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1. Introduction

The Sachdev-Ye-Kitaev (SYK) model is a quantum mechanical model (equivalently, a quan-
tum field theory in 1+0 dimensions) involving N Majorana fermions ψ1(t), . . . ,ψN(t) submitted to
quenched disorder Ji1,...,iqψi1(t) · · ·ψiq(t), with Ji1,...,iq a Gaussian random coupling. It originated in
condensed matter theory, see [1] and [2], and was later proposed as a model of AdS2/CFT1 duality;
in the large N limit and at strong coupling, see [3], [4] and [5], or the recent reviews [6] and [7].

On the other side, random tensors are natural generalisations of random matrices Mi j→ Ti jk...,
with U(N) or O(N) invariant probability laws. Following the relation between random matrices and
2D quantum gravity, they have been introduced in the nineties as generating functions for random
higher dimensional discrete geometries, defined as weighted triangulations,∫

rank D tensors
dT exp−SN(T ) = ∑

D-valent Feynman graphs
⇔ D-dimensional triangulations

W (triangulation). (1.1)

Progress in this direction has been slow until a suitable large N limit has been found by Gurau [8],
see also the monograph [9] for an in-depth account of random tensors.

The Feynman graph expansion of (1.1) involves a particular class of graphs termed "melons"
[10] which are obtained by recursive insertions of dressed propagators on the edges. These are
precisely the graphs that dominate the large N behaviour of the SYK model (see [11] for a complete
analysis), so that a reformulation of the SYK model in the framework of random tensors has been
proposed by Witten [12]. We refer the reader to the reviews [13] and [14] for recent overviews.

In this talk, we present an other application of random tensors to the SYK model in order to
address the question of averaging over a non Gaussian disorder. To do so, we treat the random
coupling Ji1,...,iq as a random tensor. Thanks to Gaussian universality [15], it turns out that a non
Gaussian disorder is equivalent to a Gaussian one with modified parameters. This is an adaptation
to the SYK model of some former result by Bonzom, Gurau and Smerlak in the case of p-spin
glasses [16]. We sketch here the general idea and refer to our original publication [17] for a detailed
account.

2. The Sachdev-Ye-Kitaev (SYK) model

The basic degrees of freedom of the SYK model are quantum mechanical Majorana fermions
ψ1(t), . . . ,ψN(t). In the canonical formalism, the fermion creation/annihilation are identical and
obey the anti-commutation rule {

ψi,ψ j
}
= δi j (2.1)

These fermion interact through an even degree q random interaction, so that its hamiltonian reads

H = iq/2Ji1...iqψi1 · · ·ψiq , (2.2)

where Ji1...iq ∈ R is a fully antisymmetric Gaussian random coupling with mean 0 and covariance

〈Ji1...iq J j1... jq〉=
σ2

Nq−1 ∑
permutations π

ε(π)δi1 jπ(1) · · ·δiq jπ(q) . (2.3)
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The standard deviation σ is a measure of the size of the disorder and the scaling in N is devised so
that there is a finite large N limit, as we will shortly see. The occurence of a sum over permutations,
weighted by the signature, arises from the antisymmetric nature of the coupling. This coupling rep-
resents some quenched disorder, which signifies that one has to average extensive/connected quan-
tities. In statistical mechanics, this means that the disorder Ji1...iq is not a new degree of freedom
but rather an external parameter over which we average. The system may be considered as made
of many subsystems, each with its own value of Ji1...iq , which motivates the averaging of extensive
quantities like the free energy F =−T logZ. In this context, Ji1...iq is a rank q tensor and averaging
turns it into a random tensor, as we will detail in the next section.

There is a generalisation to a model of fermions with flavours, [18]: fermions have an extra
label a and the hamiltonian reads

H = iq/2Ji1,1...i1,q1 ,...,i f ,1...i1,q f ∏
a=1,..., f

ψ
a
ia,1 · · ·ψ

a
ia,qa

(2.4)

This model shares many of the features of original SYK model and encompasses a lot of generali-
sations proposed so far.

As a first step, it is convenient to adopt a path integral point of view, using the action

S =
∫

dt
{

ψi∂tψi− iq/2Ji1...iqψi1 · · ·ψiq

}
(2.5)

where ψi Grassmann variables. Considering the SYK model as a 1+0-dimensional quantum field
theory, the Feynman rules at fixed Ji1...iq are as follows.

• The free propagator is proportional to the signum,

i j → G0(t, t ′) = 〈T ψi(t)ψ j(t ′)〉=
δi j

2
sgn(t− t ′). (2.6)

• The interaction vertex is (for q = 4)

i1

i2

i3

i4

→ Ji1...i4 (2.7)

Generalisations to arbitrary even values of q are straightforward, only the case q = 2 is pe-
culiar and ressembles more a random mass matrix than a disordered interaction.

• Finally, there is a sum over internal indices i ∈ {1, . . . ,N}, in addition to the integrals over
times.

Then, one computes the free energy or connected correlations functions as a sum over con-
nected graphs and then average over disorder. Since J is Gaussian, the average of a Feynman graph
(which is a monomial in J) reduces by wick’s theorem to contractions of pairs using (2.3).

In the large N limit, the combination of the scaling in (2.3) and the summation over internal
indices leads to some drastic simplifications. Indeed, average over the Gaussian interaction selects
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pairs of vertices, removes them and reconnects the remaining edges. This leads to a maximal
number of independent summations if these edges belong to different connected components (after
removal of the pair of vertices). The graphs having the leading order contribution in N are therefore
those graphs such that, for any vertex, there is another vertex so that removing both vertices leads
to q (the valence of each vertex) connected components. These graphs are usually called "melons".
A few examples of graphs are given in figure 1: the first two are melons while the third one is not
and is therefore sub-leading.

→ N3

N3 = 1 (2.8)

→ N6

N6 = 1 (2.9)

→ N4

N6 =
1

N2 (2.10)

Figure 1: Some graphs for the two point function

Accordingly, leading order contributions to the 2-point function are obtained by repeated in-
sertion on each line of a pari of vertices joined by q−1 dressed lines. This is conveniently encoded
in the Schwinger-Dyson equation (see figure 2),

G(t, t ′) = G0(t, t ′)+
∫∫

dudvG0(t,u)Gq−1(u,v)G(v, t ′). (2.11)

Writing the integrals as convolution products, the Schwinger-Dyson equation are conveniently

= + (2.12)

Figure 2: Schwinger-Dyson equation the two point function

abbreviated as

G = G0 +G0 ?Gq−1 ?G. (2.13)

Note that this equation sums all melons and is valid only at large N (otherwise, the equations
would be part of a larger system involving higher functions). If we further restrict to the large J or
equivalently large t (infrared) regions, (2.11) admits a simple solution.

Indeed, at large N in the IR, N � J|t− t ′| � 1, we may assume that G� G0 and look for a
conformal solution

G∗(t, t ′) ∝
sgn(t− t ′)
|t− t ′|2∆

. (2.14)

3
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This is a solution of the conformal approximation to (2.11)

0 = G0(t, t ′)+
∫∫

dudvG0(t,u)Gq−1(u,v)G(v, t ′). (2.15)

provided ∆ obeys

0 = 0+2− (q−1)×2∆−2∆ ⇒ ∆ =
1
q
. (2.16)

∆ is interpreted as the anomalous dimension of ψ in the IR, while the canonical dimension of ψ is
0 in the UV.

Similar results hold for the 4 point function: summing ladder graphs leads to an expression in
terms of some hypergeometric function, we refer for instance to [4] and [5] for a complete account.

The previous large N limit can be addressed in more conceptual way through the construction
of an effective action in such a way that the large N limit is nothing but a semi-classical one. This
is done in several steps.

First, one computes the free energy, possibly in the presence of a source to generate connected
correlations. In order to ease the average of f = −T logZ, one uses the "replica trick". The latter
is based on the simple identity

log(Z) = lim
n→0

Zn−1
n

. (2.17)

Zn is computed as the partition function of an ensemble of n independent fermions ψi(t)→ ψr
i (t)

with r = 1, . . . ,n, called replicas,

Zn =
∫

∏
r,i
[dψ

r
i (t)]exp−∑

r

∫
dt
{

ψ
r
i ∂tψ

r
i − iq/2Ji1...iqψ

r
i1 · · ·ψ

r
iq

}
. (2.18)

At a formal level, this procedure reduces the computation of the logarithm to a simple replication
of the degrees of freedom. The quenched average over the disorder can therefore be explicitly
performed,

〈logZ〉J = lim
n→0

1
n

(∫
dJi1...iq Zn exp− Nq−1

2q!σ2

(
Ji1...iqJi1...iq

)2∫
dJi1...iq Zn exp− Nq−1

2q!σ2

(
Ji1...iqJi1...iq

−1

)
(2.19)

To simplify this expression, one introduces composite degrees of freedom, bi-local in time

Grr′(t, t ′) =
1
N ∑

i
ψ

r
i (t)ψ

r′
i (t
′) (2.20)

with r and r′ replicas indices. The previous relation is enforced in the path integral using a Lagrange
multiplier Σrr′(t, t ′). Then the integrals over J and ψ are Gaussian and can be performed, so that
we are left with a functional integral over G and Σ. Assuming replica diagonal solutions (see [21]
for a discussion of non diagonal ones), Grr′(t, t ′) = G(t, t ′)δ rr′ , Σrr′(t, t ′) = Σ(t, t ′)δ rr′ , we are left
with

〈logZ〉J =
∫
[DG][DΣ] expNSeff[G,Σ], (2.21)

4
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with the effective action

Seff[G,Σ] =
1
2

logdet
(
∂ −Σ

)
?
+

1
2

∫
dtdt ′

{
Σ(t, t ′)G(t, t ′)+ JGq(t, t ′)

}
(2.22)

Note that by construction G and Σ are O(N) scalars, so that N only appears as a pre-factor in the
exponential. Therefore, the large N limits amounts to the saddle point approximation for stationary
points (G,Σ) of of the effective action. These equations are

G(t, t ′) =
[
δ (t− t ′)∂t −Σ(t, t ′)

]−1

?
, (2.23)

Σ(t, t ′) = qσ
2
[
G(t, t ′)

]q−1
. (2.24)

Eliminating Σ(t, t ′) with G0(t, t ′) =
[
δ (t− t ′)∂t

]−1
?

the free propagator leads to

G = G0 +G0 ?Gq−1 ?G (2.25)

which is nothing but the Schwinger-Dyson equation (2.11).
I need to find out the right numerical factor in front of Gq, which I simply write J and factor

1/2.
In the IR, the effective action (2.22) is invariant under reprarametrisation t→ f (t) with ∆ = 1

q ,
provided

ψ(t)→
∣∣∣d f

dt

∣∣∣∆ψ( f (t)) (2.26)

G(t, t ′)→
∣∣∣d f

dt

∣∣∣∆∣∣∣d f
dt ′

∣∣∣∆G( f (t), f (t ′)) (2.27)

Σ(t, t ′)→
∣∣∣d f

dt

∣∣∣1−∆
∣∣∣d f
dt ′

∣∣∣1−∆

Σ( f (t), f (t ′)) (2.28)

Note that the saddle point solution

G(t, t ′) ∝
sgn(t− t ′)
|t− t ′|2∆

(2.29)

is only invariant under the SL2(R) transformations

t→ f (t) =
at +b
ct +d

(2.30)

with a,c,d,d real numbers such that ad − bc = 1. Reparametrisation invariance is therefore a
spontaneously broken approximate symmetry, analogous to the chiral symmetry in QCD. It leads
to pseudo-Goldstone modes that are described by the Schwartzian derivative (see [19] and [20] ).

In the remainder of the paper, we are interested in the extension of the previous formalism to
averaging over non Gaussian disorder by promoting the coupling Ji1,...,iq to a rank q random tensor.

5
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3. A short introduction to random tensors

Rank q random tensors are arrays of Nq numbers Ti1,...,iq submitted to given probability laws.
The tensors may be real or complex and we do not impose any specific symmetries under permu-
tations of the indices but assume U(N) or O(N) invariant probability laws. In the general case, we
average over random tensors using

〈· · · 〉=
∫

dT · · ·exp−SN(T )∫
dT exp−SN(T )

. (3.1)

The action usually starts with a quadratic terms and is perturbed by some higher degrees invariant
interactions. For a real non symmetric tensor, it takes the form

SN(T ) =
1
2

Nq−1T 2 +VN(T ), (3.2)

where T 2 is a shorthand for the contraction T 2 = Ti1...iqTi1...iq .
We impose an invariance under Oq(N) = O(N)×·· ·×O(N) transformations

Ti1···iq → T ′i1···iq = O(1)
i1 j1 · · ·O

(q)
iq jqTj1··· jq . (3.3)

Note that each factor of the group acts independently on the different indices, this is possible only
because we do not impose any permutational symmetry between the indices. If the tensors were
assumed to be fully antisymmetric, then the symmetry group would be reduced to O(N) because
all the indices have to be treated in the same way.

For non symmetric tensors, all algebraic invariants are constructed using edge coloured q-
valent graphs. This means that each vertex has valence q (i.e. is attached to q edges) and that each
edge in the graph may be assigned a number in {1,2, . . . ,q} in such a way that at each vertex all the
edges attached to that vertex carry different numbers. The invariants are constructed by assigning
tensors to the vertices and contracting the indices pairwise along the edges, the position in the
tensor being given by the label. Denoting by Γ such a graph, we write the invariant as (T · · ·T )Γ (as
many tensors as there are vertices in the graphs), which stands for products of tensors contracted
along the graph. We give a few examples for a rank 3 tensor in figure 3. In this figure, the first
graph is a dipole and represents the kinetic term. The next is a quartic melonic interaction and the
last one a tetrahedral interaction.

For non symmetric complex tensors, we treat T and T as independent variables. The invariance
group is now Uq(N) = U(N)× ·· · ×U(N). The invariants for complex tensors involve bipartite
coloured graphs of valence q. A graph are bipartite if we can colour the vertices in black or
white, in such a way that edges only relate vertices of different colours. The constraints on the
numbering of the edges remains unchanged. Then, the invariant is build by assigning T to white
vertices and T to black ones, and contracting along the edges. Let us also note the existence of the
"multiorientable" tensor, where two indices transform withU(N) and the remaining one with O(N),
[22]. Finally, if the tensor have extra permutation symmetries, one should work with equivalence
classes of graphs respecting these symmetries.

Of course, random tensors reduce to random matrices for q = 2. In this case, graphs with
vertices of valence 2 are disjoint union of cycles, each cycle with v vertices yielding the invariant
TrMv.

6
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(T T )Γ = Ti jkTi jk

(T · · ·T )Γ = Ti jkTi jlTmnkTmn j

(T · · ·T )Γ = Ti jkTklmTm jnTnli

Figure 3: Some graphs invariants for a rank three real tensor

Then the potential in (3.2) is expanded over graph invariants as

VN(T ) = ∑
Γ

NδΓλΓ

SΓ

(T · · ·T )Γ, (3.4)

λΓ is a coupling constant, SΓ a combinatorial factor and NδΓ a power of N suitably chosen in such a
way that there is a non trivial large N limit. The existence of a non trivial large N limit is a delicate
question which can be formulated as follows. Determine the scaling of the interactions NδΓ in such
a way that, for a large class of observables O(T ), one has a finite nontrivial limit, possibly after
rescaling, of the following expectation values

lim
N→∞

1
Nδ (O)

〈O(T )〉= lim
N→∞

1
Nδ (O)

∫
dTO(T )exp−SN(T )∫

dT exp−SN(T )
. (3.5)

For random matrices, this is easy : it suffices to take δ = 1 for every cycle so that 1
N 〈trMp〉 admits

a finite non trivial limit.
The case of random tensor was not solved before a breakthrough by Gurau [8] for non sym-

metric tensors complex tensors. In this case, for a rank q tensor, the scaling exponent is simply
δΓ = q− cΓ, with cΓ the number of connected components. This ensures that every observable,
build itself from a graph, has a finite limit when N→ ∞, after rescaling by a suitable power of N.
In this case, only melonic graph observables have non zero limit and only depend on the melonic
interactions in the potential. Moreover, the expectation can be computed with a modified Gaussian
distribution, (see [15]), a fact that turns out to be crucial in our presentation of Gaussian universality
for SYK models.

Many other tensor models have be shown to admit a large N limit. Especially interesting
for us are the real non symmetric rank 3 tensors with tetrahedral interaction have been studied by
Carrozza and Tanasa [23]. in this case, the scaling is the usual one for the quartic melon δ = 2
while the tetrahedron is enhanced, δ = 5/2 [23]. Let us also note that large N limits may also

7
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be obtained for tensors with permutational symmetries [24]. This limit also exist with different
scalings for the interactions [25], and lead to an extension of Gaussian universality.

These limits have been obtained using combinatorial techniques based on the Feynman graphs
that appear in the expansion of (3.1) in powers of the couplings λ −Γ. These graphs have been
shown to be melons [10]. Since these are precisely the graphs that occur in the SYK model after
disorder averaging, tensor models have been used by Witten to reformulate the SYK model without
disorder [12]. In this case, the fundamental degrees of freedom of the SYK model become tensors
ψi jk...(t) instead of ψi(t). Then, it is the tensorial structure of the index contractions that reproduces
the large N limit originally provided by the disorder.

In this talk, we are studying a different use of random tensors in the context of the SYK
model: we propose to treat the coupling Ji1,...,iq as a random tensor and investigate the effects of
interactions.

4. Gaussian universality fro random tensors and the SYK model

Turning back to the SYK model, let us focus on the disorder average using a non Gaussian
weight,

〈. . .〉J =

∫
dJ . . . exp−

{
Nq−1

2σ2 J2 +VN(J)
}

∫
dJ exp−

{
Nq−1

2σ2 J2 +VN(J)
} , (4.1)

where the potential VN(J) perturbation is a perturbation of the Gaussian distribution. Working with
replicas, the average of the interaction term over the random tensor Ji1...iq reads〈

exp
{

Ji1...iq ∑
r

∫
dtψr

i1(t) · · ·ψ
r
iq(t)

}〉
J

= exp
{

Nq−1

2σ2 K2−V ′N(K)

}
(4.2)

with

Ki1...iq =
σ2

Nq−1 ∑
r

∫
dt ψ

r
i1(t) · · ·ψ

r
iq(t) (4.3)

and the normalised background effective potential V ′N(K) for K

V ′N(K) =− log
∫

dJ exp−
{

Nq−1

2σ2 J2 +VN(K + J)
}
, (4.4)

computed after shift of integration J→ J +K. Obviously, when VN = 0 we recover the Gaussian
case. In the case of a invariant perturbation, both VN and V ′N can be expanded over graphs,

VN(T ) = ∑
Γ

NδΓλΓ

SΓ

(T · · ·T )Γ, V ′N(T
′) = ∑

Γ

NδΓλ ′
Γ

SΓ

(T · · ·T )Γ. (4.5)

Thus, the couplings λ ′
Γ

can be computed as functions of λΓ using (4.4). Then, the existence of a
large N limit can be formulated as finding suitable exponents δΓ such that limN→+∞ λ ′

Γ
(λΓ) exists.

8
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Let us now express the correction to the effective action Seff(G,Σ) (see equation (2.22)) due to
the non Gaussian terms. As in the first section, we introduce the bi-local field

Grr′(t, t ′) =
1
N ∑

i
ψ

r
i (t)ψ

r′
i (t
′) (4.6)

and perform the Gaussian integration over ψr
i (t). Under the assumption of a diagonal solution that

does not break replica symmetry breaking, the new effective action reads

S′eff(G,Σ) = Seff(G,Σ)+∑
Γ

NδΓ−1+eΓ−(q−1)vΓλ ′
Γ

SΓ

∫
∏

v
vertices

dtv ∏
e=vv′
edges

G(tv, tv′), (4.7)

with eΓ the number of edges of Γ and vΓ its number of vertices. This scaling in N is understood
as follows : each vertex yields a tensor K and thus a power N−(q−1)VΓ (see (4.3)) while each edge
comes with a factor of N (because of (4.6)); We further factorised a power of N in front of the
effective action. Since all graphs are q-valent, one has 2eΓ = qvΓ, so that the effective action is
equivalently expressed as

S′eff(G,Σ) = Seff(G,Σ)+∑
Γ

NδΓ−1−vΓ(q/2−1)λ ′
Γ

SΓ

∫
∏

v
vertices

dtv ∏
e=vv′
edges

G(tv, tv′). (4.8)

Note that if the perturbation V is itself Gaussian, the only graph that contribute is the dipole (2
vertices related by q edges) with δ = q− 1, so it is independent of N as expected. It is also
worthwhile to emphasise that the correction is invariant under the reparametrisation

t→ f (t), G(t, t ′)→
∣∣∣d f

dt

∣∣∣∆∣∣∣d f
dt ′

∣∣∣∆G( f (t), f (t ′)) (4.9)

with ∆ = 1
q since all vertices are q-valent. Therefore, all the reparametrisation breaking terms are

included in the Gaussian contribution.
The large N limit of the SYK model is always of a Gaussian nature if for all graphs δΓ ≤

1+vΓ(q/2−1), with equality only for the dipole graph, a property known as Gaussian universality.
Note that in the special case q = 2, the tensor model is just a random matrix with δΓ = 1 for single
trace interactions and all cycles have finite non zero limits so that Gaussian universality does not
hold.

Gaussian universality holds in the case of a complex non symmetric tensor [15].In our context,
it corresponds to a modified version of the SYK model, the coloured complex SYK model with
Hamiltonian

H = i
q
2 ∑

i1,...,iq

J̄i1,...,iqψ
1
i1 · · ·ψ

q
iq + i

q
2 ∑

i1,...,iq

Ji1,...,iqψ̄
1
i1 · · · ψ̄

q
iq . (4.10)

The couplings Ji1,...,iq define a complex non symmetric tensor and the scaling of each perturbation
is the canonical one, δΓ = q−cΓ, with cΓ the number of connected components. For instance, with
a quartic "melonic" interaction,

→ λN3Ji1i2i3kJ̄i1i2i3l J̄ j1 j2 j3kJ j1 j2 j3l. (4.11)
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∂

∂σ2 = + (4.12)

Figure 4: A Polchinski like equation for the effective potential V ′N

Following [26], the existence of this large N limit can be established using a variant of the cele-
brated Polchinski equation [27]. Indeed, the effective action for a complex non symmetric rank q
tensor is

V ′N(T
′, T̄ ′) =− log

∫
dT dT̄ exp−

{
Nq−1

2σ2 T T̄ +VN(T ′+T, T̄ ′+ T̄ )
}
. (4.13)

It obeys a Polchinski-like equation, see figure 4

∂V ′N
∂σ2 =

1
Nq−1 ∑

1≤i1,...,iq≤N

(
∂ 2V ′N

∂Ti1,...,iq∂ T̄i1,...,iq
− ∂V ′N

∂Ti1,...,iq

∂V ′N
∂ T̄i1,...,iq

)
(4.14)

The various operations on the RHS of (4.14) are interpreted in terms of graphs as follows.

• Derivation with respect to T and T̄ removes a pair of vertices.

• Corresponding free lines are reattached by index contraction.

Because the scaling is δΓ = q−cΓ, the leading contributions arise when creating a maximal number
of connected components,

→ (4.15)

.
Then, a large N limit exists so that the couplings λ ′

Γ
remain finite and only depend on the

initial couplings λΓ of melonic graphs. Moreover, since δΓ = q− cΓ with cΓ ≥ 1, the exponent
in (4.8) obeys δΓ−1− vΓ(q/2−1) ≤ 0 with equality only for the dipole. Therefore, the effective
potential V ′N is dominated by the contribution to the dipole graph , which is equivalent to a modified
Gaussian covariance (see [16]),

(σ ′)2 =
−1+

√
1+4λσ4

2λσ2 (4.16)

The sub-leading order is a non Gaussian correction to the effective action given by

∝
1

N2

∫
dt1dt2dt3dt4G3(t1, t2)G(t1, t3)G(t2, t4)G3(t3, t4) (4.17)
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5. Conclusion and outlook

In this talk, we have presented an other application of random tensors to the SYK model,
treating the random coupling Ji1...iq as a random rank q tensor. Provided a suitable large N limits
exists, Gaussian universality shows that the non Gaussian disorder can be reduced to a Gaussian
one, albeit with a modified covariance. This is a salutary result since the structure of the SYK
model at large N heavily relies on Gaussian averages.

Strictly speaking, this result has been rigorously established only for the complex coloured
SYK model, based on complex non symmetric tensors. However, this may also hold for other
invariant models, for instance based on real antisymmetric tensors [24] or generalised melonic
interactions [25]. A more radical modification could involve tensors with independent entries or
the SYK models with lattice structure and/or global symmetries proposed in [28].
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