq. (2.13),
the physical interpretations of the quantities ρ� and p�

r are
different. In particular, the energy density ρþ in the region
a > 0 is measured by the observers who are moving along
dt-direction, while their x, θ and ϕ coordinates are fixed.
The quantity pþ

r is the principal pressure along the dx-
direction measured by these observers. On the other hand,
the energy density ρ− in the region a < 0 is measured by
the observers who are moving along dx-direction, while
their t, θ, and ϕ coordinates are fixed. In addition, the
quantity p−

r now is the principal pressure along the
dt-direction. Thus, in general such defined ρ� and p�

r

are not continuous across the horizons. One way to avoid
such discontinuities is to adopt the Eddington-Finkelstein
coordinates, and then define a new set of observers, with
respect to whom the energy density and principal pressure
along the radial direction are continuous across these
horizons. However, since in this paper we are mainly
concerned with the energy conditions of “the effec-
tive (quantum) matter”,2 the current considerations are
sufficient.
In addition, although this effective energy-momentum

tensor is purely due to the polymerization (1.9), and is not
related to any real matter fields, it does provide important
information on how the spacetime singularity is avoided,
and the deviation of the spacetimes from the classical one,
as in GR the geometry is uniquely determined by the
Schwarzschild spacetime, in which the spacetime is vac-
uum, and a spacetime curvature singularity is always
present at the center of the black hole. In fact, this kind
of singularities inevitably occurs in GR, as longer as the
corresponding matter fields satisfy some energy conditions,
as follows directly from the Hawking-Penrose singularity
theorems [50].
The commonly used three energy conditions are the

weak, dominant, and strong energy conditions [50]. For
Tμν given by Eq. (2.13), they can be expressed as follows:
The weak energy condition (WEC) is satisfied, when

ðiÞ ρ ≥ 0; ðiiÞ ρþ pr ≥ 0; ðiiiÞ ρþ pθ ≥ 0;

ð2:17Þ

while the dominant energy condition (DEC) is satisfied,
provided that

ðiÞ ρ ≥ 0; ðiiÞ − ρ ≤ pr ≤ ρ; ðiiiÞ − ρ ≤ pθ ≤ ρ:

ð2:18Þ

The strong energy condition (SEC) requires,

ðiÞ ρþ pr ≥ 0; ðiiÞ ρþ pθ ≥ 0;

ðiiiÞ ρþ pr þ 2pθ ≥ 0: ð2:19Þ

Moreover, without causing any confusions, in the rest of
this paper we shall absorb κ into ρ; pr and pθ, i.e.,

2As mentioned above, the BMM model has not been obtained
from quantizations of gravity yet, but rather obtained by simply
applying the “polymerization” (1.9) to the corresponding
classical Hamiltonian. So, it is not clear whether these effects
are indeed due to quantizations of gravity or not. In the rest of this
paper, whenever we mention “quantum gravitational effects” or
“quantum geometric effects” of this model, we always understand
them as “polymerization effects” without any further explan-
ations. In the same sense, the expression “quantum black holes”
of this model really means polymer black holes.
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κðρ; pr; pθÞ → ðρ; pr; pθÞ: ð2:20Þ

To study these solutions in more details, let us consider the
cases Δ > 0, Δ ¼ 0 andΔ < 0, separately, in the following
three sections.

III. SPACETIMES WITH Δ > 0

From Eq. (2.10) we find that this case corresponds to

jλ2j <
3

2
jCDj: ð3:1Þ

However, depending on the choice of the integration
constants C and D, there are still the possibilities,
D > 0, and D < 0, provided that Δ ¼ D2 − x20 > 0. In
each of these cases, the physics of the corresponding
solutions is quite different, so in the following let us
consider them case by case.

A. D > 0

In this case, we have CD > 0, and Δ ¼ D2 − x20 > 0

implies,

β≡ D
jx0j

> 1: ð3:2Þ

Then, we find that there are two asymptotically flat regions,
corresponding to x → �∞, respectively. They are con-
nected by a throat located at

bm ≡ 21=3C; xm ¼ 1

2C
ðC2 − x20Þ; ð3:3Þ

where bm ≡ bðx ¼ xmÞ and b0ðx ¼ xmÞ ¼ 0 [cf. Fig. 1(a)].
It is interesting to note that xm can be positive, zero or
negative, depending on the choice of the two parameters C
and x0 (or λ1; λ2; n and C).
On the other hand, in the current case the white and black

hole horizons always exist, and are located, respectively, at

x�H ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − x20

q
: ð3:4Þ

Clearly, there exist the possibilities in which jxmj ≤ xþH, or
jxmj > xþH. When jxmj ≤ xþH, the throat is located in the
region between the black and white hole horizons, in which
we have aðxÞ ≤ 0, so the corresponding energy density and
radial principal pressure in the region containing the throat
are given by ρ− and p−

r . When jxmj > xþH, the throat is
located in the region where aðxÞ > 0, so the corresponding
energy density and radial principal pressure at the throat are
given by ρþ and pþ

r , respectively.

1. x−
H ≤ xm ≤ x+

H

In this case, we find that jxmj ≤ xþH implies

ðiÞ α ¼ 1; or ð3:5Þ

ðiiÞ β ≥ 1þ ðα − 1Þ2
2α

; ð3:6Þ

where α≡ C=jx0j > 0. Since now the throat is located
inside the black hole horizon, in which we have aðxÞ < 0,
we need to use Eq. (2.16) to calculate the effective energy
density ρ and pressure pr at the throat, and find that

ρ ¼ 1

22=3C2
;

pr ¼ −
Cð12D − 5CÞ − 5x20
22=3C2ðx20 þ C2Þ ;

pθ ¼
ðx20 þ C2Þ3 − 4Dx20C

3

22=3C2ðx20 þ C2Þ3 : ð3:7Þ

Then, we find that at the throat WEC is satisfied for

ðaÞ β ≤ 1þ ðα − 1Þ2
2α

; or ð3:8Þ

ðbÞ β ≤
1

2
α: ð3:9Þ

Combining Eqs. (3.5)–(3.6) with Eqs. (3.8)–(3.9) and
considering Eq. (3.2), we find that their common solutions
are

β ¼ 1þ ðα − 1Þ2
2α

; α ≠ 1; ð3:10Þ

which leads to xm ¼ xþH.
On the other hand, SEC is also satisfied in the domain

given by Eq. (3.10), while DEC requires

ðaÞ 0 < α < 2β; β ≤
α2 þ 1

2α
≤
3

2
β; or ð3:11Þ

ðbÞ 2β ≤ α < 3β; β ≥
1þ α2

3α
: ð3:12Þ

Combining Eqs. (3.5)–(3.6) with Eqs. (3.11)–(3.12), we
find that their common solution is also given by Eq. (3.10).
Therefore, at the throat none of the three energy con-

ditions is satisfied, except for the case in which the throat
coincides with the black hole horizon, xm ¼ xþH, which is a
direct result of the condition Eq. (3.10). In Fig. 2, we show
this case, from which one can see that the three energy
conditions are satisfied indeed only at the throat. In Fig. 3,
we show the case that does not satisfy the condition
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FIG. 2. Case Δ > 0;D > 0; jxmj < xþH; β ¼ 1þ ðα−1Þ2
2α ; α ≠ 1:

The physical quantities, ρ, ðρþ prÞ, ðρ − prÞ, ðρþ pθÞ,
ðρ − pθÞ, and ðρþ pr þ 2pθÞ, represented, respectively, by
Curves 1–6, vs x: When plotting these curves, we had set
α ¼ 2, β ¼ 5=4, x0 ¼ 1, so that the condition (3.10) is satisfied,
for which we have xm ¼ xþH ¼ −x−H ¼ 0.75. Panel (a): the
physical quantities in the region between the white and black
horizons, x−H ≤ x ≤ xþH . Panel (b): the physical quantities in the
region outside the black horizon, x ≥ xþH ¼ 0.75. Panel (c): the
physical quantities in the region outside the white horizon,
x ≤ x−H ¼ −0.75.
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FIG. 3. Case Δ > 0;D > 0; jxmj < xþH; β ≠ 1þ ðα−1Þ2
2α : The

physical quantities, ρ, ðρþ prÞ, ðρ − prÞ, ðρþ pθÞ, ðρ − pθÞ,
and ðρþ pr þ 2pθÞ, represented, respectively, by Curves 1–6, vs
x: When plotting these curves, we had set α ¼ 1, β ¼ 2, x0 ¼ 1,
x�H ¼ � ffiffiffi

3
p

, xm ¼ 0. None of the three energy conditions is
satisfied at the throat, although all of them are satisfied at the two
horizons x ¼ x�H . Panel (a): the physical quantities in the region
between the white and black horizons, x−H ≤ x ≤ xþH . Panel (b):
the physical quantities in the region outside the black horizon,
x ≥ xþH ¼ ffiffiffi

3
p

. Panel (c): the physical quantities in the region
outside the white horizon, x ≤ x−H ¼ −

ffiffiffi
3

p
.
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Eq. (3.10), from which one can see that none of the three energy conditions is satisfied at the throat (xm ¼ 0).
In addition, if we consider the limit to the black hole horizon from outside of it, then we have ρ ¼ ρþ and pr ¼ pþ

r , and
the energy density and pressures are given, respectively, by

ρ ¼ −pr ¼ −
Y3

XZ8
½ð32D5C6 þ 10Dx100 − 160D3x80 þ 672D5x60 − 1024D7x40 þ 2Dx40C

6 þ 512D9x20

− 24D3x20C
6Þ

ffiffiffiffi
Δ

p
þ 32D6C6 − x120 þ 50D2x100 − 400D4x80 þ 1120D6x60 − 1280D8x40 þ 10D2x40C

6

þ 512D10x20 − 40D4x20C
6 þ C12�; ð3:13Þ

pθ ¼
Y2

2X2Z8
½ð128D7C6 þ 2DC12 þ 10Dx120 − 160D3x100 þ 672D5x80 − 1024D7x60 − 12Dx60C

6

þ 512D9x40 þ 88D3x40C
6 − 192D5x20C

6Þ
ffiffiffiffi
Δ

p
þ 128D8C6 þ 2D2C12 − x140 þ 50D2x120

− 400D4x100 þ 1120D6x80 þ 2x80C
6 − 1280D8x60 − 40D2x60C

6 þ 512D10x40 þ 168D4x40C
6

− 256D6x20C
6 − x20C

12�: ð3:14Þ

It can be shown that each of the three energy conditions is satisfied provided that β > 1, which is precisely the condition
Δ > 0, as shown in Eq. (3.2). In addition, the surface gravity of the black hole is given by,

κBH ≡ 1

2
a0ðx ¼

ffiffiffiffi
Δ

p
Þ ¼ Y2jx0j7

2Z5
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

q
ð32β6 − 48β4 þ 18β2 − 1þ α6Þ þ 2βð16β6 − 32β4 þ 19β2 − 3Þ�; ð3:15Þ

which is also always positive for β > 1.
At the white hole horizon ðx ¼ −

ffiffiffiffi
Δ

p Þ, taking the limit from the outside of it, so that ρ ¼ ρþ and pr ¼ pþ
r , we find that

ρ ¼ −pr ¼ −
Y

DZ8
ð½128D7C6 þ 2DC12 − 12Dx120 þ 280D3x100 − 1792D5x80

þ 4608D7x60 − 2Dx60C
6 − 5120D9x40 þ 48D3x40C

6 þ 2048D11x20 − 160D5x20C
6�

ffiffiffiffi
Δ

p
− 128D8C6

− 2D2C12 − x140 þ 72D2x120 − 840D4x100 þ 3584D6x80 − 6912D8x60 þ 14D2x60C
6 þ 6144D10x40

− 112D4x40C
6 − 2048D12x20 þ 224D6x20C

6 þ x20C
12Þ;

pθ ¼
Y2

2D2Z8
ð½128D7C6 þ 2DC12 þ 10Dx120 − 160D3x100 þ 672D5x80 − 1024D7x60 − 12Dx60C

6

þ 512D9x40 þ 88D3x40C
6 − 192D5x20C

6�
ffiffiffiffi
Δ

p
− 128D8C6 − 2D2C12 þ x140 − 50D2x120 þ 400D4x100

− 1120D6x80 − 2x80C
6 þ 1280D8x60 þ 40D2x60C

6 − 512D10x40 − 168D4x40C
6 þ 256D6x20C

6 þ x20C
12Þ: ð3:16Þ

It can be shown that for β > 1, all the three energy conditions are satisfied at the white hole horizon. Moreover, at this
white hole horizon, the surface gravity is given by,

κWH ≡ 1

2
a0ðx ¼ −

ffiffiffiffi
Δ

p
Þ

¼ −
Y2

2Z5
× ½ð32D6 − x60 þ 18D2x40 − 48D4x20 þ C6Þ

ffiffiffiffi
Δ

p
− 32D7 þ 6Dx60 − 38D3x40 þ 64D5x20�; ð3:17Þ

which is always negative when the condition (3.2) holds.
In Figs. 2 and 3, we also show the physical quantities near the two horizons, and find that all the three energy conditions

are indeed satisfied at these horizons, no matter whether Eq. (3.10) is satisfied or not. From these figures we can see that
ρþ pr is the key quantity to determine the energy conditions. In particular, it is zero only at the two horizons and negative at
other locations. Thus, the energy conditions are normally satisfied only at horizons. To show this more clearly, we plot
ρþ pr vs x and the parameter C in Fig. 4, from which we can see that even with different choices of the free parameter,
ρþ pr is non-negative only on the two horizons.

GAN, SANTOS, SHU, and WANG PHYS. REV. D 102, 124030 (2020)

124030-10



In addition, as x → �∞, we find that

ρðxÞ ¼
8<
:

Dx2
0

8x5
þOðϵ6Þ; x → ∞;

− Dx6
0

8x5C4 þOðϵ6Þ; x → −∞;

prðxÞ ¼
8<
:

− x2
0

4x4 þ
Dx2

0

8x5
þOðϵ6Þ; x → ∞;

− x6
0

4x4C4 −
Dx6

0

8x5C4 þOðϵ6Þ; x → −∞;

pθðxÞ ¼
8<
:

x2
0

4x4 −
Dx2

0

4x5
; x → ∞;

x6
0

4x4C4 þ
Dx6

0

4x5C4 þOðϵ6Þ; x → −∞;
ð3:18Þ

where ϵ≡ 1=jxj. Thus, in these two asymptotically flat
regions, none of these three energy conditions holds. On the
other hand, at these limits, we also have,

aðxÞ ¼
8<
:

1
4

�
1 − 2D

b

�
þOðϵ2Þ; x → ∞;

x4
0

4C4

�
1 − ð2DC2=x2

0
Þ

b

�
þOðϵ2Þ; x → −∞;

bðxÞ ≃
	
2x; x → ∞;

−2ðC2=x20Þx; x → −∞;
ð3:19Þ

from which we find that the masses of the black and white
holes are given, respectively, by

MBH ¼ D; MWH ¼ DC2

x20
: ð3:20Þ

To study the quantum gravitational effects further, let us
turn to consider the Ricci scalar R and the relative differ-
ence ΔK of the Kretschmann scalar, defined by

ΔK≡K −KGR

KGR ; ð3:21Þ

where KGR denotes the Kretschmann scalar of the
Schwarzschild solution, given by,

KGR ≡ RαβμνRαβμν ¼
8<
:

48M2
BH

b6ðxÞ ; x > xm;

48M2
WH

b6ðxÞ ; x < xm:
ð3:22Þ

In GR, we have RGR ¼ 0, But due to the quantum geo-
metric effects, clearly now we have R ≠ 0. Therefore, both
quantities, R and ΔK, will describe the deviations of the
quantum black holes from the classical one. Before
proceeding further, we would like to point out that
Eqs. (3.21) and (3.22) are applicable when the two horizons

FIG. 4. The physical quantity ðρþ prÞ vs the radial coordinate x and the parameter C: (a) outside the black hole horizon; (b) inside the
black hole horizon; (c) outside the white hole horizon; and (d) inside the white hole horizon. Graphs are plotted with x0 ¼ 1;D ¼ 10, for
which the horizons are at x�H ≈�10.
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and asymptotic regions exist. In some particular cases, this
is not true, and a proper modification for ΔK is needed, as
to be shown below.
In addition, another important quantity is the scalar

CμναβCμναβ ¼ K2 þ 1

3
R2 − 2RμνRμν; ð3:23Þ

where Cμναβ denotes the Weyl tensor. However, for the sake
of simplicity, in the following we shall consider only the
quantities ΔK and R, which are sufficient for our current
purpose.
In Fig. 5, the quantitiesR andΔK are plotted in the region

between the two horizons (x�H ¼ �0.75 × 106), from which
it can be seen that the deviation from GR are still large near
these two horizons, although the curvature decays rapidly
when away from them in both directions. In particular, for
MBH ¼ 2 × 106MPl and MWH ¼ 32 × 106MPl, near the
horizons we find that RðxþHÞ ≲ 10−13; Rðx−HÞ ≲ 10−14, and
jΔKðxþHÞj ≲ 0.50, jΔKðx−HÞj ≲ 0.65, respectively. This is
because now the throat coincideswith the black hole horizon
(xm ¼ xþH ¼ 0.75 × 106), and to keep the throat open, the
quantum effects at this point must be strong enough.
In Fig. 6, we plot R and ΔK in the region that covers

the throat (xm ¼ 0) as well as the two horizons (x�H ¼
� ffiffiffi

3
p

× 1038). Thus, in the current case the throat is located
far away from both of the two horizons. But, the devia-
tions of the curvature near the two horizons are still large.

(a)

(b)

(c)

FIG. 5. Case Δ > 0;D > 0; jxmj ≤ xþH; β ¼ 1þ ðα−1Þ2
2α ; α ≠ 1:

The quantities R and ΔK vs x. Here we choose
C ¼ 2 × 106; x0 ¼ 106;D ¼ 5

4
× 106, for which the horizons

are located at x�H ¼ �0.75 × 106, and the throat is at xm ¼ xþH,
while the black and white hole masses are MBH ¼ 5

4
× 106MPl

and MWH ¼ 5 × 106MPl, respectively.

(a)

(b)

FIG. 6. Case Δ > 0;D > 0; jxmj < xþH; β ≠ 1þ ðα−1Þ2
2α : The

quantities R and ΔK vs x. Here we choose C ¼ 1038; x0 ¼ 1038;
D ¼ 2 × 1038, for which the horizons are located at x�H ¼
� ffiffiffi

3
p

× 1038, and the throat is at xm ¼ 0, while the black and
white hole masses are MBH ¼ 2 × 1038MPl and MWH ¼
2 × 1038MPl, respectively.
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In particular, we find that RðxþHÞ ≲ 10−76; Rðx−HÞ ≲ 10−76,
and jΔKðxþHÞj ≲ 0.2 and jΔKðx−HÞj≲ 0.2 for solar mass
MBH ¼ 2 × 1038MPl and MWH ¼ 2 × 1038MPl. Therefore,
in the current model the quantum gravitational effects can
be still large near the horizons even for astrophysical black
holes. More detailed analyses show that this is due to the
fact that in the current case both x0 and C are large
(x0 ¼ C ¼ 1038). Since large x0 and C implies large λ1

and λ2, as one can see from the relations C≡ ð16C2λ21Þ1=6
and x0 ≡ λ2ffiffi

n
p . As mentioned above, the two parameters λ1,

λ2 control quantum gravitational corrections. In particular,
large λ1 and λ2 will lead to large quantum effects.
Therefore, to have negligible quantum gravitational

effects, we must consider the cases where λ1 and λ2 are
effectively small. In Fig. 7, we plot R and ΔK in the region
between the two horizons for C ¼ 1; x0 ¼ 1;D ¼ 2 × 106,

(a) (b)

(c) (d)

(e) (f)

FIG. 7. CaseΔ > 0;D > 0; jxmj ≤ xþH; β ≠ 1þ ðα−1Þ2
2α : The quantities R andΔK vs x. Here we choose C ¼ 1; x0 ¼ 1;D ¼ 2 × 106, for

which the throat is at xm ¼ 0 and the black/white hole horizons are located at x�H ≈�2 × 106, respectively. The black and white hole
masses are MBH ¼ MWH ¼ 2 × 106MPl.
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for which the horizons are located at x�H ≈�2 × 106, and
the throat is at xm ¼ 0, while the black and white hole
masses are MBH ¼ MWH ¼ 2 × 106MPl. From this figure
we can see that now the deviations from GR decays rapidly
when away from the throat in both directions, and near the
two horizons the quantum effects already become
extremely small. In fact, near the two horizons now we
find that RðxþHÞ≲ 10−25; Rðx−HÞ ≲ 10−25, and jΔKðxþHÞj ≲
10−13 and jΔKðx−HÞj≲ 10−13. Therefore, in the current

case, the quantum gravitational effects are mainly concen-
trated in the neighborhood of the throat.
On the other hand, in Fig. 8we plotR andΔK in the region

between the twohorizons forC ¼ 10−6; x0 ¼ 1;D ¼ 106, for
which the horizons are located at x�H ≈�106, and the throat is
at xm ≈ − 1

2
× 106, while the black and white hole masses are

MBH ¼ 106MPl, MWH ¼ 10−6MPl, respectively. From this
figure we can see that now the deviations from GR decays
rapidly when away from the throat only in the black hole

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Case Δ > 0;D > 0; jxmj ≤ xþH; β ≠ 1þ ðα−1Þ2
2α : The quantities R and ΔK vs x. Here we choose C ¼ 10−6; x0 ¼ 1;D ¼ 106, for

which the throat is at xm ≈ − 1
2
× 106 and the black/white hole horizons are located at x�H ≈�106, respectively. The black and white hole

masses are MBH ¼ 106MPl, MWH ¼ 10−6MPl.
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direction, that is, only for x > xþH, and near the white hole
horizon the quantum effects become very large again. In
fact, near the two horizons now we find that RðxþHÞ≲
10−25; Rðx−HÞ ≃ 1010, and jΔKðxþHÞj≲10−12 and jΔKðx−HÞj≃
0.05. Thus, in the current case the quantum gravitational
effects are negligible only at the black hole horizon but still
very large at thewhite hole horizon. This is due to the fact that
the throat is now very close to the white hole horizon.
The above examples show clearly that, depending on the

values of the three free parameters C;D; x0 (or D; λ1; λ2),
quantum gravitational effects can be large, even for the
cases in which the black/white hole masses are of order of
solar masses. In particular, near the two horizons x ¼ x�H,
we find

R ¼

8>><
>>:

− x6
0

D2ð2Dð
ffiffiffiffiffiffiffiffiffiffi
D2−x2

0

p
−DÞþx2

0
ÞRþ

H

; x ¼ xþH;

x6
0

D2ð2DðDþ
ffiffiffiffiffiffiffiffiffiffi
D2−x2

0

p
Þ−x2

0
ÞR−

H

; x ¼ x−H;
ð3:24Þ

where R�
H ≡ ððD�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − x20

p
Þ6 þ C6Þ2=3. Thus, for

D ≫ jx0j, we have

R ≃

8<
:

4x2
0

½ð2DÞ6þC6�2=3 ; x ¼ xþH;

x6
0

4D4C4 ; x ¼ x−H:
ð3:25Þ

Therefore, to have the effects negligibly small near the two
horizons, we must require

C ≳ jx0j; D ≫ jx0j: ð3:26Þ

On the other hand, as x → �∞, we find that

R ≃

8<
:

− x2
0

4x4 þ
Dx2

0

2x5
þOðϵ6Þ; x → ∞;

− x6
0

4x4C4 −
Dx6

0

2x5C4
þOðϵ6Þ; x → −∞;

ð3:27Þ

and

ΔK ≃

8<
:

− 4x2
0

3MBHx
þOðϵ2Þ; x → ∞;

þ 4C2
3MWHx

þOðϵ2Þ; x → −∞;
ð3:28Þ

where MBH and MWH are given by Eq. (3.20). Then, we
have jΔKþ=ΔK−j ¼ 1þOðϵ2Þ, as jxj → ∞. That is,
whether MWH ≫ MBH or not, jΔKþj will always have
the same asymptotic magnitude as jΔK−j, and both of them
approach their GR limits as Oð1=jxjÞ.
Therefore, in the present case we find the following:
(i) The throat is always located in the region between

the black and white hole horizons, x−H ≤ xm ≤ xþH,
and each of the three energy conditions, WEC, DEC,
and SEC, is satisfied at the throat only in the case

where the condition (3.10) holds. In this case the
quantum gravitational effects are always large at the
black hole horizon x ¼ xþH. This is expected, as at
the throat the quantum effects need to be strong, in
order to keep the throat open, and when the con-
dition (3.10) is satisfied, the black hole horizon
always coincides with the throat, xm ¼ xþH.

(ii) Even the condition (3.10) does not hold, and the
throat is far from both of the white and black hole
horizons, that is, jxmj ≪ jx�Hj, the quantum gravita-
tional effects can be still large at the two horizons,
including the cases in which both of the white and
black hole masses are large, MBH;MWH ≫ 106MPl.
Only in the case where the conditions (3.26) hold,
can the effects become negligible at the two
horizons.

(iii) In general, none of the three energy conditions is
satisfied in the neighborhoods of the white and
black hole horizons, x ¼ x�H, except precisely at
these two surfaces. However, the surface gravity at
the black (white) hole horizon is always positive
(negative), as now the condition ρþ pr þ 2pθ > 0
is still satisfied in the most part of the spacetime
[51], as can be seen from Figs. 2 and 3. So, the
trapped region (x−H < x < xþH) is still attractive to
observers outside of it.

(iv) In the two asymptotically flat regions x → �∞, for
which the geometrical radius becomes infinitely
large, bð�∞Þ ¼ ∞, none of the three energy con-
ditions is satisfied.

(v) The black and white hole masses read off from these
two asymptotically flat regions are given by
Eq. (3.20), which are always positive, no matter
the condition (3.10) is satisfied or not. Again, this is
because the relativistic Komar mass density ρþ
pr þ 2pθ is still positive in a large part of the
spacetime. As a result, the total masses of the
spacetime read off at the two asymptotically flat
region are positive.

It should be noted that the absence of spacetime
singularities in this case does not contradict to the
Hawking-Penrose singularity theorems [50], as now none
of the three energy conditions is satisfied in the two
asymptotically flat regions, including the case in which
the condition (3.10) holds, as shown in the above explicitly.

2. jxmj > x+
H

Now, let us turn to consider the case jxmj > xþH, which
implies that

β < 1þ ðα − 1Þ2
2α

: ð3:29Þ

In this case, since the throat is located in the region where
aðxÞ > 0, then at the throat we have ρ ¼ ρþ and pr ¼ pþ

r .
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Hence, from Eq. (2.15) we find that the effective energy
density ρ and pressures pr and pθ at the throat are given by

ρ ¼ Cð12D − 5CÞ − 5x20
22=3C2ðx20 þ C2Þ ;

pr ¼ −
1

22=3C2
;

pθ ¼
ðx20 þ C2Þ3 − 4Dx20C

3

22=3C2ðx20 þ C2Þ3 : ð3:30Þ

From these expressions, we find that in the 3D parameter
space, WEC is satisfied when,

β ≥ 1þ ðα − 1Þ2
2α

; and β >
1

2
α: ð3:31Þ

Clearly, these conditions contradict to the condition
jxmj > xþH, as it can be seen from Eq. (3.29). Therefore,
in the current case WEC is always violated at the throat. In
addition, for ρ; pr and pθ given by Eq. (3.30), we also find
that neither DEC nor SEC is satisfied, after the conditions
(3.29) are taken into account. Therefore, in the current case,
none of the three energy conditions is satisfied at the
throat.
On the other hand, following the analyses provided in

the last subsection, it can be also shown that in the
current case the following is true: (i) All the three energy
conditions are not satisfied generically in the regions
near the black hole and white hole horizons in the whole
3D phase space. But, the surface gravity at the black
(white) hole horizon can be still positive (negative), as
the relativistic Komar mass density can be still positive
over a large region of the spacetime, so that its
integration over the 3D spatial space can be positive,R
V ðρþ pr þ 2pθÞdV > 0. (ii) In the two asymptotically
flat regions x → �∞, none of the three energy conditions
is satisfied for any given values of C, D and x0, as longer
as the condition (3.2) holds, which is resulted from the
condition Δ > 0. (iii) The black/white hole masses are
also given by Eq. (3.20), which are all positive in the
current case, too. (iv) The quantum effects are mainly
concentrated near the throat. Since now the throat is
always located either outside the black hole horizon
(xm > xþH) or outside the white hole horizon
(xm < x−H), the quantum effects can be large near the
two horizons, even for the cases where the white/black
hole masses are of order of solar masses.
It should be noted that the above analysis is not valid for

the limit cases x0 → 0 and C → 0. So, in the following, let
us consider these particular cases, separately.

3. x0 = 0, C ≠ 0

If we assume that λ2 ≠ 0, from Eq. (2.6) we can see that
this corresponds to the limit

ffiffiffi
n

p
→ ∞. However, to keep

D > 0 and finite, we must require D=
ffiffiffi
n

p
→ finite and

CD > 0. Then, we find thatΔ ¼ D2, and from Eq. (2.9) we
find X ¼ jxj, and

Y ¼ xþ jxj ¼
	
2x; x ≥ 0;

0; x < 0.
ð3:32Þ

Hence, Eq. (2.8) implies aðxÞ ¼ 0 and bðxÞ ¼ ∞ for x ≤ 0,
that is, the metric becomes singular for x ≤ 0. However,
since bð0Þ ¼ ∞, it is clear that now x ¼ 0 already
represents the spatial infinity. Therefore, in this case we
only need to consider the region x ∈ ð0;∞Þ [cf. Fig. 1(b)].
Then, we find that

X ¼ x; Y ¼ 2x; Z ¼ 4ðx6 þ Ĉ6Þ1=3; ðx ≥ 0Þ;
ð3:33Þ

where Ĉ≡ C=2, and

aðxÞ ¼ x3ðx −DÞ
4ðx6 þ Ĉ6Þ2=3 ;

bðxÞ ¼ 2

x
ðx6 þ Ĉ6Þ1=3: ð3:34Þ

Clearly, aðxÞ ¼ 0 leads to two roots,

x−H ¼ 0; xþH ¼ D; ð3:35Þ

while the minimum of bðxÞ now is located at xm ≡ Ĉ, so we
have

bðxÞ ¼
8<
:

∞; x ¼ 0;

24=3Ĉ; x ¼ Ĉ;

∞; x ¼ ∞:

ð3:36Þ

It is interesting to note that the outer (black hole) horizon
located at x ¼ xþH can be smaller than the throat x ¼ xm,
that is, Ĉ > D. In addition, the spacetime becomes anti-
trapped at x−H ¼ 0. Since bðx ¼ 0Þ ¼ ∞, this antitrapped
point now also corresponds to the spatial infinity at the
other side (the white hole side) of the throat.
To study the solutions further, in the following let us

consider the cases D ≥ Ĉ and D < Ĉ, separately.
(Case III.3.1) D ≥ Ĉ: In this case the throat locates

always inside the black hole horizon, so in the region
x < xþH we always have aðxÞ < 0, and the corresponding
effective energy density and pressures are given by
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ρðxÞ ¼ C6½64Dx6 þ C6ð2x −DÞ�x
213ðx6 þ Ĉ6Þ8=3 ;

prðxÞ ¼ −
C6ðDC6 − 640x7 þ 704Dx6Þx

213ðx6 þ Ĉ6Þ8=3 ;

pθðxÞ ¼
C6½64Dx6 þ C6ð2x −DÞ�x

213ðx6 þ Ĉ6Þ8=3 : ð3:37Þ

In particular, at the throat ðx ¼ ĈÞ, we have

ρ ¼ pθ ¼
1

22=3C2
; pr ¼

5C − 12D
22=3C3

; ð3:38Þ

from which we find that the WEC, SEC, and DEC are
satisfied in the domain,

2D ≤ C ≤ 3D: ð3:39Þ

Combining Eq. (3.39) with C=2 ≤ D, we have C=2 ¼ D,
which implies that the effective energy-momentum tensor
satisfies all the three energy conditions at the throat only
when the location of the throat and location of the black
hole horizon coincide.
In Fig. 9 we plot the physical quantities ρ; ρ� pr; ρ� pθ

and ρþ pr þ 2� pθ in the neighborhood of the throat.
In addition, as x → 0 (or bðxÞ → ∞), we find that

ρ ¼ pθ ¼ −
8Dx
C4

þ 16x2

C4
þOðx3Þ;

pr ¼ −
8Dx
C4

þOðx3Þ; ð3:40Þ

from which we find that the WEC, SEC, and DEC are
satisfied only at x ¼ 0.

On the other hand, outside of the black hole horizon
(x > xþH), we always have aðxÞ > 0, and the corresponding
effective energy density and pressures are given by

ρðxÞ ¼ C6ðDC6 − 640x7 þ 704Dx6Þx
213ðx6 þ Ĉ6Þ8=3 ;

prðxÞ ¼ −
C6½64Dx6 þ C6ð2x −DÞ�x

213ðx6 þ Ĉ6Þ8=3 ;

pθðxÞ ¼
C6½64Dx6 þ C6ð2x −DÞ�x

213ðx6 þ Ĉ6Þ8=3 : ð3:41Þ

In particular, at the black hole horizon ðxþH ¼ DÞ, we have

ρ ¼ −pr ¼ pθ ¼
8D2C6

ð64D6 þ C6Þ5=3 ; ð3:42Þ

so all the three energy conditions, WEC, SEC, and DEC,
are satisfied at the black hole horizon. The surface gravity
now is given by,

κBH ≡ 1

2
a0ðx ¼ DÞ ¼ 2D3

ð64D6 þ C6Þ2=3 ; ð3:43Þ

which is always positive, as now we have D > 0.
At the spatial infinity x → ∞, we find

ρ ≈ −
5C6

64x8
þ 11DC6

128x9
þOðϵ10Þ;

ρþ pr ≈ −
5C6

64x8
þ 5DC6

64x9
þOðϵ10Þ;

ρþ pθ ≈ −
5C6

64x8
þ 3DC6

32x9
þOðϵ10Þ;

ρþ pr þ 2pθ ≈ −
5C6

64x8
þ 3DC6

32x9
þOðϵ10Þ; ð3:44Þ

from which we can see that none of the three energy
conditions is satisfied. In addition, we also have

aðxÞ ¼
(

1
4

�
1 − 2D

b

�
þOðϵ2Þ; x → ∞;

− 4Dx3

C4 þ 4x4

C4 þOðx6Þ; x → 0;

bðxÞ ≃
	
2x; x → ∞;
C2
2x þ 32x5

3C4 þOðx6Þ; x → 0.
ð3:45Þ

Therefore, the mass of the black hole is given by

MBH ¼ D: ð3:46Þ

To study the quantum gravitational effects further, in
Fig. 10 we plot R and ΔK in the region that covers the
throat and the horizon, from which it can be seen that the
deviation from GR quickly becomes vanishingly small
around the horizon. In addition, as x → ∞, we find that

FIG. 9. Case Δ > 0;D > 0; x0 ¼ 0; C ≠ 0: The physical quan-
tities, ρ, ðρþ prÞ, ðρ − prÞ, ðρþ pθÞ, ðρ − pθÞ, and
ðρþ pr þ 2pθÞ, represented, respectively, by Curves 1–6, vs x
in the neighborhood of the throat. All curves are plotted with
C ¼ 1;D ¼ 1, for which the throat is at xm ¼ 0.5, and the outer
horizon is at xþH ¼ 1.
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R ≃ −
20C6

b8
þOðϵ9Þ;

ΔK ≃
32C6

3MBHb5
þOðϵ6Þ; ð3:47Þ

from which we can see that quantum corrections are
decaying rapidly when x → ∞.
When x → 0ðb → ∞Þ, we have

R ≃
8D
C2b

þOðb−2Þ;

K ≃
240D2

C4b2
þOðb−3Þ; ð3:48Þ

which decays much less slowly than that in the
Schwarzschild case, KGR → b−6.3 It is even slower than
that of the loop quantum black hole solution found by

Ashtekar, Olmedo and Singh [21,22], in which R → b−2

and K → b−4 [32].
(Case III.3.2) D < Ĉ: In this case the throat locates

always outside the black hole horizon, so in the region
x > xþH we always have aðxÞ > 0, and the corresponding
effective energy density and pressures are given by
Eq. (3.41). In particular, at the throat ðx ¼ ĈÞ, we have

ρ ¼ 6D − 5Ĉ

28=3Ĉ3
; pr ¼ −pθ ¼ −

1

28=3Ĉ2
; ð3:49Þ

from which we find that the WEC, SEC, and DEC are
satisfied in the domain,

0 < C=2 < D: ð3:50Þ

Combining Eq. (3.50) withD < Ĉ, we find that in this case,
all the energy conditions are violated at the throat.
In addition, as x → 0 (or bðxÞ → ∞), we still have

Eq. (3.40), from which we find that the WEC, SEC, and
DEC are satisfied only at x ¼ 0. At the spatial infinity
x → ∞, we still have Eq. (3.44), from which we can see

(a) (b)

(c) (d)

FIG. 10. Case Δ > 0;D > 0; x0 ¼ 0; C ≠ 0: The physical quantities R and ΔK. Here we choose C ¼ 1, D ¼ 106, so that
MBH ¼ 106MPl; x

þ
H ¼ D ¼ 106; xm ¼ Ĉ ¼ 1=2.

3In [47] a different conclusion was derived, as the authors
implicitly assumed that x0C ≠ 0. Therefore, our conclusion in this
case does not essentially contradict to the one obtained in [47].
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that none of the three energy conditions is satisfied. In
addition, we also have Eq. (3.45), thus the mass of the black
hole is given by Eq. (3.46).
For the quantum gravitational effects, we still have

Eqs. (3.47) and (3.48). In Fig. 11 we plot R and ΔK in
the region that covers the throat and the horizon, from
which it can be seen that the deviation from GR is still large
around the horizon even for solar mass black holes, due to
the fact that C is very large in this case and thus makes ΔK
large around horizon which can be seen from Eq. (3.47).

4. C= 0, x0 ≠ 0

If we assume that λ1 ≠ 0, from Eq. (2.6) we can see that
this corresponds to the limit C → 0. However, to keep
D > 0 and finite, we must require DC → finite and
positive. Thus, we have

aðxÞ ¼ ðx2 − ΔÞX
ðX þDÞY2

; bðxÞ ¼ Y: ð3:51Þ

Clearly, aðxÞ ¼ 0 leads to two real roots,

x�H ¼ �
ffiffiffiffi
Δ

p
; ð3:52Þ

while bðxÞ is a monotonically increasing function with
bðx ¼ −∞Þ ¼ 0 [cf. Fig. 1(c)]. Therefore, in contrast to the
above cases, now the spacetime is not asymptotically flat as
x → −∞, but rather it represents the center of the space-
time, at which a spacetime curvature singularity appears, as
to be shown below. Therefore, in the current case the
spacetime represents a black hole with two horizons located
at x ¼ � ffiffiffiffi

Δ
p

. This is quite similar to the charged Reissner-
Nordström (RN) solution.

In the trapped region, x−H < x < xþH, the effective energy
density and pressures are given by

ρðxÞ ¼ x20Y
3

X2ðY6Þ8=3 ð½1024x
10 − 512Dx9 þ 2560x8x20 − 1024Dx7x20 þ 2240x6x40 − 672Dx5x40 þ 800x4x60

− 160Dx3x60 þ 100x2x80 − 10Dxx80 þ 2x100 �X þ 1024x11 − 512Dx10 þ 3072x9x20 − 1280Dx8x20

þ 3392x7x40 − 1120Dx6x40 þ 1664x5x60 − 400Dx4x60 þ 340x3x80 − 50Dx2x80 þ 20xx100 −Dx100 Þ;

prðxÞ ¼ −
Dx20Y

X2ðY6Þ2=3 ;

pθðxÞ ¼
x20Y

2

2X3ðY6Þ8=3 ð½4096x
12 − 4096Dx11 þ 13312x10x20 − 10752Dx9x20 þ 16384x8x40 − 10240Dx7x40

þ 9408x6x60 − 4256Dx5x60 þ 2480x4x80 − 720Dx3x80 þ 244x2x100 − 34Dxx100 þ 4x120 �X þ 4096x13

− 4096Dx12 þ 15360x11x20 − 12800Dx10x20 þ 22528x9x40 − 15104Dx8x40 þ 16192x7x60 − 8288Dx6x60

þ 5808x5x80 − 2080Dx4x80 þ 924x3x100 − 194Dx2x100 þ 44xx120 − 3Dx120 Þ: ð3:53Þ

On the other hand, in the region x < x−H or x > xþH, the effective energy density and pressures are given by

(a)

(b)

FIG. 11. Case Δ > 0;D > 0; x0 ¼ 0; xm > xþH;: The quantities
R and ΔK vs x. Here we choose C ¼ 1039;D ¼ 1038, for which
the outer horizon is located at xþH ¼ 1038, and the throat is at
xm ¼ 5 × 1038, while the black hole mass is MBH ¼ 1038MPl.
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ρðxÞ ¼ Dx20Y

X2ðY6Þ2=3 ;

prðxÞ ¼ −
x20Y

3

X2ðY6Þ8=3 ð½1024x
10 − 512Dx9 þ 2560x8x20 − 1024Dx7x20 þ 2240x6x40 − 672Dx5x40 þ 800x4x60

− 160Dx3x60 þ 100x2x80 − 10Dxx80 þ 2x100 �X þ 1024x11 − 512Dx10 þ 3072x9x20 − 1280Dx8x20

þ 3392x7x40 − 1120Dx6x40 þ 1664x5x60 − 400Dx4x60 þ 340x3x80 − 50Dx2x80 þ 20xx100 −Dx100 Þ;

pθðxÞ ¼
x20Y

2

2X3ðY6Þ8=3 ð½4096x
12 − 4096Dx11 þ 13312x10x20 − 10752Dx9x20 þ 16384x8x40 − 10240Dx7x40

þ 9408x6x60 − 4256Dx5x60 þ 2480x4x80 − 720Dx3x80 þ 244x2x100 − 34Dxx100 þ 4x120 �X þ 4096x13

− 4096Dx12 þ 15360x11x20 − 12800Dx10x20 þ 22528x9x40 − 15104Dx8x40 þ 16192x7x60 − 8288Dx6x60

þ 5808x5x80 − 2080Dx4x80 þ 924x3x100 − 194Dx2x100 þ 44xx120 − 3Dx120 Þ: ð3:54Þ

In Fig. 12 we plot the physical quantities ρ; ρ� pr;
ρ� pθ, and ρþ pr þ 2� pθ in the neighborhood of the
two horizons, from which we can see that all these
quantities become unbounded as x → −∞ (or bðxÞ → 0).
In particular, at the horizon ðx ¼ ffiffiffiffi

Δ
p Þ, we have

ρ ¼ −pr ¼
ð ffiffiffiffi

Δ
p þDÞx20

DZ2
;

pθ ¼
x40

2D2Z2
; ð3:55Þ

so all the three energy conditions, WEC, SEC, and DEC,
are satisfied in the domain

jx0j < D; ðx0 ≠ 0Þ: ð3:56Þ
The surface gravity at this horizon is given by,

κBH ≡ 1

2
a0ðx ¼

ffiffiffiffi
Δ

p
Þ

¼ Y2

2Z5
ð½32D6 − x60 þ 18D2x40 − 48D4x20�

ffiffiffiffi
Δ

p

þ 32D7 − 6Dx60 þ 38D3x40 − 64D5x20Þ; ð3:57Þ
which is always positive, provided that the conditions
(3.56) hold.
On the other hand, at the horizon x ¼ −

ffiffiffiffi
Δ

p
, we have

ρ ¼ −pr ¼
Y

Dx80
ð16D4ðDþ

ffiffiffiffi
Δ

p
Þ þ x40ð5Dþ

ffiffiffiffi
Δ

p
Þ

− 4D2x20ð5Dþ 3
ffiffiffiffi
Δ

p
ÞÞ;

pθ ¼
x40

2D2Y2
; ð3:58Þ

so all the three energy conditions, WEC, SEC, and DEC,
are satisfied in the domain given by Eq. (3.56). The surface
gravity at this horizon is given by,

κBH ≡ 1

2
a0ðx ¼ −

ffiffiffiffi
Δ

p
Þ

¼ −
Y2

2Z5
ð½32D6 − x60 þ 18D2x40 − 48D4x20�

ffiffiffiffi
Δ

p

− 32D7 þ 6Dx60 − 38D3x40 þ 64D5x20Þ; ð3:59Þ
which is always negative when the conditions (3.56) hold.
As x → �∞, we find that

ρðxÞ ¼
8<
:

Dx2
0

8x5
þOðϵ6Þ; x → ∞;

− 8Dx
x4
0

þOðϵÞ; x → −∞;

prðxÞ ¼
8<
:

− x2
0

4x4 þ
Dx2

0

8x5
þOðϵ6Þ; x → ∞;

− 16x2

x4
0

− 8Dx
x4
0

− 4
x2
0

þOðϵÞ; x → −∞;

pθðxÞ ¼
8<
:

x2
0

4x4 −
Dx2

0

4x5
; x → ∞;

16x2

x4
0

þ 8Dx
x4
0

þ 4
x2
0

þOðϵÞ; x → −∞;
ð3:60Þ

from which we can show that none of the three energy
conditions, WEC, SEC, and DEC, is satisfied at spatial
infinity x ¼ ∞ as well as at the center bðx ¼ −∞Þ ¼ 0. In
addition, we also have

aðxÞ ¼

8>>>>><
>>>>>:

1
4

�
1 − 2D

b

�
þOðϵ2Þ; x → ∞;

4x4

x4
0

þ 4Dx3

x4
0

þ 6x2

x2
0

þ 4Dx
x2
0

þ 7
4
þ D

4x þOðϵ2Þ; x → −∞;

bðxÞ ≃
	 2x; x → ∞;

− x2
0

2x þ
x4
0

8x3 þOðϵ4Þ; x → −∞:
ð3:61Þ

Thus, the mass of the black hole is given by

MBH ¼ D: ð3:62Þ
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However, at x ¼ −∞ we have bð−∞Þ ¼ 0, and the
physical quantities, ρ; pr and pθ, all become unbounded, so
a spacetime curvature singularity appears at x ¼ −∞, and

the solution has a RN-like structure, i.e., two horizons,
one is inner and the other is outer, located, respectively,
at x ¼ � ffiffiffiffi

Δ
p

. The spacetime singularity located at
bð−∞Þ ¼ 0 is timelike.
On the other hand, in Fig. 13 we plot R and ΔK in the

region that covers the throat and the horizons, from which it
can be seen that the deviation from GR quickly becomes
vanishing small around the outer horizon, but around the
inner horizon, R deviates from GR significantly. In fact, as
x → �∞, we find that

R ≃

8<
:

− x2
0

4x4 þ
Dx2

0

2x5
þOðϵ6Þ; x → ∞;

− 16x2

x4
0

− 16Dx
x4
0

− 4
x2
0

þOðϵÞ; x → −∞;
ð3:63Þ

and

K ≃

8>>>>><
>>>>>:

3D2

4x6
þOðϵ7Þ; x → ∞;

2816x4

x8
0

þ 3072Dx3

x8
0

þ 64x2ð15D2þ22x2
0
Þ

x8
0

þ 640Dx
x6
0

þ 16ð11x2
0
−8D2Þ

x6
0

þOðϵÞ; x → −∞;

ð3:64Þ

from which we can see that, as x → −∞, both of the Ricci
and Kretschmann scalars become unbounded, and a space-
time singularity appears at bðx ¼ −∞Þ ¼ 0.
It is interesting to note that ΔK is bounded and

approaches a nonzero constant −1, as x → −∞. In fact,
we have

ΔK ≃

8<
:

− 4x2
0

3MBHx
þOðϵ2Þ; x → ∞;

−1þ 11x4
0

12M2
BHx

2 þOðϵ3Þ; x → −∞;
ð3:65Þ

where in writing the above expressions we had set KGR ¼
48MBH=b6 over the whole region x ∈ ð−∞;∞Þ. Thus, near
the singular point bðx ¼ −∞Þ ¼ 0, the Kretschmann scalar
of the quantum black hole diverges much more slowly than
that of the Schwarzschild black hole. This can be seen from
Eqs. (3.61) and (3.64), from which we find that K ∝ b−4

as x → −∞.

5. x0 =C= 0

Since λ1λ2 ≠ 0, from Eq. (2.6) we can see that this
corresponds to the limits C → 0 and

ffiffiffi
n

p
→ ∞. However, to

keep D > 0, at these limits, we must require DC=
ffiffiffi
n

p
→

finite and positive. Then, we find that Δ ¼ D2, and from
Eq. (2.9) we find X ¼ jxj, and

Y ¼ xþ jxj ¼
	
2x; x ≥ 0;

0; x < 0.
ð3:66Þ

Therefore, the spacetime must be restricted to the region
x ≥ 0, in which we have

(a)

(b)

(c)

FIG. 12. Case Δ > 0;D > 0; x0 ≠ 0; C ¼ 0: The physical
quantities, ρ, ðρþ prÞ, ðρ − prÞ, ðρþ pθÞ, ðρ − pθÞ, and
ðρþ pr þ 2pθÞ, represented, respectively, by Curves 1–6, vs
x: (a) between the white and black horizons, x−H ≤ x ≤ xþH;
(b) outside the black horizon, x ≥ xþH ¼ ffiffiffi

3
p

; (c): outside the
white horizon, x ≤ x−H ¼ −

ffiffiffi
3

p
. All curves are plotted with

x0 ¼ 1;D ¼ 2, for which the two horizons are located respec-
tively at x�H ¼ � ffiffiffiffi

Δ
p ¼ � ffiffiffi

3
p

.
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aðxÞ ¼ x −D
4x

¼ 1

4

�
1 −

2D
b

�
;

bðxÞ ¼ ðxþ
ffiffiffiffiffi
x2

p
Þ ¼ 2x; ð3:67Þ

and

ρðxÞ ¼ pr ¼ pθðxÞ ¼ 0: ð3:68Þ

In fact, this is precisely the Schwarzschild solution, and will
take its standard form, by setting r ¼ 2x and rescaling t,

ds2 ¼
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2 þ r2dΩ2; ð3:69Þ

where m≡D. This case can be also considered as the limit
of λ1;2 → 0, for which the GR limit is obtained. Therefore,

(a) (b)

(c) (d)

(e) (f)

FIG. 13. Case Δ > 0;D > 0; x0 ≠ 0; C ¼ 0: The physical quantities R and ΔK vs x. Here we choose x0 ¼ 1, D ¼ 106, so that
MBH ¼ 106MPl, and the horizons are located at x ¼ �D ¼ �106.
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the results are consistent with the effective theory of
quantum black holes, as the singularities are always avoided
exactly because of the replacement (1.9).When λ1;2 → 0, the
classical limits are recovered.

B. D < 0

In this case, similar to the last one, let us consider
x0C ≠ 0 and x0C ¼ 0, separately.

1. x0C ≠ 0

Then, since Δ ¼ D2 − x20 > 0, we must have

D < −jx0j: ð3:70Þ

Thus, from Eq. (2.8) we find that

aðxÞ ¼ ðX þ jDjÞXY2

Z2
; bðxÞ ¼ Z

Y
; ð3:71Þ

where X, Y, and Z are given by Eq. (2.9). From the above
expressions, it can be shown that there are two asymptoti-
cally flat regions, corresponding to x → �∞, respectively.
They are still connected by a throat located at xm given by
Eq. (3.3) [cf. Fig. 1(a)]. But since aðxÞ ≠ 0 for any given x,
horizons, either WHs or BHs, do not exist.
At the throat, the effective energy density ρ and pressures

pr and pθ are still given by Eq. (3.30). Then, it can be easily
shown that none of the three energy conditions can be
satisfied in the current case, because condition Eq. (3.31) is
always violated for D < 0.
At the spatial infinities x → �∞, we find that the

expression of ρ; pr; pθ are still given by Eq. (3.18), from
which we can see that none of the three energy conditions is
satisfied either. The asymptotic expressions of aðxÞ and
bðxÞ are still given by Eq. (3.19), and the total masses
measured at x → �∞ are

Mþ ¼ D; M− ¼ DC2

x20
; ð3:72Þ

but since we now have D < 0, they are all negative. Note
that from now on, we use M� to denote the total masses of
the spacetimes measured at x ¼ �∞, when no horizons
(either BHs or WHs) exist, while reserve MBH=WH to
denote the black (white) hole masses.
It can be shown that in the present case the deviation

from GR decays rapidly when away from the throat from
both directions of it only for some particular choice of the
free parameters. In particular, as x → �∞, we find that the
asymptotic expressions of RðxÞ and ΔKðxÞ are still given
by Eq. (3.27) and Eq. (3.28), with MBHðMWHÞ being
replaced by MþðM−Þ. Therefore, we still have
jΔKþ=ΔK−j ¼ 1þOðϵ2Þ, as jxj → ∞. That is, whether
M− ≫ Mþ or not, jΔKþj will always have the same

asymptotic magnitude as jΔK−j, and both of them
approach their GR limits as Oð1=jxjÞ.

2. x0 = 0, C ≠ 0

In this case aðxÞ and bðxÞ are still given by Eq. (3.34),
but since D < 0, aðxÞ ¼ 0 is possible only when

xH ¼ 0; ð3:73Þ

where bðx ¼ 0Þ ¼ ∞. Therefore, in the current case there is
no black/white hole horizon either, while the minimum of
bðxÞ now is still located at xm ≡ Ĉ [cf. Fig. 1(b)]. On the
other hand, in this case the effective energy density and
pressures are still given by Eq. (3.41), which are all become
zero as x → 0.
At the throat ðx ¼ ĈÞ, ρ; pr; pθ are given by Eq. (3.49),

but since now we have D < 0, none of the three energy
conditions is satisfied at the throat.
At the spatial infinity x → ∞, on the other hand, we have

the same expressions as given by Eq. (3.44), from which we
can see that none of the three energy conditions is satisfied.
The asymptotic behavior of aðxÞ and bðxÞ are still given by
Eq. (3.45). Therefore, the total mass at x → ∞ is given by

Mþ ¼ D < 0: ð3:74Þ

On the other hand, to study the quantum gravitational
effects further, we consider the physical quantities R and
ΔK and find that the deviation from GR also quickly
becomes vanishingly small as x → ∞ for some particular
choice of the free parameters. In particular, as x → ∞, we
find that the asymptotic expressions of RðxÞ and ΔKðxÞ are
still given by Eq. (3.47), with MBH being replaced by Mþ.

3. x0 ≠ 0, C= 0

From Eq. (2.8) we find that

aðxÞ ¼ ðX þ jDjÞX
Y2

; bðxÞ ¼ Y; ð3:75Þ

where X, Y, and Z are given by Eq. (2.9). Clearly, aðxÞ ¼ 0
has no real roots, thus no horizons exist, while bðxÞ is still a
monotonically increasing function with bðx ¼ −∞Þ ¼ 0
[cf. Fig. 1(c)].
On the other hand, in this case the effective energy

density and pressures are still given by Eq. (3.54). In
particular, at the spatial infinities x → �∞, they stall take
the forms of Eq. (3.60), from which we find none of the
three energy conditions, WEC, SEC, and DEC, is satisfied.
In addition, the asymptotic behaviors of aðxÞ and bðxÞ are
given by Eq. (3.61). Therefore, the total mass at x ¼ ∞ is
still given by Eq. (3.62), which is always negative.
However, at x ¼ −∞ we have bð−∞Þ ¼ 0, and the

physical quantities, ρ; pr and pθ, all become unbounded, so
a spacetime curvature singularity appears at x ¼ −∞.
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In addition, from R and ΔK we find that the deviation
from GR quickly becomes vanishingly small as x → þ∞,
but as x → −∞, R deviates from GR significantly, as a
spacetime curvature singularity now appears at x ¼ −∞, at
which we have bðx ¼ −∞Þ ¼ 0.

4. x0 =C= 0

In this case, the solution is precisely the Schwarzschild
solution with negative mass, and will take its standard form,
by setting r ¼ 2x and rescaling t,

ds2 ¼
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2 þ r2dΩ2;

ð3:76Þ
where m≡D < 0.
This completes the analysis of the solutions in the case

Δ > 0. In Table II, we summarize the main properties of
these solutions.

IV. SPACETIMES WITH Δ= 0

From Eq. (2.10) we find that this case corresponds to

jλ2j ¼
3

2
jCDj; or jDj ¼ jx0j: ð4:1Þ

Then, from Eqs. (2.8) and (2.9) we obtain

aðxÞ ¼ x2XY2

ðX þDÞZ2
; bðxÞ ¼ Z

Y
; ð4:2Þ

where

X ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þD2

p
; Y ≡ xþ X;

Z≡ ðY6 þ C6Þ1=3: ð4:3Þ
To study these solutions further, in the following let us

consider the three possibilities, D > 0, D ¼ 0 and D < 0,
separately.

A. D > 0

In this subcase, there are still two possibilities, C ≠ 0
and C ¼ 0.

1. C ≠ 0

In this case, since we also have D > 0, we find that

bðxÞ ¼
8<
:

∞; x ¼ ∞;

21=3C; x ¼ xm;

∞; x ¼ −∞;

ð4:4Þ

where xm ≡ ðC2 −D2Þ=ð2CÞ [cf. Fig. 1(a)].
On the other hand, aðxÞ ¼ 0 leads to x�H ¼ 0, which is a

double root. This is similar to the charged RN solution in
the extreme case jej ¼ m. At the horizon, we have

bð0Þ ¼ ðC6 þD6Þ1=3
jDj ; ð4:5Þ

and

ρ ¼ −pr ¼ 2pθ ¼
D2

ðD6 þ C6Þ2=3 ; ð4:6Þ

from which we find that all the WEC, SEC, and DEC are
satisfied. In addition, the surface gravity at the horizon is,

κBH ≡ 1

2
a0ðx ¼ 0Þ ¼ 0; ð4:7Þ

as in the extremal case of the RN solution.
At the throat, the effective energy density ρ and pressures

pr and pθ are given by

ρ ¼ −5D2 þ 12DC − 5C2

22=3C2ðD2 þ C2Þ ; pr ¼ −
1

22=3C2
;

pθ ¼
ðD2 þ C2Þ3 − 4D3C3

22=3ðD2 þ C2Þ3 ; ð4:8Þ

from which we find that WEC, SEC, and DEC are satisfied
only when

D ¼ C: ð4:9Þ

Then, from the expression xm ¼ ðC2 −D2Þ=ð2CÞ, we can
see when D ¼ C we also have xm ¼ 0, i.e., the black hole
horizon now coincides with the throat.
In Fig. 14 we plot out the quantities ρ; ρ� pr; ρ� pθ

and ρþ pr þ 2pθ vs x in the neighborhood of the throat for
C ¼ 1.5;D ¼ 2. With these choices, the throat is located at
xm ≈ −0.437, and the horizon is at x�H ¼ 0. From these
curves we can see clearly that the three energy conditions,
WEC, SEC, and DEC, are satisfied only at the horizon.
At the spatial infinities x → �∞, we find that

ρðxÞ ¼
(

D3

8x5
þOðϵ6Þ; x → ∞;

− D7

8x5C4
þOðϵ6Þ; x → −∞;

prðxÞ ¼
(
− D2

4x4 þ D3

8x5
þOðϵ6Þ; x → ∞;

− D6

4x4C4 −
D7

8x5C4
þOðϵ6Þ; x → −∞;

pθðxÞ ¼
(

D2

4x4 −
D3

4x5
þOðϵ6Þ; x → ∞;

D6

4x4C4 þ D7

4x5C4
þOðϵ6Þ; x → −∞;

ð4:10Þ

and
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aðxÞ ¼
8<
:

1
4

�
1 − 2D

b

�
þOðϵ2Þ; x → ∞;

D4

4C4

�
1 − ð2C2=DÞ

b

�
þOðϵ2Þ; x → −∞;

bðxÞ ≃
	
2xþOðϵÞ; x → ∞;

−2ðC2=D2ÞxþOðϵÞ; x → −∞;
ð4:11Þ

where ϵ≡ 1=x. Therefore, the masses of the black and
white holes are given, respectively, by

MBH ¼ D; MWH ¼ C2

D
: ð4:12Þ

On the other hand, from Eq. (4.10) we find that in the
limit x → ∞ we have

ρ ≈
D3

8x5
þOðϵ6Þ;

ρþ pr ≈ −
D2

4x4
þ D3

4x5
þOðϵ6Þ;

ρþ pθ ≈
D2

4x4
−

D3

8x5
þOðϵ6Þ;

ρþ pr þ 2pθ ≈
D2

4x4
−

D3

4x5
þOðϵ6Þ; ð4:13Þ

while in the limit x → −∞, we have

ρ ≈ −
D7

8x5C4
þOðϵ6Þ;

ρþ pr ≈ −
D6

4x4C4
−

D7

4x5C4
þOðϵ6Þ;

ρþ pθ ≈
D6

4x4C4
þ D7

8x5C4
þOðϵ6Þ;

ρþ pr þ 2pθ ≈
D6

4x4C4
þ D7

4x5C4
þOðϵ6Þ: ð4:14Þ

Therefore, none of the three energy conditions is satisfied
at both x ¼ −∞ and x ¼ ∞.
In Fig. 15, we plot R and ΔK for solar mass black/

white holes in the region that covers the throat, with
C ¼ D ¼ x0 ¼ 106, for which the horizon and the throat
are all located at x�H ¼ xm ¼ 0. In this case, it can be seen
that the deviations from GR decay rapidly when away from
the throat from both directions, and the quantum gravita-
tional effects are mainly concentrated in the neighborhood
of it.

FIG. 14. Case Δ ¼ 0;D > 0; C ≠ 0: The physical quantities, ρ,
ðρþ prÞ, ðρ − prÞ, ðρþ pθÞ, ðρ − pθÞ, and ðρþ pr þ 2pθÞ,
represented, respectively, by Curves 1–6, vs x in the neighbor-
hood of the throat. All graphs are plotted with C ¼ 1.5;D ¼ 2, for
which the throat is at xm ≈ −0.437, and horizons are at x�H ¼ 0.

(a)

(b)

FIG. 15. Case Δ ¼ 0;D > 0; C ≠ 0: R and ΔK vs x. Here we
choose C ¼ x0 ¼ 106, for which the horizon and the throat are all
located at x�H ¼ xm ¼ 0.
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In addition, as x → �∞, we find that

R ≃

(
− D2

4x4 þ D3

2x5
þOðϵ6Þ; x → ∞;

− D6

4x4C4 −
D7

2x5C4
þOðϵ6Þ; x → −∞;

ð4:15Þ

and

ΔK ≃

(
− 4MBH

3x þOðϵ2Þ; x → ∞;

þ 4C2
3MWHx

þOðϵ2Þ; x → −∞;
ð4:16Þ

where MBH and MWH are given by Eq. (4.12).

2. C= 0

In this case, we have

aðxÞ ¼ x2X
ðX þDÞY2

; bðxÞ ¼ Y: ð4:17Þ

Then, aðxÞ ¼ 0 leads to x ¼ 0, which is a double root,
as mentioned above. The geometric radius bðxÞ is a
monotonically increasing function with bðx ¼ −∞Þ ¼ 0
[cf. Fig. 1(c)].
In Fig. 16 we plot the physical quantities ρ; ρ� pr; ρ�

pθ and ρþ pr þ 2� pθ in the neighborhood of the horizon
xH ¼ 0, at which, we have

ρ ¼ −pr ¼ 2pθ ¼
1

D2
; ð4:18Þ

so all the three energy conditions, WEC, SEC, and DEC,
are satisfied. In addition, the surface gravity at this horizon
also vanishes.

At the spatial infinities x → �∞, we find that

ρðxÞ ¼
(

D3

8x5
þOðϵ6Þ; x → ∞;

− 8x
D3 þOðϵÞ; x → −∞;

prðxÞ ¼
(
− D2

4x4 þ D3

8x5
þ ðϵ6Þ; x → ∞;

− 16x2

D4 − 8r
D3 − 4

D2 þOðϵÞ; x → −∞;

pθðxÞ ¼
(

D2

4x4 −
D3

4x5
þOðϵ6Þ; x → ∞;

16x2

D4 þ 8x
D3 þ 4

D2 þOðϵÞ; x → −∞;
ð4:19Þ

from which we can see that none of the three energy
conditions, WEC, SEC, and DEC, is satisfied at the spatial
infinities. In addition, we also have

aðxÞ ¼

8>><
>>:

1
4

�
1 − 2D

b

�
þOðϵ2Þ; x → ∞;

4x4

D4 þ 4x3

D3 þ 6x2

D2 þ 4x
D

þ 7
4
þ D

4x þOðϵ2Þ; x → −∞;

bðxÞ ≃
(
2xþOðϵÞ; x → ∞;

− D2

2x þ D4

8x3 þOðϵ4Þ; x → −∞:
ð4:20Þ

Therefore, the mass of the black hole is given by

MBH ¼ D: ð4:21Þ

However, at x ¼ −∞ we have bð−∞Þ ¼ 0, and the
physical quantities, ρ; pr, and pθ, all become unbounded,
so a spacetime curvature singularity appears at x ¼ −∞.
To study the quantum gravitational effects further, in

Fig. 17 we plot R and ΔK, from which it can be seen that
the deviation from GR quickly becomes vanishingly small
as x → ∞. However, as x → −∞, R diverges, as now the
spacetime is singular at bðx ¼ −∞Þ ¼ 0. In fact, as
x → �∞, we find that

R ≃

(
− D2

4x4 þ D3

2x5
þOðϵ6Þ; x → ∞;

− 16x2

D4 − 16x
D3 − 4

D2 þOðϵÞ; x → −∞;
ð4:22Þ

K ≃

8>><
>>:

3D2

4x6
− D3

x7 þOðϵ8Þ; x → ∞;

2816x4

D8 þ 3072x3

D7 þ 2368x2

D6

þ 640x
D5 þ 48

D4 þOðϵÞ; x → −∞;

ð4:23Þ

and

ΔK ≃

(
− 4MBH

3x þOðϵ2Þ; x → ∞;

−1þ 11D4

12M2
BHx

2 þOðϵ3Þ; x → −∞:
ð4:24Þ

FIG. 16. Case Δ ¼ 0;D > 0; C ¼ 0: The physical quantities, ρ,
ðρþ prÞ, ðρ − prÞ, ðρþ pθÞ, ðρ − pθÞ, and ðρþ pr þ 2pθÞ,
represented, respectively, by Curves 1–6, vs x in the neighbor-
hood of the horizon x�H ¼ 0. All graphs are plotted with D ¼ 2.
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B. D= 0

In this case, since jDj ¼ jx0j, we also have x0 ¼ 0. Then,
from Eq. (2.6), this corresponds to the limit n → ∞. Again,
to study the solutions further, we consider the two cases
C ≠ 0 and C ¼ 0, separately.

1. C ≠ 0

From Eq. (2.9) we find X ¼ jxj, and

Y ¼ xþ jxj ¼
	
2x; x ≥ 0;

0; x < 0.
ð4:25Þ

Thus, from Eq. (2.8) we find aðxÞ ¼ 0 and bðxÞ ¼ ∞ for
x ≤ 0, that is, the metric becomes singular for x ≤ 0.
However, since bð0Þ ¼ ∞, it is clear that now x ¼ 0
already represents the spatial infinity. Therefore, in this
case we only need to consider the region x ∈ ð0;∞Þ
[cf. Fig. 1(b)]. In this case we have

aðxÞ ¼ x2Y2

Z2
; bðxÞ ¼ Z

Y
: ð4:26Þ

Clearly, aðxÞ ¼ 0 leads to a double root, x�H ¼ 0, while the
minimum of bðxÞ now is located at xm ≡ Ĉ ¼ C=2, so we
have

bðxÞ ¼
8<
:

∞; x ¼ 0;

24=3Ĉ; x ¼ Ĉ;

∞; x ¼ ∞:

ð4:27Þ

The spacetime becomes antitrapped at x ¼ 0. Since
bðx ¼ 0Þ ¼ ∞, this antitrapped point now also corresponds
to the spatial infinity at the other side of the throat, located
at xm ¼ Ĉ.
On the other hand, the effective energy density and

pressures are now given by

ρðxÞ ¼ −
5120x8C6

ð64x6 þ C6Þ8=3 ;

prðxÞ ¼ −
16x2C12

ð64x6 þ C6Þ8=3 ;

pθðxÞ ¼
16x2C12

ð64x6 þ C6Þ8=3 ; ð4:28Þ

which all become zero as x → 0. They are also vanishing
as x → ∞.
At the throat ðx ¼ ĈÞ, we have

ρ ¼ −
5

28=3Ĉ2
; pr ¼ −pθ ¼ −

1

28=3Ĉ2
; ð4:29Þ

so we find that none of the WEC, SEC, and DEC is
satisfied.

(a)

(b)

(c)

FIG. 17. Case Δ ¼ 0;D > 0; C ¼ 0: R and ΔK vs x. Here we
choose x0 ¼ 106, D ¼ 106, so that MBH ¼ 106MPl. Note that the
horizon is located at x�H ¼ 0, and the spacetime is singular at
bðx ¼ −∞Þ ¼ 0.
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At the spatial infinity x → ∞, on the other hand, we find

ρ ≈ −
5C6

64x8
þOðϵ9Þ;

ρþ pr ≈ −
5C6

64x8
þOðϵ9Þ;

ρþ pθ ≈ −
5C6

64x8
þOðϵ9Þ;

ρþ pr þ 2pθ ≈ −
5C6

64x8
þOðϵ9Þ; ð4:30Þ

while as x → 0 (or bðxÞ → ∞), we find that

ρ ≈ −
5120x8

C10
þOðx11Þ;

ρþ pr ≈ −
16x2

C4
−
7168x8

3C10
þOðx11Þ;

ρþ pθ ≈
16x2

C4
−
23552x8

3C10
þOðx11Þ;

ρþ pr þ 2pθ ≈
16x2

C4
−
23552x8

3C10
þOðx11Þ; ð4:31Þ

from which we can see that none of the three energy
conditions is satisfied.
In addition, we also have

aðxÞ ¼
(

1
4

�
1 − 2C6

3b6

�
þOðϵ7Þ; x → ∞;

4x4

C4 þOðx6Þ; x → 0;

bðxÞ ≃
(
2xþOðϵÞ; x → ∞;
C2
2x þ 32x5

3C4 þOðx6Þ: x → 0.
ð4:32Þ

Thus, the space-time is asymptotically flat as x → ∞, with
a black/hole mass given by

MBH=WH ¼ 0: ð4:33Þ

On the other hand, to study the quantum gravitational
effects, in Fig. 18 we plot R and K in the region that covers
the throat, and in the asymptotical regions x → 0 and
x → ∞, from which it can be seen that the deviation from
GR is mainly in the region near the throat, and quickly
becomes vanishingly small as x → ∞ or x → 0.
The spacetime is also asymptotically flat as

x → 0ðbð0Þ ¼ ∞). In fact, we find

R ≃

(
− 5C6

64x8 þOðϵ9Þ; x → ∞;

− 16x2

C4 þOðx4Þ; x → 0;

K ≃

(
127C12

4096x16
þOðϵ19Þ; x → ∞;

2816x4

C8 þOðx6Þ; x → 0.
ð4:34Þ

2. C= 0

From Eq. (2.9) we find

Y ¼ xþ jxj ¼
	
2x; x ≥ 0;

0; x < 0.
ð4:35Þ

Therefore, the spacetime must be restricted to the region
x ≥ 0, in which we have

aðxÞ ¼ 1

4
; bðxÞ ¼ ðxþ

ffiffiffiffiffi
x2

p
Þ ¼ 2x; ð4:36Þ

and

ρðxÞ ¼ pr ¼ pθðxÞ ¼ 0: ð4:37Þ

In fact, this is precisely the Minkowski solution, and will
take its standard form, by setting r ¼ 2x and rescaling t.

C. D < 0

Similar to the last subcase, now we also need to consider
the cases C ≠ 0 and C ¼ 0 separately.

(a)

(b)

FIG. 18. Case Δ ¼ 0;D ¼ 0; C ≠ 0: R and K vs x. Here we
choose C ¼ 1. Note that now the throat is at x ¼ Ĉ ¼ 1=2.
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1. C ≠ 0

When D < 0, we find that

bðxÞ ¼
8<
:

∞; x ¼ ∞;

21=3C; x ¼ xm;

∞; x ¼ −∞;

ð4:38Þ

where xm ≡ ðC2 −D2Þ=ð2CÞ [cf. Fig. 1(a)]. On the other
hand, aðxÞ ¼ 0 has no real roots, thus in the current case no
black/white hole horizons exist.
But, as shown by Eq. (4.38), a throat still exists at

x ¼ xm, at which the effective energy density ρ and
pressures pr and pθ are still given by Eq. (4.8), from
which we find that none of the three energy conditions is
satisfied at this point.
At the spatial infinities x → �∞, we find that the

effective energy density ρ and pressures pr and pθ are
still given by Eqs. (4.10), (4.13), and(4.14), from which we
can see that none of the three energy conditions is satisfied
at both x ¼ −∞ and x ¼ ∞. In addition, the asymptotic
expression of aðxÞ and bðxÞ are still given by Eq. (4.11).
Therefore, the total mass at x → ∞ is given by

Mþ ¼ D < 0; ð4:39Þ

while the total mass at x → −∞ is given by

M− ¼ C2

D
< 0: ð4:40Þ

It can be shown that in the present case the quantum
gravitational effects are also concentrated in the region near
the throat, and are vanishing rapidly when away from it in
each side of the throat.

2. C= 0

In this case, we have

aðxÞ ¼ ðX þ jDjÞX
Y2

; bðxÞ ¼ Y: ð4:41Þ

Thus, aðxÞ ¼ 0 has no real roots, and bðxÞ becomes a
monotonically increasing function with bð−∞Þ ¼ 0 and
bð∞Þ ¼ ∞ [cf. Fig. 1(c)]. Therefore, in this case a throat
does not exist.
At the spatial infinities x → �∞, we find that the

effective energy density ρ and pressures pr and pθ are
still given by Eq. (4.19), from which we find that none of
the three energy conditions, WEC, SEC and DEC, is
satisfied at the spatial infinity. In addition, the asymptotic
expressions of aðxÞ and bðxÞ are still given by Eq. (4.20).
Therefore, the total mass at x → ∞ is given by

Mþ ¼ D < 0: ð4:42Þ

However, at x ¼ −∞ we have bð−∞Þ ¼ 0, and the
physical quantities, ρ; pr and pθ, all become unbounded, so
a spacetime curvature singularity appears at x ¼ −∞. Since
no horizon exists, such a singularity is also naked.
This completes our analysis for the case Δ ¼ 0, and the

main properties of these solutions are summarized in
Table III.

V. SPACETIMES WITH Δ < 0

In this case we have

aðxÞ ¼ ðx2 þ jΔjÞXY2

ðX þDÞZ2
; bðxÞ ¼ Z

Y
; ð5:1Þ

where X, Y, Z are given by Eq. (2.9), while Δ is given by
Eq. (2.10), from which we find Δ < 0 implies

jDj < jx0j: ð5:2Þ

Then, we find that

bðxÞ ¼
8<
:

∞; x ¼ ∞;

21=3C; x ¼ xm;

∞; x ¼ −∞;

ð5:3Þ

where xm ≡ ðC2 − x20Þ=ð2CÞ [cf. Fig. 1(a)].
To study the solutions further, as what we did in the last

case, let us consider the solutions with D > 0;D ¼ 0, and
D < 0, separately.

A. D > 0

Then, we find aðxÞ is nonzero for any x ∈ ð−∞;∞Þ, and
in particular we have

aðxÞ ¼
( 1

4
; x ¼ ∞;

x4
0

4C2 ; x ¼ −∞:
ð5:4Þ

Thus, in the current case horizons do not exist. But, a throat
does exist, as shown by Eq. (5.3). At the throat, the effective
energy density ρ and pressures pr and pθ are still given by
Eq. (3.30), from which we find that WEC, SEC, and DEC
are still satisfied, provided that

jx0j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð2D − CÞ

p
; 0 < C ≤ 2D: ð5:5Þ

In addition, we also have the constraint jDj < jx0j, as now
we are considering the case Δ < 0.
At the spatial infinities x → �∞, we find that the

effective energy density ρ and pressures pr and pθ can
be also written in the forms of Eq. (3.18), from which we
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can see that none of the three energy conditions is satisfied
at both x ¼ −∞ and x ¼ ∞.
The asymptotic expressions of aðxÞ and bðxÞ are still

given by Eq. (3.19). Therefore, the total mass at x → ∞ is
given by

Mþ ¼ D; ð5:6Þ

while the total mass at x → −∞ is given by

M− ¼ DC2

x20
: ð5:7Þ

It can be shown that the quantum gravitational effects are
concentrated in the region near the throat, and are rapidly
vanishing as away from the throat in each side of it only by
proper choice of the free parameters involved in the
solutions, as in the corresponding case Δ > 0;D > 0
and x0C ≠ 0.
Although no horizons exist in the present case, the

corresponding solution is very interesting on its own rights:
it represents a wormhole spacetime, in which all the three
energy conditions, WEC, SEC, and DEC, are satisfied in
the neighborhood of the throat, provided that Eq. (5.5)
holds, while none of them is satisfied at the asymptotically
flat regions (spatial infinities) x → �∞.
It should be also noted that the above analysis does not

cover the limit cases x0 → 0 and C → 0. However, since
now jDj < jx0j, the cases x0 ¼ 0, C ≠ 0 and x0 ¼ C ¼ 0 do
not exist. So, only the limiting case, C ¼ 0, x0 ≠ 0, exists.

(i) C ¼ 0; x0 ≠ 0: In this case, we have

aðxÞ ¼ ðx2 þ jΔjÞX
ðX þDÞY2

; bðxÞ ¼ Y: ð5:8Þ

Clearly, aðxÞ ¼ 0 does not have real solutions, while
bðxÞ is a monotonically increasing function with
bðx ¼ −∞Þ ¼ 0, as shown in Fig. 1(c).

At the spatial infinities x → �∞, we find that the
effective energy density ρ and pressures pr and pθ are
still given by Eq. (3.60), from which we can see that none of
the three energy conditions is satisfied at both x ¼ −∞
and x ¼ ∞.
The asymptotic expression of aðxÞ and bðxÞ are still

given by Eq. (3.61). Therefore, the total mass at x → ∞ is
given by

Mþ ¼ D: ð5:9Þ

However, at x ¼ −∞ we have bð−∞Þ ¼ 0, and the
physical quantities, ρ; pr, and pθ, all become unbounded,
so a spacetime curvature singularity appears at x ¼ −∞.

B. D= 0

From Eq. (2.8) we find that

aðxÞ ¼ X2Y2

Z2
; bðxÞ ¼ Z

Y
; ð5:10Þ

where X, Y, and Z are given by Eq. (2.9). From the above
expressions, it can be shown that there are two asymptoti-
cally flat regions, corresponding to x → �∞, respectively.
They are still connected by a throat located at xm given by
Eq. (3.3) [cf. Fig. 1(a)]. But since aðxÞ ≠ 0 for any given
x ∈ ð−∞;∞Þ, as it can be seen from the above expression,
horizons, either WHs or BHs, do not exist.
At the throat, the effective energy density ρ and pressures

pr and pθ are given by

ρ ¼ −
5

28=3Ĉ2
; pr ¼ −pθ ¼ −

1

28=3Ĉ2
; ð5:11Þ

so none of the WEC, SEC, and DEC is satisfied.
At the spatial infinities x → �∞, we find that the

effective energy density ρ and pressures pr and pθ take
the forms,

ρðxÞ ¼
(
− 5C6

64x8 þOðϵ9Þ; x → ∞;

− 5x16
0

64x8C10 þOðϵ9Þ; x → −∞;

prðxÞ ¼
(
− x2

0

4x4 þOðϵ6Þ; x → ∞;

− x6
0

4x4C4 þOðϵ6Þ; x → −∞;

pθðxÞ ¼
( x2

0

4x4 þOðϵ6Þ; x → ∞;

x6
0

4x4C4 þOðϵ6Þ; x → −∞;
ð5:12Þ

from which we can see that none of the three energy
conditions is satisfied at both x ¼ −∞ and x ¼ ∞.
In addition, we also have

aðxÞ ¼

8>><
>>:

1
4

�
1þ 2x2

0

b2

�
þOðϵ3Þ; x → ∞;

x4
0

4C4

�
1þ 2C4

x2
0
b2

�
þOðϵ2Þ; x → −∞;

bðxÞ ≃
(
2xþOðϵÞ; x → ∞;

− 2xC2

x2
0

þOðϵÞ: x → −∞;
ð5:13Þ

from which we can see that the space-time is asymptotically
flat as x → �∞.
Similar to the last subcase, the quantum gravitational

effects are concentrated in the region near the throat, and
are rapidly vanishing as away from the throat in each side of
it for the proper choice of the free parameters, as in the
corresponding case Δ > 0;D ¼ 0 and x0C ≠ 0.

GAN, SANTOS, SHU, and WANG PHYS. REV. D 102, 124030 (2020)

124030-30



In addition, the above analysis is valid only for x0C ≠ 0.
Otherwise, we have the following limiting case.

(i) x0 ≠ 0; C ¼ 0: Then, we have

aðxÞ ¼ X2

Y2
; bðxÞ ¼ Y: ð5:14Þ

Since aðxÞ ≠ 0 for any given real value of x, as it
can be seen from the above expression, horizons,
either WHs or BHs, do not exist, but bðxÞ is
still a monotonically increasing function with
bðx ¼ −∞Þ ¼ 0, as shown in Fig. 1(c).

At the spatial infinities x → �∞, we find that the
effective energy density ρ and pressures pr and pθ are
given by

ρðxÞ ¼
	
0; x → ∞;

0; x → −∞;

prðxÞ ¼
8<
:

− x2
0

4x4 þOðϵ6Þ; x → ∞;

− 16x2

x4
0

− 4
x2
0

þ x2
0

4x4 þOðϵ6Þ; x → −∞;

pθðxÞ ¼
8<
:

x2
0

4x4 þOðϵ6Þ; x → ∞;

16x2

x4
0

þ 4
x2
0

− x2
0

4x4 þOðϵ6Þ; x → −∞;
ð5:15Þ

from which we can see that none of the three energy
conditions is satisfied to the leading order of ð1=xÞ at both
x ¼ −∞ and x ¼ ∞.
In addition, we also have

aðxÞ ¼

8>><
>>:

1
4

�
1þ 2x2

0

b2

�
þOðϵ3Þ; x → ∞;

4x4

x4
0

þ 6x2

x2
0

þ 7
4
þOðϵ2Þ; x → −∞;

bðxÞ ≃
(
2xþOðϵÞ; x → ∞;

− x2
0

2x þOðϵ3Þ; x → −∞;
ð5:16Þ

from which we can see that the space-time is asymptotically
flat as x → þ∞, but a spacetime curvature singularity
appears at x ¼ −∞, where bðx ¼ −∞Þ ¼ 0, as it can be
seen from the above expressions.

C. D < 0

From Eq. (2.8) we find that

aðxÞ ¼ ðX þ jDjÞXY2

Z2
; bðxÞ ¼ Z

Y
; ð5:17Þ

where X, Y and Z are given by Eq. (2.9). From the above
expressions, it can be shown that there are two asymptoti-
cally flat regions, corresponding to x → �∞, respectively.
They are still connected by a throat located at xm given by

Eq. (3.3) [cf. Fig. 1(a)]. But since aðxÞ ≠ 0 for any given x,
horizons, either WHs or BHs, do not exist.
At the throat, the effective energy density ρ and pressures

pr and pθ are given by Eq. (3.30). Then, it can be easily
shown that none of the three energy conditions, WEC,
SEC, and DEC, can be satisfied in the current case.
Similarly, the quantum gravitational effects are concen-

trated in the region near the throat for only when the free
parameters are properly chosen, and are rapidly vanishing
as away from the throat in each side of it.
At the spatial infinities x → �∞, we find that the

expression of ρ; pr; pθ are still given by Eq. (3.18), from
which we can see that none of the three energy conditions is
satisfied to the leading order of ð1=xÞ.
The asymptotic expressions of aðxÞ and bðxÞ are given

by Eq. (3.19), and the total mass at x → �∞ is still given
by Eq. (3.20), but since we now have D < 0, the total mass
becomes negative.
Similar to the last case, the above analysis holds only for

x0C ≠ 0. When x0C ¼ 0, we find that only the possibility,
x0 ≠ 0, C ¼ 0, is allowed.

(i) x0 ≠ 0; C ¼ 0: From Eq. (2.8) we find that

aðxÞ ¼ ðX þ jDjÞX
Y2

; bðxÞ ¼ Y; ð5:18Þ

where X, Y and Z are given by Eq. (2.9). Clearly,
aðxÞ ¼ 0 has no real roots, thus no horizons exist.
On the other hand, bðxÞ is still a monotonically
increasing function with bðx ¼ −∞Þ ¼ 0, as shown
in Fig. 1(c).

At the spatial infinities x → �∞, we find that the
effective energy density and pressures are still given by
Eq. (3.60), from which we find that none of the three
energy conditions, WEC, SEC, and DEC, is satisfied at the
spatial infinities. In addition, the asymptotic behaviors of
aðxÞ and bðxÞ are still given by Eq. (3.61). Therefore, the
total mass at x ¼ ∞ is still given by Eq. (3.47), which is
always negative.
However, at x ¼ −∞ we have bð−∞Þ ¼ 0, and the

physical quantities, ρ; pr, and pθ, all become unbounded,
so a spacetime curvature singularity appears at x ¼ −∞.
This completes our analysis for the solutions withΔ < 0,

and the main properties of these solutions are summarized
in Table III.

VI. CONCLUSIONS

In this paper, we have studied in detail the main
properties of spherically symmetric black/white hole sol-
utions, found recently by Bodendorfer, Mele, and Münch
[47], inspired by the effective loop quantum gravity, and
paid particular attention to their local and global properties,
as well as to the energy conditions of the effective energy-
momentum tensor of the spacetimes. Although this effec-
tive energy-momentum tensor is purely due to the quantum
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geometric effects, and is not related to any real matter
fields, it does provide important information on how the
spacetime singularity is avoided, and the deviations of the
spacetimes from the classical one (the Schwarzschild
solution). In particular, spacetime singularities inevitably
occur in general relativity, as longer as matter fields satisfy
some energy conditions, as follows directly from the
Hawking-Penrose singularity theorems [50]. In addition,
due to the Birkhoff theorem, the spacetime is uniquely
described by the Schwarzschild black hole solution in
general relativity. Therefore, the presence of this effective
energy-momentum tensor also characterizes the deviations
of the quantum solutions from the classical one.
The most general metric for static spherically symmetric

spacetimes, without loss of the generality, can be always
cast in the form,

ds2 ¼ −aðxÞdt2 þ dx2

aðxÞ þ b2ðxÞðd2θ þ sin2 θd2ϕÞ;

subjected to the following additional gauge transformations
(gauge residuals),

t ¼ αt̃þ t0; x ¼ ξðx̃Þ; ð6:1Þ

where α and t0 are constant, and ξðx̃Þ is an arbitrary
function of x̃. Therefore, in general the phase space are
four-dimensional, spanned by (a; b; pa; pb), but with one
constraint, the Hamiltonian constraint, Heff ¼ 0. So, the
phase space is actually three-dimensional, and the trajec-
tories of the system are uniquely determined once the three
“initial” conditions are given. However, due to the polym-
erization (1.9), two new parameters are introduced, so the
phase space is enlarged to five-dimensional, due to the
polymerization quantizations. Nevertheless, the trajectories
of the system are also gauge-invariant under the trans-
formations (6.1), which reduce the dimensions of the phase
space from five to three again. Therefore, the phase space
in this model is generically three-dimensional.
The above general arguments can be seen clearly from

the particular solutions considered in this paper, and the
three physically independent free parameters now can be
chosen as (C;D; x0), defined explicitly by Eq. (2.6),

D≡ 3CD
2

ffiffiffi
n

p ; C≡ ð16C2λ21Þ1=6; x0 ≡ λ2ffiffiffi
n

p ; ð6:2Þ

out of the five parameters, λ1; λ2; n; C, andD, introduced in
[47]. Thus, in comparison with the relativistic case, the
polymerizations introduce two more free parameters, and
only when they vanish, i.e., λ1 ¼ λ2 ¼ 0 (or C ¼ x0 ¼ 0),
can the solutions reduce to the Schwarzschild one with its
mass MBH ¼ D, and a spacetime curvature singularity
located at the center (b ¼ 0) appears. If any of them
vanishes, the corresponding moment conjugate, P1 or

P2, can become unbounded at some points (or in some
regions) of the spacetime. As a result, spacetime curvature
singularities will appear. From Tables II–IV it can be seen
that in the current model the condition for such singularities
to appear is indeed λ1 ¼ 0 (or C ¼ 0), the cases corre-
sponding to Fig. 1(c).
The asymptotical properties of the spacetimes also

depend on the choices of the two parameters C and x0.
In particular, when Cx0 ≠ 0, we have x ∈ ð−∞;∞Þ, and a
minimal point (throat) of bðxÞ always exists, with
bð�∞Þ ¼ ∞ [cf. Fig. 1(a)]. When C ≠ 0 but x0 ¼ 0, the
range of x is restricted to x ∈ ð0;∞Þ with bð0Þ ¼ ∞ and
bð∞Þ ¼ ∞. In this case, a minimum of bðxÞ also exists
[cf. Fig. 1(b)]. When C ¼ 0 and x0 ≠ 0, the range of x is
also x ∈ ð−∞;∞Þ, but now bðxÞ is a monotonically
increasing function of x with bð−∞Þ ¼ 0 and bð∞Þ ¼ ∞
[cf. Fig. 1(c)].
In [47,48,53], the authors considered the case

Δ≡D2 − x20 > 0; D > 0; Cx0 ≠ 0; ð6:3Þ

for which the black and white hole horizons always exist,
located at

x�H ¼ �
ffiffiffiffi
Δ

p
;

respectively, as shown in Sec. III A [See also Table II].
The corresponding spacetime has two asymptotically
flat regions x → �∞, which are connected by a throat
located at

xm ¼ 1

2C
ðC2 − x20Þ;

as can be seen from Eq. (3.3) and Fig. 1(a)]. It is remarkable
to note that in this case the surface gravity at the black hole
horizon x ¼ xþH is always positive, while at the white hole
horizon x ¼ x−H, it is always negative, as the latter repre-
sents an antitrapped surface. In the asymptotical region
x → þ∞, the ADM mass reads

MBH ¼ D; ð6:4Þ

while in the asymptotical region x → −∞, it reads

MWH ¼ DC2

x20
; ð6:5Þ

as given explicitly in Eq. (3.20), which are all positive, too.
All the above properties are mainly due to the fact that the
Komar energy density [51] ðρþP

i piÞ remains positive
over a large region of the spacetime, despite that all the
three energy conditions are violated in most part of the
spacetime, including the regions near the throat and
horizons, as well as in the two asymptotically flat regions.
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In addition, the quantum gravitational effects are mainly
concentrated in the neighborhood of the throat. However, in
the current model, such effects can be still large at the two
horizons even for solar mass black/white hole spacetimes,
depending on the choice of the free parameters. They
become negligible near the black/white hole horizons only
for some particular choices of these free parameters
[cf. Eq. (3.26)].
Moreover, the ratioMBH=MWH can take in principle any

value, MBH=MWH ∈ ð0;∞Þ, as the three parameters
C;D; x0 now are all arbitrary [subjected only to the
constraint C ≥ 0 as can be seen from Eq. (6.2)] [48].
It should be also noted that the region defined by

Eq. (6.3) is quite small in the whole three-dimensional
phase space, spanned by ðC;D; x0Þ, where

D; x0 ∈ ð−∞;∞Þ; C ∈ ½0;∞Þ; ð6:6Þ

although the cases with D ¼ 0, or C ¼ 0, or x0 ¼ 0 can be
obtained only by taking certain proper limits of the five free
parameters, λ1; λ2; n; C, and D, as explained explicitly in
the content.
With all the above in mind, we have explored the whole

three-dimensional phase space of the three free parameters
(C;D; x0), and found that the solutions have very rich
physics. In particular, the existence of the black/white
horizons crucially depends on the values of Δ. When
Δ > 0, they always exist and are located at x�H ¼ � ffiffiffiffi

Δ
p

,
respectively. The spacetime in the region x−H < x < xþH
becomes trapped. When Δ ¼ 0, they also exist, but now
become degenerate, x�H ¼ 0, that is, aðxÞ ¼ 0 now has a
double root, the trapped region (aðxÞ < 0) disappears, and
the surface gravity at the horizon is always zero now, quite
similar to the extreme case of the charged RN solution with
jej ¼ m. When Δ < 0, the equation aðxÞ ¼ 0 has no real
roots, and, as a result, in this case no horizons exist at all,
neither a trapped region.
Thus, depending on the choices of the three free

parameters, C;D; x0, there are various cases that all have
different (local and global) properties. In Secs. III–V, we
have studied the cases Δ > 0, Δ ¼ 0, and Δ < 0, sepa-
rately, and in each of which all the three possible choices of
C and x0, as illustrated in Fig. 1, raise and have been studied
in detail. Their main properties are summarized in the three
tables, Tables II–IV. From these tables, the following
interested cases are worthwhile of particularly mentioning:

(i) Δ > 0;D > 0; Cx0 ≠ 0: As mentioned above, in this
case the solutions were first studied in [47,48,53],
and in the present paper we have studied them in
detail, and found the remarkable features stated
above. In particular, we have shown explicitly that
the quantum geometric efforts are mainly concen-
trated in the region near the throat (transition sur-
face). However, in the current model such effects can
be still large at the black/white hole horizons even

for solar mass black/white holes. They become
negligible only in a restricted region of the 3D
phase space, defined by Eq. (3.26).

(ii) Δ ¼ 0;D > 0; Cx0 ≠ 0: In this case, the black/white
horizons coincide and all are located at x�H ¼ 0, so
the surface gravity at the horizon is zero, quite
similar to the extreme case jej ¼ m of the RN
solution in general relativity. But, it is fundamentally
different from the RN solution, as now there are no
spacetime curvature singularities, and the spacetime
becomes asymptotically flat in both of the regions
x → �∞.

In addition, all the three energy conditions are
satisfied at the horizon, but at the throat x ¼ xm, they
are satisfied only when D ¼ C, for which the throat
coincides with the horizon, i.e., xm ¼ x�H ¼ 0.

Similar to the last case (in fact, in all the cases,
including Δ > 0 and Δ < 0), none of the three
energy conditions is satisfied at the spatial infinities
bð�∞Þ ¼ ∞, although the quantum gravitational
effects are also mainly concentrated at the throat, as
shown in Fig. 15. In this case, the black/white hole
masses are also given by Eqs. (6.4) and (6.5) but
now with jx0j ¼ D.

(iii) Δ < 0;D > 0; Cx0 ≠ 0: In this case, the function
aðxÞ is always positive, and no horizons exist,
although a throat does exist, as shown in Fig. 1(a),
at which all the three energy conditions are satisfied,
as long as the conditions (5.5) hold. By properly
choosing the free parameters, the quantum geo-
metric effects can be made to be mainly concentrated
at the throat, and the spacetime is asymptotically flat
at both of the two limits, x → �∞, with the ADM
masses, given, respectively, by Eqs. (6.4) and (6.5),
which can be all positive. However, since no
horizons exist, the spacetimes now represent worm-
holes without any spacetime curvature singularities.
Again, this is not in conflict to the Hawking-Penrose
singularity theorems [50], as none of the three
energy conditions holds at the asymptotically flat
regions, x ¼ �∞.

The main properties of other interesting cases can be
found in Tables II–IV.
It should be noted that, although in this paper we have

studied only the solutions found recently in [47], we expect
that quantum black hole solutions share similar properties.
In particular, due to the quantum geometric effects, an
effective energy-momentum tensor inevitably appears,
which generically violates the weak/strong energy con-
ditions at the throat, so the spacetime is opened up by such
repulsive forces. As a result, the throat will connect two
asymptotically flat regions. For spherical spacetimes [42],
such effects are uniquely characterized by the two quantum
parameters λ1 and λ2. The classical limit is obtained by
setting λ1 ¼ λ2 ¼ 0. Therefore, the singularities inside the
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classical black holes are resolved by the polymerization
[41], given by Eq. (1.9), provided that

λ1λ2 ≠ 0: ð6:7Þ

If any of these two parameters vanishes, a spacetime
curvature singularity can appear, as it is shown explicitly
by the current model.
Therefore, spherically quantum black holes should

generically also contain three free parameters, which
uniquely determine the location of the throat and the
two masses, measured by observers located in the two
asymptotically flat regions. Here we use “black holes” to
emphasize the fact that in such resultant spacetimes white/
black hole horizons are not necessarily always present, and
spacetimes with wormhole structures (without horizons)
can be equally possible, unless the two free parameters λ1
and λ2 are fixed by some physical considerations
[21,22,42]. It is also equally true that the two (Komar)
masses are independent and can be assigned arbitrary
values, unless additional physics is taken into account
[21,22,47,48]. To understand these issues further, one way
is to consider the formation of such spacetimes from
gravitational collapse of realistic matter fields [54–61].
Finally, we would like to mention that to get a universal

curvature upper bound in these polymer black holes, we
need to impose specific relations between black and white
hole masses [47], which amounts to impose further

constraint in the parameter space. In this paper, we did
not impose this condition in order to study properties in the
whole parameter space. To overcome this problem, recently
BMM proposed another set of canonical variables in which
one of the canonical momentum is precisely the square root
of the Kretschmann scalar [48]. In this new model, a
universal curvature upper bound can be obtained without
any further constraint on the relation between black and
white hole masses.
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APPENDIX: THE GENERAL EXPRESSIONS OF
THE ENERGY DENSITY AND PRESSURES

Inserting the solutions given by Eq. (2.8) into Eq. (2.15),
we find that

ρðxÞ ¼ Y3

X2Z8
½ð10Dx100 xþ 160Dx80x

3 − 20x60C
6 þ 672Dx60x

5 þ 1024Dx40x
7 − 260x40C

6x2

þ 110Dx40C
6xþ 512Dx20x

9 − 560x20C
6x4 þ 440Dx20C

6x3 − 320C6x6 þ 352DC6x5ÞX
þDC12 þDx120 þ 50Dx100 x2 þ 400Dx80x

4 þ 22Dx60C
6 þ 1120Dx60x

6 − 100x60C
6x

þ 1280Dx40x
8 − 500x40C

6x3 þ 286Dx40C
6x2 þ 512Dx20x

10 − 720x20C
6x5 þ 616Dx20C

6x4

− 320C6x7 þ 352DC6x6�; ðA1Þ

prðxÞ ¼ −
Y3

X2Z8
½ð2x120 þ 100x100 x2 − 10Dx100 xþ 800x80x

4 − 160Dx80x
3 þ 2240x60x

6

− 672Dx60x
5 þ 2560x40x

8 − 1024Dx40x
7 þ 10Dx40C

6xþ 1024x20x
10 − 512Dx20x

9

þ 40Dx20C
6x3 þ 2C12 þ 32DC6x5ÞX −DC12 −Dx120 þ 20x120 xþ 340x100 x3

− 50Dx100 x2 þ 1664x80x
5 − 400Dx80x

4 þ 2Dx60C
6 þ 3392x60x

7 − 1120Dx60x
6

þ 3072x40x
9 − 1280Dx40x

8 þ 26Dx40C
6x2 þ 1024x20x

11 − 512Dx20x
10 þ 56Dx20C

6x4

þ 32DC6x6�; ðA2Þ

and
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pθðxÞ ¼
Y2

2X3Z8
½ð4x140 þ 244x120 x2 − 34Dx120 xþ 2480x100 x4 − 720Dx100 x3 þ 9408x80x

6

− 4256Dx80x
5 þ 16384x60x

8 − 10240Dx60x
7 þ 12Dx60C

6xþ 13312x40x
10 − 10752Dx40x

9

þ 88Dx40C
6x3 þ 4x20C

12 þ 4096x20x
12 − 4096Dx20x

11 þ 192Dx20C
6x5 þ 128DC6x7

þ 4C12x2 − 2DC12xÞX − 3Dx140 þ 44x140 xþ 924x120 x3 − 194Dx120 x2 þ 5808x100 x5

− 2080Dx100 x4 þ 2Dx80C
6 þ 16192x80x

7 − 8288Dx80x
6 þ 22528x60x

9 − 15104Dx60x
8

þ 40Dx60C
6x2 þ 15360x40x

11 − 12800Dx40x
10 þ 168Dx40C

6x4 − 3Dx20C
12 þ 4096x20x

13

− 4096Dx20x
12 þ 256Dx20C

6x6 þ 4x20C
12xþ 128DC6x8 þ 4C12x3 − 2DC12x2�: ðA3Þ
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