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ABSTRACT: Much of our understanding of critical phenomena is based on the notion of
Renormalization Group (RG), but the actual determination of its fixed points is usually
based on approximations and truncations, and predictions of physical quantities are often
of limited accuracy. The RG fixed points can be however given a fully rigorous and non-
perturbative characterization, and this is what is presented here in a model of symplectic
fermions with a nonlocal (“long-range”) kinetic term depending on a parameter € and a
quartic interaction. We identify the Banach space of interactions, which the fixed point
belongs to, and we determine it via a convergent approximation scheme. The Banach
space is not limited to relevant interactions, but it contains all possible irrelevant terms
with short-ranged kernels, decaying like a stretched exponential at large distances. As
the model shares a number of features in common with ¢* or Ising models, the result
can be used as a benchmark to test the validity of truncations and approximations in RG
studies. The analysis is based on results coming from Constructive RG to which we provide
a tutorial and self-contained introduction. In addition, we prove that the fixed point is
analytic in €, a somewhat surprising fact relying on the fermionic nature of the problem.

KEYWORDS: Renormalization Group, Nonperturbative Effects

ARX1v EPRINT: 2008.04361

OPEN AccESS, © The Authors.

Article funded by SCOAP?, https://doi.org/10.1007/JHEP01(2021)026


mailto:giuliani@mat.uniroma3.it
mailto:vieri.mastropietro@unimi.it
https://arxiv.org/abs/2008.04361
https://doi.org/10.1007/JHEP01(2021)026

Contents

Introduction

1.1  The model

1.2 Strategy and open questions

1.3 Convergence, analyticity and non-perturbative nature of the fixed point
1.4 Summary

Definition of the model and formulation of the problem
2.1 Renormalization map

The fixed point equation at lowest order

The Banach space of interactions

4.1 Representation of interactions by kernels
4.1.1 Trimmed representation

4.2 Norms
4.2.1 The norm of Hy
4.2.2 The norm of a trimmed sequence

The renormalization map
5.1 Integrating-out map
5.2  Trimming
5.2.1 Equivalent coupling sequences
5.2.2 Trimming map
5.3 Dilatation
5.4 Renormalization map in the trimmed representation
5.5 Fixed point equation
5.6 Norm bounds
5.6.1 Bounds for Sfl"”’gn
5.6.2 Bounds for Rﬁl""’gn

Construction of the fixed point
6.1 Key lemma
6.2 Abstract analysis
6.2.1 Complex version of the Abstract Lemma
6.3 Fixed point theorem
6.4 Semigroup property and ~-independence
6.5 Analyticity

00 =TT

13

16
16
17
18
18
20

21
21
23
23
24
26
26
27
29
30
31

32
32
34
38
38
40
42



Proof of Key lemma
7.1 Casel>8

7.2 Case £ =6R

7.3 Case £ =4R

7.4 Case £ =2R

7.5 e&o)
7.6 eE\O)

7.7 Possibility of all choices

Discussion and open problems
8.1 Open questions
8.1.1 Extensions to other nonlocal models
8.1.2 Further properties of the RG fixed points
8.1.3 Conformal invariance
8.1.4 Relations with analytic regularization
8.1.5 Increasing the range of
8.1.6 Extension to non-integer N7 To non-integer d?

8.1.7 Connections to Functional Renormalization Group

8.1.8 Bosonic fixed points

Gevrey classes and fluctuation propagator bounds
A.1 Cutoff function of Gevrey class
A.2 Fluctuation propagator bounds

A.2.1 k-space

A.2.2 zx-space

Details about H.g
Trimming details

Determinant bounds for fermionic expectations
D.1 Simple expectations

D.2 Connected expectations

D.3 Brydges-Battle-Federbush (BBF) formula

D.4 Gawedzki-Kupiainen-Lesniewski (GKL) bound
D.5 Bound on the number of anchored trees

Proof of Sfl""’z" norm bound

Estimates of A,(Cl), A,(f)

G One-loop coefficients I; and I

H Finite volume and non-perturbative validity of Heg

— 11 —

43
44
46
47
48
48
49
49

50
52
52
593
54
95
95
o7
o8
o8

60
60
62
62
63

64

65

68
68
70
72
76
79

79

81

83

86



I Fixed point in a formal power series expansion 92

J Fixed point via the tree expansion 95
J.1  On the flow of the effective couplings 100
K Rigorously constructed bosonic fixed points 101

1 Introduction

Renormalization group (RG) is a pillar of theoretical physics, explaining how long-distance
collective behavior emerges from microscopic models. Critical phenomena are thus under-
stood in terms of RG fixed points (Wilson [1-3]) and universality is explained in terms of
basins of attractions. While this beautiful picture qualitatively works very well, quanti-
tative applications often lead to practical difficulties. To compute critical exponents, one
typically does perturbation theory in a small parameter, like e = 4—d in the e-expansion [4].
The accuracy of this procedure is limited by the proliferation of Feynman diagrams, and
by the slow convergence of Borel-resummed series (while without resummation it normally
diverges). As a consequence, predictions of critical exponents using perturbative RG [5, 6]
are often less accurate than lattice Monte Carlo simulations or the conformal bootstrap [7].

It should be stressed that Wilson did not consider RG limited to situations with a small
coupling. Two strongly coupled RG examples can be found [2]. One is his famous solution
of the Kondo problem. The other is less known but no less impressive: an RG calculation
for the 2D Ising model in a space of 217 couplings, concluding that “one can do precise
calculations using pure renormalization group methods with the only approximations being
based on locality.”

Other developments in theoretical physics suggest, indirectly, that Wilson ideas are
non-perturbatively correct. We can mention here exact results in two-dimensional field
theory (see e.g. [8]), obtained by conformal field theory, integrable models, exact S-matrix
bootstrap etc., which have provided many examples of exact non-perturbative RG flows,
never finding any inconsistency with Wilsonian expectations. In higher dimensions, ex-
act results in supersymmetric theories (see e.g. [9]) as well as the gauge-gravity duality
considerations (see e.g. [10, 11]) have always confirmed Wilson ideas.

It is therefore somewhat surprising that the most straightforward interpretation of
Wilson’s vision, as a non-perturbative machine which would allow non-perturbatively and
with an essentially unlimited precision to compute the properties of any RG fixed point
of interest, has not so far been achieved. It is fair to say that this was not for the lack of
trying, see e.g. [12] for the early attempts.

Two notable, although not fully successful, attempts have been the Functional Renor-
malization Group (FRG) [13, 14] and Tensor Network Renormalization (TNR) [15-17].
The FRG calculations include couplings with arbitrary powers of fluctuating field, but



only up to some finite derivative order. Unfortunately, with more derivatives, FRG re-
sults tend to become more and more sensitive to the parameters specifying the regulating
function [18, 19]. This has been traced to increasing violations of conformal invariance,
except at some special parameter values satisfying a “principle of minimal sensitivity” [20].
It remains to be understood why the convergence to the fixed point does not hold more
robustly in FRG. As to the TNR, it works well for simple 2D lattice models such as the
2D Ising model but hasn’t been yet as effective in higher dimensions.

So, in spite of these attempts, although it is generally believed that the non-perturbative
Wilsonian RG fixed points do exist, at present they often remain Platonic objects, confined
to the world of ideas and accessible to us only via approximations of rather limited accu-
racy. Take e.g. the RG fixed point for the 3D Ising model. If it exists, which Banach space
does it belong to? Can we access it via a provably convergent approximation scheme? At
the moment these questions are wide open.

Note that Wilson believed in the Ising RG fixed point very concretely: as a fixed-point
Hamiltonian invariant under a Kadanoff block-spin transformation. As mentioned above,
for 2D Ising, he found an approximate fixed-point Hamiltonian numerically, truncating to
a space of 217 lattice spin interactions [2]. But the convergence of his scheme has never
been proven, nor has it been implemented in 3D. Incidentally, Wilson did worry about
rigorous convergence properties of RG maps; e.g. in [21] a model RG transformation was
shown to be convergent for a rescaling parameter larger than 4 x 106.

Of course, as already mentioned, there are nowadays other methods to get precise
values of critical exponents, most notably the conformal bootstrap [7]. However, this does
not mean that the RG should be abandoned. First, RG is more general than the confor-
mal bootstrap, since many RG fixed points important for physics do not have conformal
invariance, such as any fixed point involving time evolution or relaxation, and having a
dynamical critical exponent z # 1. Second, it is quite possible that there exist much better
RG implementations, and we just haven’t found them yet.

Since theoretical physicists have not been able to find a fully successful implementation
of non-perturbative RG in spite of many attempts, can mathematical physics give any hint
about what we have been doing wrong? In mathematical physics, the rigorous construc-
tion of non-trivial RG fixed points has been achieved in different cases using Constructive
RG (CRG). It has been obtained in bosonic scalar field theories® [22-26] and interacting
fermions [27] with long range interactions, in cases where the system has a scaling dimen-
sion differing from marginality by an €. It has also been achieved in models with marginal
interactions of strength A and asymptotically vanishing beta function, such as 1D inter-
acting fermions [28-31] and 2D spin, vertex and dimer models [32-39]. In all these cases,
the non-perturbative existence of a non-trivial RG fixed point, close to the Gaussian or
free Fermi one, has been proved for € or A sufficiently small, and the critical exponents
can be computed at an arbitrary precision in terms of resummed perturbative expansions,
with rigorous bounds on the remainder. A feature of the CRG is that the fixed point is
found, without any approximation, in a Banach space of interactions where all the irrele-

1See section 8.1.8 and appendix K for more details about the rigorously constructed bosonic fixed points.



vant terms are nonlocal, even though fast decaying (e.g. like a stretched exponential): this
is in striking contrast with the FRG, where the space of interactions is typically spanned
by a sequence of local functions of the fluctuation field and its derivatives.?

One lesson of all this body of rigorous work is that weakly coupled non-perturbative RG
is possible, both in the bosonic and fermionic case, although it is easier in the fermionic
case because in this case convergent perturbation theory captures full non-perturbative
physics. We emphasize that, in general, fermionic perturbation theory is expected to be
convergent only in the running rather than the bare coupling, see section 1.3. On the other
hand, strongly coupled non-perturbative RG has so far been out of reach of mathematical
physics research. For this reason we will, as a first step, focus in this paper on the weakly
coupled fermionic case, well understood by mathematical physicists, and aim to transfer
this knowledge into the theoretical physics realm.

With this in mind, we will present here the rigorous construction of a non-Gaussian
fixed point for a fermionic model with weakly relevant quartic interaction. This is possibly
the simplest model of this kind where to test field-theoretical RG methods, and a perfect
example to provide an introduction to CRG accessible to a wider audience. We will explain
how these methods allow one to characterize a non-trivial fixed point without any ad-hoc
assumption or any uncontrolled approximation. The above mentioned crucial role played
by the space of mildly nonlocal interactions, as opposed to expanding all interactions in
local functions of the field, will be evident from our presentation.

A complementary goal of our work will be to prove a new result, which is the ana-
lyticity of the e-expansion for our non-Gaussian fermionic fixed point. This is in contrast
with bosonic e-expansions, which are, at best, Borel summable. Although we will focus
on £ > 0 in much of the paper, eventually we will show analyticity in a complex disk
around € = 0. Although the sign of ¢ is correlated with the sign of the fixed point quartic
interaction, Dyson’s argument against analyticity does not apply for our model because
fermions are allowed to have quartic interaction of either sign. Moreover, analyticity in &
of the fixed point is not in contradiction with the divergence of perturbation theory in the
bare couplings, see section 1.3 for further comments.

Note that in this paper we only construct RG fixed points, and we do not discuss in
detail the RG flow between the microscopic model and the constructed fixed points. In
any case, the result about analyticity is only valid for the fixed point and does not extend
to the full RG flow, whose very structure changes discontinuously with the sign of . For
positive € we will have the gaussian model at short distances, perturbed by the relevant
quadratic and quartic couplings and flowing at long distances to the nontrivial RG fixed
point. For negative ¢ it will be the other way around: starting from the nontrivial RG
fixed point we may flow to the gaussian model at long distances, with the quartic coupling
then describing the leading irrelevant interaction at long distances. The former situation is
referred to as ‘IR fixed point’, while the latter as ‘UV fixed point’. To avoid any ambiguity
we stress that no reverse RG flow is implied: all RG flows are from short to long distances.

2For a fair comparison it should be noted that FRG calculations are often performed in terms of the 1PI
effective action, not the Wilsonian effective action used here. Also, some FRG schemes do attempt to go
beyond the local derivative expansion. See section 8.1.7.



The convergence of our CRG scheme lets us hope that it will be used as a starting point
for developing systematic and stable truncation schemes for the fermionic FRG. Although
we have been able to prove our theorems only for small €, it might be that the range of
practical applicability of our scheme is order one and includes strongly coupled fixed points
— in the future one should try to see if this is the case (see section 8.1.5).

Rigorous non-perturbative constructions of bosonic fixed points present several com-
plications compared to the fermionic case discussed here (see section 8.1.8). Extracting
lessons from those constructions for practical RG calculations remains another important
open problem for the future.

1.1 The model

The model we consider is schematically described by the following action:
aMFT (1) + uo/dd:n Y2+ )\O/dda: Yt (1.1)

where aMFT is an ‘anticommuting Mean Field Theory’ of the fermionic® field ¥ with N
components, and the two additional terms are quadratic and quartic interactions preserving
Sp(N) global symmetry. Our fermions will be scalars under rotation, rather than spinors.
So the model is not reflection-positive, but reflection positivity will play no role in the RG
analysis.

Local models of this kind were considered in [40] under the name ‘symplectic fermions’,
and are relevant for the description of polymers and loop-erased random walks [41, 42]. In
3D, interacting symplectic fermion models have been recently considered in the context of
dS/CFT correspondence [43]. See also [44, 45] for theoretical studies of related models,
and [46—48)] for other speculative appearances of symplectic fermions in physics. Our model
is a variant of those, with a nonlocal (“long-range”) kinetic term of the schematic form
P (82)# 1) where (82)# is a non-integer power of the Laplacian. Similar long-range models
in a large N limit were recently considered in [49] in relation to the SYK model.

More precisely, our model is defined as follows: take an even number N of real Grass-
mann fields 1 = (1,)N_; in R%* with d = 1,2,3. The reference Gaussian theory (the
aMFT mentioned above) is characterized by the following two-point function:

<wa(x)¢b(y)> = Qabp(a7 - y) = Gab(xv y)v (12)

where P(x) x W at large distances (see the next section for the explicit expression),
with € small and positive, and €2, is the symplectic N x N matrix:

1
-1

—1

3Fermionic:anticommuting:Glrassma.nn in this paper.
4We will not make a distinction between the lower and upper S p(N) and Euclidean indices whose position
is determined only by typographic convenience: 9¥® = 1, and 0,9 = 0".



The quadratic and quartic monomials 2 and t* in (1.1) must be interpreted as Qe
and (Quptbap)?. Given the form of P(z), the fields v, are assigned the scaling dimension
[¢] = d/4 — €/2, so that the quadratic and quartic terms in (1.1) are both relevant, the
quartic one being barely so for € small and positive. The parameter € plays a role similar
to the deviation of spatial dimension d from 4, € = 4 — d in the Wilson-Fisher e-expansion,
which, contrary to ours, is not at present suitable for a rigorous non-perturbative RG
analysis because the space of 4 — € dimensions has not been rigorously defined so far.’> For
d =1,2,3, there are no other local relevant or marginal terms in addition to those included
n (1.1). In perturbative RG, the lowest order RG equations for the fixed point are, letting
~ be the scaling parameter:

v :fyd/2+5(l/+f1)\+"')v A :725()\4-]2)\2 —l-"'), (1'4)

where I7 and I are positive constants given by the one-loop Feynman diagrams. Neglecting
the higher-order terms, we get a nontrivial fixed point A\, = (1 — %) /I, v. = L1\ /(1 —
~4¥/2+€) which is O(e), close to the Gaussian one. This is just an approximation, and we
want to be sure that the existence of the fixed point is not spoiled by non-perturbative
effects caused by higher orders or irrelevant terms. Moreover, we want to define a scheme
whose truncations provide arbitrarily good approximations of the actual fixed point, with
apriori bounds on the error made.

1.2 Strategy and open questions

Our rigorous construction of the fixed point goes as follows. First, we identity a space which
is left invariant by the RG iteration. We cannot restrict to the (finite) space of relevant
couplings, since the RG transformation generates the irrelevant interactions, whatever the
input action is. Similarly, we cannot restrict to the space of local irrelevant interactions,
because it too is not left invariant by the RG map. The right choice turns out to be the
span of all possible monomials in 1 and 0v¥ with nonlocal, but sufficiently fast decaying,
kernels: this space is left invariant. We stress that this mild nonlocality is unrelated to the
long-range character of our reference Gaussian theory; it has to do with the fact that the
IR-cutoff propagator is not fully local although short-range; it would be present also for
the local kinetic term. Note that we couldn’t find an invariant space of nonlocal monomials
involving 1 only: in our construction the presence of derivative fields 0 is generated by
what we call the trimming operation, which consists in extracting from a nonlocal mono-
mial of order 2 or 4 its local part, and in re-expressing the nonlocal remainder in terms of
irrelevant monomials of the form 919 or 1301. Note also that our construction does not
exclude the existence of other invariant spaces, with different (non)locality properties of
the kernels; in particular, it remains to be seen whether there exists an invariant Banach
space consisting of local monomials in ¢ and its derivatives (of arbitrary order), but we
are not aware of any rigorous result in this sense. The construction of an invariant Banach
space of interactions comes, in particular, with a non-perturbative definition of the RG

5See however [50] for a non-perturbative analysis in non-integer d using the conformal bootstrap.



map: this is achieved via combinatorial cancellations due to the + signs in the series ex-
pansion, ultimately due to the fermionic nature of the fields. In order to take advantage of
these cancellations, we need to organize the perturbative expansion in the form of series of
determinants, rather than in the more standard form of series of Feynman diagrams. This
may be thought of as a smart rearrangement and partial resummation of the perturbative
series: while the Feynman diagrams expansion is not absolutely convergent, the determi-
nant expansion is. Once the invariant space has been identified and the RG map defined at
a non-perturbative level, we prove that the RG map is contractive in a suitable neighbor-
hood of the approximate lowest-order fixed point: this implies existence and uniqueness of
the actual fixed point in such a neighborhood. (More precisely, the RG map is contractive
near the fixed point along all directions but 12, but this complication is easily taken care
of.) Remarkably, such fixed point is analytic in €.

Therefore, the problem of obtaining the correct Banach space to which the fixed point
belongs, and of computing the fixed point via a provably convergent approximation scheme,
while still open for 3D Ising, is completely solved in our fermionic case, at least when ¢ is
sufficiently small.

Our results have similarities with those of Gawedzki and Kupiainen (GK) [27], with
some differences. GK had fermions transforming as spinors and the model (long-range
Gross-Neveu) was reflection positive. This is a minor difference and we could have con-
sidered their model, the only complication being an extra spinorial index. Their quartic
interaction was weakly irrelevant rather than weakly relevant, and so they have obtained
an ultraviolet fixed point,® while our fixed point for ¢ > 0 is in the infrared. Our proof
establishes estimates on the irrelevant fixed point interactions which are of natural size
suggested by perturbation theory. Finally, we establish fixed point analyticity that, as far
as we know, has not been previously pointed out. Let us mention that the fixed point we
construct can also be obtained by using a different, rigorous, CRG scheme, based on a tree
expansion [51], which bypasses the use of the contraction mapping theorem, as well as the

apriori definition of an invariant Banach space of irrelevant interactions (see appendix J).

Open questions, to be addressed in future work, include: the computation of critical ex-
ponents and their independence from the cutoff, rigorous derivation of conformal invariance
and the operator product expansion (OPE) the connection between our mildly nonlocal
representation of the fixed point with the local operators used in conformal field theory,
the relation with analytic regularization and Wilson-Fisher e-expansion, computer-assisted
computation of the radius of convergence, crossover to the local symplectic fermion fixed
point for e = e, = O(1) in d = 3 (Do critical exponents coincide with the Wilson-Fisher
e-expansion for the local symplectic fermions in such a limiting case?), etc. See section 8
for a complete list of open problems (9 pages!).

50ne of the purposes of [27] was to construct rigorously a healthy theory at short distances from a non-
renormalizable effective theory at long distances, hence their title. This was made possible by the small
parameter (weakly irrelevant interaction). Unfortunately, their paper is often misunderstood as a license
to search for the UV theory in terms of IR degrees of freedom even when there is no weak coupling in sight
(as e.g. in the asymptotic safety program for gravity).



1.3 Convergence, analyticity and non-perturbative nature of the fixed point

Some readers may feel that our result about the analyticity of the e-expansion contradicts
quantum field theory lore, and here we wish to explain why this is not the case.

There are two main reasons for the divergence of perturbation theory in quantum field
theory: classical solutions (instantons) and renormalons. Since our theory is fermionic,
it does not contain instantons. A related difference of fermions vs bosons is that bosons
only make sense for positive quartic while fermions are defined for quartic of any sign, and
indeed our fixed point coupling A, will be positive or negative depending on the sign of .

As for the renormalons and associated divergences (see e.g. reviews [52, 53]), they
exist both for fermions and bosons, but only if there is running over a long range of scales.
Also in our model, the full RG flow from UV to IR would not be analytic, for reasons
similar to renormalons in asymptotically free theories like QCD. However, in this paper
we focus exclusively on the fixed point physics, so there is no running, and we are immune
to renormalons.

Let us illustrate this point by a short computation, considering for definiteness the
weakly relevant quartic case (positive ). Note that the infrared fixed point can be con-
structed in two equivalent ways. The first, which is the one we use in the rest of this paper,
is to construct it as the fixed point of the single step Wilsonian RG transformation. The
second, which we briefly discuss here and in appendix J.1, is to construct it dynamically,
as the infrared limit of the flow of the running couplings. We will not consider the full flow
from the gaussian fixed point, but a “half-flow” which starts at an intermediate scale and
flows to the IR fixed point. Even such a “half-flow” is already non-analytic, as we will see.

In our model, the beta function flow equation for A(¢) (the running quartic coupling
at scale ¢, where ¢ < 0 is the logarithm of the infrared cutoff scale) at lowest order has the
following form:

dﬁff) — M) + e\2(), (1.5)

for a suitable positive constant ca. The solution to (1.5) with initial condition A(0) = Ao,
which we assume to be positive and smaller than 2e/ca, is:

Ao
2et | C2\ 2t
el 4 G0 (1 — )

A(t) =

(1.6)

The infrared fixed point is Ax = limy,_ o A(t) = 2¢/co, which is obviously analytic in e.
At any finite ¢, A(¢) is analytic in Ao, but non-uniformly in t, as |t| grows. This effect is
clearly due to the running and to the nontrivial structure of the RG flow: small positive
Ao eventually flow to A, while small negative A\g flow away to large negative values of the
coupling. However, A(t) is Borel-summable in Ag > 0 uniformly in ¢. The complete flow
is more complicated than the toy model (1.5), but it retains the same qualitative features
as the above illustration. In our fermionic setting, fixed point observables, such as critical
exponents, are expected to be convergent power series in A, and, therefore, analytic in e.
Observables (e.g. correlation functions) at intermediate distance scales can be expressed
as convergent power series in the whole sequence {A(t)}i<o (see appendix J.1 for further



details on this point). Due to the non-analytic dependence of A(¢) in the bare coupling A,
such observables are expected to be “just” Borel-summable in Ag.

Finally, let us comment on the setup of massless perturbation theory, i.e. when the
gaussian fixed point is perturbed by only the (weakly relevant) quartic coupling, setting
mass to zero and working directly in the continuum limit. Such a setup, under the name of
“conformal perturbation theory” [54-56], is often considered when perturbing non-gaussian
fixed points (see e.g. [57, 58] for recent applications), but it could be used in our problem
as well. It is a form of perturbative expansion in the bare coupling. At a small but fixed ¢,
the first n terms of the resulting perturbative expansion will be finite, where n ~ 1/e, while
subsequent terms have infinite coefficients (because the corresponding integrals diverge at
long distances). Thus, the perturbative expansion itself is ill-defined beyond the first few
terms in this framework.

Some authors, e.g. ref. [56], argued that this pathology is a possible signal of the
appearance of non-analytic terms in the infrared fixed point observables (although, as [56]
admits, “their actual presence is unclear at the moment”). It has to be emphasized that
we are talking here about the situation when the RG flow leads to a fixed point, and
only about the infrared fixed point observables, such as the critical exponents. We are
not concerned with the situation when the flow leads to a massive phase, in which case
the mass of the particles is indeed generically non-analytic in the bare couplings. While
non-analytic terms may affect bosonic relatives of our model (see section 8.1.8), in our
fermionic model we rigorously exclude them, see remark 5.1 and appendix H. Our analytic-
in-e fixed point defines the infrared theory in a fully non-perturbative way. Thereby,
results based on convergent perturbation theory lead in our case to a fully non-perturbative
description. The key point allowing this to happen is that in finite volume Grassmann
integrals are finite dimensional. Therefore, in presence of any finite-volume cutoff, there is
no room for non-analytic terms. Furthermore, uniformity in the volume of our estimates,
in combination with uniqueness theorems for the limit of uniformly convergent analytic
functions, imply that the absence of non-analytic terms carries over to the infinite-volume
limit, see appendix H for details.

1.4 Summary

The paper is structured as follows. In section 2 we present the model and we state in-
formally our main results. In section 3 we identify an approximate nontrivial fixed point
by truncating the RG map at lowest order (explicit perturbative computations are in ap-
pendix G). The rest of the paper will be devoted to a non-perturbative proof of its existence:
in section 4 we introduce the Banach space of interactions consisting of monomials in the
fields with mildly nonlocal interactions, and we equip it with a suitable norm, tailored for
our smooth slicing cutoffs (whose properties are in appendix A). In section 5 we show that
the assumed form of the interaction is left invariant by the RG map, a fact made appar-
ent rearranging the output via a trimming operation (more details are in appendices B
and C). We show also there that the action of the RG map can be expressed as a series
which is absolutely convergent in norm; this follows from a number of results described in
appendix D, such as determinant bounds for simple fermionic expectations and a suitable



representation of connected expectations. Absolute convergence allows to rigorously esti-
mate the action of the RG map, and this allow us in section 6 to prove, see theorem 6.1, the
existence of the fixed point, together with its independence of the slicing parameter and
its analyticity in €. This result relies on the crucial Key Lemma 6.1 and its variants, which
ensures that the Banach space is invariant and the RG map is contractive. The key lemma
is in a sense optimal, as it predicts a dependence on € of the effective interactions which
is exactly the one suggested by perturbation theory; this is obtained by a careful choice of
constants done in the proof, presented in section 7 and appendix F. section 8 is devoted to
conclusions and open problems. The fact that our convergent analysis fully reconstruct the
theory and provides non-perturbative information is proved in appendix H. In appendix I
we show that the fixed point can be obtained via a formal series expansion; perturbation
theory is similar for boson or fermionic models but for fermions the series converges, a fact
offering, see appendix J, a way to construct the RG fixed point alternative to the path via
Banach space and contraction method, using instead the direct tree expansion technique.
Finally in appendix K a review and comparison with previous results in bosonic theories
is presented.

2 Definition of the model and formulation of the problem
Let us now discuss the model more in detail. The propagator (1.2) is defined in terms of
P(x), which is chosen in the form

_ ddk D ikx ® _ X(k)
P(z) /WP(k)ek . Pk = e

(2.1)

The function x(k) here is a “UV cutoff”, a short-distance regulator of the model. We will
choose it satisfying the following conditions (see figure 1):

1, (|k] <1/2
x is a radial C* function, 0< x(k) <1, x(k)= {0: Elk: N 1)/7 ) (2.2)
In fact we will require something a bit stronger than y € C°°, namely:
X belongs to the Gevrey class G° for some s > 1. (2.3)

This “Gevrey condition” will be defined in section 4.2, see eq. (4.14), and is not used
until then. As explained there, it is needed so that the fluctuation propagator g(x) (see
section 2.1) decays at infinity as a stretched exponential. There are many cutoff functions
satisfying both conditions (2.2) and (2.3); an explicit example is given in appendix A.1.

As a consequence of (2.1) and (2.2), P(x) is uniformly bounded, and its large-x asymp-
totics is proportional to 1/|z|%?7¢, as stated after (1.2).

We denote by dup(¢) the Gaussian Grassmann integration with propagator (1.2),
which can be formally written as:

dup(y) = Dye™®),
1

d
52(4) = 5 [ G52 P Quru (R)(—H). (2.4
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Figure 1. The function x(k) (red curve), and the resulting function x(k) — x(vk), eq. (2.10) (blue
dots).

[Since P(k)~! is non-analytic in k? near k = 0, such an action is called “long-range”]
More precisely, dup() is characterized by the expectations of an even number 2s of
fields, via:

(W (@1) - (222)) = [ i@y @) . o, (22
= Z(_)ﬂ— H GW(GQi—l)W(CLQi)(x%—l? ‘T2i)7

i=1

(2.5)

where the sum is over all pairings of 2s fields and (—)” is the sign of the corresponding
permutation.
The full model is defined by an “interacting” Grassmann measure

27\ dpup ()", (2.6)

where the “interaction” H(v) is a bosonic function of Grassmann fields, and
Z = [dup()e (¥) is the partition function. The simplest interaction includes only the

local quadratic and quartic terms:”

HL(l/J) = V/ddeabwawb + )\/ddx(Qabwawb)2' (27)

This interaction has Sp(IN) global symmetry rotating the fermion indices, as well as O(d)
spatial invariance. We will assume N > 4 so that the quartic interaction does not vanish
identically.® We will furthermore assume

de{1,2,3}, 0<e<min(2—d/2,d/6)=d/6, (2.8)

where the second condition guarantees that the two terms in Hp (1) are the only O(d) x
Sp(N)-invariant interactions which are relevant, see section 5.3.”

"Here and below we denote the local couplings by v, A, rather than by o, Ao, as in (1.1). The change
of notation is meant to highlight the difference between the bare couplings vo, Ao, and the running ones,
which will be their meaning from now on. In fact, in the following, we shall construct the interaction H
corresponding to the infrared fixed point, whose local quadratic and quartic couplings correspond to the
fixed point values v, A\« computed at lowest order in section 3. The notation v, A is used for generic values
of the parameter entering the RG equations.

8For N = 2 the quartic interaction vanishes, while for N = 4 it is proportional to 11t2131)4.

9The notion of relevance in our setup involving mildly nonlocal kernels will be made precise below in
eq. (5.37), and it will agree with the usual rule that the interaction containing ! fields and p derivatives is
relevant if I[y] + p < d.
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RG transformation of the model will be acting in a more general space of interactions

H(Y) = H(¢¥) + Hirr (¥), (2.9)

where Higr(¢) stands for an infinite number of generally nonlocal (although mildly so)
terms corresponding to irrelevant interactions. Like Hp (1)), interactions in Higgr () will
respect Sp(N) x O(d) invariance.'®

Remark 2.1 Eq. (2.6) as written is not immediately meaningful in infinite volume, be-
cause partition function is infinite: Z = oco. To give it a rigorous meaning, we should
e.g. put the model in finite volume and pass to the limit. To speed up this introductory
part of the paper, let us work directly in infinite volume and consider the interacting mea-
sure (2.6) in the sense of formal perturbative expansion in H(1)). In perturbation theory,
the normalization factor Z~! in (2.6) means that diagrams with disconnected interaction
vertices should be excluded when computing expectations. In the main text we will show
that infinite-volume perturbation theory is convergent (this is a general feature of fermionic
models at weak coupling). The rigorous definition as a limit from finite volume is post-
poned to appendix H. Taking this limit will be easy once the infinite volume behavior is
understood. See also remark 5.1 below.

2.1 Renormalization map

711~ > 2. We will define the “renormalization map” which

Let us fix a “rescaling parameter
maps H (1) to another interaction H'(¢). It will be a composition of integrating-out and
dilatation.

Integrating-out consists in splitting the field ¢ as ¢ = 1), + ¢ where 1), is the “low-
momentum component” of ¢, and defining the effective interaction eef#(¥+) by eliminating
¢. Concretely, we split the Grassmann propagator as (see figure 1)

5 XOk) x(k) — x(7k)

Pa) = B0 +90) Pl = Lo g =TI (o)

Note that P, is just a rescaled version of P (see eq. (2.14)), while g(z) is called “fluc-
tuation propagator”. This decomposition implies factorization of the integration measure
dup() as

dMP(d}) = dqu (wv)dﬂg(@a 1/} = 1/)7 + ¢7 (211)
where 1), and ¢ are two independent Grassmann fields with propagators P, and g. As
mentioned, eq. (2.3) will guarantee that g(z) decays at infinity as a stretched exponential.

Correlation functions of v, with respect to the interacting measure (2.6) can equiva-
lently be computed with respect to the measure

dyp, (¢7)6Heﬁ(ww) (2.12)

0Tp the trimmed representation of section 4.1.1, Higr (¢)) will consist of Hor, Har, Hest,, Her and Hy for
£>8.

'L Although at this point any v > 1 would do, we assume v > 2 from the start, as some estimates below,
specifically eq. (5.43), will require that - is separated from 1. The fixed point construction will require
raising « even further.

- 11 -



(normalization understood) where eflet(¥) ig defined by “integrating out the fluctuation
field” ¢:'2

Harr(tn) / dpig ()W +0). (2.13)

Note that the propagator P, is related to P via
Py(z) =y W P(z /) (2.14)
with [¢)] = d/4 — /2 as above. This motivates to consider the dilatation transformation:

Uy (@) =y Ml (a/y), (2.15)

which maps the measure (2.12) to the measure dup(1))e’ ¥) with the same gaussian factor
as in (2.6) but with a different interaction:

H'($) = Het [y (/)] - (2.16)

This formula defines the renormalization map R = R(e,v) : H — H’ (also called “RG
transformation”). Note that R also depends on d, N, x but this dependence will be left
implicit. As a function of v for a fixed €, the renormalization map satisfies the semigroup
property:

R(e,m)R(e,2) = R(e,1172)- (2.17)

Our main goal will be to construct the fixed point of the RG transformation. We would
like to remind the reader that although our RG transformation is obtained by integrating
out the degrees of freedom with momenta between A ~ 1 and Ajg ~ A/, one should not
think of Air as some sort of mass which breaks criticality of our fixed point. The correct
interpretation is that we have only one RG scale, A, while Aig entered the game because
we find it technically convenient to consider the discrete RG transformation rather than
the continuous one, such as Polchinski’s equation [59]. At an intuitive level discrete RG
transformation can be obtained by integrating the continuous one, and they are expected
to have the same fixed points (although to make rigorous sense of the continuous RG may
be nontrivial, see remark 5.4 below). In particular, it would be wrong to think that some
sort of ‘IR cutoff removal’ has to be performed with our result to extract the fixed point
physics. On the contrary, all of this physics is already contained in the fixed point H,. E.g.,
the critical exponents can be obtained by linearizing the RG transformation (the same one
which leads to the fixed point), near the fixed point, and computing the eigenvalues.

After this warning, the informal formulation of our main result goes as follows:

Fiz x,d € {1,2,3}, and N > 4, N # 8. For v large enough and € > 0 small enough, there
exists a nontrivial interaction H,(g) which is a fixed point of R(vy,e) for all v:

R(e,7)[H.(e)] = H.(e). (2.18)

12We will drop the 1)-independent term in Heg (1)), since this constant drops out when normalizing and
does not affect the expectations. As we will discuss in appendix H, this constant is finite in finite volume
although it becomes infinite in the infinite-volume limit.

- 12 —



Moreover, H,(g) can be extended to an analytic function of € in a small neighborhood of
the origin.

A precise statement is the content of Theorems 6.1 and 6.2, which rely on Key
Lemma 6.1 and Abstract Lemma 6.2. The condition N # 8 comes from requiring a
non-vanishing one-loop beta-function. The condition that ~ is sufficiently large arises for
the following technical reason: the fixed point H,(¢) will live in a Banach space, and only
for sufficiently large v will we be able to show that R(e,~) is a bounded operator on this
Banach space, so that eq. (2.18) makes sense.

The definition of the Banach space requires a suitable representation of the interactions,
called trimmed representation, and discussed in section 4 below. In order to define it, we
will distinguish, quite naturally, the local (relevant) terms from the nonlocal (irrelevant)
ones. Moreover, we will rewrite the nonlocal quadratic or quartic interactions in terms of
derivative fields, via the trimming operation, defined in section 5.2 below: the usefulness of
a representation in terms of derivative fields is to make the irrelevance of these interactions
apparent, already at the level of the linearized RG map. An additional feature of the
trimmed representation is that it distinguishes a so-called “semilocal” sextic term from the
fully nonlocal sextic interaction. This splitting may look strange at first sight. In our setup
with a smooth cutoff in momentum space, it is needed to obtain the correct lowest-order
approximation to the fixed point, which is in turn important for defining a neighborhood in
the Banach space where the RG map (or, better, a suitable rewriting thereof) is contractive.

In order to better motivate it, let us explain more explicitly the structure of the
splitting of the sextic term and the intuitive reason behind its definition: we’ll do it in the
next section, before getting to the formal definition of the trimmed representation.

3 The fixed point equation at lowest order

Let us go back to the lowest order fixed point equation (FPE), whose structure was antici-
pated in eq. (1.4), and let us discuss its derivation more carefully, in view of our choice of a
smooth cutoff function. The most naive approximation one can do is to compute the FPE
by neglecting all couplings but the relevant ones, v and A, and, assuming these couplings to
be of order ¢, to retain only the dominant contributions to the beta functions for v and A,
which are of order € and €2, respectively. While very natural, we would like to convince the
reader that such a naive approximation leads to a wrong lowest order FPE, whose solution
differs from the correct one by O(e) rather than O(¢?): the important contribution missed
by this scheme is the O(g?) contribution to the beta function for the quartic coupling \,
due to the self contraction of the “semilocal” sextic term (the tree graph contribution to
the sextic interaction, of order O(£?)), see below for details.

Let us start by describing the most naive approximation (the wrong one). Consider a
local interaction, H(v)) = Hp(¢), see (2.7), and integrate the fluctuation field via (2.13).
After this integrating-out step the local couplings are modified as follows:

V= Uv+AV=veg, A— A+ AN= A, (3.1)
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where the leading contributions to Av, A\ are given by the diagrams
a= (X)) e 3.2
loc ( )

Here (-)1oc stands for the local part of the nonlocal term generated by the second diagram.'3

Note that the diagram >< = O(e?) does not contribute to A\ because its local part
vanishes. Indeed, the propagator g vanishes in momentum space at k£ = 0, or equivalently
S d%zg(z) = 0. For this reason, v insertions on external legs never give rise to local terms:

<><) = 0. One can easily check by inspection that, starting from H = Hp, there are
loc

no other contributions of O(e) to Av and of O(¢?) to A\, beyond those shown in (3.2).
We now rescale the fields as in (2.16) and find v/ = A2y g and N = 44N g,
that is, recalling (3.1),

V =72t (w+ [N+ .., (3.3)

N =2+ BN 4, (3.4)

where I; and IQXX are the one-loop diagrams in the two lines of (3.2), respectively. Per-

forming -tensor contractions, one finds IQXX o N —8 # 0, since we are assuming N # 8.4
It is now extremely tempting to conclude that the fixed point equation for A is

A=AEZA+ LN, (3.5)

up to terms of O(e3), so that the fixed point is A = (1 — 725)/12)0( up to an error O(e?);
plugging this into the fixed point equation for v, one would find v, = I} A, /(1 —4%2*¢) up
to an error O(£2). Even if extremely tempting, this conclusion is wrong!

Where is the problem? The point is that neglecting the irrelevant terms, and in particu-
lar the sextic one, leads to an error of O(£?) in the FPE for A; such an error is comparable in

size with the term IQXX A2 that we included above: therefore, dropping blindly the irrelevant
terms is not consistent even at the lowest order. To see this, notice that, by starting with
a local interaction, H = Hyp, after having integrated out the fluctuation field, we obtain
an effective interaction H.g, whose sextic term contains the tree diagram >—< = 0(e?).
Therefore, in order to find an interaction H solving the fixed point equation H' = H at
O(g?), we cannot avoid assuming that H contains a sextic irrelevant term with the same
structure as >—< Let us then take H = Hy + Higr, with Higg containing the following
sextic ‘X-term’ interaction:

Sl = Qi Qs / dwdty(atpibe) (@)X (2 — ) (atpie)y),  (3.6)

13This operation is done in momentum space by evaluating the diagram with all external momenta set
to zero. Alternatively, in position space one replaces the kernel of the nonlocal operator by its integral.
1See appendix G for the computations of these coefficients, where we also comment that vanishing of

xX
I, is an accident which does not reproduce at higher loops.
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with the particular shown contraction of 1 indices. This term might be called ‘semilocal’:
there are two 1% groups interacting via one nonlocal kernel. The gothic X is meant to
remind about the shape of this diagram. Upon integrating out, the unique new contribution
to X comes from the tree-level diagram contracting two quartic vertices:

> = AX(@) = -8)\(a). (3.7)

At the fixed point, we thus expect X = O(\2) = O(e?). On the other hand, X gives a
direct contribution to A\, which therefore has to be included explicitly: the equation for
A\ thus has to be corrected as follows:

A)\—(><>< +>Q<> T (3.8)

loc

Assuming that X is O(¢?) and that all the other irrelevant interactions of order 6 or more in
the fields are O(g3) or smaller (while the nonlocal, irrelevant, contributions of order 2 or 4
are O(£?)), one can check by inspection that the dots in (3.8) are O(g3). At this point some
readers may be thrown out of balance: who has ever seen this second diagram? In fact
Wilson and Kogut discuss it, [1], eq. (5.23) and below. They do observe that it is O(¢?) and
thus would need to be included. Only if one uses a sharp cutoff, then this diagram drops
out because its local part then vanishes (momenta along the wavy and curved lines do not
overlap). Since we use a smooth cutoff, we have to include both diagrams. The corrected
leading approximation to the FPE thus involves v, A and the X-term parametrized by X(z);
it takes the form

v =5+ LA+ O(e2)], (3.9)
A=A+ L2 (N —8) / Az X (x)g(z) + O(%)), (3.10)
X(x) = ¥ WX () — 8Ng(2y)], (3.11)

the factor (N —8) coming from Q-tensor contractions. This allows us to compute the fixed

2. The approximation is

point couplings v, and A\, at order e, while X, will be order &
consistent: all the irrelevant terms not explicitly shown contribute to the error terms only.

Note that (3.11) allows us to express the fixed point X, in terms of \ as a geometric series:

o0
X.(z) = -8\ A2A=6[¥Dn g (1), (3.12)
n=1
Plugging X = X, in the right side of (3.10) gives the FPE for the quartic coupling A =

Y2 (XA + I32%) up to an error O(g3), with I = IQXX + I¥ and I3 the constant coming from
the term (N — 8) [ d%xX(z)g(x). We are thus led to the FPE (1.4), which we now expect
to be correct at dominant order, contrary to (3.5). Interestingly, in the € — 0 limit the sum
of the two diagrams Iy = 1.2)o< + IF ~ I log, where I is independent of the choice of the
cutoff function (appendix G). Therefore the fixed point coupling A, is universal at order
€. This is similar to the well-known scheme independence of the first two beta-function
coefficients.
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In conclusion, the inclusion of the irrelevant sextic terms is crucial for computing the
correct coefficients in the lowest order FPE. One expects that the inclusion of more and
more irrelevant terms will produce better and better approximation to the FPE, unless
non-perturbative effects come into play. Therefore, in order to compute the exact FPE,
we’ll assume that H belongs to a space of interactions including all possible irrelevant
terms, of arbitrary high order in the fields, as discussed in the next section.

4 The Banach space of interactions

4.1 Representation of interactions by kernels

In order to conveniently represent the interaction, we use the following condensed notation
for fields, their first derivatives, and products thereof:

Ya, A= a, l
Uy = , U(A,x) = || Va,(x:), (4.1
{ama, A= (a,p) LLwa )
where A = (Ay,...,4;) and x = (x1,..., ;) are finite sequences. |A| will denote the

length of A, and d(A) the number of derivative fields in ¥(A,x). See section 5.2.2 for why
we allow fields with zero or one (but not more) derivatives.
An interaction H (1)) is a sum of terms with some kernels H (A, x):

Hy) =Y / dIxH (A, x)¥(A, x), (4.2)
A

where d%x = d%z; ...d%;. The kernels satisfy various obvious constraints following from
the Grassmann nature of the fields and from the Sp(N) x O(d) symmetry of the model.
E.g., the kernels are assumed antisymmetric.'®> The individual interaction terms being
bosonic, “the number of legs” [ = |A| must be even.

The local quadratic and quartic interactions in (2.7) correspond to d-function kernels:

V/ddxﬂabwawb AN VQab(s(xl - x?)a (43)
A / A (Qahatis)? > I\abeed (21 — 22)8(21 — 23)0(x1 — 24), (4.4)

where gapee = Qap2ce — Lac e + QLae e is totally antisymmetric. We will represent inter-
actions of Higr by nonlocal kernels rather than expanding them in local interactions.
We divide the kernels into groups (“couplings”) H; according to their number of legs
[ (I > 2 even):
Hy = {H(A,x)} A= (4.5)

15 This means H(rA,7x) = (—)"H(A,x) for any permutation acting simultancously on A and x. If not
already antisymmetric, the antisymmetrized kernels H* (A, x) = I e, (=)"H(wA,7x) define the same
interaction. The kernel dependence on Sp(NN) indices will be made out of €24 tensors. Their dependence on
z; will be an SO(d)-invariant tensor built out of (z;—z;), where u are spatial indices contained in A (if any),
times a function of pairwise distances |z; — x;|. Finally, O(d) also contains spatial parity ¥.(z) = 9a(—x),

U(A,x) = (—1)* ™ W(A, —x). Therefore, the kernels will satisfy H(A, —x) = (—1)?*) H(A, x).

~16 —



The interaction is thus represented by a coupling sequence (H;);>2. This is a general
representation. It is useful to introduce a notation also for the restriction of H; to the
kernels with a specified number of derivatives:

Hyp = {H(A, %)} A|=1,d(A)=p- (4.6)

We emphasize that A’s are sequences: the ordering is important and terms with different
orderings appear separately in (4.2). This convention leads to somewhat simpler combina-
torics.

4.1.1 Trimmed representation

General representation has too much redundancy in the couplings with a small number of
legs. In view of the discussion of section 3, it is convenient to assume that the interaction
has a more specific structure. In particular, we want that: Hs consists of a local term
like (4.3) plus an irrelevant term schematically of the form (9v)?; Hy consists of a local
term like (4.4) plus an irrelevant term schematically of the form 130vy; Hg consists of a
semilocal term like (3.6) plus higher order terms. More precisely, we will assume that
the interaction H, to be used as the input for the RG map, is written in the trimmed
representation, which imposes the following extra requirements on kernels with [ < 6:

1. For Hy we require:

i. Ha( should be purely local, i.e. be the -function kernel reproducing the local
quadratic interaction v [? given in (4.3),

ii. Hy; =0 (no kernels with one derivative).

We will denote the nonzero parts of trimmed Hs as
Hop, = Hop, Hor = Hap (4.7)
With some abuse of notation, we will identify Hoy, with the prefactor v in front of

the delta function, and similarly below for Hyp, with A and for Hggr, with X.

2. For Hy we require that Hy o should be purely local, i.e. be the d-function kernel
reproducing the local quartic interaction A [%* given in (4.4). We denote the parts
of trimmed Hy as

Hyr, = Hyp, Hur ={Hip}p>1. (4.8)

3. For Hg we demand that it comes split into two pieces:
Hg = Hegs, + Her, (4.9)

where Hggp, contains only a ‘semi-local’ interaction with no derivatives, of the
form!® (3.6), parametrized by a function X(x). Thus we have

Heg o = Hest, + Her,, (4.10)
Hep = HGRvp (p > 1)-

161ts kernel is the antisymmetrization of QarasNagas Qazagd(1 —22)0(21 —23) X (21 — 24)0 (24 — 25)0 (4 —

ZEG).
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For the moment we do not make any specific requirement on the no-derivative part
of H, 6R'17

Mnemonically, L stands for local, SL for semi-local, R for the rest. The trimmed represen-
tation thus corresponds to a coupling sequence (H;) where the index ¢ takes values from
the ‘trimmed list’

¢ € TL = {2L, 2R, 4L, 4R, 6SL, 6R, 8, 10, 12. . .}.. (4.11)

The corresponding number of legs, an integer, will be denoted by |¢|. As for the general
representation, we let Hy, be the restriction of Hy to the terms with p derivatives. We will
always use ¢ for labels from the trimmed list (4.11) and [ for integer labels: [ > 2 even.
When ¢ and [ appear in the same equation, they are related by [ = |¢|.

Remark 4.1 The reason for requirements 1,2 is as follows. The Hsg and Hyg interactions
are irrelevant due to the presence of derivatives, while Hs o, H 1, Hs 0 would be relevant
by the same criterion, see section 5.3. However, all these “would-be relevant” interactions
with arbitrary kernels can be equivalently written as local quadratic and quartic couplings
plus an irrelevant Hor and Hyg (section 5.2). Therefore, requirements 1,2 make manifest
the fact that our model has only two relevant couplings: v and .

Requirement 3 originates from the fact that, as discussed in section 3, isolating the
semilocal sextic term is important for deriving the correct lowest order FPE; this, in turn,
will be crucial for defining the correct neighborhood on which the FPE (or, better, a
suitable rewriting thereof) is contractive, see section 6.

Remark 4.2 Even if the input interaction H is in the trimmed representation, in general
the interaction Heg, obtained via the integrating-out step (2.13), won’t be trimmed. In
order to put it in trimmed form, we will need to suitably manipulate the kernels of H.g, via
an operation called trimming, discussed in section 5.2 below. This is one of the operations
needed for proving that the space of interactions is left invariant by the action of the RG
map.

4.2 Norms

The interactions in the trimmed representation form a vector space. In order to promote
it to a Banach space, we need to equip it with a norm: for this purpose, we will first
specify the norm in the subspace associated with ¢ €TL, see (4.11), and then the norm of
a trimmed sequence.

4.2.1 The norm of H,

We will be measuring the size of interaction kernels by means of the weighted L1 norm

1A = [

Tr1=

DddxyH(A,x)yw(x), (4.12)

"Eventually, we shall impose a norm condition which will make the no-derivative part of Hgg smaller by
an extra ¢ factor, compared with Hesr,.
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where w (x) is a translationally invariant weight function. In view of translation invariance
we perform the integral fixing one of the x coordinates to zero. We also let

1 Hill = max [1H (A) (4.13)

and similarly ||Hy||w and [[Hyp|w are defined as the maximum of weighted norms of all
kernels belonging to the corresponding trimmed coupling.'®

By choosing w (x) growing at infinity appropriately, we will incorporate the information
about the decay of the kernels H(A,x), induced by the decay of the fluctuation propagator
g(z). Recall that we are requiring the Gevrey condition (2.3): x € G%,s > 1. Concretely,
this means that derivatives of y of arbitrary order « are uniformly bounded by

max |0y (k)| < C1*lallel® (4.14)
keRd
for some constant C' = C(x) > 0. The Gevrey condition is stronger than C*° but weaker
than real analyticity. Importantly for us, Gevrey class contains compactly supported func-
tions. An explicit example of a cutoff functions satisfying both condition (2.2) and (2.3) is
given in appendix A.1.

As usual, decay of g(x) is related to the smoothness of its Fourier transform §(k), i.e.
to the smoothness of x(k). It turns out that the Gevrey condition (4.14) implies a stretched
exponential decay. Namely, we have the following bound for the fluctuation propagator, as
well as its first and second derivatives needed below:

lg()], \aug($)|, |8uaug($)‘ <M(z) = Cxlefcxz\x/ﬂg (€ Rd), (4.15)

where 0 = 1/s < 1. The constants Cy1,Cy2 depend on x but are independent of . See
appendix A.2 for a detailed proof, while here we only give two simple remarks. First, the

1. Second,

decay scale z ~ « in (4.15) is as expected from the IR momentum cutoff ~ ~~
stretched exponential is the best we could hope for: exponential decay (o = 1) would
require analyticity of y, incompatible with the compact support.

Kernels H(A, x) are expected to decay at large separation with the same rate as (4.15).

We choose w(x) growing with a similar rate. A convenient choice turns out to be
w(x) = OB/ (4.16)

where St(x) is the Steiner diameter of the set x, defined [60] as the length of the shortest
tree T connecting the points in x (the tree may contain extra vertices as in figure 2).19 We
will fix C = C\2 so that M(x) has a finite weighted norm:

| M||w = /ddxM(x)eé(‘xV”)o = Const .4? < oc. (4.17)

18To avoid any misunderstanding, we stress that || Hesr||w and |Hsgr|w are two independently defined
quantities.

19To be precise, St(x) = min, min, xux/y L(7), the minimum taken over all possible trees 7 with vertices
x Ux’, with the tree length L(7) defined as the sum of the edge lengths. St(x) coincides with the usual
diameter if all points lie on a line (e.g. for sets of 2 points). See appendix E for an explanation of why we
use the Steiner diameter.
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) x3

Figure 2. The optimal Steiner tree 7 for this configuration of 4 points contains two extra vertices.

Finally, it will be convenient to use definition (4.13) also for the d-function kernels of the
local quadratic and quartic interactions. Since w = 1 when all points coincide, we have
(see (4.3), (4.4))

1
1Hzullo = v], [ Hawllw = SIAI- (4.18)

4.2.2 The norm of a trimmed sequence

The norm of an interaction H associated with the trimmed sequence (Hy), ¢ €TL, will have
the form || H|| = supyerr, || Hellw/de, for a sequence y to be fixed conveniently. In order to
decide how to let §; scale with ¢, let us first develop an intuition about the expected size
of Hy at the fixed point. If we parametrize H by (v, A\, X, u), with u = (Hy)szor, 41,,65L =
(Ug)ge{2R74R76R787107m}, we expect that at the fixed point v and A are of order ¢, X is equal to
the kernel X, in eq. (3.12), which is of order €2, and uy is of the order of the corresponding
tree graph (i.e., the leading Feynman diagram with vertices all of type A contributing to
the interaction labelled ¢), namely: of order 2 if £ = 2R, 4R; of order €3 if £ = 6R; of order
gt r=1>8.

In the following, in order to determine the fixed point, we will fix X = X, thought of
as a function of A, see (3.12), and parametrize the fixed point interaction by the remaining
coordinates, y = (v, A\,u). On this subspace, we will use the following norm (depending on
the parameters 6, Ag, AF, AR, AR A):

‘V‘ |)\| ||u2R||w ||U4R||w HUGRHw Hule
— max up 4.19
HyHY {Ao(;, 14()57 40R(52 ’ 4{{(52 ’ 42R53 ,8128 A(gl/Q—l ’ ( )

where, motivated by the intuitive discussion above, the parameter ¢ will be chosen to
be proportional to €. Eq. (4.19) defines the Banach space of interest.?’ Eventually, the
constants Ag, Af){, AR AR A will be fixed in such a way that the action of the RG map (or
better, of a suitable equivalent rewriting thereof, called F' in the following, see section 6.2)
on the sequence y returns a new sequence 1’ in the same Banach space Y. Even more,
we will show that there is a neighborhood Yy in Y on which the fixed point map F' is a
contraction and, therefore, F' admits a unique fixed point in Yy. All this will be proved in
sections 6 and 7 below. As a preparation to these proofs, we need to specify how the RG
map explicitly acts on the space of trimmed sequences. This will be discussed in section 5.

20Tt is easy to see in particular that the space is complete with respect to the introduced norm (because
weighted L spaces are complete).
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In particular, the result of the RG map on the trimmed sequence (Hy) will be expressed
in the form of a series, see eq. (5.24) below, which is absolutely convergent in the norm of
interest, thanks to the bounds discussed in section 5.6 below.

5 The renormalization map

In this section we detail the structure of the RG map, thought of as a map from the
vector space of trimmed sequences into itself. We proceed in steps: we first describe the
integrating-out map (2.13), assuming the input to be a trimmed sequence (section 5.1). In
general, the output of the integrating-out map is not trimmed: therefore, we explain how to
make it so, via the trimming operation (section 5.2). Next, we perform the rescaling (2.16)
(section 5.3). In section 5.4 we combine these three steps and derive the representation
eq. (5.24), which expresses the image of the RG map as a series in the multi-indices (4;)7_,,
¢; € TL. Remarkably, this series turns out to be absolutely convergent in the relevant norms,
i.e., those introduced in section 4.2 above, thanks to the norm bounds discussed in sec-
tion 5.6.

5.1 Integrating-out map

Let H be an interaction associated with the trimmed sequence (Hy), ¢ €TL, and consider
the integrating-out map (2.13). For the effective interaction Heg we have a well-known
perturbative formula in terms of connected expectations (see appendix D.2):2!

i; HW+¢); HY + ¢);...; H(Y + §))e. (5.1)

n  times

We write the interaction in the trimmed representation using the same eq. (4.2) as in the
general representation. Kernels H(A,x) now come from couplings Hy. The Hy; kernels
are absent due to trimming requirements. The Hg o kernels are understood as a sums of
Hgsi, and Hgr o kernels, see (4.10). All the other kernels H(A,x) are associated with a
unique coupling Hy.

Replacing ¢ — 1 + ¢ in (4.2), each term gives rise to ‘interaction vertices’ with
‘external’ ¢ legs and ‘internal’ ¢ legs. Parametrizing the external legs by a subsequence
B C A,?2 and the internal ones by B = A \ B, we write:

Hy+¢)=> > (- /ddxH(A,x)\I/(B,XB)@(E, X5), (5.2)

A BCA

where (—)# is the sign, which we won’t need to track, produced by reordering the fields
to put all ¢’s first. The xg and xg are the corresponding restrictions of the coordinate
vector x. Substituting (5.2) into (5.1), we obtain the following formula for the kernels of

2n eq. (2.13) the argument of Heg was 1, the low-momentum component of 1. The momentum-range
restriction turns out unimportant for working out (5.1), so we replaced 1 by a generic .
228equences being ordered sets, a subsequence inherits ordering from the parent sequence.
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the effective interaction (see appendix B for more details):
o0 1 n
HaBxp) =AY — 3 3 (F [dixgClxp) [[HAxa). (53
A, =

n=1" By,...,B, Aq,..., i=1
>B;=B A;D>B;
where the sum is over all ways to represent B as a concatenation B1+...+B,,, and then over
all ways to extend B;’s to A; D B;. The integration is over points xg, B=B;+...+B,,
B; = A, \ B;, while the unintegrated parts of the vectors xa, form xg = xg, + ...+ x8,,,
and the integration kernel C (xg) is the connected expectation:

C (xg) = (2B xg,); - .;@(En,x§n)>c. (5.4)

Finally, A in eq. (5.3) denotes the antisymmetrization operation, see footnote 15. Note
that the set of kernels Hog (B, xp) produced by this formula will not in general satisfy the
trimming requirements, even if the kernel H(A,x) did. This will be dealt with in the next
section.

We write eq. (5.3) more compactly and abstractly as

(Hew), = Y S/ (H),  H = (Hi)erw: (5.5)
(€)Y
Each term in (5.5) is numbered by a sequence (¢;)} = (¢1,...,4n), n > 1, ¢; € TL, and
by an even [ > 2. The map Slgl""’E”(H) in (5.5) is the sum of all terms in (5.3) which
have |B| =1 and H(A;,xa,) € Hy,,while B; can be arbitrary, subject to the requirements
B; C Ai, ZBZ =B.2
Let B; and By be the vector spaces of couplings H; and trimmed couplings Hy, re-
spectively, and let Biim = Qc1r, B, be the vector space of trimmed coupling sequences
H = (Hy)gerr. The map Sfl’“"g” then acts from By, to B; and is homogeneous of degree
n. Of course, this map only depends on the couplings H,, whose index ¢; occurs in the
sequence (¢;)7. If index ¢; occurs n; times, this map has homogeneity degree n; in Hy,.
It will be also useful to define a closely related map Slzl""’en, obtained by replacing
1 H(Aj,xa,) = [Ii2; hi(A4,xa,) in (5.3) with independent h; € By,. This gives a
multilinear map:
Sfrtn By x ... x By, — B (5.6)

Note that this map is symmetric, i.e. invariant under the interchanges of indices ¢; accom-
panied by the simultaneous interchange of arguments. By identifying the arguments of
Sfl""’Z", we get back the map Sfl""’e”:

St (HY = S (b, hy), hi = Hy, (5.7)

It will be very important that the maps Sfl’“"zn and Sfl""’e" vanish unless > |0;| > [ +
2(n — 1). Otherwise, the number of fields in the connected expectation (5.4), which is
> 4| — 1, is not enough to get a connected Wick contraction.

23 As noted above, Hg,o kernels are a sum of Hgsr, and Hgr,o. Picking one or the other part of the sum
is understood when defining the map Sfl """ fn with ¢; = 6SL or ¢; = 6R.
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We will see that the defined maps are continuous with respect to the norms from
section 4.2.1, see section 5.6.1 below.
While generally Sfl"”’Z" acts into By, in two cases it can be considered to act into By:

e For / > 8 since then By = By.
e For n =1 and [ = |¢1], because in this case Sfl is the identity map: Sf(H,) = Hy.

Remark 5.1 Eq. (5.3) is going to be the basis for all further considerations. Although
derived so far by perturbation theory, in our model this equation will be non-perturbatively
true. Let us discuss first why this may be expected on physical grounds. Non-perturbative
validity of eq. (5.3) means that in our model the full effective action is captured by pertur-
bation theory, with no extra contributions. Extra “instantonic” contributions are common
in models involving bosonic fields, but these are absent in our model since we only have
fermions. Perturbation theory may also break down if fermions form a bosonic bound
state, but this typically requires a coupling that becomes large when iterating the RG,
and in our model all couplings will stay weak. In the main text we will show in particular
that the series in the r.h.s. is convergent provided that H (%)) is sufficiently small, and so
Heg(v) is well defined.?* In appendix H we will give a rigorous justification of eq. (5.3),
by first deriving this equation in finite volume and then passing to the limit, in line with
remark 2.1.

5.2 Trimming

We wish to realize the renormalization map in the space of trimmed couplings. Unfortu-
nately, as mentioned, the kernels (Heg); provided by eq. (5.5) are not in general trimmed.
To correct this, we need an extra “trimming” step, which will find an equivalent trimmed
representation of the same interaction. This step corresponds, in different notation, to the
rewriting of Heg in the equivalent form LHeg + RHeg used in many papers in CRG, see
in particular [51] and [71]. In the CRG literature, LHg and R Heg are usually called the
“local” and “regularized” parts of the effective interaction, respectively. Before describing
this step in detail, let us first discuss what it means for two representations to be equivalent.

5.2.1 Equivalent coupling sequences

A coupling sequence (V) is called null if the corresponding interaction vanishes as a func-
tion of classical Grassmann fields v, (z) (an explicit example of what we mean is discussed

24We wish to draw here a parallel with fermionic models of condensed-matter physics, which have con-
vergent perturbation theory at finite temperatures (a notable exception being fermions at finite density
in 3d continuous space, unstable with respect to collapse to a point for attractive interaction). One often
studied example is the Fermi-Hubbard model, whose perturbative series in the onsite repulsion U has a fi-
nite, T-dependent, radius of convergence. A simple extension of the GKL bound for connected expectations
discussed in appendix D.4 (see section 3 of [28]; see also [61] and section 6 of [62]) easily implies convergence
of the series, but with a far-from-optimal temperature dependence (U o T’ d+1 with d the spatial dimension
of the lattice). For realistic estimates on the convergence radius, see e.g. [63—68]. The perturbation series
for Fermi-Hubbard can be evaluated to high order, and convergence checked, by Diagrammatic Monte Carlo
(DiagMC) method [69, 70]. We thank Kris Van Houcke and Felix Werner for discussions about DiagMC.
See also footnote 55.
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below). Two coupling sequences with a null difference are equivalent (represent the same
interaction). Interactions are thus identified with coupling sequences modulo this equiva-
lence relation.

The basic mechanism to produce equivalent couplings, referred to as “interpolation”,
starts with the Newton-Leibniz formula:

Polr) = wa<y>+/01 ds0sta(y +s(x—y)) = ¢a(y)+/01 ds(z—y)" Outpa(y+s(z—y)). (5.8)

We can also integrate the r.h.s. in y against some function f(z,y) of unit total integral:
[dyf(xz,y) =1. We get a family of “interpolation identities” expressing 1)%(x) as a weighted
linear combination of ¥*(y) and 9,1 (y):

Vale) = [ dy [, 9)00() + 1, 0)Outaly)], (59)

where f#(x,y) can be expressed in terms of f.?

Now take a single interaction term [dxH(A,x)¥(A,x) corresponding to some A
with at least one field not differentiated, e.g. the first one: A; = a;. Pick a function f(zy)
and replace ¢, (1) inside this interaction term via the identity (5.9). This generates an
equivalent representation of the same interaction of the form

Z/ddxﬁ(B,x)\I/(B,x), (5.10)
B

where the sum has d 4+ 1 terms: either B = A or it is obtained from A replacing 4; —
(a1, 1), p = 1,...,d. The corresponding kernels H (B, x) are obtained integrating H (A, x)
against f and f#. We can also apply this procedure to multiple interaction terms in the
original interaction H (), summing up the new kernels H (B, x) to the kernels H(B,x) to
which the transformation has not been applied. The resulting total interaction, which we
call H(v), is equivalent to H(z). The difference of coupling sequences (H;) and (H;) is
null.

We stress that the Newton-Leibniz formula and the interpolation identities will be
applied only to those 9’s in the interaction terms which do not carry any derivatives.
Then, all the produced terms contain ’s with at most one derivative. This explains why

in (4.1) we allowed fields with zero or one (but not more) derivatives.

5.2.2 Trimming map

We now explain the trimming map, which maps the sequence (Heg); in (5.5) to an equiv-
alent sequence of trimmed couplings. Of course, the restriction of the sequence (Heg); to
[ > 8 is already trimmed (see the end of section 5.1), so we only need to do something for
1 <6.

For | = 6, we define

(Heg)sst, = Hest, + Sg " (Hyr, Hur), (5.11)

B Explicitly f*(z,y) = fol (1‘_17‘2)01[(:0 — 2" f(®, 2)]2=(y—sz)/(1—s). This is finite if f(z,y) decreases suffi-

ciently fast at large y.
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i.e. the two terms in the (Heg)g series which manifestly have the form (3.6). We define
(Hesr)sr as the sum of all the other terms in the (Heg)g series.

For [ = 2,4 trimming will involve “localization” and “interpolation”. “Localization”
extracts the local parts of (Heg)20 and (Heg)a,0 (see the example below):

(Heg)or, = T3 (Heg)20,  (He)ar, = T’ (Hegt)a0- (5.12)

“Interpolation” rearranges the other components setting to zero the parts of (Heg)2r,p and
(Hest)4Rr,p in agreement with the trimming requirements, and making sure that the resulting
coupling sequence is equivalent as in section 5.2.1. This operation will have the following

structure:
0 ifp=20
(Homt)arp = { (Hemt)a1 + Ty (Hegt)ap if p=1 (5.13)
( eﬁ‘) ifp > 1,
0 if p=0,1
Heg)orp = . ’ 5.14
(Hetr)orp { (Hegt)2,2 + T2R (Heg)2,1 + T221’>?(Heff)2,0 if p=2. (5:14)
This can be also written succinctly as
(Her)sr = Ty (Hefr)a, (Heft)or = Tor (Hefr)2, (5.15)

where (5.13), (5.14) define components of T}z, T in subspaces with a definite number of
derivatives.

Consider [ = 4 as an example. The coupling (Heg)4,0 corresponds to an interaction
the form

Qache/ddXF(X)¢a($1)wb(x2)¢c($3)¢e(m4) (516)

(plus two other terms with Qg and Q4Q.). Substitute into this an interpolation
identity

1
Vo (1) Vp(22)Ye(3) e (74) = (Yatpihetbe) (w1) + %(1’1)/0 By [y (25)pe(25) 1 (24)],
(5.17)
where ! = x1 + t(x; — x1). The first term gives a local quartic interaction with

A= /m AP (), (5.18)

which defines TfLO in (5.12).%% The second term in (5.17) gives a sum of interactions where
one of Yy, Y., . is differentiated: this defines T, O(Heff>4 0-

The I = 2 maps TQQLO,TQR,TZR are deﬁned analogously. For TZQF’? one needs to apply
interpolation twice, to get from a term with no derivatives to a term where both fields carry
derivatives. See appendix C for the full construction of these maps, and for the analysis of
how they behave with respect to the norms measuring the size of interaction kernels.

26This equation can be equivalently written in momentum space as A = }3’(07 0,0,0), i.e. evaluating the
kernel with all external momenta set to zero.
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Remark 5.2 Note that our trimming map 7' is just one of infinitely many possible trim-
ming maps, corresponding to different choices of interpolation identities. E.g. instead
of (5.17) we could have used

Ya(21)p(2)Ye(23) e (24) =
uten) [puten) + [t B2 a)] oeten) + [ as S]] [t + [ du Seep]
(5.19)

Such alternative trimming maps 7 differ from 7" by a map which is null (gives a null
sequence of couplings when applied to any interactions). In our construction we will use
T, but any other trimming map satisfying the same norm bounds (see appendix C) would
work equally well.

5.3 Dilatation

After having integrated out the fluctuation field and rearranged the result so that it is
equivalently rewritten in trimmed form, we rescale the fields, see (2.15)-(2.16). We call
this rescaling step dilatation, and denote it by D. Note that D preserves the trimmed
representation. The action on the kernels is:

D : Hyp(x) =y~ PPy 0 Hy (%), (5.20)

where we recall that [ = |¢|, p denotes the number of derivatives in the interaction term,
and we denoted

Dy =Iy]—d=1d/4—¢/2)—d. (5.21)
For the special cases ¢ € {2L,4L,6SL} eq. (5.20) becomes:
vy P2y = ")/ngEV, A=y PN =A%) X(z) = vy Poyd%(yz). (5.22)

In terms of the norms of section 4.2.1, the irrelevance condition for Hy, will be D; +p > 0,
see eq. (5.37) below. As stated in eq. (2.8) we are assuming d € {1,2,3} and 0 < ¢ < d/6.
Under these conditions it’s easy to check that Ds, Dy < 0,s0 that v, A are relevant, while

Dys+2,Dys+1>0, Dy >Dg>0 (I>6). (5.23)

so that Hogr, Har, Hest, Her and Hy (¢ > 8) are irrelevant. These interactions comprise
HIRR in (29)

5.4 Renormalization map in the trimmed representation

The renormalization map R is obtained composing the three operations: integrating-out,
then trimming, then dilatation. It is the map defined in section 2.1 but now written in a spe-
cific set of coordinates (the trimmed representation). Summarizing sections 5.1, 5.2.2, 5.3,
we represent R = R(e,~y) follows: if H € By (the vector space of sequences of trimmed
couplings), then R : H — H' € Biyim, with

Hy=Y" Ry"(H), (5.24)
()7
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where Rfl’ s a homogeneous map of degree n obtained by identifying the arguments

in a multilinear map Rﬁl"”’znz

Ry (H) = RO (h1, ..., hy),  hi= Hy, (5.25)

This multilinear map can be written explicitly as follows. For (n; (41, ,4,)) = (1;£) we
have

R} =D, (5.26)

since in this case Sf = 1 and trimming is not needed. In all the other cases (n; (¢1,-- ,¢,)) #

(1;0), recalling that [ = |¢|, we have

Rt _ St 0> 8
¢ TiSH ¢ € {21, 2R, 4L, 4R}

Sg=™ (6)% = (4L,4L)

l1,..4n
R =D { . (5.27)

otherwise

ot [ SEE ()7 # (6SL), (4L, 4L)
R =D+

otherwise

where Té : By — By is the trimming map whose various components are defined by equa-
tions (5.12), (5.13), (5.14), and see eq. (5.11) for ¢ € {6SL,6R}.

Just as Sfl""’gn, the map Rfl”"’Z" is symmetric (invariant under the interchanges of
indices ¢; accompanied by the simultaneous interchange of arguments), and it vanishes
unless Y, |4;] > 1+ 2(n —1).

5.5 Fixed point equation

The fixed point equation (FPE) that we will study is
(Hp) = (Ho). (5.28)

with (H}) given by (5.24). If we distinguish the components ¢ = 2L, 4L, 6SL from the other
couplings, denoted u = (Hy)po1, 41,651, = (u@)ge{QR’4R76R78,107W}, it reads:

ueREN+ Y Ry ™(Hy,... Hy),
(€:)7#(2L),(4L)

A= 42A+ RV N + RSSL(x) + 3 Ry (Hyy, ... Hy,),
(€;)7#(4L),(4L,4L),(6SL)

X(z) = REL(X) + Re%™ (0 A) = YW [ (2y) — 8A2g(27)],
Z RS (Hy,, ... Hy,), if €+ 2L,4L,6SL. (5.29)

We already observed that, given A, the FPE for X is solved exactly by X = X, with X,
as in (3.12). Substituting X(z) = X.(z) in the remaining equations, the variable X is
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eliminated.?” Denoting y = (v, \,u), we are left with the fixed point equation y = R(y),
or in components:

v =T+ 1) + e (y),
A =72+ LA%) + O (y), (5.30)
u = ey(y),

with 61(10)’ 6&0)7 e, defined via the infinite sums in the right sides of (5.29), and Iy, Iy de-

fined by
RIEON) =20, Rip™(0A) + REL(x,) =% A% (5.31)

These coefficients I1, I are the same as in section 3. They are given by one-loop Feynman
integrals evaluated in appendix G.
Moving the Lh.s. into the r.h.s. and rescaling, we rewrite the system (5.30) as

v+ai+e,(y)
fly) =0,  fly):=er+bN+erly) |, (5.32)
u — ey (y)
where
1 —4d_¢ (0
(a,00) = T ga=e (72 7el?),
_ £ —2¢_(0)
(b,ex) = 1_77,25(—7%7 ex’)- (5.33)

Eq. (5.30) or its equivalent eq. (5.32) are the main equations that we will be solving. Of
course, part of the problem is to show that these equations make sense: that is, we need
to prove that the infinite sums entering the definitions of 61(10)7 ef\o), e, are convergent. We
will actually show that, if y = (v, A,u) has bounded norm (4.19), say ||y|ly < 1, with ¢
sufficiently small, then the sums defining e,(jo), 6&0)7 ey are absolutely convergent and e, is
contractive. This will be proved in sections 6 and 7 below. In preparation to this, in the
next subsection we state the norm bounds satisfied by the multilinear operators Rﬁl’”"g",

which will be central for our proof of convergence.

Remark 5.3 From a more general viewpoint, a fixed point is a sequence of couplings (Hy)
such that (Hj) = R(e,)[(He)] given by (5.24) describes the same interaction as (Hy). This
will be the case if (H)) = (Hy), as stated in (5.28), or, more generally, if the two sequences
differ by a null sequence of couplings (see section 5.2.1). In this sense, the FPE (5.28)
discussed above is not the most general we could (and should) consider: the general FPE
to be considered reads (H;) = (H;) + (N¢), with (V) a null sequence. In this paper, for
simplicity, we focus only on the restricted FPE (5.28), and we will show that it has a non-
trivial, non-null, solution,?® which is unique in some neighborhood. The same methods of

2TNote that although in this paper we take advantage of this possibility, in principle we could have
treated X on par with all the other irrelevant couplings. The RG map would end up contractive also in the
X direction, and RG iterations would converge to the same solution X = X..

Z8The fixed points we will construct will have nonzero A and v, and will therefore be nontrivial. Lemma.
Any trimmed coupling sequence with nonzero v and/or A is not null. Proof is left as an exercise.
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proof would allow us to show that, for each sufficiently small (Ny), the general FPE has a
unique solution, which differs from the one with N, = 0 by a null sequence (Ny). In this
sense, we expect that there is a unique interaction (equivalent class of couplings) solving
the general FPE. This remains to be shown in full detail, but we prefer not to present this
additional proof here, in order not to overwhelm the presentation.

Remark 5.4 Recall that we are considering renormalization maps R = R(e, ) with rescal-
ing factor v > 2, in particular « is separated from 1. Such RG transformations are called
“finite” or “discrete”. Eq. (5.29) thus sets to zero the “beta-functions” expressing the
change of the interaction under a finite RG transformation. In theoretical physics, it is
more common to take the limit v — 1 and define an “infinitesimal” or “continuous” RG
transformation formally given by the derivative (d/dvy)R, at v = 1. At a formal level
the continuous RG equation (Polchinski’s equation [59]) has fewer terms and looks much
simpler than the discrete RG. However, so far it has not been possible to take advantage
of this formal simplicity in rigorous constructions of RG fixed points. The problem is to
show that solutions to Polchinski’s equation have sufficiently good boundedness properties
in a Banach space of interactions, and it is not known how to do this without dealing with
the finite RG at the intermediate steps of the argument, which brings back the complexity.

This problem is open even in fermionic theories.?”

5.6 Norm bounds

As anticipated in the previous subsection, we now state the norm bounds satisfied by
the multilinear operators Rﬁl""’én entering the definitions of el(,o),eg\o),eu. In the case

(n; (L1, -+ ,£,)) = (1;£), in which R} is defined as in (5.26), we have

’)/7D272”H2R||w if ¢ = QR,
IRE(H) |l < 4 v~ P47 Y[ Hag |l if £ = 4R, (5.34)
YO el if L= (€] > 6,

while |R3 (V)| = v~ P2|y| and |REF(N)| = v~ P4|A|. In all the other cases (n; (¢1,- -+ ,4n)) #
(1;¢), in which RE“‘"’Z” is defined as in (5.27), we have

IR (hyy . bl < v Por(hay. . hn),  hi € By, (5.35)
n—1 n |él‘ i : e > _
Pl(hh e hn) = CV H7,:1 CO thHw if Zz|£l| 1+ 2(” 1) ’ (536)
0 otherwise
where, as usual, | = |¢|, and, in (5.36), C,, Cy are constants independent of [,n,¢;. In

addition, Cy does not depend on +y, while C., does.

298ee [72] for some global solvability results for Polchinski’s equation in bosonic theories with bounded
interactions. Ref. [73] attempted to prove local solvability for fermionic theories but their argument has a
gap, see [74]. See also an interesting discussion in the conclusions of [75]. Ref. [76] considered continuous
RG in a fermionic theory, although that construction was not fully based on continuous RG: they define
the effective action via a convergent tree expansion (morally equivalent to using a finite RG), then verify
that the continuous RG equations hold when applied to this effective action.

~ 99 —



The proof of (5.34) readily follows from the definition of R, see (5.26), and from the
fact that, using the definition of D, see (5.20), and of weighted norm, see section 4.2.1, we

have:
IDHppllw =7~ Pl Hepllw(. /vy <77 Pl Hepllo- (5.37)

Besides proving (5.34), this justifies the rule stated in section 5.3 that the terms with
D; +p > 0 are irrelevant. Since D; + p = [[¢)] + p, this rule turns out the same as for the
local interactions (see footnote 9).

The proof of (5.35) is more subtle, see the next two subsections, 5.6.1 and 5.6.2.

5.6.1 Bounds for Sl@l,-u,én

Recall that, if (n; (¢1,- -+ ,4,)) # (1;£), then Rﬁl"”’zn is defined in terms of Sfl""’en via (5.27).
Therefore, in order to prove (5.35), we first need a bound on Sfl"“’e”. This is similar
to (5.27), with the important difference that there is no scaling factor v~ in the right
side:

1S/ (hyy o ho)llw < pr(has- - ha),  hi € By, (5.38)
with the same p; as in (5.36) (with, possibly, a different constant Cp). For the full proof
of (5.38) see appendix E. Here are the main ideas: from its definition, the map Sfl""’gn
is an integral operator whose kernel is the connected expectation C (xﬁ) (more precisely,
it is a sum of O (constzli> integral operators corresponding to different choices of B;
and A;). The fermionic connected expectation C (xg) satisfies a crucial bound due to

Gawedzki-Kupiainen-Lesniewski (appendix D.4):

C (xg)| = ‘<<I>(E1,X§1); o @(En,xﬁn)>c‘ < ] Mz -2, (5.39)
T (z2')eT

where the sum is over all “anchored trees 7 on n groups of points Xg, ”. These are graphs
which become connected trees when each group of points xg, Is collapsed to a point. There
is at least one anchored tree within each connected Wick contraction, and bounding each
propagator along the anchored tree by (4.15) we get the product in (5.39). The contribution
of remaining s = (32 |B;| — 2(n — 1)) propagators is bounded by C®. This explains the
general structure of (5.39), but the full proof is rather more subtle. The sum of connected
graphs defining the connected expectation has to be rewritten as a sum over anchored trees
without double counting. For each anchored tree, we then have to sum over the remaining
propagator choices, and this whole sum with factorially many terms has to be bounded by
C*®. This turns out possible due to fermionic cancelations.

The number of anchored trees is < n!42|§i| (appendix D.5), which by the way is much
smaller than the total number of connected graphs. This n! cancels with 1/n! in (5.3),
leaving only exponential factors. When evaluating the weighted norm, the product of M’s
in (5.39) gives the factor C’,TY‘_1 with C,, = || M|, = O(y%) by (4.17). This finishes our brief
exposition of (5.38); see appendix E for the details.

By (5.38), the multilinear map Sfl""’ﬁn is continuous. The homogeneous map Sfl’“"ﬁ"

related to Sfl""’gn by identifying some arguments, eq. (5.7), is also continuous.
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1, -7£n

We will also need Frechet derivatives of these maps.?’ Since Sf is a multilinear

map, it is Frechet-differentiable and its Frechet derivative in each argument coincides with

the map itself. The homogeneous map SK“ »fn ig also Frechet-differentiable. The derivative

VSfl’ ""(H) is, for a fixed H, a linear operator from Byim to B;. Using eq. (5.7), the
value of this operator on 6 H € Biyin, is:

n
(VS (H)6H =Y S (Hyy, ..., 6Hy,, ..., Hy,). (5.40)
=1

Estimating each term in the r.h.s. via (5.38) we get a bound:

[V S (H) 6 H]| < Z (Hy,,...,0Hy,,... Hy). (5.41)

5.6.2 Bounds for Rﬁl"”’én

From the definition (5.27), we have that RE“ s related to Sfl’”"e” via the dilatation
operator, which we already bounded in (5.37), and via the trimming operator 7" introduced
in section 5.2.2, whose components we still need to bound. The easiest components to
bound are the localization maps TQQILO and T:‘I’f), which map kernels to local kernels and do
not increase the norm (see (C.15)):

[(Het)oLllw < [[(Hett)20llws  [[(Heft)avllw < || (Hett)4,0[lw- (5.42)

In turn, the interpolation maps satisfy the bounds (see appendix C):

CrY||(Hett)4,0/|w>
CR'VH( eff)21Hwa (5'43)
CrY?(|(Heft)2,0 ) ws

HT4R ( 63)4 OHw (-/7)

175 (Hett)2,1 (. /)

//\ //\ //\

HTZR ( 63)2 OHw (-/v)

where Cr depends on C), and o in (4.16) but not on ~, and we use the fact that v > 2.
Putting together (5.37), (5.38), (5.42) and (5.43), we readily obtain (5.35). In fact,
for £ > 8 and ¢ € {6R,6SL}, (5.35) is a consequence of (5.38), and (5.37) with the worst
possible p = 0. For ¢ € {2L,4L} we also need to use (5.42). Finally, for ¢ € {2R,4R}
we additionally have to use (5.43) and rely on the first equality in (5.37). A power of v
that we lose in the r.h.s. of (5.43) is compensated during dilatation, due to the presence of
derivatives in the couplings Hor, Hyr. Because of the sums in the r.h.s. of (5.13) and (5.14),
we get eq. (5.35) with an extra factor of v~ 2 4+ ~v7!Cr + Cr < 1+ 2CR for £ = 2R and

30Recall that Frechet derivative is a generalization of ordinary derivative to Banach spaces. In general,
for a map f(x) from a Banach space Z to another space Z', its Frechet derivative at a point x is defined as
a linear operator V f(z) € L(Z,Z') having the property that

o W+ 82) — f@) — V@)

=0.
I8zl z—0 |0z z

In some of our cases of interest, one of the two spaces Z or Z' may be R. When Z = R we have Vf(z) € Z’,
and when Z' = R we have Vf(z) € L(Z,R), i.e. a linear functional on Z.
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71+ Cr < 1+ Cg for £ = 4R. We absorb this factor by increasing the constant Cj in the
definition of the function p; in the right side of (5.35).3!

We will also need Frechet derivatives of the homogeneous map Rgl’””gn. Since Rﬁ = Rﬁ
is a linear map, its Frechet derivative coincides with it and satisfies the same bound (5.34).
In all the other cases (n; (¢1,--- ,4,)) # (1;¢) we have the bound

n

H [VHR?’W’ZTL (H)](SHHU/ < ’Y_Dl Z pl(pr SRR) 5H€¢7 s >H€n)7 (544)
i=1

which follows from (5.41) just as (5.35) followed from (5.38).

6 Construction of the fixed point

In this and the following section, we finally construct a solution of the FPE f(y) = 0,
see (5.32), and discuss its uniqueness and regularity properties. The presentation is or-
ganized as follows: in section 6.1, we state the main bound on the components of f(y),
whose proof (which is one of the main technical contributions of this paper, and uses in a
crucial way the bounds stated in section 5.6) is postponed to section 7. Given the bounds
of section 6.1, existence and uniqueness at fixed  of the fixed point follow by a rather gen-
eral and straightforward argument, discussed in sections 6.2 and 6.3. The independence of
the fixed point from v and its analyticity in € are simple but remarkable corollaries of our
construction, discussed in sections 6.4 and 6.5, respectively.

6.1 Key lemma

In this subsection we formulate, as promised, the estimates for the functions 61(/0)7 ef\o), ey

entering the definition of f(y), see (5.32)—(5.33). We will assume that + is large enough and
that the norm of y, see (4.19), is bounded, say smaller than 1; the constants Ay, AOR,A{%,
AR A in (4.19) will be fixed in a suitable, y-dependent, way, and the parameter § will
be chosen sufficiently small (in a y-dependent way). The smallness of § is conceptually
independent from any stringent requirement on the physical parameter €: the only needed
condition on ¢ will be that all uy directions are irrelevant, as guaranteed by egs. (2.8), (5.23).
The conditions that A is weakly relevant (¢ small), and that its one-loop beta-function does
not vanish (N # 8) won’t be used here. To emphasize that for the moment the smallness
of € is not used, here we assume that J is independent of . Eventually, the smallness of
€ will come back into play in the full contraction argument involving all couplings v, A, uy
(sections 6.2 and 6.3): there, 6 will be identified with £ up to a constant factor, but here it
is logically convenient to keep them separate.

Given y-dependent constants Ag = Ag(7), A} = AR (), AR = AR(y), AR = AR(y), A =
A(7), we denote by |lullp(ys) the following norm of a vector u = (Hp)ezorLaL65L =
(4¢)cf2r 4R 6R,8,10,...} Of irrelevant components (6SL excluded):

(6.1)

el s — max ] Jizmle el Neonlls o el
o AT ()6 AR()7" A ()% 128 )5+ |

3Since Y |¢;| > 4 in any of these cases, it’s enough to increase Co — Co(1 + 2Cg)"*.
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where k(¢) = %' — 1, in terms of which the norm (4.19) of y = (v, A\, u) can be rewritten

_ W |
¥l = max { 2z 2l - (62)

Note that, compared with (4.19), the symbol Y in (6.2) has an explicit dependence upon =y

and §; the dependence on ¢ is obvious, the one on 7 is meant to emphasize the v-dependence
of the constants A, Ay, etc. and of the weight w (see (4.16)). We are now ready to state
the main result of this section.

Lemma 6.1 (Key lemma) Choose d € {1,2,3}, cutoff x, N > 4, and an € satisfy-
ing (2.8). There exists Yiey > 2 and

80(7), Ao(7), {AR(Y) Yrmo1,2, A(Y), Eo (), E1 (), (6.3)

positive continuous functions on v = ey [whose dependence on ~y is omitted in egs. (6.5)—
(6.6) below/, with the following property. Take any v = Yiey, any 0 < § < do(7y), and any
sequence y = (v, \,u) satisfying

lylly(y,5) < 1. (6.4)

Then the infinite sums defining the functions e,(,),eg\),eu in the right side of (5.30),

see (5.29) and following lines, are absolutely convergent, and their sums satisfy:

@) < Bt 1)< B, ew®lses <70 (6.5)

where D = 3 Lmin{Dy 42, D4 + 1, Dg}. In addition,

9:e0 (y)] < E062/(A05) 0iel” ()] < E16°/(Aoo),
|Gieu(w)ls <4 P/(408) (i =1.N),

|Ouey )(y)”LZ(B,R) < Eyo°, 10, (y e r) < E16°,
l0uwe®)lc(mm <777, (6.6)

where B = B(~,9d), L(B,R) is the space of linear operators from B to R, and similarly for
L(B,B).

We wrote (6.6) in the form which makes apparent that the u-derivatives satisfy the
same bounds as the functions themselves, while the bounds for v, A-derivatives are worse
by 1/(Apd) factor. This pattern is natural in view of the assumptions |v| < Apd, |A| < Apd
and ||ul|p < 1 (which are the same as ||y|ly < 1). Before presenting the proof of the Key
lemma, which is postponed to section 7, we will show that its bounds straightforwardly
imply that the FPE f(y) = 0 has a unique solution in a suitable neighborhood of the
Banach space Y; see the next two subsections, 6.2 and 6.3.

Remark 6.1 The third inequality in (6.5) means that the RG map restricted to the irrel-
evant directions £ = 2R, 4R, 6R, 8, 10, ... is contractive, as it is natural to expect. Contrac-
tivity along the directions with |[¢| > 6 is “easy” to establish: it follows straightforwardly
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from the bounds (5.34) and (5.35); note, in fact, that v 21 < v < 1 for I = |[¢| > 6.
See sections 7.1 and 7.2 for the full proof. On the other hand, contractivity along the
directions 2R and 4R is more subtle to prove, due to the factor v~ which is larger than
1 for I = 2,4, in the right side of (5.35). In these cases, we take advantage of the fact
that the linearization of the RG map, (5.34), has the good factor v~7272 and y~P+~1 in
the directions ¢ = 2R and 4R, respectively. On the other hand, the nonlinear contribu-
tions bounded in (5.35) are small because they are of higher order: loosely speaking, the
higher order can be used to compensate the additional bad factor 2 or vy, which ultimately
originates from the bounds (5.43). More technically, here is where we use the freedom in
the choice of the constants A, Ag, A etc., entering the definition the norm (4.19) defining
the Banach space: by carefully playing with these y-dependent constants, we can reabsorb
the bad factors 72 or « into their definitions, see sections 7.3, 7.4 and 7.7 for the technical
details.

Remark 6.2 In connection with the end of previous remark, we note that the use of a
norm involving several constants A, Ag, AR etc, rather than a single one, is one original
aspect of our proof, and it is the key ingredient allowing us to choose an optimal powers of §
in (4.19) (recall that eventually ¢ will be chosen proportional to €, and that the d-exponents
2,2,3,k(¢) = |£]/2—1 in the right side of (4.19) are dictated by the lowest order contribtions
to uy in perturbation theory and cannot be improved; see the discussion at the beginning
of section 4.2.2). If we tried to repeat the proof of Key lemma with a simplified norm with
A=Ay = A} = --. we would not succeed in proving the analogues of (6.5) and (6.6). One
can however use a simplified norm, and a simplified proof of Key lemma, if one changes
the optimal powers of ¢ to sub-optimal ones, strictly smaller than 2,2, 3, k(¢). This was
the strategy followed in [27] (see the non-optimal powers in their eq. (2.17)). Naively, this
strategy leads to an estimate on the fixed-point couplings (analogue of corollary 6.1 below)
with sub-optimal powers. However, armed with our analyticity argument from section 6.5,
this limitation can be overcome. Namely, once the fixed point existence is proven by
working in the sub-optimal Banach space, the argument from section 6.5 still works and
shows that it is analytic in a disk around € = 0. From analyticity, we could then recover
the optimal estimates on the fixed-point couplings. Although such a mixed real/complex
strategy is possible, here we prefer to keep these two lines of development independent.
So, we work with the optimal powers from the start and obtain the optimal estimates with
purely real methods (even though it leads to some mild complications in the proof of Key
Lemma).

6.2 Abstract analysis

Recall that we are solving f(y) = 0 with y = (v,\,u) and f given in (5.32). In this
subsection we consider u as a vector living in an abstract Banach space B endowed with
some norm ||u||g. This norm will be used to state conditions on the maps e; guaranteeing
the existence and uniqueness of a solution in some neighborhood of y, see eq. (6.10). In the
next subsection these conditions will be verified with the help of Key Lemma, identifying
the norm ||u||p with (6.1).
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Concerning the rescalings (5.33), note that (the O symbols here and in (6.8) have -
and e-independent constants):

€

T2 = (2log) " (1 + O(clog)). (6.7)

By the small € asymptotics of I7, I> from Lemma G.1 in appendix G, we have

d
a = 2(N —2) V (gﬂ];d é'(f/l + O(slogv)] ;
b= —2(N —238) [(;:Z)d +O(e logfy)} . (6.8)

As mentioned in the introduction, we are assuming N # 8 so that b # 0. We will also
assume € < c¢/log~y where ¢ is a small y-independent constant. Under these conditions
a,b,b=1 = O(1). In particular b # 0.

Setting e; (j = v, A, u) to zero in (5.32), we get an “approximate equation”

v+ ah
folw) =0, foly) = | ex+0bX? |, (6.9)
u
which has a nontrivial solution
1
yo = (1o, Ao, up) = (ZE, —ba,O> i (6.10)

Our goal will be to show that the full equation f(y) = 0 has a solution of the form yo+O(e?).
Aiming to apply a contraction argument, we rewrite equation f(y) = 0 one last time as a
fixed point equation for a map F'(y). We choose the following rewrite:

fly)=0 <= y=F(y), Fl=y-G'fly), (6.11)

with G an arbitrary invertible linear operator. We would like to choose G so that F(y)
is a contraction in a small neighborhood of yy. Recall that Newton’s method for solving
nonlinear equations would correspond to G = V f(y). We do not want to deal with the full
gradient of the complicated map f(y), and we will instead choose G = V fy(yo), cf. (6.9).
This “approximated gradient” will be sufficient to make F'(y) a contraction. We have

1 a0 1ast 0
G=|0-c0]|, aGl'=]lo-"0]. (6.12)
001 0 0 1

With this choice, the map F(y) takes the form:

F(y) —2a\ — ab%2 —e, —a%
Fiy)=| F\y) | = 2N+ b 4 & : (6.13)
Fu(y) €y
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Remark 6.3 The reader may be puzzled: why introduce the new map F' rather than use
in its place the renormalization map itself, given that eq. (5.30) already has the fixed point
form y = R(y)? The reason is that contraction argument cannot be applied directly to R,
since it is not fully contracting: it is contracting near the fixed point along all directions
except v. Note as well that R is only “barely contracting” in direction A: its linearization
around 7o has the corresponding eigenvalue equal to 2 — 4%¢ = 1 — 2elogy + - - -, smaller
than 1 but only by O(g). This “barely contracting” direction is the reason why we apply
the contraction argument in a neighborhood of size €2 of yy (outside of which even F' would
not be contracting).

We will aim to apply a contraction argument to F(y) in a neighborhood Yy of yo
defined as
Yo = {y : [v — | < Moe®, |A = ol < Moe®, |Jullp < 1}, (6.14)

whose size depends on ¢ and on an additional parameter My. First of all let us arrange
that F' maps Yy to itself. Writing A = Ao + J\, we express F(y) as

v —a—b(é)\) —e, — a?
F(y) = Ao + 2 (5)\) ) (6.15)

€y

We see that F'(Yy) C Yy provided that for any y € Y

Ky max(Mge®, e (). e Hea(®))) < Moe?, Jleu(y)lls <1, (6.16)
where
K = Ki(a,b) = max(1 + |a| + |abl, 1 + |b|). (6.17)
Then (6.16) are satisfied as long as K1 Mpe < 1 and provided that
Mo My
e < 7= la@l< = lla@ls<1  (y€Yo) (6.18)
K K

We next proceed to arrange that F' is a contraction in Yj. For this we need to specify a
Banach space norm on y = (v, A\, u). We will use the norm

lylly = max{e™ |v], &7 AL Jull 5}, (6.19)

depending on a parameter €. Since in our application v and A are O(¢), while ||u|| g will be

O(1) when identified with (6.1), the natural value for € is order € so that all terms in (6.19)

have the same order. Eventually in section 6.3 we will fix & = Ayd so that this norm will

coincide with (6.2). However in this section let us keep the ratio £/¢ as a free parameter.
We will next study the gradient V F' and arrange that its operator norm is less than 1.

Here the gradient VF' is the Frechet derivative which was already discussed in section 6.1.
From (6.13), we compute the gradient VF' in components:

8@,,—&8"6A ng(/\ Ao) — ey — a*e* —Oyey — aZuer

M - dvexr (X~ o) + 3A€A % )
(v, A\, u) € y
0,eqy Oxrey Ouey

(6.20)
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Various partial derivatives of maps e;(v, A, u) are understood as Frechet derivatives, some-
times with Z or Z’ being equal to R. E.g. d,¢e, is, just like e,, a B-valued function on Y.
On the other hand d,e) € L£(B,R), a linear functional on B.

We next proceed to study the norm of VF(y) € L(Y,Y) where y € Yp. Let dy € Y,
lI0y|ly < 1 which means

|ov] <&, [0A| <&, |oullp <1 (6.21)
We have
O FYov + O\FYo\ + O, F"du
VE(y)dy = | 0,F v+ O\F A+ 0,F ou |, (6.22)
O, F4v + O\ FUO\ + 0, F“du

where all partial derivatives in the r.h.s. are evaluated at y. This implies
INEW)lleevyy = sup [[VE(y)(dy)lly
ll6ylly <1
EYO,FVov + O\FYSA + 0, F¥ Sul
= sup max | YO, F v + O6FAN + 0, F ou|

loylly <1 10, Fu6v + O\F 6\ + 0, F¥6ul| 5
|0y FY| +|OAFY | + €71 0uF” || £(.r)
Smax | |8, PN+ [O6F 4+ 70w F | £(B.1) (6.23)

ElloyF ||l + ElOnF"| B + 0uF" | £(B,8)
Finally using the explicit form of VF components we get that for y € Yj

IVFEW)cevy) < K2 max{‘ayeu\y |8V:)\‘ , Moe, |Oxe |, ‘8)\;)\’, Haueu!f(B’R) ) Haue}\!g(BR)a
Eloveulls, Elloreul s, 1Oueull cm.) } (6.24)
where we used that |\ — | < Mpe? in Yy and defined a constant
Ks(a,b) = max(3 + 3|a| + 2|abl, 3 + 2/b]). (6.25)
We will demand that the following conditions hold uniformly for y € Yj:
|0ien| < Moe, |9sex| < Moe?, 0ieu]|B < @™t (i =1, N),
1Ouellcr) < Mogg,  lOuerllcipr) < Mog®s,  [|Oueullzin.B) < (6.26)

where « is yet another parameter. Under these conditions eq. (6.24) implies:
IVEW)lleey) < max(KaMoe, Kza) — (y € Yo). (6.27)

We restate the conclusions of the above discussion as

Lemma 6.2 (Abstract Lemma) Suppose that, for a given e,the constants My, &, « are
such that maps e; satisfy bounds (6.18) and (6.26) everywhere in Yy defined by (6.14).
Suppose in addition that (see (6.17), (6.25) for the definition of K; and K3)

KlM()E < 1, KQM()E < 1/2, KQOé < 1/2 (628)

Then F(Yy) C Yo and [[VF(y)|lzvy)y < 1/2 in Yo, so that F' is a contraction in Yy and
has a unique fized point there.
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6.2.1 Complex version of the Abstract Lemma

By a few minor modifications of the proof of the Abstract Lemma we can get a complex-¢
version thereof. This is needed in the proof of fixed point analyticity (section 6.5) and is
not used anywhere else. We let ¢ € C, y be an element of the compler Banach space Y
with the norm (6.19), and Y (the complex analogue of Yp, see (6.14)) be defined as:

Yo ={y: v —vol < Molef*, |A = Xo| < Molel*, [lullp < 1}. (6.29)
Then the following generalization of Lemma 6.2 holds.

Lemma 6.3 (Complex Abstract Lemma) Suppose that, for a given ¢ € C,the con-
stants Mo, &, o are such that maps e; satisfy bounds the complex analogues of (6.18)
and (6.26), i.e

MQ MO
o) < =1l @<=l ez <1 (y € Yo), (6.30)
Ky Ky
and
|0ien| < Myle|, |9iex] < Myle|?, 05|l B < @™t (i=w,)),
Hauel/HE(B,R) < Molele, HaueAHE(B,R) S M0\5\257 ”aueUHE(B,B) < a, (6.31)

everywhere in Yo defined by (6.29). Suppose in addition that (see (6.17), (6.25) for the
definition of K1 and K3 )

KlM()‘E‘ g 1, KQM()‘E‘ g 1/2, Kga 1/2 (632)

Then F(Yo) C Yo and |[VF(y)|zv,yy < 1/2 in Yo, so that F' is a contraction in Yo and
has a unique fixed point there.

Proof. The proof of this lemma is a straightforward repetition of the one of Lemma 6.2,
modulo the replacement of € by |¢] in a few inequalities. More precisely, a simple critical
rereading of the proof shows that, if we leave the definitions of F', see (6.15), and of VF,
see (6.20) and (6.22), as they are, and we replace Yy by Yy and € by |¢| everywhere in the
rest of the proof (in particular in the following places: 1 line after (6.17); in eq. (6.18); in
eq. (6.24); in eq. (6.26); and in eq. (6.27)), then we readily obtain the desired claim.

6.3 Fixed point theorem
In this section we will put Key Lemma and Abstract Lemma together and will finally show

that the FPE (5.32) has a solution. Namely, we will prove the following result:

Theorem 6.1 There exists a vo = 2 and a positive continuous function eo(7y) defined for
> 70 such that for each v = vy and 0 < & < go(7) the fixed point equation (5.32) has a
nontm’m’al solution.
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Proof. We will show, with the help of Key Lemma 6.1, that for v > 79 and for
0 < e < go(y) conditions of Abstract Lemma 6.2 can be satisfied.
We thus identify the abstract Banach space B in section 6.2 with the space B(v,0)
in (6.1). We also put
€ = Aof, (6.33)

and identify the space Y from (6.19) with Y (v,0) in (6.2). The parameter 0 in the Key
Lemma will be chosen proportional to e:

0 = he, (6.34)

with h to be fixed momentarily.

Abstract Lemma requires us to examine the neighborhood Y{ defined in (6.14). By
K1 Mye < 1, the first of conditions (6.28) (we will make sure to satisfy all of these conditions
below), the points of Yy will satisfy

|, I\ < Kse, K3 = Ks(a,b) :max<z +[;|2|+;1> (6.35)
Let us choose
h = K3/ Ao. (6.36)
By (6.35), we have
Yo C{y : [lylly <1} (6.37)

Thus, the basic assumption (6.4) holds in Yj, and we can use Key Lemma to estimate e;
and their derivatives in Yj.
We will also fix (see Key Lemma for the definition of D)

a=~""P. (6.38)

With this identification and (6.33), the bounds on the derivatives of 0;e,, 0y, requested

in (6.26) coincide with the bounds for the same derivatives in (6.6) of the Key Lemma.

The request ||e,||p < 1in Yy (eq. (6.18)) is also satisfied by the bound on |le,||p in (6.5).
Furthermore, we choose 7y as

Yo = max(Yeey, (2K2) /D). (6.39)

Then for v > 79 we have v > ey so that we can use Key Lemma, and in addition we
satisfy the third condition in (6.28).
Let us now arrange for the conditions in (6.18) and (6.26) concerning e, ey, and their

derivatives. By eq. (5.33), ey, ey equal 61(10)’ 6&0) times factors bounded by a ~-dependent

constant f,. Key Lemma gives estimates for e(yo), e&o) and their derivatives with constants
Ey, Ey in the r.hus., and e,, ey will satisfy the same estimates with E; — E; = f,E;. Using

the proportionality (6.34) between § and ¢, these estimates take the form

|eu| < E6h2€2, |€)\’ < Eih3€3v
|0se,,| < (Ep/Ao)he, Oiex| < (B1/Ag)h*e®  (i=wv, ),
[0ue, || c(ar) < Egh*e?, 10uex (v, A, u)ll oepr) < E1h%e®. (6.40)
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These have the same scaling in ¢ as the corresponding estimates in (6.18), (6.26) (recall
that £/e = Aoh). So, to satisfy (6.18), (6.26), we simply choose My sufficiently large,
namely:

My = max(KEyh?, K1 E1h3, (Ey/Ao)h, (B} /Ag)h?). (6.41)

We still have to satisfy the first two conditions in (6.28), as well as to make sure that
0 = he < Jg. We achieve this by choosing

do 1 1
=min|—, ——,— | . 6.42
o(1) = min (3, 2 37t ) (6.42)
For any 0 < € < g¢(7), conditions of Abstract Lemma are satisfied, and hence a fixed point
exist.

Corollary 6.1 The fized point whose existence we proved belongs to the neighborhood

|V — Vo’, ‘)\ — )\0‘ § M0€2,

|Horllw < AR, | H rllw < ATR%E%, | Hopllw < AFR3E, | Hy|l < ARV 12T,
(6.43)

where Cy, A, AkR, h are some y-dependent quantities. Moreover in this neighborhood this is
a unique solution of the fized point equation.

This follows from writing in full the condition ||ul|p < 1.

6.4 Semigroup property and y-independence

Theorem 6.1 shows that the renormalization map R(e,~) has a fixed point provided that
v = 7o is sufficiently large and € < go(7) is sufficiently small. We would now like to
study how this fixed point depends on various parameters. In this section we will discuss
~v-independence, while in the next one we will show that it depends on ¢ analytically.

The 7-independence at O(g) is visible in eq. (6.10), since both a and b become -
independent as ¢ — 0. That it should hold in general can be suspected from the semigroup
property (2.17). Indeed, if a certain interaction H, is a fixed point of R(e,), then by the
semigroup property it is also a fixed point of R(e,~™) for any n > 2, as long as R(e,y") is
defined on H, as a continuous map acting on a neighborhood of a Banach space to which
H, belongs. Combining this simple argument with continuity in -, one should be able to
prove that, in fact, the fixed point is unique and completely independent of «, at least on
a suitable interval of values of 7y, such as the one denoted by J below. A full proof of this
fact requires a critical re-reading of the proofs of the Key Lemma, of the Abstract Lemma
and of the Fixed point theorem, as well as a generalization thereof, providing existence and
uniqueness of the general FPE in the space of equivalency classes of couplings modulo null
sequences, see remark 5.3 and remark 6.4 below. We won’t belabor all the required details
here, but we will provide all the elements sufficient for a willing reader to sit down and
check the various claims, most of which are just straightforward corollaries of the previous
discussion.
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Fix an interval I = [Ykey, 7], With 7yey the constant of the Key Lemma. From the proof
the Key Lemma, see in particular section 7.7, we see that, with no loss of generality, all the
functions in (6.3) can be chosen to be decreasing in -, so that their smallest values in I are
those at v = 7, which we denote by d¢, Ao, {flkR}k:O’Lg, A, Ey, E;. Tt is easy to check that
the Key Lemma 6.1 admits the following “uniform” version on I: take v € I, 0 < § < &,
and any sequence (v, \,u) satisfying the inequalities (6.4) with Ay replaced by Ay and
|ull s replaced by |lullg = |lullp(,s); then the conclusions of the lemma, (6.5) and (6.6)
hOld, with 50, Ao, {AkR}k:()J’Q, A, E(), E1 replaced by 50, Ao, {AkR}kZO,l,Za /_1, E(], El, and B
replaced by B.

Similarly, we can easily obtain a uniform version of the Abstract Lemma and Fixed
point theorem for 0 < & < &y, with &y = min,eseo(7y), and v € Iy = [Yo,7], with 7o defined
by the analogue of (6.39) with K replaced by Ky = ming<.<z,ver K2 (note that Iy is non
empty for 7 large enough). We denote by F, the function F' of section 6.2, in order to
emphasize its dependence upon . We define vy = ‘g—gs and \g = —%5, with ap = al.—o
and by = b=, see (6.8), and let

Yo = {y: v — bo| < Mo, |A — Xo| < Mo, |Jull 5 < 1. (6.44)

A critical re-reading of the Abstract Lemma and of the Fixed point theorem shows that
there exist constants h and My such that, fixing 6 = he and using the uniform version
of the Key Lemma, then, for any v € Iy, Fw(?o) C Y, and F, is continuous for v € Ij.
Moreover, letting Y be the Banach space with norm

lylly = max{(Aed)~"v], (A0d) "' Al, llull 5}, (6.45)

we have [|[VFy(y)| sy < 1/2in Yo, so that, for any v € Iy, F,, is a contraction in Yj,
uniformly in 7, and has a unique fixed point there, denoted y.(vy). Of course, y.(y) =
lim,, oo Fﬂ(go), with 7o = (7o, Mo, 0). Recalling that F, is continuous in «y for v € Iy and
is uniformly contractive there, we find that y.(7) is continuous in v for v € I, being the
uniform limit of a sequence of uniformly continuous functions.

Remark 6.4 The previous discussion, as well as the one of the previous sections, shows
that y. () is the unique solution of the restricted FPE (5.28), in the sense of remark 5.3. As
discussed there, we expect that a generalization of the methods of this paper will allow us
to prove the uniqueness of the solution of the general FPE (H)) = (H;) + (N;) modulo null
couplings, provided the null sequence (Ny) is sufficiently small in norm. We will denote by
the symbol b, () such a (presumed) unique solution in the space of equivalency classes of
couplings. Of course, continuity of y.(7) implies the continuity of h.(7y) in the appropriate
topology.

By construction, y.(7),7 € Io, is the unique solution in Yy to the fixed point equation
y = R, (y), where R, is the original form of the RG map (before the manipulations (6.11)),
given by the right side of (5.30). By its very definition, R, satisfies the semigroup property
R, o R, = R,.+null, so that, if h.(y) = h«(7’), then bh.(y) = h.(7") = b«(7y-+'). From
this, it follows that h.(y) = h«(¥) for all the values 7 in the subset X of Iy characterized
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by the following properties: (i) ¥ € X; (ii) if v € X, then 4'/" € X, for all natural n such
that v'/™ € Iy; (iii) if v,7' € X, then -+’ € X, as long as v -7/ € Iy. Of course, by the
continuity of h.(v), the fixed point is constant and equal to h.(7) on the closure of X, as
well. For 4 > (50)?, the closure of X contains the sub-interval J = [3%/3,7].32 This proves
the independence of the fixed point from ~, for any v € J.

Remark 6.5 Another parameter which entered into the renormalization map is the cut-
off function y. The fixed point coupling v, depends on x already at O(g), as seen from
eq. (6.10), because a depends on x. That A, is x-independent at O(¢) is in agreement with
the usual lore that the beta-functions for near-marginal couplings and the corresponding
fixed-point coupling should not depend on the UV regularization scheme at the first non-
trivial order. In higher orders in € we expect that all couplings will acquire y dependence.
So, in contrast with the v-independence, the fixed point does depend on . In spite of this,
we expect on physical grounds that the critical exponents (i.e. eigenvalues of the renor-
malization map linearized near the fixed point) should be y-independent. Showing this
rigorously is one of the open problems for the future (see section 8).

6.5 Analyticity

In view of the Complex Abstract Lemma 6.3, and of the complex version of the Key Lemma,
stated and proved in section 7, see Lemma 7.1, it is easy to show that the fixed point of
theorem 6.1 can be extended to an analytic function of € in a small neighborhood of the
origin. More precisely, we get the following;:

Theorem 6.2 (Analytic Fixed Point Theorem) There exists a vy = 2 and a positive
continuous function eo(y) defined for ~v = ~o such that for each v = v9 and e € {z € C:
|z| < eo(v)} = Eo the fized point equation (5.30) has a solution, analytic in , extending the
one of theorem 6.1. For any € € Ky, such a solution is the unique solution of the fixed point
equation in the complex neighborhood defined by the analogue of (6.43) with |e| replacing €.

Proof. We let 6 = hle|, with h the same as in (6.36). By proceeding as in the proof
of theorem 6.1, with D defined as in (7.3), we find that F is a contraction on Yq for
each ¢ € Ey \ {0}. Moreover, by Lemma 7.1, F is analytic in € on the punctured disk
Yo(7) = Uo<le<eo(y) Yo, and so is yo. Therefore, y, = F"(yo) is analytic in & on Yo(7).
Since F' is a contraction, y, converges to a fixed point, call it y.(g),as n — oo, for any
e € Eg \ {0}; for any such ¢, y.(e) is the unique solution of the fixed point equation in
Yo. By Vitali’s theorem on the convergence of sequences of analytic functions, y.(¢) is
holomorphic in & on Yg(7) (monodromy follows from the uniqueness of the solution to
the fixed point equation in Yy). Note that lim.gey.(e) = 0; therefore, by Riemann’s
theorem on removable singularities, y.(¢) can be extended to an analytic function of € on
the complex disk of radius g¢(7) by letting y.(0) = 0.

32For 4 > (70)°, we have 3'/% € X by (i), and then 7%/ € X by (ii4). So both endpoints of J are in X.
Also, if 71,72 € J, then both 711/2,7;/2 € X by (it) and hence the geometric mean (7172)1/2 € X by (i7).

Applying this last statement recursively starting from the endpoints of J, we obtain that X is dense in J.
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This result has various consequences. One clear consequence is that since the fixed
point is analytic around € = 0, it has a convergent power series expansion around this
point. This is just the perturbative e-expansion discussed at the level of formal power
series in appendix I which is therefore convergent. Another consequence is that the fixed
points with real € > 0 analytically continue to the fixed points with ¢ < 0. For negative
real €, the quartic interaction is an irrelevant perturbation of the gaussian fixed point
(at the linearized level). Thus, the ¢ < 0 fixed points should be interpreted as UV fixed
points: one can RG-flow from them to the gaussian theory, not the other way around. We
expect analyticity to be valid also in the long-range Gross-Neveu model of [27] (see the
introduction), and in other similar models. See also appendix J for an alternative proof of
fixed point analyticity via the tree expansion.

7 Proof of Key lemma

Here we finally prove the Key lemma that, as seen above, is the crucial ingredient for
showing the existence and uniqueness of the nontrivial RG fixed point. Rather than proving
the Key lemma in the formulation of section 6.1, here we state and prove a generalization
of the lemma with complex e, which is the version used in section 6.5 in the discussion on
the analyticity of the fixed point. This does not create any additional complications in the
proof.

Let us start by observing that both the fluctuation propagator (2.10) and the rescaling
factor v~[¥! in (2.16) depend analytically on . So each individual term Rﬁl"“’én is analytic
in ¢, and the sum (5.24) will be analytic when convergent. Let T be a compact subset of
the half-plane (see eq. (2.8))

T Cc{eeC:Reec<d/6}. (7.1)

By Lemma D.3, the constant Cgy is uniformly bounded for ¢ € T'. As a result the multi-

linear maps S’fl orbn

will satisfy estimates (5.38) with uniform (7-dependent) constants for
e € T. The action of dilatation for complex ¢ is still given by (5.20), where D; = Dy(¢) are
complex. We have to replace D; — Re D; in the norm bounds (5.37) for dilatation, which

become

||DH&pr = V_ReDl_pHHé,p _ReDl_pHH&pr (e€C) (7.2)

w(/r) S

The criterion for irrelevance becomes Re D; —p > 0. The same replacement has to be done
in the right-hand-sides of the estimates for multilinear maps Rf““’gn in section 5.6, see
egs. (5.34) and (5.35).

The parameter D from section 6.1 is redefined for complex € € T' as

D = D(T) = %gg%q{Re Da(e) + 2, Re Da(e) + 1, Re Dg(2)}. (7.3)

Note that D > 0 by assumptions on 7. We can now state the generalization of Lemma 6.1
to e € C.
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Lemma 7.1 (Complex Key Lemma) Choose d € {1,2,3}, cutoff x, N > 4, and a
compact set T C C satisfying (7.1). There exists ey = 2 and positive continuous func-
tions (6.3) on vy = Yey, with the following property. Take any v = Yey, any 0 < § < do(7)
and any sequence y = (v, \,u) satisfying ||y|ly .5y < 1, and apply to it the renormalization
map R(e,~y) with any e € T. Then the functions 61(/0)7 ef\o), ey in eq. (5.30) and their deriva-
tives satisfy the bounds (6.5) and (6.6) uniformly in e € T. These functions are analytic

in €, being given by convergent series consisting of analytic terms.

The proof of the Complex Key Lemma is presented in the next subsections, distin-
guishing various subcases. For instance, in order to prove that ||e,|| B(y,8) S fy_D , recalling
the definition (6.1) of the norm, we will seperately prove that ||(ey)ellw < A(7)6%© for all
£ 8, that [|(eu)orllw < AR, ()l < AR)E, and [[(en)orllw < AR(3)02. For
ease of notation, we will drop the dependence on v from the constants A(y), Ao(7), etc,
and simply denote them by A, Ag, etc. Similarly for Y (v, d) and B(~,d), to be denoted by
Y and B, respectively.

7.1 Case/>8
We start from the bound on |[[(ey(y))e]|w with ¢ > 8. From the definitions, see (5.29)
and (5.30), we have
01 5eerln
(ea(y))e= > RM"(Hyy,. .., Hy,). (7.4)
()7

Using bounds (5.34) and (5.35) on Rﬁl’””g" collected we find that

ICew(Dellw <A~ P ugllw +y~ 5P > pil(€)7], (7.5)
(6a)7#(0)

where we denoted
pl(i)Y] = pi(Hyy, - Hy,,), (7.6)
and p;(Hy,,...,Hy,) is given in eq. (5.36). Here Hy, should be interpreted as equal to:
v, if ¢; = 2L; A, if ¢; = 4L; X, if ¢; = 6SL; uy,, otherwise. Recall that p; = 0 unless
Silbil = 1+2(n—1).
By using the assumption [ylly(y,s) < 1 of Key lemma, writing in full the meaning of
this condition (recall the definition of ||y|ly(4,s), €q. (4.19)), we find:

| Ho|lw + || Hor [lw < Aod + Aff6% = by,

| Hallw + | Hag|lw < Aod + AFS* =: by,
HHGSLHU) + HH6RHw < 07314%52 + Agdg =: bg,
<

[ Hellw < ASHO = by, it £>8 (7.7)
It will be convenient to arrange so that
b < Ag™RL k> 0. (7.8)
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For k > 3 this is true as an equality by the definition of bg. To have this for £k = 0,1,2 as
well, we will assume (we will see later how to satisfy simultaneously all #-constraints):

(®) 2max(Ag, A6y, ARy, C 3 A% + ARGy) < A. (7.9)
Using these bounds in (7.5) we find that:
I(eu(®))ellw < v~ REP (465 + AL + AT, (7.10)

where we defined [here C' = C3]:

Ay = Y My,
k'=k+1
AP = S Rk, (7.11)

(ki)?:l n=2

N Cr=1 T, CFtlby, if S ki >k,
Fy[(ki)1] = { 7 ! '

0 otherwise .

(7.12)

We will estimate these sums with the help of the following lemma, imposing assump-
tions (7.13) which we will arrange in the end by choosing g and A appropriately. For the
proof see appendix F.

Lemma 7.2 Suppose the nonnegative constants C,,C, 9, A satisfy
(&) Co<1/4, C,CA§ <1/2, C,CA<1/2, (7.13)

and that 0 < by < As™k1Y for all k > 0. Then Ag) and Af) defined in terms of
C,Cy, b by (7.11), (7.11) satisfy

AY < AFH (20K+2), (7.14)
Cop=4C+8C? +16C3 if k =0,1

AP < Agmaxih2) 0 ’ 7.15

k 2(20)k+1 ifk>2, (7.15)

Using (7.14), (7.15) in (7.10), and recalling that we are assuming ¢ > 8 (so that
k(¢) > 3), we find

(eu(®))ellw < v~ REPLAGFO[L + 20025 4 2(20)HO+, (7.16)
It follows that )
I(eu())ellw <7~ PAMD (€2 38), (7.17)

as long as we impose

Given the form of this inequality, it is sufficient to check that it holds for £ = 8, and that
the Lh.s. grows slower than r.h.s. as £ — ¢ + 2, which amounts to two requirements:

(®) 1+C +2020)  <ARPs=D max(1,C,20) < 492 Ree, (7.19)
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Next let us estimate derivatives. Consider a vector dy = (dv, 0\, ou) satisfying ||dy|ly < 1.
Consider also a trimmed coupling sequence d Hy which contains the couplings in dy and, in
addition, the coupling § Hgsr, corresponding to the variation of X,.. We have

Vy(ea))edy = S ST RPN (Hy,, ... 6Hy,, ... Hy,), (7.20)
(6;)m i=1
and thus

n
IVy(ea())edyllo <~ P NS Hellwtr™ P Y > pi(Hey, .. 6Hy,, .., Hy,) (7.21)
(L)7#(0) =1
Note that [|0Hesp|lw < 2C3,A436%. We will increase C3, by factor 2. Then all couplings
dHy satisfies the same bounds as the bounds on couplings Hy used to estimate ||(ey(y))el|w-
It follows that the functions p; in the r.h.s. of (7.21) can be estimated in exactly the same
way. This gives an estimate of the same form as (7.10), namely

1V, (eu())edyll < 7~ RePLATO + ALY + AT, (7.22)

where A,(f) differs from A,(f) in that Fy[(k;)] is replaced by
Fy[ (ko)) = nFy[(ki)7), (7.23)

where the factor n accounts for the sum ;' ; in (7.21). We will increase C,, in (7.12) by 2
to absorb this factor (note n < 2"~1), so that both Fj, and F}, can be considered to satisfy
the same bound (7.12).

Then, under the same assumptions that (7.17) was obtained, we will have
IV, (ea®))edylle <7 PASFO (£ 8). (7.24)

Taking into account the assumed bounds on couplings dy, this inequality is precisely what
is asserted in the last line of (6.6) concerning the part of e, with ¢ > 8.

Incidentally, convergence of the series (7.21) also proves that the functions e, (y) are
in fact Frechet differentiable.

The shown method of bounding derivatives is general and will apply to all the other
functions that we still have to consider, i.e. (ey)2r, (€v)4r, (€u)6R, 61(/0)’ 6&0). They are all
given by sums of multilinear operators applied to the sequence Hy, and will be estimated
using the basic bound (5.36). Whenever we manage to bound such a function by an X, the
shown method will naturally bound its u-derivative by the same X, while its v, A derivatives
by X/(Apd). Note that all bounds (6.6) are of precisely such a form. So we no longer need

to discuss derivative bounds, but can focus on estimating the functions themselves.

7.2 Case !/ =6R

From the definitions (see (5.29) and (5.30) and the third of (5.27)) and the bounds on
Ré}i”"e" we find that

(eu(y))erllw < v~ P8 ||ugr [l +~ RePe > pel(4:)7]- (7.25)
(fi)?i(ﬁsL),(GR),(éLLAL)
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By repeating a discussion analogous to that of section 7.1, we get the analogue of (7.10),
namely

Ieu(@)orllw < v~ RePe [A56% + AL + AR, (7.26)

where A%R is defined analogously to Ag), modulo the fact that the contribution from the
sequence (k;)"_; = (1,1) is now proportional to b1b¥, with bt = ARS2 rather than to b?
(this comes from the constraint (¢;)!"; # (4L,4L) in (7.25)):
n>2
AP R = 20,0008+ Y By[(ko)Y]. (7.27)
(ks)7T#(1,1)

It is convenient to define, for any sequence » = (k;)7,

Fo[] = > F[5]. (7.28)

»' :extends » by > 0 zeros

Using this definition, we split the second term in the r.h.s. of (7.27) into (a) the contri-
butions of sequences (1,1,0), (2,0), their permutations and extensions by zero and (b)
sequences with Y k; > 3 which form Agf). We get

AD = 20,C1010] + 2Fee[(2,0)] + 3Fuxe[(1,1,0)] + AP (7.29)
It is shown in appendix F, see eq. (F.11), that, in the assumptions of Lemma 7.2,
Fot[(ki)T] < ACHTEARH™, (7.30)

where k = > k; and m is the number of zeros in the sequence (k;)
Using (7.15) for Agf), the basic estimates bt < A2 C,CA < 1/2, and (7.30) we get

n
1-

AP < (CPAF 4 [8C% +12C° + 2(20)1]4)8°, (7.31)
so that
|(eu(y)erll <7~ FePos® {AF + 204+ C3AF + [20C% + 2(20)") A}, (7.32)
which is smaller than 7_5 ARS3 provided that
(®) AR 12044 + C3AR £ 2003 + 2(20)4 A < yRePe—D AR (7.33)
7.3 Case /=4R

From the definitions and the bounds on RffR’”"E" we find that

Ilew@)arllw <7~ P luarflw +77 %P0 Y0 pal(G)7), (7.34)
(£:)7#(4L),(4R)

(the condition (¢;)7 # (4L) comes from the fact that R}k is identically zero, see the first
of (5.27) and the definition of TfR in section 5.2.2; note in particular that, by construction,
Tfﬁ? annihilates the local quartic kernel associated with Hyr,) so that

euly)amllw < v~ B P17t [AF62 + ALY 447, (7.35)
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which gives
| (euly))amlw < v~ B P1716% [ AT + 4 A2C%) 4+ 4CoA] (7.36)

This is smaller than ’y‘D AR6? | provided that

() AR+ 44203 + Cp) < AReDPaH1I-DgR. (7.37)
7.4 Case /=2R
From the definitions and the bounds on Rélﬁ""gn we find that
l(ew(®))orllw <7~ P27 lugg|lw + v~ oD > p2[(4:)7], (7.38)

(£:)7#(2L),(2R),(4L)

(the conditions (¢;)7 # (2L), (4L) come from the fact that R3%: and R3E are identically
zero, see the first of (5.27) and the definition of T3 in section 5.2.2; note in particular
that, by construction, T. 2215,? annihilates the local quadratic kernels associated with Hop, and
with S3%(Hyr)) so that

eu(@)orllw < 7~ RP272 [AF6? +92A00, + 4248, (7.39)
where
Allgp = O + AV < 02A%62 1 A82(2C5). (7.40)
Therefore,
l(eu(@))orllw < 7~ ReP2726% [ AF +42(C? AT +2C°A + Co )] . (7.41)

This is smaller than 7_D AR6?%, provided that
(®) AR £ 2(C2AR 4 203 A + CyA) < AReD242-D R (7.42)

7.5 e,(jo)

From the definitions and the bounds on Rgi’""zn we find that

el (y)| <y~ e P > p2((€:)7]; (7.43)
()7 #£(21),(2R),(41)

(the conditions (¢;)7 # (2L),(4L) come directly from the definition of e,(,o), see (5.29)
and (5.30), while (£;)7 # (2R) comes from the fact that R3% is identically zero, see the first
of (5.27) and the definition of T22L in section 5.2.2; note in particular that, by construction,
T22i0 annihilates the nonlocal quadratic kernel associated with Hygr) so that

e )] < 7P A g + AP (7:44)
which gives
e )] <972 [C2Af 2004 + oA (r49)

We thus get the first of (6.5), with

Ep =~ ReP2 [C2AT 42034 + Co4| . (7.46)
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7.6 eg\o)
2%

From the definitions and the bounds on Rii’"" we find that
0 — Re n
e ()] < v~ RePs 3 pal(6:)7], (7.47)

()7 # (4L), (4R), (65L),
(4L, 4L), (4L, 2L), (4R, 2L)

(the conditions (¢;)7 # (4L), (6SL), (4L,4L) come directly from the definition of eg\o),
see (5.29) and (5.30), while (¢;)7 # (4R), (4L, 2L), (4R, 2L) come from the fact that R3R,
RiE’ZL and Rg” 2L are identically zero, see the first of (5.27) and the definition of Tf in
section 5.2.2; note in particular that, by construction, Tfﬁo annihilates the nonlocal quartic

kernels associated with Hyg, SiL’2L(H4L, Hop)) and SiR’2L(H4R, Hsy))) so that

e () <R P Al + AP, (7.48)
where
AN = 008 + AV < 3456 + A% (20Y), (7.49)
n=2
AR =200+ Y B(k)7). (7.50)

(k)T #(1,1)

The sequences with > k; = 1 such as (1,0), (1,0,0), etc are excluded from the second term
because by insertions then happen on the external legs of a quartic interaction, and they
give rise to a vertex with a vanishing local part. We see that AgQ/)\ is identical to (7.27) and

therefore satisfies the same bound (7.31)

AR < (CPAR 4 [8C% +12C° +2(20)14)8°, (7.51)
Therefore we get
e ()] < v e Pe6% [C3AF + 2004 + CRAF + 200 + 2(20)1)4] . (7.52)

We thus get the second equation of (6.5), with
By =~ ReDs [CR AR + 201 A + CP AT + [200° + 2(2C)1]4] (7.53)

7.7 Possibility of all choices

Finally, we need to show that all the #-constraints above can be satisfied consistently:
egs. (7.9), (7.13), (7.19), (7.33), (7.37), (7.42). To write them in a more manageable form,
let us replace al y-independent constants in the 1.h.s. of the #d-constraints by their maximum
C (Recall that Cy was fixed in terms of C in (7.15)). Also let C, = max(Cy,C,3). Finally
let Z be the minimal of the exponents of v in the r.h.s. of (7.19), (7.33), (7.37), (7.42) over
eeT:

Z:Héiirrl{ReDg—D,dﬂ—Res,ReD@—D,ReD4+1—B,ReD2+2—D}. (7.54)
€
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Crucially Z > 0 by the assumption on 7" and the definition of D. We then get the following
list of constraints which, if satisfied, imply the #-constraints for any ¢ € T":

C <A~Z, (7.55)

Cép <1, CC,ALI, (7.56)

max(Ag, Aftdo, Ay, C, A2 + Allsy) < A)2, (7.57)
AF+CAT + A) <A7AE, AT+ CyA<H74AT, AT+ (AT + 4) <747

(7.58)

The only remaining varying parameter is . ~ We should now choose ey and

do, Ao, {AkR}k:071,2,A,E0,E1, which are y-dependent and positive, so that all these con-
straints hold for v > Yiey-

We can satisfy the first two lines taking v large, then A and &y small (in this order,
because C’«,depends on 7). The remaining constraints are a bit more subtle because A and
AR occur both in the Lh.s. and in the r.h.s. To satisfy (7.58) we will require:

AF, A < AF, vA < AF, VA FPAT < AF, (7.59)
1+2C < A7, 1+ 2C < A7, 1+C < A2 (7.60)

The last three constraints on v are of the same type as (7.55). Joining inequalities in (7.59)
to (7.57), the resulting set of constraints reduces to:

Ao < 0.54, C, A% < 0.254, (7.61)
Al € [A,0.256; 1 4], At € [yA,0.56,1 4], Al € [/2A,0.56, 1 Al (7.62)
Af < AE, VAR < AF. (7.63)

Here’s then the final order in which all choices have to be made: e, is chosen as the
minimal v > 2 satisfying (7.55) and (7.60). We then pick any v > 7y and compute the
constant Cw- We then satisfy (7.56) by choosing:

A= (CC,)™ (7.64)
We then choose Ay sufficiently small to satisfy (7.61). Finally, we choose
6o = min(C™1,1/(2+?)), (7.65)

which satisfies (7.56) and at the same time, thanks to 5y < 1/(273), allows us to choose
AR as follows:
ARt =0250;14, Al=~4A, AT =050"A. (7.66)

Then (7.62) is satisfied, and (7.63) holds as well. Key lemma is proved.

8 Discussion and open problems

In this paper, we discussed what is perhaps the simplest theoretical model to study field-
theoretic non-Gaussian fixed points, which is amenable to rigorous analysis: symplectic
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fermions with a long-range kinetic term and local quartic interaction. Our model
is translation and rotation invariant, and the structure of the RG equations is quite similar
to models with local kinetic term. This makes our model more realistic than, for example,
models with hierarchical interactions (see [77] for an introduction).

Our model depends on 3 physical parameters: the number of dimensions d, the number
of fermion species N (assuming Sp(NN) invariance), and a parameter € in the long-range
fermion propagator, which controls the relevance of the quartic fermion interaction. For
0 < ¢ < 1 this interaction is weakly relevant, and the beta-function equation for the quartic
coupling \ takes the forms ) = —e\ + const -(N — 8)A% + ---. One thus has the right to
expect that, for N # 8, there exists an RG fixed point with A = O(¢). Our main result
(theorem 6.1) establishes the existence of this fixed point rigorously and non-perturbatively.

Although the path towards this rigorous result was somewhat long, most of the ingredi-
ents are rather natural. We introduce an infinite-dimensional Banach space of interactions,
whose kernels are essentially local (have to decay very fast at point separation). We work
with a smooth momentum space cutoff, so that the UV and IR-cutoff fermion propagator
decays very fast in position space, and the almost-locality of the interaction is preserved
by an RG step.

An essential feature of our model is that a single RG step leads to a convergent effective
action (for weak coupling). Intuitively, this property of fermionic models is due to the Pauli
principle, or, equivalently, to fermionic signs leading to cancellations between Feynman
diagrams. The formal derivation is somewhat delicate, and we review it pedagogically in
appendix D. This is standard in the constructive field theory community, but may appear
unexpected to the others. A related detail is that exhibiting these fermionic cancellations
requires considering a finite RG step with a rescaling parameter v > 1. That’s what we
do in this paper, as opposed to performing continuous RG a la Polchinski’s equation (see
remark 5.4).

With these ingredients, we show that the Wilsonian RG map is a well-defined nonlinear
operator in the Banach space of interactions, and is a contraction (has derivative whose
operator norm is less than 1) along the irrelevant directions. The behavior along the
mass direction v and the quartic A has to be analyzed separately. These directions are
both relevant at the linearized level, with A becoming irrelevant near the approximate
one-loop fixed point. Rigorous bounds on error terms show that these statements remain
true at the nonlinear level, at weak coupling. The proofs of these results rely just on
some elementary combinatorics, geometric series convergence, and chasing v~ ! factors
suppressing the irrelevant interactions. Given one relevant and infinitely many irrelevant
directions, the fixed point equation can then be rigorously solved (for e sufficiently small)
via a variant of Newton’s method, appealing to the Banach fixed point theorem.

Although our main interest is in € real and positive, in which case the fixed point can
be thought of as the IR fixed point of an RG flow originating at the gaussian theory, our
methods apply as long as ¢ is small and nonzero. E.g. we can also consider € < 0. In this
case the quartic interaction is irrelevant around the gaussian theory, but relevant around
the fixed point whose existence we can prove (which in this case is classified as a UV fixed
point). We can also consider complex nonzero €. Although perhaps lacking clear physical
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meaning, we can use this as a formal device to show that the fixed point is analytic in €
in a punctured disk around the origin, and thus in the whole disk by Riemann’s removable
singularity theorem (section 6.5). This is a dramatic conclusion, which implies that our
fixed points can be obtained via the convergent perturbative e-expansion around e = 0.

8.1 Open questions

We will now list many open questions raised by our work. Some of them are theoreti-
cal, while others have potential practical applications to numerical calculations of critical

exponents.

8.1.1 Extensions to other nonlocal models

It should be relatively easy to extend our results to many other similar models:

e Models with a symmetry group G C Sp(N), which have several mass terms and
quartic couplings consistent with this symmetry. One should be able to find a non-
perturbative fixed point in a neighborhood of any isolated solution to the one-loop
beta-function equations (as long as all quartic directions have eigenvalues O(g), the

condition which generalizes non-vanishing one-loop beta-function used in this work).

e Models where different species of fermions have different propagator scaling (different
g). This may include models where some fermions ¢ have local kinetic terms (and
thus a fixed scaling dimension for a given d), while others ¢’ are long-range with

2

tunable dimensions, so that the interaction ?(3’)? can be made near-marginal.

e Models with a vanishing one-loop beta function, like our model with N = 8. As
discussed in appendix G, the two-loop beta-function term A? has a nonzero coeffi-
cient [78], giving a perturbative fixed point with A = O (y/¢). The non-perturbative
existence of such a fixed point and its analyticity properties in & can be understood
almost immediately using the tree expansion method described in appendix J, and a
contraction argument should also be possible.

e Our model in d = 4. Compared to d € {1,2,3} treated here, the local term (9)?
would be (weakly) relevant for € > 0. One thus has to treat it on equal footing with
the local 12 and (1/?)? terms. One should be able to construct a non-perturbative
fixed point for small e, helped by the fact that the new coupling is quadratic in .
This would be the fermionic analogue of the bosonic problem considered in [22].

e Models where the sextic or higher power (¢?)P is near-marginal, i.e. [1)] ~ d/(2p),
p =3

More ambitiously, time may be ripe for a “general theory of fermionic fixed points with
scale-invariant kinetic terms (local or long-range) and near-marginal local polynomial inter-
actions”. One should be able to prove that any such fixed point showing up in perturbative
analysis exists non-perturbatively, rather than writing a new paper for each particular
model. The main challenge is to choose an efficient notation, and to cleanly separate the
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algebraic and analytic aspects of the problem.?® This future general theory should cover
all the above examples, as well as fermionic fields transforming in other rotation represen-
tations (e.g. spinors [27]), and even non-rotationally invariant (Lifshitz-type) fixed points
having anisotropic scaling.

8.1.2 Further properties of the RG fixed points

Here we proved that the RG fixed points exist, and established a few of there basic prop-
erties such as y-independence (modulo some loose ends), and analyticity in e. Future work
should investigate several other interesting properties, such as:

e Uniqueness of the fixed point as an equivalence class of interactions (i.e. uniqueness
of solutions of the general fixed point equation; see remark 5.3);

e Dependence of the fixed point on the UV cutoff function x (see remark 6.5). In
spite of this dependence, the critical exponents are expected to be y-independent. It
is instructive to compare the family of long-range models discussed here with one-
parameter families of short-range fixed points, such as the Ashkin-Teller model, 6- and
8-vertex models, and interacting dimer models (see e.g. [35, 39]). In the latter case,
the deformation parameter is an exactly marginal coupling, which can renormalize
along the RG flow, and so the critical exponents depend on the microscopic details,
although if one critical exponent is known, others can be expressed via it (the so
called weak universality). In our case, € is not a coupling but a parameter controlling
the nonlocal part of the action, so it does not renormalize. Therefore, the situation
is similar to the usual universality, and all critical exponents should be universal
functions of € independent of microscopic details such as the UV cutoff x.3* It would
be interesting to establish this rigorously. See [81] for a classic intuitive discussion of
these issues, in the context of local models.

e Critical exponents. These can be defined, most generally, as eigenvalues of the RG
transformation linearized around the fixed point (removing the eigenvalues corre-
sponding to the “redundant operators” [81]).3> From the densities of the correspond-
ing eigenvectors, one should be able to define the “scaling operators”, whose correla-
tion functions with respect to the fixed point interaction have exact scale invariance.
One can also study correlation functions of simple operators such as 2. While not
exactly scale invariant, they should become so at asymptotically long distances.

330ne may be inspired by how somewhat similar difficulties have been solved for nonlinear stochastic
partial differential equations, another problem which involves renormalization [79, 80].

34Note in this respect that the IR scaling dimension of 1) is exactly known and equal to its UV dimension
d/4 — €/2. Therefore the exponent 7 is trivially known as a function of . Even for weak universality, all
exponents can be found if one exponent is known, making the conclusion that in our situation all exponents
are universal functions of ¢ less surprising.

35Sometimes this is equivalently expressed by introducing perturbing “source terms” and studying their
beta-functions.

— 53 —



e Full RG trajectory. By this we mean the theory which interpolates between the
gaussian fixed point at short distances and the non-gaussian fixed point at long
distances (for € > 0, while for € < 0 it is the other way around).

8.1.3 Conformal invariance

The RG fixed points constructed here are expected to be conformally invariant, based
on the same intuitive arguments as for the long-range bosonic models [82]. Conformal
invariance means the invariance of correlation functions of scaling operators (see above)
under the finite-dimensional conformal group SO(d + 1,1). For d = 1 these are Md&bius
transformations, and for d = 2 the product of holomorphic and antiholomorphic Mdbius
transformations.?® This invariance also implies correspondence between correlation func-
tions in infinite volume as studied here, and correlation functions on a sphere of finite
radius (which for d = 1 is just a circle with periodic boundary conditions), putting the two
manifolds in correspondence via the stereographic projection. Such properties are expected
to be generally true based on intuitive physics arguments, and it would be very interesting
to see how they emerge rigorously in an explicit model such as ours. In particular, this
would provide the first rigorous non-gaussian conformal theory in d = 3.%7

Conserved stress tensor operator plays key role in intuitive discussions of conformal
invariance of local theories. Our model being nonlocal (long-range), it does not possess
a local stress tensor in d dimensions. One way around this difficulty is to represent the
nonlocal kinetic term as arising from a local quadratic action in the (d + 1)-dimensional
Anti-de-Sitter (AdS) space, of which the d-dimensional space is the boundary, where the
quadratic, quartic, and all the irrelevant interactions are localized. This construction is
useful for intuitive understanding of conformal invariance (as discussed for bosonic models
in [82]), and perhaps also for proving it rigorously.®®

A key property of local conformally invariant theories is the convergent Operator Prod-
uct Expansion (OPE).?Y Though nonlocal (long-range), our model also should have this
property due to the local AdS representation.?’ It would be very interesting to establish
this rigorously. This appears somewhat nontrivial due to the fact that the scaling opera-
tors, introduced as densities of linearized RG eigenvectors (see above), will not be exactly
local but “mildly nonlocal”, with kernels of stretched-exponential decay. It is puzzling why
this mild nonlocality does not invalidate the usual intuitive arguments for the OPE, which

36Because of the nonlocal kinetic term, there will be no invariance under more general holomorphic
transformations, unlike in the case of fixed points of fully local models.

37In the last 20 years, starting with Smirnov [83], there was significant progress in showing rigorously
conformal invariance of various critical observables of specific 2d lattice models (see [84] for review). Many of
these models are exactly solvable in infinite volume, and the main challenge is to show conformal invariance
of correlators defined in an arbitrary planar region (see e.g. [85] for the 2d Ising model). A key method
used in these works is discrete holomorphicity, which is limited to 2d and to specific models, while RG does
not play much of a role. The proof of conformal invariance of our RG fixed points will require very different
methods, which should work for any d.

380n the contrary it is probably hard to make rigorous sense of the Caffarelli-Silvestre construction
from [82], where the higher-dimensional ambient space is flat, but it has non-integer dimension.

39See [86] for an introduction for physicists, and [87] for a more mathematical one.

“Bosonic cousins of our model have been studied via the numerical conformal bootstrap in [88].
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treat scaling operators as living at a point. Somehow, the mild nonlocalities of the scaling
operators and of the fixed-point interaction should conspire to produce a fully local OPE.
Note that this issue is not specific to our model with a long-range kinetic term, as mild
nonlocality of scaling operators would be present also for fully local models such as the 3D
Ising model.

8.1.4 Relations with analytic regularization

Analytic dependence of our fixed point on € implies that the critical exponents should also
be analytic in . Analyticity of the correlation-length and correction-to-scaling exponents
v and w follows easily from the tree expansion construction (appendix J), as they can
be computed by linearizing the analytic right sides of (J.12) near the fixed point.*! The
exponent 7 is trivial in our model due to the absence of wavefunction renormalization.
Higher exponents may have a subtle analytic structure because of degeneracies of linearized
RG eigenvalues at € = 0. Since our model is non-unitary, some higher critical exponents
may become complex even for real e, forming complex-conjugate pairs.*?

As already mentioned, it would be interesting to show that the critical exponents are
x-independent. Another problem is to prove rigorously that our critical exponents agree
with perturbative techniques by which these exponents are computed in theoretical physics.
This is especially interesting given that, as we have shown, perturbation theory converges
in the problem at hand.

In theoretical physics, higher-order perturbative computations of critical exponents
are usually done by working with a bare action containing only the relevant and nearly-
marginal couplings. This uses the fact that, due to the renormalizability of the theory
at short distances, one can always find an RG trajectory leading to the fixed point from
such a UV theory where all irrelevant couplings are set to zero. Furthermore, theoretical
physics calculations are greatly simplified by choosing a “mass-independent regularization
scheme”, which allows to simply set the mass terms to zero. Examples of such schemes
are dimensional regularization and analytic regularization with minimal subtraction, which
amount to analytically continue Feynman diagrams in ¢, dropping the poles. It is univer-
sally believed that any scheme, and in particular a mass independent one, should give the
same power series in ¢ for the critical exponents, but to our knowledge this has never been
discussed in full rigor.

8.1.5 Increasing the range of ¢

Existence proofs of fixed points in this paper work for |e| < gg(y). We have not attempted
to evaluate £o(7y) explicitly, although it would be straightforward to do this, following step-
by-step our arguments. This may be a good exercise for someone wishing to understand
our methods in depth. Both of our methods (contraction and the tree expansion) can be

“I"These series have been computed, via another regulator, for the bosonic O(N;) long-range models in [78]
up to three loops. We thanks Dario Benedetti for sharing a Mathematica notebook. Fermionic series should
be obtainable by setting N, = —N. These series are not sufficiently long to test our claim that they are
convergent in the fermionic case.

42This is similar to how some higher Wilson-Fisher critical exponents become complex in 4 — e dimen-
sions [89].
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obtimized to enlarge the range of ¢ where the fixed point is under control. One simple
strategy is to increase the number of terms which are computed explicitly, or estimated
more carefully than what is currently done. For ¢ of order 1, one might have to resort to
computer-assisted methods.*?

An interesting feature which might be revealed by such exploration is the cross-over
to the short-range universality class. Namely consider the local symplectic fermion model
with the bare action (cf (1.1))

/ (2,0, 0P P + vp? + M) (8.1)

Some literature concerning such models was cited in the Introduction. This model is
expected to flow to a non-gaussian fixed point for d = 3 (although, by the usual arguments,
not for d < 2). This fixed point is strongly coupled, and we cannot access it using the
techniques of this paper.** Physicists study such fixed points by the usual Wilson-Fisher
e-expansion working formally in d = 4 — € and then resumming the series at ¢ = 1. [We
will use € to denote 4 — d as opposed to the long-range parameter ¢.] As mentioned in
appendix G, e-expansion for these models is perturbatively equivalent to the e-expansion
of bosonic O(N,) models with N, = —N.

So for d = 3 we have a family of long-range fixed points studied here whose critical
exponents depend on ¢, and the fixed point of (8.1) which we will call “short-range”. The
scaling dimension of ¢ is [¢]Lr(€) = d/4 —€/2 in our models, while it is [¢)]sg = d/2 — 1+
nsr/2 at the fixed point of (8.1). The short-range ngg is given by nsg = 62% +0(e?),
N, = —N, with the series which needs to be Borel-resummed at € = 1.%°

The subsequent discussion applies for any N for which [¢)]sg < d/4, as appears to be
the case at least for N = 4 (see footnote 45). For such N, we will have [¢]rr(¢) = [¢]sr for
e =¢4=2(d/4—[¢]sr) > 0. It can then be conjectured that, for ¢ = ¢, the long-range to
short-range crossover will take place. Namely, the long-range fixed point at € = ¢, should
become identical to the short-range fixed-point plus a non-interacting gaussian theory of an
Sp(NN) symplectic fermion ¢ of scaling dimension d— [¢)] g (¢«). This would be analogous to
the bosonic long-range models, for which such a crossover has been studied since a long time
theoretically (starting in [93, 94], reviewed in [95], section 4.3) and is supported by Monte
Carlo simulations [96, 97]. The extra gaussian field ¢ is expected by the same arguments
as in [58, 98] for the bosonic case.’® Note that the operator 1( is marginal for ¢ = ¢, (it

“3Inspired by Lanford’s construction of the Feigenbaum fixed point [90].

44We could still prove a result like Key Lemma 6.1, but we would not be able to derive the Fixed Point
Theorem 6.1, for lack of a small parameter analogous to €. Perhaps a computer-assisted method could help.

45This series is known up to 7 loops [91, 92], see [6] for the earlier 6 loop results. It is tempting to
speculate, by analogy with the long-range case, that the e-expansion series have a finite radius of convergence
for negative IV, while they are known to be only Borel-summable for positive Np. Numerically, the 6-
loop series for vsgr,nsr,wsr for Ny = —4 seem to be remarkably well behaved. E.g. nsp(Ny = —4) =
—0.25€% — 0.25¢% — 0.535957¢* — 1.25122¢° — 3.14893¢®. We are grateful to Kay Wiese for communicating
this to us.

46We will give three reasons: (1) Since the LR (long-range) theory is nonlocal, the theory to which it
crosses over cannot be fully local. (2) (Counting of degrees of freedom) The leading spin 2 operator is not
conserved in the LR theory. At the crossover its dimension goes to d, which is the stress-tensor dimension of

— 56 —



should be marginally irrelevant for the conjecture to hold). Furthermore, ¢ = ¢, marks
the boundary of the region of analyticity of the long-range fixed point, and for € > ¢, the
long-range fixed point with real couplings seizes to exist. It would be extremely interesting
to provide rigorous evidence for these phenomena.

8.1.6 Extension to non-integer N7 To non-integer d?

In quantum field theory, one often likes to continue the number of fields from a positive
integer, as it nominally should be, to an arbitrary real or even complex value. For lattice
models, such continuation often have geometric meaning, as for the O(N) and Potts models
when it can be interpreted respectively in terms of loops and Fortuin-Kastelein clusters.
Symmetry meaning of such continuations in terms of Deligne categories was recently dis-
cussed in [99]. We wish to discuss how such a continuation can be rigorously performed
for the model studied here. First one has to factor out explicitly the products of {2-tensors
out of the couplings, i.e. write

Hok(A,x) = Qaya,Qaga, - Qa2k71a2kﬁ2k(1&, x) + permutations,

where the kernels Hoy are “Q-free”, i.e. no longer depend on the a indices, the sequence
A containing only p indices. The RG equations can be rewritten in terms of such (-free
kernels, with contractions of {2-tensors giving rise in each order to some factors depending
polynomially on N. One should then study such Q-free fixed point equations. It is tempting
to conjecture that one can prove fixed point existence for any N and its analytic dependence
on N.47

More speculatively, one could also try to perform analytic continuation in the space di-
mension d. One would have to use rotation invariance to come up with a parametrization
of the kernel in terms of scalar functions depending on distances between points, times
polynomials in point differences. Expressing the RG equations in terms of scalar func-
tions only, dimension d becomes just a parameter which can in principle be continued to
non-integer values. Controlling this continuation will likely require major changes in our
arguments (much more so than the continuation in N), since we relied on the existence of
the physical position space carrying a positive integration measure in several crucial points.
But the stakes are high: if one could prove non-perturbative analyticity in d, it would be
the first rigorous result of this kind in almost 50 years since the space of 3.99 dimensions
was ushered in by Wilson and Fisher [4].

the SR (short-range) fixed point. However it’s still not conserved by continuity, so its divergence represents
extra states not present in SR. (3) At the coalescence of LR and SR fixed points there must be a marginal
operator, on general grounds and because logarithmic corrections are seen in Monte Carlo simulations. The
SR fixed point by itself does not have a marginal operator; it can however be constructed as (. More
arguments are given in [58, 98] where this picture was proposed and thoroughly tested for consistency.

47Tf this is achieved, the coefficient N — 8 of the one-loop beta function becomes a new small parameter
for N near 8. One could then work for ¢ = 0 where the quartic is marginal, and construct a fixed point
with A = O(N — 8) balancing the one-loop term against the two-loop term which has an O(1) coefficient.
We are grateful to Dario Benedetti for this comment. This could then be done even in d = 4, for a theory
of local symplectic fermions (8.1). This would be a rigorous version of the Banks-Zaks fixed points in 4d
gauge theories [100-102].
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8.1.7 Connections to Functional Renormalization Group

FRG represents the most systematic attempt to implement Wilsonian RG in absence of
small parameter; see references in the introduction. We are not aware of any FRG studies
of specifically symplectic fermions (local or long-range), although other fermionic models
(such as Gross-Neveu, Thirring, or Nambu-Jona-Lasinio), or mixed fermion-boson models
with Yukawa interactions have been studied via FRG-like techniques; see e.g. [103—106].

Let us compare our results to FRG calculations. In our theorems, all irrelevant cou-
plings were included, and an RG fixed point was rigorously located in a Banach space of
interactions, with a provably convergent way to approach it (for a wide range of cutoff pro-
cedures). Any FRG calculation always truncates the space of interactions, so that only a
subset of irrelevant couplings is included (even if an infinite one). To our knowledge, there
are no rigorous results about the best way to exhaust the space of interactions. What is
done instead often looks like a matter of prejudice or of convenience. E.g., for bosonic mod-
els with the field ¢ one typically allows an arbitrary potential V() but only a handful of
derivatives of ¢, because the former is believed (although unproven) to be more important,
but also because an arbitrary potential is easy (the so called local potential approxima-
tion), while derivatives are hard. This state of affairs is both an invitation to mathematical
physicists to weigh in and provide rigorous criteria, and to FRG practitioners to explore
different exhaustion schemes.

FRG experts may find instructive that our construction used nonlocal interactions
terms parametrized by kernels having fast decay at infinity.*® In principle, our interactions
could be expanded in the basis of local monomials with fields carrying an arbitrarily high
number of derivatives (the expansion coefficients would be all finite because of the stretched
exponential decay of the kernels). However, we have not found such an expansion necessary.
It is an open question if rigorous RG analysis can be carried out with interactions expanded
in local monomials, and what would be the appropriate Banach space.

Another difference between our result and FRG is that we work with the full Wilso-
nian effective action, while most FRG calculations are nowadays performed in terms of
the one-particle irreducible (1PI) effective action, which flows according to the Wetterich
equation [112], as opposed to Polchinski’s equation.?” Empirically, this seems to give better
results. The 1PI effective action may be expected to be a somewhat more local object than
the Wilsonian effective action, but it too cannot be fully local. We are not aware of any
rigorous fixed point results in terms of the 1PI effective action.

8.1.8 Bosonic fixed points

While this paper deals with fermionic fixed point, most fixed points of interest to physics
do contain bosonic fields. A few available rigorous bosonic fixed points are listed in ap-
pendix K. Notably, they include the bosonic analogues of the models that we studied here,
i.e. long-range bosonic O(N) field theories with weakly relevant quartic bare interactions.
Unfortunately, these rigorous constructions remain rather daunting, in spite of serious ped-

48Gee also [107-111] for FRG setups allowing nonlocal momentum dependence in the vertices.
498ee also a non-partisan review in [113], chapter 5.
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agogical work which went into trying to simplify them (e.g. [77]). Further simplification is
desirable, however unlikely. A very accessible review can be found in [114].

A major complication in the bosonic case, compared to the fermionic one, is that, in
defining the RG map H +— H’, the terms involving fluctuation fields ¢ that are (on a local
scale) large compared with their standard deviation must be treated in a distinguished
way: rather than dealing with them via resummations of perturbation theory, they are
controlled via apriori bounds on the probability of such “large fields” configurations in
combination with a “polymer expansion”.’’ These additional small/large fields decompo-
sition and polymer expansion add a whole new combinatorial level to the construction,
which inevitably leads to several technical complications. To date, essentially all the rig-
orous works on the construction of bosonic fixed points use a parameterization of the full
probability distribution of the form

e+ P, (8.2)

rather than of the more standard Gibbs form e”: in (8.2), H includes the relevant and

“non-

marginal parts of the interaction, which are exponentiated, while P includes the
perturbative” large field contributions, which are kept non-exponentiated; this mixed form
turns out to be optimal for proving that the RG map preserves the space of interactions.
Assuming (8.2), RG fixed point equation becomes H' = H,P = P’, whose form is quite
different from (and quite more involved than) the standard “Exact RG equations”, such
as Polchinski’s or Wetterich’s, which typically neglect the contribution from the polymer

expansion of the large fields contributions (the P-term).
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A Gevrey classes and fluctuation propagator bounds

In this appendix we give an explicit example of a compactly supported cutoff function
satisfying the Gevrey condition, and prove the stretched exponential bound (4.15) for the
fluctuation propagator.

A.1 Cutoff function of Gevrey class

Here we will explain that the set of cutoff functions satisfying conditions (2.2) and (2.3) is
not empty. Bump C'* functions being standard, we will explain how to satisfy in addition
0 (2.2) the condition (2.3)<=-(4.14), which we copy here:
sup [0%x (k)| < C"n"?, n=la=01,2... (A1)
keRd
We will not assume any knowledge about Gevrey classes; see e.g. [115, 116] and [37],
appendix C.

Recall the following classic result for analytic function. Let F'(k) be a function which
allows an analytic continuation from real k& € R? to a polydisk Dpg, i.e. the region of
complex z € C? such that |z; — (ko);| < R (i = 1,...,d). Then, by the Cauchy integral
representation, the derivatives of F'(k) at the midpoint of the polydisk are bounded by
(n = [al)

|0“F (ko) < nlR™"A, A= max |F'(2)]. (A.2)
R

By (A.2), an analytic x(k) would satisfy (A.1) with s = 1. However, by (2.2) our x(k) is
compactly supported, hence cannot be analytic. The best we can hope for is (A.1) with
s> 1.

Let us first construct a d = 1 example of a compactly supported Gevrey-class function.
Fix r > 0 and consider a C*° function (see figure 3)

0 t<o0

e 1/t > 0. (A-3)

Xo(t) = {

This function is not compactly supported, but this will be corrected below. For now let us
check that it is Gevrey class, namely that it satisfies the d = 1 analogue of (A.1):

0" Xo(t)] < C™n", n=0,1,2... (A.4)

with s =14 1/r. (C stands for various positive constants which can change from one line
to the next.) Indeed, consider the function

Xo(t 4 2) = e V/+2)", (A.5)
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(a) (b) (c)

Figure 3. (a) Function Xy(¢) for » = 1; (b,c) The corresponding functions X; (¢) and X (¢).

In the disk of complex |z| < kt, where xk > 0 is sufficiently small, this function is analytic
and bounded in absolute value by e~¢/*" .51 By the d = 1 case of the Cauchy estimate (A.2),
we have:

18" Xo(t)| < nl(st) e C/, (A.6)

from where (A.4) follows via elementary maximization of the r.h.s. over ¢.
From X (t) which vanishes at ¢ < 0, we pass to a function of compact support [1/2,1]:

X1(t) = Xo(t —1/2)Xo(1 —t). (A.7)
By the Leibniz rule, it’s easy to verify that X;(¢) also satisfies (A.4). Finally, we put

X(t) = Xy (t)dt' (A.8)

which is constant for |¢t| < 1/2, vanishes for |t| > 1, and still satisfies (A.4). We rescale it
so that X (0) = 1. See figure 3.

The function X (¢) is an explicit example of a cutoff function satisfying conditions (2.2)
and (2.3) in d = 1. Infinitely many examples of this sort can be given multiplying X ()
in (A.3) by an analytic function and repeating the construction.

The function (k) in d dimensions will be given in terms of the 1d function by

x(k) = X ([k])- (A.9)

While eq. (A.1) can be verified using the chain rule, we will instead give a more robust
argument via analytic continuation and the Cauchy estimate. The function f(k) = |k|
is real analytic for |k| € [1/2,1] where derivatives of X (¢) are nonzero. Generally, a
composition X (f(k)) of a Gevrey class function X (¢) and a real analytic function f(k)
remains in the Gevrey class. For the proof, let f(z) be analytic continuation into a polydisk
|zi — ki| < R (we can choose R = 1/4 for f(k) = |k|, 1/2 < |k] < 1). Writing X (f(2)) =
X(f(k)+[f(2) — f(k)]) and Taylor-expanding we have

X(f() =) %3iX(f(k))[f(Z) — fR)]". (A.10)
i=0 "

1 here depends on 7. We can choose it so that Re[(1+¢)™"] > 1/2 for |¢| < &.

— 61 —



Suppose we want to compute %[ X (f(k))], |a] = n. We can compute this derivative by
differentiating the Taylor series (A.10) truncated to i < n, since all terms with ¢ > n are
anyway higher order:

RIX(f(K)] = 02@(2)omr,  @(2) = > X (f(R))f(2) = F(R)]', (A.11)

The function ®(z) is analytic. It can be bounded in the polydisk by
|®(2)] < Cp™5D), (A.12)

using (A.4) for X(¢), and that f(z) is bounded in the polydisk. From here using (A.2) we
get (A.1).

A.2 Fluctuation propagator bounds

A.2.1 k-space

Recall that the Fourier transform of g(z) is given by eq. (2.10) which we copy here:

. d
(k) = [x(k) = x(vk)]/|k|2 <. (A.13)
In this subsection we will show, using (A.1), that, for any k € R% and any n = |a| > 0,

(C,y)nnns

10%4(k)| < C e

(A.14)
(C will denote - and n-independent constants which may change from one equation to
the next.)

We first estimate the derivatives of 1/|k|%/?%¢. Consider the analytic continuation of
F(k) = 1/|k|%%* into the polydisk centered at k # 0 of radius R = 2 max; |k;|. The
maximum of |F(z)| in this polydisk is bounded by CF (k). We conclude by (A.2) that®?

o 1 n C"n!
Finally since |k| > 1/(2v) on supp|x(k) — x(vk)] we conclude
o 1 (Cv)"n!
o) = < 47 onsupp[x (k) — x(vk)]. (A.16)
Now let us prove (A.14). By the Leibniz rule we have
o A 1 o—
0 g(k) =y QWW x 0P x(k) = x(vk)), (A.17)

B<a

%2For d = 1 bound (A.16) would be easy to get by repeated differentiation deriving an explicit formula
for the L.h.s. The analytic continuation argument is more robust to show that the same estimate is true for
any d.
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Figure 4. The Fourier transform of the function X (¢) from figure 3(c), plotted in log scale against
|z|'/* where s = 14 1/r = 2. The expected exp(—C|z|'/*) decay is visible.

where Qs = [1%, (‘gz) We estimate the 9 derivative on the support of x(k) — x(vk)

via (A.16), while the 9*~# factor by (A.1) with C — Cv. Combining these two estimates
via (n = |al)
(el = (o),
181l — BIleBl < polBlpsla=bl — pon (A.18)

and using that }°5 Qg = 2", we get (A.14).

A.2.2 z-space

Finally we show (4.15). Consider first the bound for g(z). We use the standard trick that
the Fourier transform of (—ix)®g(x) is 0“g(k), hence

sup [2%g(x)] < (2m) = 10%9l| - (A.19)

Bound (A.14) then implies (note that §(k) has compact support and that f\k\gl Wfﬁ% < 00)
sup |2%g ()] < C(Cy)"n™, (A.20)

which can be rewritten as
9(2)| < Cumn™ = C™ 505 w=Clal|/y. (A.21)

From here (4.15) for g(x) follows by choosing n optimally as n = |u'/*/e].

The Fourier transforms of the first and second derivatives of g(x) are gi(k) = k,g(k)
and g2(k) = kuk,g(k). Using (A.14) for g(k), it’s easy to see that gi(k), g2(k) satisfy the
same type of bounds. Thus the bounds for the first and second derivatives of g(z) follow
by the same argument. In fact derivative of any order will have the same kind of decay,
only the constants will degrade.

As an illustration, we plot in figure 4 the numerically computed Fourier transform of
the function X (t) from figure 3(c). The plot shows the expected exp(—C/|z|*/?) decay.
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Figure 5. This figure represents a term in Heg corresponding to n = 1 in (B.1): just one vertex
with |A| = 6 (gray oval). Empty circles are the external fields and filled circles are the internal
ones. The generated Heg term has [ = |B| = 2. The 4 internal fields are contracted (just one
possible contraction is shown).

B Details about H.g

In this appendix we give more details about the derivation of eq. (5.3). Plugging (5.2)
into (5.1), we represent Hog (1)) as

He) =3 L S % (o (B.1)

n

< [dixU(Brxp,). .. ¥(Boxe,) [[ H(Aixa) (2(B1xg,)i. i 0B, xp,))
i=1

Let us explain this in words. We sum over even-length sequences A; indexing terms in H.
We introduce a coordinate sequence x of length |A1|+...+|A,| to be integrated over. We
further sum over subsequences B; C A; selecting which fields inside the H(A;,x4a,) term
are external. The fields from the complements B; = A; \ B, are internal, to be contracted
in the connected expectation. We use xa,, XB;, xg, to denote the part of the vector x for
the corresponding subsequence. The (—)# is the sign, which we don’t need to track, of the
permutation reordering sequence Aj + ...+ A, to B1+...+ B, +B1 +... + B,.

There are several distinguished groups of terms in (B.1):

e Terms with n = 1 and B; = A;. They involve no contractions and their sum gives
back H.

e Terms with n =1 and B; # Aj. These involve a single H(A,x) vertex with several
fields identified as internal and contracted among themselves, while the rest remaining
external (see figure 5).

e Terms with n > 2, which therefore correspond to contractions of several vertices.
Since (B.1) involves connected expectation, we have to sum over contractions such
that the graph becomes connected when every interaction vertex is shrunk to a point
(see figure 6).

e Terms for which all B are empty, meaning that all fields are contracted. These sum
up to a ¢Y-independent constant (infinite when working in infinite volume as we are).
As mentioned in section 2.1, footnote 12, this constant will be dropped.

Finally, eq. (5.3) follows by rewriting (B.1) in the form (4.2).
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Figure 6. Left: a contraction of three vertices, n = 3 in (B.1). The generated Heg term has | = 4
(the total number of empty circles). Right: the graph of contractions obtained when every gray

oval is shrunk to a point (denoted by a fat dot). This graph is connected, as it should be because
we are considering connected expectations.

C Trimming details

This appendix deals with the trimming map introduced in section 5.2.2, and with how it
behaves with respect to the weighted norms. This map takes the interaction Heg in a gen-
eral representation and returns an equivalent trimmed representation. Consider the parts
of H = Heg which need to be set to zero: Hy 9, H2,0, Ho,1. Recall that H; , corresponds to
[-leg interactions with p derivatives:

Hip e > / dxH (A, x)U (A, x). (C.1)
|Al=l,d(A)=p

The dependence on Sp(N) indices should be given by possible invariant tensors:

Hap <> A= (a,b,c,e), H(A,X) = QapQeeF1(X) — QacQpe Fo(x) + Qo F3(x)  (C.2)
Hao <> A = (a,b), H(A,x) = QG (x) (C.3)
Hay <> A= ((a,pn),b), H(A,x)=QupK{(x), (C4)

(av( 1), H(A,x) = QKb (x) (C.5)

Recall that kernels (A, x) are antisymmetric, H(mA,7x) = (—)"H(A,x). This implies
various symmetry relations for the functions F, G, K. E.g. G is symmetric, F1, Fa, F3 are
all related by permutations of their arguments, and finally K{'(z1,22) = K5 (22, 71).

By spatial parity (see footnote 15) we have K{'(—z1, — z2) = —K}'(x1 z2). Combined
with translational and rotational invariance this implies that K1'(z1,z2) = (w1 —22)M K (|21 —
xg‘)

The map T221’{1 takes Ho 1 and returns an equivalent interaction of Hs o type. Consider
the part of Ha 1 with A = ((a, u),b). Using the interpolation identity

(o) = vylon) + [ ddlan(en + e o), (C.6)

this term is mapped onto the sum of two terms. The first one is

Qun [ o | [ ey 122)] Ot o). ()
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which vanishes because as mentioned above K f (x1,22) is odd in 21 —x2. So no local terms
are generated in the case at hand. The second term is

1
up / dey dlay K (21 22)0,00(@1) (22 — 21)s /0 dtoyby(x1 + (s — 1)), (C8)

Changing integration variables from d%zy to d%y with y = 21 + t(z2 — 1) and doing the
integral over ¢ we have an identity

1
[ okt @) @a = a), [ dtoinen+tlar—20) = [ &y o), (C9)
with the help of which we rewrite (C.8) as

Qs [ dlardy L (01,90, (01) D04 1), (C.10)

which is an interaction of type Hs 2 as promised, and we associate it with T 22R1 (H2,1). The
action on the part of Hy; with A = (a, (1, b)) is analogous and we have to add it to the
previous result.

The maps T22£0 and T221§€ take Ho o and return an equivalent interaction which is
a sum of Hor, and Hj o type interactions. Using the interpolation identity (C.6), an Hap
interaction is mapped to a sum of two terms. The first term is the local quadratic interaction
and we associate it with T22i0:

T35 (Hap) = VQab/ddm(TPai/Jb)(%), v= /ddeG(xl,:cg). (C.11)

By translational invariance the integral [ d%z,G(x1 x2) is xi-independent). The second
y g 2 ; p
term is

1
Qi / dix Gz 22), (1) (@2 — 1), /0 Aty (11 + (s — 1)), (C.12)

and similarly to (C.10) we can write it after a change of variable and ¢-integration as
Qi [ dlardly G (. y)ba(a)0n(v) (C.13)

This is of type Ha 1 which we already considered. Acting on it with the map Tgﬁl we will
get an equivalent interaction of type Hao. This final result is T;ﬁ? (Ha2,0)-

The maps Tfio and Tff’? are constructed with the help of the interpolation iden-
tity (5.17), which maps M40 to an equivalent sum of two interactions, the first of which
defines Tfﬁo as it is a local quartic interaction with the coupling

A= / L AXIRG) + o) + P =3 [ '), (C.14)

x1=0

while the second term is an interaction of Hy 1 type which is associated with Tfﬁ{) .
We now consider weighted norm estimates for the introduced maps. Since w > 1,
the localization maps have simply norm one (factor 3 in (C.14) cancels with 1/3 in (4.18)):

2,0 4,0
ITor (Ho0)llw < [[Ha2ollw, 1Ty (Hao)llw < [[Hao

v (C.15)
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On the other hand, due to the factors like (2 — z1) in (C.8), the interpolation maps will
not preserve the norm || - [|,,. Let us aim instead for an inequality of the type [|T(H)|w <
Const .|| H ||, where w' is a slightly weaker weight than w” (i.e. growing slower than w” at
infinity). Eventually we will choose w’ = w(:/7), w” = w.

For T;ﬁl, we need to estimate the w'-norm of L in (C.10) in terms of the w”-norm
of K. The relation between L* and K}' is encoded by the identity (C.9) which by
translational invariance and renaming 9,9° by f can be written equivalently as

/ Ay L (0, 9) f (y) = / K0 ) /O L dtf(ta), (C.16)

where f(y) is an arbitrary function. The actual expression for L*” in terms of K}’ can
be written by e.g. choosing f(y) = d(y — yo) but we don’t need it. We write the norm of
L* as

12 = [ a2 (0.)|w'(0.9) = [ dyL (095w 0.9)

1
— [dtart©.w)a” [ S 0.
0
< [ da|KE.)llale’ (0.2), (€17)
< Cu|| K|,
where in the first line we defined X(y) = signL*”(0,y), in the second line we used iden-
tity (C.16) with f(y) = X(y)w'(0,y), in the third line we used that |X| = 1 and assumed
that the weight w’ is monotonically increasing. Finally, in the last line we assumed the

inequality:
|z|w' (0, z) < C1w” (0, ) (z € RY). (C.18)

Multiplying the bound (C.17) by 2 to account for the contribution of K%, we conclude
T35 (o) llr < 201 H2,1 |l (C.19)

For T221£ , very similar considerations will apply. Recall that we have to apply the interpo-
lation identity twice, and each time we will pay a factor of |z| in the weight function. So
we get a bound

|78 (H20)llur < Cal[ Haollur (C-20)

under the condition
|z 2w’ (0, ) < Cow” (0, 2) (z € RY). (C.21)

For Tff’?, the interpolation identity (5.17) will give rise to an extra factor |z2| + |z3| + |z4]
in the weight function. We will therefore obtain:

1T (Ha0) lwr < Csl Mol (C.22)
assuming

(lwa| + || + |za)w'(0, 29, 23, 24) < Caw”(0, 22, x3,24) (w2, 23,24 €RY).  (C.23)
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Finally, we specialize to the case of interest for us: w” = w, w' = w(-/v) where w is our
weight (4.16). We leave it as an elementary exercise to show that, for v > 2, inequali-
ties (C.18), (C.21), (C.23) hold with Cy,C3 = O(7), C2 = O(+?) and the constants in the
O bounds depend only on Cy, and o in (4.16). [Here v > 2 is useful as C; would blow up
in the limit v — 1, v’ — w”.] Bounds (5.43) follow.

D Determinant bounds for fermionic expectations

This appendix discusses the determinant bounds (Gram-Hadamard and Gawedzki-Kupia-
inen-Lesniewski) for the simple and connected® fermionic expectations. These are standard
in mathematical physics, but will be unfamiliar to most theoretical physicists, usually
concerned with computing, not bounding. These bounds are closely related to the Pauli
principle and, at a formal level, to the fermionic expectation being a determinant (hence
the name). We will also review the Brydges-Battle-Federbush (BBF) formula, a clever
integral representation for connected expectations, useful to derive bounds (and perhaps
for other things).

Classic sources (citing previous literature) are [117] for the bounds and [118] for the
BBF formula. Other presentations are in [119-121].

D.1 Simple expectations

We are interested in the expectations of the fluctuation field ¢,(x) which is a gaussian
Grassmann field with the propagator (¢,(x)oy(y)) = Qupg(z — y). We use the notation
® (A, x) for field products as in (4.1). The simple fermionic expectations are given by,
see (2.5),

(P(A,x)) = (Pa, (1) ... Pa,, (x)) = Z(—)p x Wick contractions, (D.1)
where a Wick contraction is a product of s propagators like

<(I)A1 (xl)q)/b (332)> s <(I)A2571 (331”*1)(1)1425 (1:7”)>7 (D'Z)

or any other pairing where fields are ordered as p(1)...p(r) and (—)? = £1 in (D.1) is the
sign of the corresponding permutation p.

Eq. (D.1) contains factorially many terms, but there are cancellations because of the
signs. To see this, we rewrite (D.1) as a determinant [122]. As a model, take gaussian
Grassmann fields ¢ and € with propagator

(€(@)Ey)) = g(x —y). (D.3)

Then,

(€(21) .- E(@s)E () - - E(ys)) = £det M, Mij = g(x; —y;)- (D.4)

In the general case (D.1), fields ¢, carry indices a = 1... N, and propagator is Qg,g(x —y).
Renaming odd-a fields as &4, even-a as &, the &,-&, pairs (o = 1...N/2) are decoupled,

33Connected expectations are referred to as ‘truncated’ in mathematical physics.
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with propagator o nq. The number of ¢ and & fields in the non-vanishing expectation
must be the same, let x; and y; be their coordinates. Then the expectation (D.1) is, up to
a sign, the determinant of the s X s matrix:

det M, ./\/lij = 5aiaj Iy (z; — yj). (D.5)

Here I';; is either g(z —y) or its derivative if some fields carry derivatives. We will estimate
it with the help of

Lemma D.1 (Gram-Hadamard inequality) For (f;), (h;) (i=1...s) two lists of vec-
tors in a Hilbert space, let M;; be the s x s matriz of their inner products: M;; = (fi, hy).
Then D(f,h) = det M satisfies an upper bound:

[D(f.m)| < TT I fillllna]l- (D.6)
i=1

Proof. For h; orthonormal, this holds interpreting the determinant as the volume of
parallelepiped formed by f; (this case is known as Hadamard’s inequality). By rescaling,
the inequality remains true for h; orthogonal of arbitrary length. We will next reduce the
general case to this special case.

Out of general h;, we build h; by Gram-Schmidt: hy = hi, ho = he — ahy L hy
(projection of ho on the subspace orthogonal to ﬁl), hs projection of hs on the subspace
orthogonal to le, hs etc. By properties of determinants:

D(f,h) = D(f,h). (D.7)

From the special case, the r.h.s. is bounded by [T || fillll7i]l, and ||k:]| < ||hi]| since it’s a
projection. Q.E.D.

To apply this result, we have to write the matrix elements (D.5) as products of vectors
in a Hilbert space. Without indices and derivatives we have

9(xi —y;) = (fi, hy), (D.8)
introducing two families of L? functions in momentum space (a trick due to [123]):>
filk) = = * (k) 2g(k) /1), (k) = e~ *¥ilg(k)[M?, (D.9)

When some fields carry derivatives, we just include a factor ik, into the corresponding
function. Finally with indices, we view f; and h; as vector functions, multiplying (D.9) by
the unit vectors in the directions «;, «;, whose inner product reproduces the Kronecker
da;a;- We just proved

Lemma D.2 (Gram-Hadamard bound) We have the bound
’<®A1 (xl) cee (I)AQS (x25)>| < (CGH)S with

d d
Con = max ( / (;l?f)dwk)\, / (;lﬁm)?\a(k)r) | (D.10)

§(k) will be non-negative if x (k) is non-negative and monotonic, but we state this part of the argument
for a general complex §(k).
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This bound is related to the Pauli principle, as can be seen from the following alter-
native proof. We can represent ®4(x) as operators acting on a Hilbert space (fermionic
Fock space). Fermionic occupation numbers being either zero or one, operators ® 4(x) turn
out to have a finite norm ||® 4|, and expectation then grow at most as a power ||®4[/?*.
This should be contrasted with the bosonic case, when the operator norm would have been
infinite (even for a simple harmonic oscillator).

Lemma D.3 Let §(k) be as in (2.10), with x(k) satisfying (2.2). Then Cgnu is uniformly
bounded over v = 2 and € € T where T C C is any compact subset of the complex half-
plane (7.1).

Proof. ~ We have Ceu < [« d?k(2n|k|)~(@/2+Ree)  yniformly bounded since
maxy Ree < d/6 by (7.1).

D.2 Connected expectations

Dividing the points x into n groups xi, ..., X,, connected (also called ‘truncated’) expec-
tations are given by

(P(A1,x1);...;P(An, Xn))e = Z(—)p x connected Wick contractions. (D.11)

Connected Wick contractions form a subset of terms from (D.1), those for which the graph
of propagators becomes connected when each group of points x; is collapsed into one point.
The signs (—)? are the same as in (D.1).

Because g(x) decays at infinity, connected expectations are small when any two groups
x; and x; get far apart. We need a bound incorporating both this fact and the cancellations
due to signs. This will be done via a clever generalization of the determinant representation
to connected expectations.

To begin with, via (D.1) and (D.11), the simple and connected expectations satisfy
two relations (®; = ®(A;, x;)). First, they coincide for a single group of points:

(@i)e = (D). (D.12)

Second, simple expectation can be computed by partitioning n group of fields into subsets,
taking products of connected expectations within each subset, and summing over all ways
of partitioning:>®

([T ®r) = > ()" TT (@i Pyai- e (D.13)
i=1 ITepartitions of {1...n} Yell

The (=)™ is the parity of the permutation bringing fields in the r.h.s. into the original order
in the Lh.s. (it’s not the same permutation as in (D.11).

55This formula is more rapid that (D.11) to compute connected expectations: one recursively expresses
them via the usual expectations, which in turn are evaluated by the determinant formula (D.5) [124]. This
observation speeds up the Diagrammatic Monte Carlo algorithm from footnote 24 [124] achieving polynomial
complexity [125]. One wonders if the BBF formula (D.47) below could give an alternative practical way to
evaluate connected expectations.
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Reading (D.13) from right to left, one can recursively computes connected expectations
from simple ones. E.g. for n = 2,3 we have

(@1D2) = (P15 Do) + (P1)(D2), (D.14)
(P1DoP3) = (P15 Po; P3)e + (P1; Do) (P3) + (P1)(P2; P3)e
(=) VNS (D15 By) (Do) + (P1)(P2)(Ps). (D.15)

In the r.h.s. we replaced (®r). = (Px) by (D.12). Ny is the number of fields in ®y.
From (D.14) we find (®1; P2). = (P1P2) — (P1)(P2); substituting this into (D.15) we find
(P1; Py; P3).; ete. So (D.13) provides an alternative definition of connected expectations,
a useful starting point for what follows.

Let m = >_7_; |xx| be the total number of points. In section D.1 we wrote the simple
expectation as a determinant of the matrix M defined in (D.5). Introducing auxiliary
Grassmann variables 7; and 7; (m/2 of each type), we write it then as a Grassmann

integral
(] @A ) = /Hdmdﬁjev, (D.16)
k=1
where we defined the potential function
V= ZMijniﬁj‘ (D.l?)
i?j

Here 4,7 index the fields classified in section D.1 as &,,(z;) and 5%. (y;j). Depending in
which group xj, their positions z; and y; belong, we subdivide V' as

1 n
V=:-3 W D.18
2k,l:1 i ( )

Via = Z ./\/lijmﬁj —+ (k‘ > l). (D.19)
1,J:T; €EX), Y5 €EX|
Define V(X)) and ¢(X) on any finite subset X C {1...n} by

V(X) = . S Vi, (X)) =", (D.20)
2 piex

We can think of V(X)) as the total potential energy for a group of points with pairwise
interactions. Define connected part ¥.(X) recursively by the following equations:

<

o

s
!

Y(X) if |X] =1, (D.21)
H(X) = > IT ¢e(v). (D-22)

II€partitions of X YeEII

Crucially, the form these equations is such that integrating them in 7;, 77;, we land precisely
on (D.12), (D.13) (including the (—)™ sign), provided we identify

(Dyy; By )e = / TT dnidije(Y), (D.23)
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where the integral is over the subset of Grassmann variables belonging to Y (which means
x; € Xp,y; € X;, where k,l € Y'). Computing connected expectations is thus reduced to
finding 1.(Y) in terms of V. We will consider this problem in general, for an arbitrary
symmetric Vi;. That our Vj; is given by eq. (D.19) will become important again only in
section D.4.

There is a standard formula for .:

(X)) = 3 TT (% — 1) T o2V (D.24)

Géeconnected graphs on X, |G|=|X| kleG keX

But this is not very useful for our purposes: plugging it into (D.23) just gives back eq. (D.11)
(perhaps not surprisingly as both (D.11) and (D.24) involve connected graphs; we leave
the proof as an exercise.) The number of terms in (D.24) is asymptotically 2(3), since for
large n almost all graphs on n points are connected (e.g. [126], example I1.15).

D.3 Brydges-Battle-Federbush (BBF) formula

We will now derive a remarkable formula for ¢.(X) with much fewer terms. First two
simplifying remarks: 1) The diagonal interactions Vi enter into ¢.(X) as a trivial common
factor exp(3 Ypex Vik)- So we will set them to zero and reinstate in the final result. We
consider a complete graph on n points with pairs kl as the graph edges e, and we write

V(X)=> Ve). (D.25)

2) It is enough to aim for the equation

eV = > eV )y (), (D.26)
Y>1

from which (D.22) follows by iterating. Every term in the r.h.s. has Y and X'\ Y “decoupled”
in the sense that no edges linking them are involved. Let us describe a general decoupling
mechanism.

Let F'(X) be any sum of pairwise interactions F'(e), and Z C X a subset we wish to
decouple. We say that an edge e “exits Z” (written e 4 Z) if it is of the form e = kl where
ke Z, 1 e X\ Z. In other words, an edge exits Z if it connects Z to X \ Z. Introduce a
variable s € [0,1] and a new pairwise interaction with exiting edges rescaled by s, others

left intact:
F{s](e) _ {sF(e), if e - Z, (D27

F[;}(X)z ZF[;](@, (D.28)
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1
Then F[Z] (X) = F(X) and F[g} (X)=F(X\ Z)+ F(Z) is decoupled. Therefore we

have

F(X) F[g } w0 ! $ F(X\Z) F(Z)
e =e +/0 ds@seXpF{Z](X) —l—;;/ dsF(e eXPF[Z}(X)-
(D.29)

The first term is decoupled. In the second one we have a sum over exiting edges. Below,
each of these summands will be decoupled further with respect to the sets Z Ll e obtained
by joining to Z the outside vertex of the edge e. (LI denotes “vertex union”).

Think of [ 5 } as an operation, which can be applied repeatedly. E.g. F { ] [82 ]
Z ARINZ

means first rescale by s; all edges e; - Z7, then by so all edges e 4 Z by so. In general
these operations don’t commute.

To derive (D.26), we first apply this general mechanism with Z = {1} consisting of
one point, and F(X) = V(X). We obtain

eV (X) — V({1 Z / ds1V el)eXpV[ }(
e14{1} {1}

The first term gives the first term in the r.h.s. of (D.26), with Y = {1} and ¢.(Y) = 1.
For each term in the sum over e;, we define the set Z., = {1} Ue; and decouple with

). (D.30)

respect to Ze,, i.e. apply (D.29) for F' = V[
1 52

vimlla )
{1111 Ze,

[{811}} M vz, {{811}]2“ + / d52v[ }eQ)GXPV[{l}HSZ}(X)'

ez%Ze

} and the rescaled interaction F[ 52 } =

{1} Zey

(D.31)
In the first term we used F(X\Z,,) = V(X\Z,), since F' = V outside Z,. Plugging (D.31)
into (D.30) we get:

SV (X) _ V(X\{1})

+ Z eV (X\Zey) / ds1V ( el)expV[
e1{1}

+ > > /d81d52V er) [{811}}(62)6XPV[{1}H82}(X). (D.32)

614{1} 62—|Z

oy

To compare with (D.26), we rewrite the second line as

> VI (Ze), el Ze) / dsiV enexpv[ o (D33)

614{1}

{1}}(

This equation defines . for sets of two points.
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We then continue iterating. For each term in the third line of (D.32), we define
Zeieo = Ze, U ey and decouple with respect to this set. This allows us to rewrite the third

line as:

e}{:l}egzjel V(X \Zeyer) /01 ds1d82v(€1)V[{311}}(62)6va[{811}}{;:1}(28162), (D.34)

plus a triple integral term which we don’t write. To compare this with (D.26), we write

ST Dy (2). (D.35)

Z3{1},|1Z|=3

it as

We should define 9.(Z) summing over all possible orders of adding edges so that the final
set Ze,e, = Z, which means the two added edges should be picked from Z. We thus have

Ve (Z) = Z /01 dSldSQV(@l)V|:

eicz,el—{{l},ez—{Zel

](62) eXpV{ °1 H 52 ](Z) (D.36)

{1} {11 Ze,

Continuing to iterate, we obtain the following general formula for |Z| = n, Z 5 {1}, which
involves n — 1 added edges and integrations:

Ve(Z) = > (D.37)
eiCZe14{1},e37Z e, 3 Ze, enreon
) / kU s {veor| g Jew | ][ 2 Jeo feov [ B ][22 ][220 o

This is valid under the simplifying assumption Vi = 0 made above, while for general V'
we must multiply by exp(3 > pcz Vir). Another remark: definition (D.21), (D.22) shows
that ¥.(Z), like ¥(Z), must be symmetric with respect to permutations. Eq. (D.37) is
not manifestly symmetric as it selects {1} € Z, although of course it produces symmetric
results, see an example below. This lack of manifest symmetry will not be a problem in

our applications.

Example D.1 It’s instructive to check this formula for three points: Z = {1,2,3}. We
thus have three edges e = 12,13, 23. The rescaled interactions are (s1 = s, 52 = t):

sViz_+3 , tsVig 13
Tolsde dollil<le os

2

Thus the term in (D.36) corresponding to e; = 12 reads:

1
/ dsdtVia(sVis + ‘63)65V12+tsv13+tv23- (D.39)
0

For e; = 13 we get the same integral with 2 <+ 3. Doing the two integrals and summing,
we obtain the same expression as by expanding out (D.24):

Ve(123) =2 — V12 _ oVis _ V23 | Vi2+Viz+Vas (D.40)
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Continuing with the general case, it is not hard to write out all parts of (D.37) ex-
plicitly. Define a function ¢ : {1,...,n} — {1,...,n} which tells us the order of adding
vertices when adding edges ¢;: ¢g(1) = 1 and g(I) is the endpoint of the edge €;—1. So
ei—1 = g(k)g(l) with some k < [. In the exponential of (D.37) the contribution V. of this
edge appears rescaled by

Te = SpSka1" " SI—1, (D.41)

while in the prefactor {...} V,_, appears rescaled by
SkSk+1 """ S1-2 (D.42)

(or 1if k =1—1). This expression is consistent with applying Js,_, to (D.41), as it must
be by (D.29).
It follows from this discussion that every summand in (D.37) can be written as

n—1 1n—1
H Ve, % / H ds; f(s) eporeVe, (D.43)
k=1 0 k=1 e

where 7, are given by (D.41) and f(s) is some product of s’s. Its dependence on the choice
of added edges can be made completely explicit, but for us it will suffice to know that
f = 0. Furthermore, we would like to view the integral in (D.43) as performed over r.’s,
not over s’s, writing it as

n—1
H Ve, % /d,u(r) eporeve, (D.44)
k=1 e

where du(r) is some nonnegative measure, push-forward of the measure [[{_] dsif(s) to
re’s. This singular, delta-function-like, measure is concentrated on r.’s which can be rep-
resented as (D.41).

For the final repackaging, consider the graph which is the union of all added edges:
T=e UeyU...Uey_1. (D.45)

By construction, this is a tree with n vertices {1...n}. Note that the same tree 7' may
appear from different sequences of edges, all satisfying the constraints e; 4 {1}, eq 4 Z,, etc
in (D.37). E.g. the following tree may arise from {ej,es,e3} = {13,12,24} or {12,13,14}

or {12,24,13}:
3
1</4
5 (D.46)

Terms corresponding to the same tree 1" have the same prefactor Hz;ll Ve, in (D.44),
although the measures du(r) will be different. Let us group all such terms into one term per
tree T', summing their measures into some total measure. Reintroducing as well the trivial
exp(% > Vik) factor, we obtain the remarkable BBF formula [127, 128]; our presentation
followed [118].
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Lemma D.4 (BBF formula) Let T run through all trees with n vertices {1...n}. There
exist non-negative measures dur(r) so that, for any pairwise interaction V :

ve(l..n) =3I Ve/d,uT(r) exp(3reVe + 53 Vi), (D.47)
e k=1

T eeT

In addition, these measures have the following two properties:

e For eachr in the support of dur(r), there exists a bijection g : {1,...,n} — {1,...,n}
and a set of n — 1 numbers s, € [0,1] such that for all k <1

Tg(k)g(l) = SkSk+1""*S1—1- (D.48)

e The measures dur(r) are probability measures, i.e. they have total weight 1:
Jdpr(r) =1.

The first property is clear, since dur(r) were obtained as sums of such measures. The
second property can be checked by a trick: apply the general formula to a particular
conveniently chosen potential V. Pick a tree T" and consider V such that V, =¢ fore € T
and V = 0 otherwise. That [ dup(r) =1 follows by comparing, for small e, the equations

Ye(l...n

)= { " f dur(r) + higher order from (D.47), (D.49)

€™ 4 higher order from (D.24).

Remark D.1 The measure dur may be thought as having several components, corre-
sponding to different bijections g, whose number equals the number of ways to grow the
tree T' by adding edges. Each component can be pulled back to an integral over s;’s, and
the total weight of all components is 1. This can also be verified by an explicit computation
(Lemma A.4 in [119] or Lemma 2.3 in [121]).

The number of terms in the BBF formula is much smaller than in the standard for-
mula (D.24): it grows as the number of trees on n points, which is n"~2 (Cayley).

We we will use the BBF formula to prove bounds on the connected fermionic expecta-
tions. One wonders if this formula can also be useful to evaluate connected expectations,
e.g. performing the integral numerically, rather than just prove bounds. We are not aware
of such applications (see also footnote 55).

D.4 Gawedzki-Kupiainen-Lesniewski (GKL) bound

We will now present a bound on fermionic connected expectations due to Gawedzki and
Kupiainen [129]. Its physical origin, like for the Gram-Hadamard bound (D.10), is the
Pauli principle. Our exposition follows Lesniewski [117], who gave an elegant proof based
on the BBF formula.®®

6 Qriginal proofs [123, 129] were based on an improved Gram-Hadamard inequality for the simple ex-
pectations, transferred to connected expectations via cluster expansion techniques. See also [75] for an
alternative approach.
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We start with eq. (D.23) copied here for Y = {1,...,n}:

<(I)(A17 Xl); s (I)(Any Xn)>c = /H dmdﬁj%(l S n) (D'5O)

Recall that we introduced the potential function (D.17) (see (D.5) for matrix M) subdi-
vided in symmetric pairwise interactions Vi, 1 < k,l < n, see (D.18), (D.19). The BBF
formula (D.47) gives a general expression for ¢.(1...n) in terms of V.

What happens with every term in the BBF formula when we plug in expressions (D.19)
for Vj; and do the Grassmann integral? First of all let us look at the prefactor [[.cr Ve.
By (D.19), every V. = Vj; is a sum of terms M;;n;7; where z; € xj, y; € x; or vice versa
and M;; is a propagator, see (D.5). We choose in each V¢, e € T, one of such possible
propagator terms. The graph with all chosen propagators as edges is called an “anchored
tree T on the n groups of points x;”. When each group of points x; is contracted to one
points, the anchored tree T becomes a tree (the tree T in the case at hand). We will say
that “7 comes from 7.

Let us look at a term corresponding to a fixed anchored tree 7 coming from 1. The
variables 1 and 7 of the vertices along the anchored tree are saturated by the prefactor.
Doing the Grassmann integral over these “tree-saturated” variables gives a product of n—1
propagators along 7

I Tij(@i—w)- (D.51)
along T
We are left with the integral of the exponent over the remaining m — 2(n — 1) variables.?”
(By the rules of Grassmann integration, the tree-saturated variables can now be set to zero
in the exponent.) The potential function in the exponent of (D.47) will have the form

> Nijnitij, Nij = Tk(iyr()Mij (D.52)

ij
summing over the remaining variables, so V' = A/(r) is an s x s matrix with s = 2(m—2(n—
1)). If variables i, j belong to two different groups of points X;), Xp(j), then r)k;) = e
in (D.52), where e = k(i)k(j) is the edge of the tree T', progenitor of the anchored tree, and
re is the rescaling factor in the BBF formula. Terms from the same group, coming from
% > Vi in (D.47), should not be rescaled: so we set 75 = 1. The Grassmann integral over
the remaining variables is then the determinant of the so defined matrix A/. To summarize,

the connected expectation (D.50) can be represented as

S IT Tutes—uy) [ dpre) dec s (D.53)

T along T

Aiming to bound det N/ by the Gram-Hadamard inequality (D.6), we wish to represent
Nij as a product of vectors in a Hilbert space. For M;; such a representation was given in
section D.1. To deal with the extra factor ry ;) we will use

""Recall that m = Zzzl |xx| is the total number of points, and we have one Grassmann variable per
point.
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Lemma D.5 Let s € [0,1],k = 1...n — 1. There exist n unit vectors uy = uy(s) € R”
such that (ug,u;) = sg...s1—1 forall1 <k <l < n.

Proof. Let vi be the standard orthonormal basis in R™. We put u; = vy. Take us the
unit-length linear combination of u; and ve which has projection sju; on V4 = span(vy),

1/ 2py. Take us the unit-length linear combination of us and

explicitly us = sjug + (1 — s?)
vs which has projection squg on Vo = span(vy,vy), explicitly us = squg + (1 — 3%)1/2113.
Continuing in this fashion, we end up with a sequence of unit vectors u; € Vi whose

orthogonal projections on the previous Vj_; are
Py, (uk) = sp—1tk—1- (D.54)

Computing (ug,w;), k < [, via orthogonal projections u; — V;_1 — Vj_o ... gives precisely
Sge-si—1. Q.E.D.

Now for any component of dur measure, i.e. one particular bijection ¢g in the BBF
formula, we satisfy (D.48) via

Tt = (Ug=1(k), Ug-1(1)) (D.55)

which is also symmetric in k,l and 71, = 1. Finally the rescaling factor in the A/ matrix:

Tr(ik() = (Ug=1(k(5)) Ug—1(k(7)))- (D.56)

In section D.1 we showed that M;; = (fi, h;) where f,h are vectors in a Hilbert space.
Considering the tensor product of those vectors with ug-1(;(;)) € R", we obtain an inner
product representation for N;; elements. Since u’s have unit length, by the same argument
which led to (D.10) we obtain a bound with the same constant Cgyy:

|det V| < (Cgn)®, s= %(m —2(n—1)). (D.57)

This is true for any r, lying in the support of the measure dur. We can also integrate this
bound since dur has weight 1. We conclude that the connected expectation is bounded by

Can)’'Y S Jea (D51 = (Con)' Y lea. (D5L)]. (D.58)

T T comes from T T

where we used that every anchored tree comes from one and only one tree. We finally get:

Lemma D.6 (GKL bound) Fermionic connected expectations are bounded by

(P(ALx1);. . P(An, xn))el < (Can)® Y [T Tujzi —wy)l, (D.59)
T along T

where s = 3 37 |x;| — (n — 1), Cau s from (D.10), the sum is over all anchored trees T
on n groups of points xi, and the product of propagators is along 7.

The I';; here are either propagators, or their first derivatives with respect to z; and/or
yj. Since we are assuming (4.15), we can replace |I';;(z; — y;)| by M (z; — y;) in the r.h.s.
of the bound. See also figure 7 for an illustration. For n = 1 the GKL bound reduces to
the Gram-Hadamard bound (D.10).
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Figure 7. This illustrates the n = 3 case of the connected expectation. (a) Three groups of
points. (b) A particular connected Wick contraction. (¢) Red: an anchored tree COHSlstmg of n—1
propagators. Blue: remaining s propagators.

D.5 Bound on the number of anchored trees
We will prove that the number of anchored trees on n groups of points x; is bounded by
Ny < nlddaiz il (D.60)

Recall that an anchored tree is a graph which becomes a tree when each group x; is
collapsed to a point. The graphs are labeled (i.e. the vertices are distinguishable).

n=2_ TIts proof

By Cayley’s formula, the number of labeled trees T" on n points is n
via Priifer sequences [130] simultaneously gives a finer result: the number of labeled trees
specifying degrees dj of each vertex k is

(n—1)!
(dy — 1) (d, = 1)V

To get an anchored tree T out of T, we choose a propagator for each edge e = kl. There

(D.61)

are at most mym, choices per edge, with my = |xi| the number of points in the group k, so
at most [[¥_;(mz)% choices in total. Multiplying by (D.61) and summing over all possible
degrees, gives an upper bound on the number of anchored trees:

Nr<(n—-1)! Y Hdk—l (D.62)
(dr)f—s

Summing over each dj independently from 1 to oo (which is an overestimate since e.g.
degrees are limited from above by n — 1), results in a further bound

N7 < (n—1)! kl;ll F(my), F(z) = pz1 P ze®. (D.63)

We have F(z) < B* with B = e'*t1/¢ ~ 3.93, and so (D.60) follows. For a proof not relying
n (D.61) see [121], Lemma 2.4.

E Proof of Szl’ “» norm bound

Our goal here is to prove the bound (5.38). Let h; € Hy, and denote H = Sfl’""zn
(h1,...,hy) € B;. Unpacking the definition in section 5.1, the kernels of H; are

. 1

Hy(B,xB) =A— > > () ¥Kmar (xB), (E.1)
Bi,...,B, Ai,...,A,
>B;=B A;D>B;

K®, a,)r (xB) /d x5C (xg) Hh (Ai,xa,).
=1
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Let us count the terms in the sum (E.1) corresponding to a fixed B and fixed lengths
|A;| = I;. Tt is easy to see that these terms are in one-to-one correspondence with sequences
R of total length [ + Il + - - - + 1, extending the sequence B. [Every such sequence R can
be cut into sequences Aj, ..., A,, uniquely since the lengths |A;| are kept fixed, and then
B, can be extracted, uniquely, as the part of B falling into A;.] It follows that the number
of terms in (E.1) is bounded by:

Number of terms in (E.1) = (E/) (Nd 4+ N)Zb~t < 25k 5 (Nd+ N)Zb,  (E.2)

where in the first equality Nd+ N is the maximal number of choices for every element of the
sequence R\B, see (4.1), assuming that they are assigned independently. [This counting
does not take into account that some of these terms would vanish by constraints imposed
by the rotation and Sp(/N) invariances.]

We next pick some B;, A; and consider the corresponding term K (xg) = K(B, a,)r (XB)
in (E.1). Its integration kernel C (xg), eq. (5.4), is bounded by the GKL bound (D.59)
with x; = Xg,:

€ (xg)| = [(®(B1,x5,);-. ;0B x5,)) | < (Can)* Y Mz —2), (E.3)
T (xz')eT

where s = %Z ‘ﬁi

—(n—1) < § X 1;. We wish to bound the norm of K (xg):

1Kl = [ a*xnl (xm) o (xs) (.4

with the weight function (4.16). Let 7 be any anchored tree in (E.3). If 7; are trees
connecting points of x4, then 7U 7 U... U7, connects points in xg. Therefore, we have
a bound:

St (xB) < ZSt (xa;) + H |z — 2/|. (E.5)
i=1 (za")eT

Raising this to the power ¢ and using the elementary inequality

Sop) <Y p!  (pi=00<0

N

1), (E.6)

we conclude
n

w(xp) < [Jw(xa,) w({z,2'}). (E.7)

=1 (za")ET
Using in (E.4) this bound, the definition of K (xg), and the bound (E.3), we get

n

K|l < (CGH)SZ/ OddeUE [T M@z —a)w({z,a"}) [T hi(Ai xa,)w(xa,)
T = (z2")eT i=1

= (Can)* N7 M~ TT hillw- (E.8)
1=1
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The latter equality is shown via an “amputating tree leaves” argument. Given an anchored
tree T, we can find a leaf: a group of points xp, C X4, connected to the rest by just one
edge of 7, call it (z2’) where z € x4,. Amputating the leaf consists of two steps. First, keep
z fixed and integrate over all the other leaf points, which gives a factor |hg|/w. Second,
integrate over z (keeping 2’ fixed), which gives a factor |[M]||,. Then find the next leaf
and continue the amputation. We get the same result for each 7. By appendix D.5, the
number of anchored trees

Ny < ntd 5| = puadliot < gl

To summarize, the number of terms in (E.1) is bounded by (E.2), the norm of each indi-
vidual term by (E.8), s by % >~ 1l; and Ny by n!42-li. The latter n! cancels with % in (E.1).
A further useful fact is that the antisymmetrization operator A (footnote 15) does not
increase the norm (it averages over all permutations with signs, and the norm is defined as
the maximum over all permutations). Taking all of these into account, we get a bound

1w < 3 [T Collhillw (E.9)
1=1

with C,, = |M||,,, Co = 8(Nd + N)y/Ccu. This is the bound (5.38) in the case > 1; >
I+ 2(n —1). In the opposite case Sfl"“’g" vanishes (section 5.1), so there is nothing to
prove.

Remark E.1 We can see how some of the above steps justify choices made in the main
text. The Steiner diameter is tailor-made for (E.5). Stretched exponential weight is handy
because of (E.6). The L; norm (as opposed to any other L,) works great when recursively
amputating tree leaves.

F Estimates of A,(cl), A,(cz)

In this appendix we prove Lemma 7.2. To estimate Al(:), we use by, < Ad*for k > 1, sum
the geometric progression, and use Cd < 1/2, which gives what we need:
1

Al < ok 2 5041 < 20F246M (k> 0). (F.1)

1-0C9%
The estimate of A,(f) is more subtle and will require several steps. First we introduce the
tool of extending by zeros. For any sequence » = (k;)}, we say that a sequence »/
“extends s by m zeros” if it is obtained from s¢ inserting m zeros in arbitrary places. This
definition is also valid if s itself already contains some zeros (this will be useful). For
m = 0 we have »/ = ». E.g. (0,2,0) extends (2) by 2 zeros, and (0,1,0,1) extends (0,1, 1)
by 1 zero.

We define Feyi[s] as the sum of F[5] over all 5 extending > by an arbitrary number

of zeros m > 0:
oo

Fext[] = ) > F[). (F.2)

m=0 3/ :extends »x by m zeros
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For a fixed m, the number of sequences s is < (m;;") where n is the length of . [= (™1")

if the original sequence s does not have zeros.] Since they all have F'[5/] = F[»](C,Cby)™,

we obtain
X [(m+n 1
Fext|2] < Fl» C,Cby)™ = F'||.
o[ #] [ ]mz::o< m >( v 0) (1_070b0)n+1 [>]

Recall by < Ad. Thus using C,C Ad < 1/2 we have
Fi[7] < 2"PIHE[5]. (F.3)

Next we will sum over sequences with a fixed > k;. Namely we define

=3 Y Flk)} (k>0 (F.4)

n=2 (k)P ki=k

We first estimate ®;’s and then convert into the estimate for A,(f) => =i P
Consider first k£ > 2 (see below for the simpler £ = 0,1). We can obtain all sequences
in ®; extending by zeros sequences which satisfy > k; = k, k; > 1 (and whose length is
therefore at most k). Thus
k k
@< > Fox|(k)7] < 2"+ > Fl(ka)1], (F.5)
= n=1

n=1 (k) 7,57 ki=k ki >1 (k)7 ki=k,k;>1

where we used (F.3). Note that although n > 2 in (F.4), we need n > 1 in (F.5) to include
the one-term sequence (k) whose two-term extensions (k,0) and (0, k) appear in (F.4).%8
Using by, < A% and Y k; = k we have, for sequences with all k; > 1,

Fl(k)1] < ()" P[] ¢¥tt Ak = ()" toFtn Ak = (C,cA)" e AR, (F6)
=1

Finally, by elementary combinatorics the number of n-term sequences (k;)] satisfying
Ski=kk;>1is (zj) Plugging all this information into (F.5), we have

k
Dy <ACHTTAS Y <k a 1) (20,C A" = 4CH T ASR (1 4- 20, CA)F, (F.7)
n [R—
n=1

which implies

D <20(200)FA (k> 2). (F.8)
once we use

C,CA<1)2. (F.9)

For future use, let us derive a bound on F[(k;)], Fext[(k;)] under the condition (F.9), this
time allowing for k; > 0. Using by < A6™**(* 1) we then have the same bound (F.6) but

58Their contribution is suppressed by by compared to (k), but taking this suppression into account does
not lead to a better estimate because of other terms present in (F.5).
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with an extra factor 6" where m is the number of zeros in the sequence. Using (F.9), (F.3)

we have
Fl(k)iy] <2 ctagttm (3 k= k ki > 0,m = #{k; = 0}), (F.10)
Fexe[(i)7] < ACHTT AgM™, (F.11)

Finally let us bound ®; for k = 0,1. For k = 0, eq. (F.4) involves the sequence (0,0) and
its extensions by zeros. We then have by (F.11):

Do = Foxt[(0,0)] < 4C A5 (F.12)

For k = 1, eq. (F.4) involves the sequences (1,0), (0,1) and their extensions by zeros.
By (F.11):

1 = 2F.,4[(1,0)] < 8C? A% (F.13)
Finally we estimate A,(f) = Y i P summing (F.8) in geometric progression, which is
possible since 2C¢ < 1/2, and adding (F.12), (F.13) when needed. We thus obtain:

AP <ceeska  (k>2), (F.14)
AP = &y + AP < (802 +16C%) A2,
AP = @+ @) + AP < (4C + 8C2 + 16C%) A5,

G One-loop coefficients I, and I,

Here we evaluate the coefficients I, I in the fixed-point equations from section 5.5, and
prove their needed properties. Thinking in momentum space, computing the contributions
to the effective v and A shown in (5.31) involves setting to zero the external momenta
in the corresponding Feynman diagrams (see footnote 26). To compute I; we consider

the one-loop diagram 0 , where the vertex is the local quartic coupling and the field
propagating in the loop is the fluctuating component . This gives

dik plk
n=2(N - 2)/ ) ’k")d(/zla, (G.1)

where we denoted p(k) = x(k) — x(vk) . To work out the combinatorial prefactor 2(N —2),
rewrite the local quartic as Q(v) = %qabcdwawbu)cm (integration over x understood) with
dabed = QapQed — Qacpa + Qaafpe totally antisymmetric. Then Q(v¢ + ¢) contains the
quadratic in ¢ term 2qupeqPa®pPedq, from where we get the term 2qupeq€eqPaty = 2(N —
2)Quptabpin the effective action (times the k-integral). Identities QqcQpe = 0ap, LapQap = N
are helpful.

Similarly, to compute I» we consider the diagrams ><>< (with two local quartic vertices
and two ¢-propagators) and Y (where we start with the diagram < describing the Hgg,
interaction, with the wavy line denoting i%*(k:), and contract two out of six external vertices
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with the ¢-propagator). Their contributions to I5 are given by

> Ak p(k)?
I or

=10 =) [ e
d
I¥F = —8(N — 8)/ (gwﬁd’w, (G.2)

where we wrote the Fourier transform of X, (z) as

R(k)
[hf2+

E.(k) = - 8 R(E) = 3 7" 0(0/7"). (©3)
n=1

To compute the prefactor in 12>o< , we use Q¢ 4+ &) = 2qaped®appcq and the identity
Qabcha’b’c’d’Qcc’Qdd’ - (N - 4)Qaan’b’ + 2Qaa’be’ + 2Qab’Qa’b- (G4)
The prefactor in I can be computed similarly.>® Thus

d'k_p(k)* + 2p(k)R(k)
(2m)1 [ |d+22

=L+ 1F = —4(N - 8)/ (G.5)
Now that we computed I1 and Io, let us discuss their properties. I; oc N — 2 is explained
by the fact that for N = 2 the quartic interaction vanishes (see the Introduction). That
I # 0 for N = 2 is not a contradiction, since for a vanishing quartic interaction the change
in \ is anyway unphysical.

Note that perturbative beta-functions of symplectic fermion models can be obtained
from the beta-functions of bosonic O(N,) models by setting formally N, = —N. This is
valid for local models [44, 48] and extends to nonlocal (long-range) models considered here.
The (N — 8) factor in Iy is thus related to the well-known (N, + 8) factor in the bosonic
O(Np) model one-loop beta-function [131]. The long-range bosonic O(N;) beta function is
known at three loops [78].%° The two-loop term in [78], (3.16) is proportional to 5Ny, + 22
and does not vanish for N, — —8.

Therefore, vanishing of I for N = 8 is an accident unrelated to any symmetry, which
does not repeat in higher orders. With vanishing A% and nonzero A3 term in X', there will
be a perturbative fixed point with A = O (y/€) at N = 8, and it should be possible to
justify its existence non-perturbatively (see section 8.1.1). In this paper we stick to the
generic case N # 8.

Because the integrals in (G.1) and (G.5) are cutoff at both UV and IR momenta, I;
and Iy depend analytically on €. At small € they behave as follows:

59The following argument explains why it is the double of IQ)O( . Let Qo = (6/0%4)Q, Qab = (62/8%ad15)Q
be the first and second functional derivatives of Q(¢)) at ¥ = 0. The xX diagram is fiQachanchd
times the loop integral. The X-term can be written as —3 fddxddy Qa(2)Qc(Y)QacX(x — y). It is then
clear that the I¥ diagram gives —%Qachanchd times the corresponding loop integral.

50From the two-loop level it differs from the local bosonic O(N) beta function (e.g. [132],(11.98)). Even
the dependence on N, is different, due to the absence of wavefunction renormalization diagrams in the
nonlocal model.
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Lemma G.1 We have, for |¢| < 1/logr,

d
L =2(N-2)(1- ’Y_d/Q)/ (;Zﬂ];d |i|(5/)2 + O(elog”y)] , (G.6)
Iy = —4(N —-38) [(Qid)d logy + O(E(logfy)Q)} , (G.7)

where Sgq is the area of the unit sphere in R? and the constants in Oare y- and e-independent.

Note that I is y-independent as € — 0, even though 12)0( and I5* separately depend
on . This is not accidental, see remark 6.5.
Proof. The |k|~%?~¢ factor in the integrand in (G.1) can be estimated as follows:

k|7¢—1 O(el
e = e+ g = et et (/@) <<, (G

The integral in (G.1) is thus given, modulo O(elog~y) error, by

ddk‘ k B dd/{ k
/ (2m)d ’ZTd/)Q =(1-7 d/2)/ (2m)d ‘>27|(d/)27 (G.9)

thus proving (G.6). Let us next prove (G.7). Recall that v > 2. We have

supp p C {1/(2y

) < [kl <13,
p=1 on {1/y<Jk| <

k| < 1/2}. (G.10)

From here it follows that R(k) = v*p(k/v) = v*(1 — x(k)) on the support of p. We then
rewrite the numerator of the integrand in (G.5) as:

k)% + 2p(k) (1 — x(k)[1+ (v* = 1)]
>+ 2p(k)(1 — x(k)) + O(elog ),
= F(k) = F(yk) + O(clogy),  F(k) =2x(k) - x(k)?,  (G.11)

and the |k|~?=2¢ factor similarly to (G.8). Collecting the error terms, the integral in (G.5) is

/ dk F(k) — F(~k)
(

2m) TG + O(e(logv)?). (G.12)

Like x(k), the function F'(k) = 1 for |k| < 1/2 and vanishes for |k| > 1. The integral
in (G.12) can now be computed:

dk F(k) — F(vk S
/(%)d ( )Ikld - (27rd)d log 7, (G.13)

e.g. by separating the integration region into the region close to the origin plus the rest,
and using the properties of F'(k) given above. In particular, the answer is y-independent.
Q.E.D.

— 85 —



H Finite volume and non-perturbative validity of H.g

In this appendix we will provide details mentioned in Remarks 2.1 and 5.1, regarding a
definition of our model in finite volume, and a rigorous derivation of eq. (5.3). Our plan
is as follows. First we consider general aspects of gaussian and interacting Grassmann
fields in finite volume and with a UV cutoff, and explain that because the effective number
of Grassmann variables is finite, all path integrals are manifestly well defined. Then we
apply this to the effective action in finite volume, and show that perturbation theory, if
convergent, gives the correct answer. Finally we pass to the infinite volume limit and show
that it agrees with eq. (5.3).

General aspects. Working in the finite volume V = [~V/2,V/2]¢ with periodic bound-
ary conditions, we Fourier-expand the fields as

Vo) = % Z w&ke“‘m, (H.1)

keKy

where Ky = (27/V)ZeNsupp x is the finite set of Fourier momenta which belong to supp x.
We truncate away all other momenta because they have zero propagator. The finite volume
gaussian measure dupy is a finite-dimensional measure over Grassmann variables 1),

dupy () =Pt ] dvare®v™, (H.2)
Ya,k,kEKY
1 A
So v = Jvd > P(k) ' Quptaithn,
keKy

where the normalization factor Pf > 0 is the Pfaffian of Sy which is an antisymmetric
quadratic form in 1), 4’s. This is a meaningful finite volume version of the formal eq. (2.4)
in infinite volume. The propagator (q(2)¥p(y)) = Qup Py (z — y) where Py is the periodic
version of (2.1):

Py(z)=— > P(k)e*™, P(k)asin (2.1). (H.3)
ke(2n/V)Z4

For fixed z and V' — oo, we have Py (x) — P(x), just as for the higher-order expectations.
In this sense we can say that dupy — dpp, the infinite volume measure defined in section 2.
The interacting Grassmann measure is then defined as

Zy dppy ()t ), (H.4)

where Hy is given by the finite volume analogue of (4.2):
Hy() =Y / dxHy (A, %)¥(A, %), (H.5)
A VY

and Zy = [ dupy(¥)esv(¥) is the partition function. Factor s multiplying Hy (1) in (H.4)
is for further convenience, eventually we will set s = 1. Using Fourier expansion (H.1),
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we express Hy () as a series in 1), ’s with finite coefficients (assuming that the kernels
Hy(A,x) are in Ly). By eq. (H.2) and the usual rules of Grassmann integration, Zy
and dupy(d))eSHV(w are well defined and are polynomials in s, because there are only
finitely many v, ;’s and only finitely many terms from the Taylor expansion of esHv (%) will
contribute. In particular Zy is finite. The measure (H.4) will therefore be well defined as
long as Zy # 0.

Effective action in finite volume. Consider next eq. (2.13) in finite volume. Defining
dpgv(¢) as dupy (1), we consider

15.9) = [ gy (9)e 1+, (H.6)

By the arguments as above, we have I(s, 1)) = e*v(#)p(s, 1)) where p(s,v) is a polynomial
in s.

We would like to find H);(s, ) so that
efen(s¥) = (s, ). (H.7)

Let us define HY;(s,1) by the perturbative expansion (see egs. (5.1), (5.3)):
HY:(s,10) = Z/MB‘ dxHY; (s,B,xB) (B, xB), (H.8)
B

where H); (s,B,xp) are given by the finite volume analogue of eq. (5.3) replacing H —
sH |7

oo n n

HYi(s,B,xp) =AY > 3 (—)* | _ d*xgCv (xg) [ Hv(Ai xa),
n=1 " S B;i=B,A; OB; VIE| i=1

(H.9)

where Cy is as in (5.4) only with finite-volume propagators. From the arguments like in

Key lemma, we will be able to show that this series converges and defines H, gﬁ (s,B,xB)

as analytic L;-valued functions in the disk |s| < 2 (Lemma H.1 below, Part (b)). Since,

by perturbation theory, eHia(s¥) and T (s,1) have the same Taylor series in s, we conclude

eq. (H.7) is satisfied in the disk |s| < 2 where they are both analytic, in particular at s = 1.
This proves that (H.9) gives the correct effective action in finite volume.

Effective action in infinite volume. For an infinite volume interaction H () given
by (4.2), we consider the corresponding finite-volume interaction (H.5) with kernels given
by periodization (we are assuming translational invariance):

Hy (A, (0,z,...,z)) = > H(A 0,z +7m2V,...,¢1+7V)). (H.10)
€79 5=2...1

To prove that (5.3) is the correct effective action in infinite volume, we will show that it
can be obtained as a V' — oo limit of the kernels of HJ;, in the precise sense of Part (c)
of the following lemma. (Part (b) was used above to justify the effective action in finite
volume.)
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Lemma H.1 There exists A >0 and § > 0 such that, for any infinite volume interaction
satisfying
[Hy o < Ag™270 (1 > 2), (H.11)

and defining the finite volume interactions by (H.10) for any V > 1, we have

(a) the kernels of Heg and of HY given by egs. (5.3) and by (H.9) with s = 1 are well
defined (the series is convergent in Ly );

(b) the kernels of H)p(s) defined by (H.9) are well defined and analytic Ly-valued
functions in the disk |s| < 2;

(¢) for any B we have HY (B,x) — Heg (B,x) as V — oo in the sense of L1 norm
on any fived bounded subset of (R4)!.

Proof. Claim (a) for H, g;f is a consequence of (b), which we prove as follows: consider
the L; norm (with, as usual, one of the points fixed to the origin) of the n-th term of the
series for Hg&,

|s|"

n
d
Z Tl /vIAI Zl:od xa [Cv (xg) ]1:[ |Hy (A;,xa,)| (H.12)
ZBZ:B,AZDBZ ’ i=1

where A = A; +---+ A,,. Recall that Cy (xg) is as in (5.4) with finite volume propagator
gy replacing g. Here:

gv(z) = =3 Z G(k)eh® = Z glx +rV). (H.13)
ke(2n/V)Z4 rezd

From the Fourier representation of gy (first equality in (H.13)), we see that gy can be
written in Gram form, as in (D.8), with f; and h; as in (D.9), with the only differ-
ence that the finite volume scalar product between f; and h; should be interpreted as
(fishj) = ﬁ >_ke(2r/V)zd fz(k:)fz](k‘) Therefore, the Gram-Hadamard bound (D.10) holds,
with Cgp replaced by Cgn,v, which is defined by the same expression as Cgy, modulo the
(gjrl)“d by the corresponding Riemann sum. Moreover, from the real space
representation of gy (second equality in (H.13)) and (4.15), we see that gy satisfies a bound

replacement of [

analogous to (4.15) itself, with |z/~| replaced by ||z||/y and ||z|| = min,cza |z + V| the
norm on the torus, and with the constant C\; replaced by a larger one, but still indepen-
dent of V' and y. We denote by My (x) the analogue of the right side of (4.15) with these
two replacements. From these considerations, we see that Cy (xg) is bounded as in (E.3),

1 .
‘CV (XE)’ < (CGH,V) 2 Zz li Z H Mv(.ﬂf — ZL',). (H14)
T (za’)eT
Thanks to these considerations, proceeding as in appendix E, we get the analogue of (E.8),
namely

[ d'xaley (xg) 1] 1Hv (A xa)) (H.15)
VIAl z1=0 i=1

< (Cany)iZ Y /V dixy T My(x—a) [ 1Hv(Aixa,)],
T

Al
Alz1=0 (zx)eT =1
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which, by computing the integrals, can be further bounded as

n
1 . _
(H.15) < (Comy)? 25Nl My |7~ TT 11 Hva, - (H.16)
=1

Now, by using (H.10), we see that ||Hy,,||1 < ||H,||w, which is bounded by A§mn(1Li/2=1),
thanks to (H.11). Recalling also (E.2) and the fact that N < nl42-h we find

n
(H12) < |S|nAnHMV||rlzfl Z H(CV)Zli5min(1,li/2—1) (Hl?)

(L) =1
where Cy = 16N (d + 1)0(1;/1_?",. Note that both Cy and ||[My||; are uniformly bounded in
V. Positive even integers [; satisfy >, l; > [+2(n—1), but here it will be enough to extend
the sum to arbitrary [; > 2. Therefore, with a suitable V-independent constant C, we get

a bound Clsld \ "
s
H.17) < ) H.1
) < (05 (H.13)
from which summability in n follows, for all |s| < 2, if § is sufficiently small. Of course,

item (a) for Heg in infinite volume follows from the same argument.%!

Remark H.1 According to the discussion after eq. (H.5), we also need to make sure that
the finite volume partition function is nonzero. The constant, i-independent term in the
effective action can be estimated by the same argument as above, and it is given by the torus
volume times a convergent series, in particular it is finite. Hence the partition function,
which is its exponential, is nonzero. The effective action is thus well defined. Once we
know that the 1-independent term is finite, we may drop it as we did throughout.

Let us now prove (c) (cf. [65], appendix D). We fix a bounded subset of (R%)! that,
without loss of generality, we assume to be centered in the origin, and we call it V. We
want to prove that the sum over n of

1 n
Z n! /V|B\ d'xp /VBI ddxﬁcv (Xﬁ) H Hy (A, xa,)
S B;=B, 0 i=1
Ai D B (H.19)

n

- /Rm d'xgC (xg) Z_Hl H(Aixa;)
goes to zero as V' — oo. We will in fact prove that the sum of (H.19) over n goes to zero
exponentially fast in V as V — oo. We rewrite the integral over VBl by multiplying the
integrand by 1 = 1(Sty(xa) < V/4)+1(Sty(xa) > V/4) [here, if x = (21,...,2;), the finite
volume Steiner diameter Sty (x) is the length of the shortest tree on the torus (possibly with
extra vertices) which connects all the points in x. Note that Sty (x) < min,cza St(x+rV)],

51This case is also a consequence of Key Lemma but we preferred to give an independent argument to
demonstrate how much simpler it is to show the convergence than, as in Key Lemma, to get an optimal
bound on the sum.
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and similarly for the integral over R'EW, with the finite volume Steiner diameter replaced
by the standard, infinite volume, one. In view of this manipulation, we bound (H.19) from

above by [Vo|(R1,n+ Ra,n+ R3.n), where, letting x; being the first coordinate in the list xg:

1 n
Ria= Y o /v oy en [0 Geg) | T HH (A xa,)| (St Ge) > V/4),

> B;=B =1
Ai O B;
1 n
Row= Y = / d'xa [y (xg)| T |Hv (Ai,xa,)| 1(St(xa) > V/4), (H.20)
n: JrIAld x1=0 .
> B;=B ’ =1
A, O B;
1 n
Rgm = Z ﬁ/\Aw ddXA CV (Xﬁ) H H\/(Ai,XAi)
ZBZ - B . R ,x1:0 i=1
A; O B;

n

— C(xg) [] H(Ai,xa,)|1(St(xa) < V/4),
i=1

where, in the definition of Rs,, we used the fact that 1(Sty(xa) < V/4) is the same as
1(St(xa) < V/4), provided we identify the points of the torus V closer than V/4 to the
origin with the corresponding points in R

In order to bound R; , we proceed as we did above for (H.12), with only a few differ-
ences: consider the analogue of (H.15) that, compared with that equation, has the addi-
tional constraint 1(Sty (xa) > V/4) under the integral sign. In the second line, we multiply
and divide each factor My (x — 2’) by wy (z,2") and each factor Hy (A;,xa,) by wy(xa,),
where wy (x) is the finite volume analogue of w(x), namely wy (x) = w(x) = eCwStv(x)/7M)7
We collect together all the factors 1/wy (x,2’) and 1/wy (x4a,) and note that, on the support
of 1(Sty (xa) > V/4),

( 11 1 ) (ﬁ 1 ) < e O xa) T < (~CulVIEN)T (1 21)
(

eatyer WV (@ 2) |\ wv(xa,)
Therefore, we can bound the analogue of (H.15) by the analogue of the right side of (H.16),
that is .
157 _ o _
(Cany)? 2il Nype OV gy [ TT v,y - (H.22)
i=1

Note also that, thanks to (H.10) and (H.11), || Hv, [lwy < |[Hi, |lw < AS™RE0/271 ) Pytting
things together, we get the analogue of (H.18):

S C5 O\
Ry < e ColVI) (1—Cca> 7 (H.23)

for a suitable V-independent constant C. Clearly, for § small enough, the sum over n

of Ry, converges and goes to zero exponentially as V' — oo. Analogous discussion and
bounds are valid for ngn.Gz

52This discussion also makes clear that finite-volume convergence statements in Parts (a) and (b) can be
easily generalized to weighted L; norm with weight wy .
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Let us now consider R3,. We rewrite the difference

n

Cv (xg) ﬁHV(AZ»,xAi) —C(xg) [] H(Ai,xa,)- (H.24)

i=1 i=1

in telescopic form as the sum of n+ 1 terms, in each of which either a difference Cy (XE) -
C (xg) or Hy(Aj,xa,) — H(A;,x4a,) appears. The terms with Hy — H can be bounded
via an analogue of (H.16), with the important difference that one of the factors || Hyy,||1 is

replaced by (denoting xa, = (z1,...,2;,) and r = (r1,...,77,))
/R\A~|d 0 ddxAi ’HV(Ai’XAi) - H(AiﬂxAi)’ 1(St(xAi) < V/4) (H.25)
1% r)=
w(xA. —+ rV)
< ddx.HA,X.+rV —=8 T2 1(St(xa,) < V/4),
reZZ:dli /Rdl'i,mlz() Az‘ ( A; )’ w(XAi +I'V) ( ( Al) / )
ry=0,r#0

where in passing from the first to the second line we used the definition (H.10) and we
multiplied and divided by w(xa, + rV). Now, note that, on the support of 1(St(xa,) <
V/4), |xa, +rV]| > V/2 for any r # 0. Therefore, the second line of (H.25) can be
bounded from above by || Hy,|lw/w(V/2), where 1/w(V/2) = e~ Cw(V/)7 represents the
desired exponentially small gain as V' — oo.

Consider now the contribution to R3, associated with the difference Cy (xg) —C (xg)-
Recall that both C(xg) and Cy(xg) can be written in terms of the BBF formula that,
see (D.53), can be written as

C(xg) = Z g(x —2') /d,uT(r) det NV, (H.26)
T (z2')eT

where N' = N(r) is a Gram matrix, i.e., with elements represented as a suitable scalar
product. Of course, Cy (xg) admits a representation analogous to (H.26), with g replaced
by gv and N replaced by Ny. Using (H.26) and the analogous representation for Cy (xg),
we write the difference Cy (xg) — C (xg) in telescopic form, as the sum of terms in each of
which either a difference gy (z — 2’) — g(x — 2’) or det Ny — det N appears. In the former
terms, recalling (H.13), we write gy (z) — g(z) = — 32,9 g(« + rV) and, proceeding as we
did for the bound of the terms with Hy — H, we see that they are exponentially small in
V', and their sum over n too.

We are left with the term involving the difference det Ny — det N/, which we rewrite
once again in telescopic form as

det Ny — det N = Z (det/\/‘(/i’j) - det/\f‘(/i’j)/), (H.27)

1,j=1

where s is the linear size of the matrices, ./\/"(,Z 9) is the matrix whose elements with label
smaller or equal to (resp. larger than) (i,7) in the lexicographic order are equal to the
elements of Ny (resp. N), and (i,7) is the label immediately preceding (i,j) in the
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lexicographic order (if (i,7) = (1,1), we interpret N‘(,l’l), = N). Since ./\f‘(,i’j) and ./\/"(/i’j)/
differ in only one element, expanding in minors along row ¢ we have

det N — det NG9 = (—1)77 (Ny)ij — N ;) det NG9, (H.28)

where //\/'\‘(/Z 7) denotes the matrix /\/"(/Z 7) with both the i-th row and the j-th column removed.
Recall that both Ay and N are Gram matrices; in particular, they can be written as
M)k = (fvg, hvy) and Ny = (fx, ) for appropriate vectors fy, hy, f, h in two apriori
different Hilbert spaces Hy and H. Remarkably, also j/\f\‘(; 7 is in Gram form, that is, for
any k € {1,...,s}\ {i} and any I € {1,...,s} \ {4}, we can write (N/))s, = (Fy, H)),
where (+,-) denotes the scalar product in Hy & H, and F, H; are the following vectors in
Hy & H:

(fV,k7 0) ifk<i

Fk:{(o,fk) if k>

Therefore, det ﬁ‘(,z 9) can be bounded qualitatively in the same way as det Ny, or det NV, so
that, using (H.28) into (H.27), and recalling that (Ny); ; —N; j is proportional to gy — g, we
find that the term in Rj3, involving the difference det Ny —det NV is bounded qualitatively
as all the other terms, that is, they are exponentially small in V', and their sum over n too.

and Hl = (hVJ,hl). (H.29)

This concludes the proof of Lemma H.1. [J

Consider e.g. H(1)) corresponding to the fixed point whose existence we proved. By
corollary 6.1, this interaction satisfies bounds (6.43) which for sufficiently small & are
stronger than (H.11). Therefore, the effective action is indeed given by (5.3) as we as-
sumed all along.

I Fixed point in a formal power series expansion

In this appendix we will show that eq. (5.32) f(y) = 0 can be solved in a formal power series
expansion in €. This is rather easy, compared to the proof of the existence of an actual
solution given in section 6. We introduce a positive grading function on the couplings
Yi S {Va )‘7 U2R y U4R,; UGR 5 (UZ)€>8}:
l
gr(v) =gr(\) = 1, gr(um) = gr(uam) =2, er(uer) =3, gr(ug) = k() = 5 -1(1 > 8).
(I.1)

We also define grading of a product as a sum of gradings. It is then easy to check that
each function ey, is a sum of terms whose grading is > gr(y;), with strict inequality for v, A
(table 1). This motivates the following

Theorem 1.1 Equation f(y) =0 has a unique solution where couplings are formal power
series in & starting from:

a 1 .
V=gt O(e?), A= e 0(%), yi=0EW))  (y; € {uor, usr, uer, (w)rss})-
(1.2)
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Function Grading Notable present terms Notable absent terms
ey =2 A2 U\, waRr U, UoR, A
(&Y = 3 I/)\2,)\3,I/:f>\,)\%)\,)\U4R,u6R /\,U4R,)\2,}t/\,y)\, VU4R
€2R > 2 UsR, UdR, A2 29
e4r > 2 Uggr, A? A
€6R, >3 UGR, )\3, I/)\Q, vX ), U4R A, Ug X\, A2

e, 28 Zk(l) up, U3 L sivameny Hey - Hy,

Table 1. Grading of terms in functions e,,. We only show the variables on which the terms depend.
E.g. usr and A? in esg stand for R2R(usr) = Dusr and R4L 4L()\ A), respectively.

Proof. Parameter ¢ enters (5.32) through the explicit term e\. In addition, all the other
coefficients such as a, b and the multilinear kernels from the r.h.s. of (5.29) also depend on
. This dependence originates from the fluctuation propagator g(x) defined in (2.10), and
it is nonsingular as € — 0 in our setup involving the UV and IR cutoffs. Below we will keep
track only of the explicit dependence on ¢ from the e\ term, which we denote €. All other
coefficients will be treated as constants. We will give an algorithm to expand the solution
as a formal power series in €. To produce a power series in ¢, one would have to set ¢ — ¢
and additionally expand all coefficients in €.

We start by rescaling the couplings y; — €5*i)y;. We will abuse notation denoting the
rescaled couplings by the same letters. We have to show that the rescaled couplings have
unique power series expansions starting at O(1). The equations f(y) = 0 in terms of the
rescaled couplings can be written as (the explanations and the definition of e, j, are given
after (1.6))

-V —a\ = Z,@l ekeuk (1.3)

couplings of grading 1 :
“A—bA? =30 Fer ki

D _ R4R — k
couplings of grading 2 : { E Zii B £RU4§€ emzlikzo € IRk (1.4)
= 2.k>0 ,
_ RS — k
couplings of grading 3 : { E ZZR_ - GRujc N EI@O € €6R,k (L5)
= 2.k>0
couplings of grading >4 : (1 — D)u Z €epr > 10), (1.6)

k>0
For each coupling, e, » denotes the part of e,, which contains the terms of grading exactly
gr(y;) + k. In addition we separated the linear terms Du; as well as R‘zlll%um and RgRu8
from ey, o in (I.4)—(1.6). With this definition the remaining e, o are at least quadratic in
its arguments. Note that the r.h.s. of (1.3) are O(e), while the other equations have r.h.s.
O(1). Note also the shift &k — k + 1 in e g4 in (1.3).

Step 1. The O(1) parts of v and A known, v = % 4+ O(e), A = —1 + O(e), let us solve for
the O(1) parts of the other couplings. Firstly, note that the O(1) parts of the r.h.s. of (I1.4)-
(I.6), ey, 0, having grading exactly gr(u;) and being at least quadratic, are computable in
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terms of the O(1) parts of the couplings with smaller grading. Secondly, the linear operators
in the Lh.s. of (I.4)—(1.6) are invertible. Indeed, the operator (1 — D) is invertible on each
irrelevant coupling subspace as is clear from definition (5.20).%3 eqs. (I.4) and (L.5) involve
a matrix-triangular operator with (1 — D) on the diagonal, hence also invertible. By these
two observations, O(1) parts of all couplings are uniquely determined starting from v and
A and going recursively up in grading.

Step 2a. Now suppose we computed expansions of all couplings up to and including

N+1

O(e™) (call it “inductive hypothesis 17), and we want to solve for the € terms. For any

quantity a = Y €"ay, we denote by [a], = oy, the € coefficient. We start with (1.3) and

take its eVt part:
N1
—Wnir —alNni = Y levrlvii (L.7)
k=1
N N+1
(=1 =26\ o) Alv41 = b ) NN w1 + D [enkri]vei-s. (1.8)
k=1 k=1

All the terms in the r.h.s. are computable by inductive hypothesis 1. Since —1 —2b[\]o =1
we can compute first [A\|y11 and then [v]y41.

Step 2b. The remaining couplings are treated recursively going up in grading as before.
Suppose all couplings of grading lower than w; are already known up to and including
O(eV+1) (call it “inductive hypothesis 2”). Consider the equation for u; (if there are two
couplings having the same grading we should study their equations together as in Step 1)

N+1

and take its € part. In the L.h.s. we have an invertible linear operator, same as in Step

1, acting on [u;]n41, while in the r.h.s. we have

N+1

> lew kN g1k (1.9)

k=0

For k£ > 1 this is computable by inductive hypothesis 1, and for k& = 0 by inductive hypoth-
esis 2, since e, o has grading gr(u;) and is at least quadratic, which means it involves only
lower-grading couplings. Therefore, we can compute [u;] 41 and continue the induction.%*

This finishes the proof of the theorem.

Remark I.1 At the level of formal series expansions bosonic and fermionic fixed point
are quite analogous. Consider e.g. the bosonic model (K.1). In perturbation theory, we
could parametrize its fixed point by an interaction written in terms of kernels, like in (4.2).
We could derive a perturbative renormalization map acting on the sequence of kernels

53We have (1 — D)™' = 14+ D + D? + ... and the series converges in L; if y~P'™P < 1 which is the
condition for irrelevance.
54Steps 2a, 2b can be unified, at the price of rendering the argument less explicit, by moving the nonlinear

functions eq,,0 to the Lh.s. and noting that the Jacobian of the resulting nonlinear infinite matrix function
of y in the Lh.s. is invertible at the point (v, A, u;) = (%, f%,u§0)> where ugo) are the O(1) values of u;
computed in Step 1.
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in the trimmed representation, similarly to section 5. We could then find, exactly as in
theorem 1.1, a fixed point in a formal power series in €.

This analogy breaks down beyond perturbation theory. As stated in remark 5.1 and
proved in appendix H, perturbative expansion captures the full fermionic effective action
at small coupling. This does not hold for bosons due to large field effects (“instantons”)
at arbitrarily small couplings. Furthermore, rigorous non-perturbative studies of bosonic
models parametrize irrelevant interactions not by kernels as in (4.2), but by a more com-
plicated “polymer expansion” (see [114] and section 8.1.8).

Another difference is that for bosons, the formal power series solution in ¢ is expected
to be only asymptotic, like the e-expansion series for the Wilson-Fisher fixed point in
d = 4 — € dimensions [133], necessitating Borel resummations for the critical exponents [5].
The same considerations should apply to the long-range bosonic model (K.1). On the
other hand, for fermions we have established in section 6.5 that the fixed point depends
analytically on €. This implies that the formal power series solution will be convergent for
small €. For a direct proof of convergence of the fermionic power series expansion via tree
expansion, see the next appendix.

J Fixed point via the tree expansion

In the main sections of this paper we provided an explicit rigorous construction of a non-
trivial RG fixed point, by finding the appropriate Banach space, which the RG map acts
on, and by proving its contractivity in an appropriate neighborhood of this space. In the
case of fermionic theories, as in the case at hand, the fixed point can also be found by a
different strategy, which bypasses the construction of the Banach space and the contrac-
tivity argument, and is based on an expansion in tree diagrams, sometimes referred to
as “Gallavotti-Nicolo” trees [134], see also [51, 71] and [119] for a review in the context
of interacting fermionic theories. While the two constructions build on the same general
foundations from sections 1-5 (trimmed representation of the interaction, weighted norm
|| - |lw for measuring the size of couplings, and the norm bounds on D and Rﬁl"”’gn), the
tree expansion is closer in spirit to a direct combinatorial proof convergence of the formal
e-expansion of appendix I. Let us briefly describe here the construction of the fixed point
via trees.

The starting point is the fixed point equation for the irrelevant couplings uy, with
¢ = 2R, 4R, 6R, 8,10, ..., which we rewrite, extracting the term (n;(¢1,---,4,)) = (1;¢)
explicitly:

*

(1-Dyug= > RF"(Hy,... Hy,), (J.1)

n>1(0;)n

where the * on the sum indicates the constraint that, if n = 1, then ¢; # £. We look for
a solution in power series in v and A, ug = > %, 1,50 ugkl’b)ykl Af2 - with ug“’]”) = 0 unless

k1 + ko > |€|/2 — 1 and, moreover, ki + ko > 2 for £ = 2R, 4R and k; + ko > 3 for £ = 6R.
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By plugging this ansatz in (J.1), we get%

(k1,k2)

k1 ko) _ Z Z Z (1 _ D)—1R§17-~-7Zn (Héfl,l,kzl), o Héan,kzn)) ’ (J,2)

n2L ()Y {k, , ka,iti=1,2
where the third sum runs over integers kq;,k2; > 0, with ¢« = 1,...,n, such that ki +
-+ kin =kt and ko + -+ + ka2, = ko. Moreover, the arguments Héfl’“ku) should be
interpreted as being equal to ugl’i’k”) if ¢; # 2L,4L,6SL, to v if ¢; = 2L (in which case
we set (k14,k2:) = (1,0)), to X if ¢; = 4L (in which case we set (kj, k2,;) = (0,1)), and
to X, if ¢; = 6SL (in which case we set (k14,k2,:) = (0,2)). Eq. (J.2) can be graphically
represented as follows:

él) (kl,la k2,1)

(k1,k2) Vo boi(Biock
_‘ e,(kl,kg) - Z Z Z : 27( 1,2 2,2)

n21 (£;)7 {k1,5,ke,i}i=1,...,n

ena (kl,na k2,n)

where the vertex labelled v in the right side represents the action of (1 — D)_lREI"”’Z"; we
shall say that the n lines (or “branches”) labelled ¢y, ..., ¢, “enter the vertex vy”; similarly,
we’ll say that the branch to the left of vy “exits” from wy: it carries the label £ and its
left endpoint is called root. In the special cases (¢;, (k14,k2:)) = (2L,(1,0)), (4L, (0,1)),
(6SL, (0,2)), the big dots in the right side will be reinterpreted as small dots with labels v,
A, X, respectively:

A
—@ 2L,(1,0) = . , — @ 4L,(0,1) = —o | —@ 6SL,(0,2) = —*

Iterating the graphical equation above until the endpoints are all small dots with labels v,
A, or X, we obtain an expansion in tree diagrams of the following form:

A
U3

A
0P A

Vo v1 X
r 14 )\
V4 o A
A
A

%

55Note that since ug is irrelevant, (1 — D) is an invertable operator, see footnote 63.
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In this example, the branch labels are left implicit; each vertex v,., with r = 1,...,5, is
associated with the action of an operator (1 — D)_lRﬁl’”"E”, with ¢ the label of the line
exiting from wv,, n the number of lines entering it, and £y, ..., ¥, their labels. If m,, m)
and mx are the numbers of endpoints of type v, A\ and X, respectively (in the example,
my, =2, my =6 and my = 2), and ¢ is the label of the line exiting from vy, then the tree

. 2
contributes to uégn”’mAJr mx).

14

Let us now use the norm bounds on D and Rﬁl"“’ " see sections 5.3 and 5.6, to bound

the value of any such tree in the || - ||, norm, assuming |v|, |A| < §. The norm bounds on
D imply that the norm of (1 — D)~! is bounded by some d > 1 (uniformly in £). Using
this and eq. (5.35), the norm of the value of a tree is bounded by the product of the norms
of its endpoints, which is bounded by

5 HmA(B. 5% (B,Yé)k, k =my, + my + 2mx, (J.3)
times the product over vertices v, (i.e. all vertices v which are not endpoints):

[T dcpty Pueg (1)

v not e.p.

where [, = |, |, with ¢, the label of the line exiting from v, and ¢;(v) the label of the i-th line
entering v. Note that ¢;(v) = £, for some v’, which may be an endpoint. Therefore, (J.4)
can be equivalently rewritten as

CO_MU()‘ X H d’yc’?v_lpy_Dl'u C(l)"-’ X H C(l)'u (J5)
v not e.p. v e.p.

Replacing the first factor by 1, and including the factor (J.3) associated with the endpoints,
the value of a single tree is bounded by

(B,Cy0)" II dvcfrylvil’YiDl” Cys (J.6)
v not e.p.
= 2m, + 4m) + 6my < 4k.

As the next step we have to sum over all possible values of ¢;’s which label tree branches.
We take v sufficiently large so that v~ (#/4=¢/2)Cy < 1, implying (recall D; = I(d/4—¢/2)—d)

where we also used that »2, ., Iy

ZW_DZ (Cy)! < oo. (J.7)
1=2
Then the sum -, yof (J.6) is bounded by

(B,Coo)* [ dyer (1.8)

v not e.p.

Furthermore, it is easy to see that

Z (ny —1)=m —1, (J.9)

v not e.p.
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where m. = m, + m) + mx < k is the total number of the endpoints, and

Yo1g % > b, (J.10)

v not e.p. v e.p.

as implied by |[¢| < >, |¢i| — 2 in each vertex v (note the constraint (5.36) for n > 2, and
that for n = 1 the sum in (J.1) starts from [; = [+ 2). Using the last two relations, we can
estimate (J.8) by

(ByC3Cyd25)". (J.11)

Finally we have to sum this expression over all trees subject to the constraint on the
endpoints m,, + my + 2mx = k. The number of such trees is smaller than 4% (see, e.g.,
Lemma A.1 of [119]). We conclude that the contribution to u, of order k is bounded in
the || + || norm by (Ayé)k, for some y-dependent constant A.. This implies that the tree
expansion for uy is convergent for 6 < Jp(y) small enough. This concludes the construction
of the irrelevant couplings uy in terms of the fixed point relevant couplings v and A, which
implies automatically that u, are analytic in v and A in the neighborhood |v|, |A| < do(7)
of the origin in C?. The same argument also establishes analyticity of u; in ¢ as long as it
belongs to the complex half-plane Ree < d/6 where couplings wuy are all irrelevant.

We are left with the beta function equations for the relevant couplings. Via the same
strategy, we find that they are given by the first two equations of (5.30), with e(y ) and 6(0)
expressed in terms of two tree expansions, convergent for § sufficiently small. In conclusion,
at the fixed point, v and \ satisfy

=9+ L) + QD Ne), A=72A+ L)+ eV, e), (J.12)

with e} and eg\o) two analytic functions of v, A, ¢ for |v|, |\| < do(77), Ree < d/6. Moreover,

we have e/ and eg\o) of order 62 and 62, respectively where § = max(|v|,|\|) and for ¢ in
any compact subset of Ree < d/6. I; and I also depend analytically on . By the analytic
implicit function theorem, these equations have a unique solution v, (g), A«(e) which is
defined in the disk || < €g(7y) and is analytically close to the lowest order approximated

SOhltiOIl AO = (1 — ’}/25)/12, vy = Il)\O/ (1 — ’y%+€).

Remark J.1 The condition of 7 large is not truly required for the tree expansion to con-
verge; in fact it converges for any v > 1 (for A, v sufficiently small). In the proof above, large
~v was needed due to the pessimistic way in which we bounded some combinatorial factors in
the previous sections. Note that the origin of the factor (Cp)! in (J.7) has to be traced back
to the factors C" 6] n (5.36). A critical rereading of the proof leading to those factors shows

that the factor 0021':1 401 g (J.4) can be replaced by CR(ZZ 1|e )C’Z Gt 66

18 (v) |~y . . .
The product of the factors C’OZ’:1 ) over the vertices v that are not endpoints gives

56See in particular the first equality in (E.2) and the second one in (E). The factor Cr > 1 is the constant
n (5.43); it appears only if [, = 2,4. In the main text it was absorbed into Cy (footnote 31), but now
we keep it explicit, since it blows up as v — 1, due to the blowup of constants Ci 23 from the end of
appendix C.
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Dvep lolug

Cy " , with vy the vertex attached to the root; this does not need any condition

on . The product of CRr’s is bounded by C’E{k because of (J.10). Finally, the sum over the
-Dy, (Zfil |&-(v)\)

ly ’
which can be bounded as explained in appendix A.6.1 of [119], leading to a factor smaller

branch labels, given the type of endpoints, reduces to > s 1 [Ty not e.p. ¥

1 \4k
than (W) , for some o > 0 and any v > 1.

Remark J.2 In Wilsonian RG, the single RG step contains all the information about the
fixed point, so that we should feel free to forget about what happened in the RG past. The
fact that the tree expansion represents the fixed point kernels by tree diagrams with several
levels may superficially seem to go against this standard idea. This is not the case: the
tree expansion as presented in this appendix is just a way to solve the fixed point equation
for a single RG step.5” In general, trees with several levels are exponentially suppressed, as
compared to “short” ones: this is the so called short-memory property (see e.g. the remark
after (7.26) in [28]).

The tree expansion can be easily adapted to the construction of the full Wilsonian RG
flow of the effective couplings from the ultraviolet to the infrared, see section J.1 below for
a brief discussion of this fact, and to the computation of correlation functions and critical
exponents. It has been used to construct them in several 1D fermionic theories [28-31] and
2D statistical mechanics models at criticality [32-39], whose nontrivial fixed points are all
in the Luttinger liquid universality class. In these cases, the construction of the fixed point
requires a proof that the beta function for the quartic coupling is asympotically vanishing in
the infrared limit; historically, the proof of vanishing beta functions in these models has first
been proved via a comparison with the Luttinger model exact solution [28], and later via
a combined use of Ward Identities and Schwinger-Dyson equations [30]. We are not aware
of a construction of nontrivial fixed points in the Luttinger liquid universality class via
methods different from the tree expansion; it would be an interesting exercise to reproduce
their construction via a contraction argument in a suitable Banach space of interactions,
as done in this paper for long-range symplectic fermions with quartic interaction.

The fermionic nature of models such as the one studied in this paper makes the ap-
proach based on the tree expansion an extremely efficient tool for constructing the RG
fixed point, arguably simpler than the one based on the contraction argument in a Banach
space. However, we do not expect that the tree expansion is as a general scheme as the
other, which is, to date, the only available technique for constructing nontrivial bosonic
fixed points, see appendix K, and it looks the most promising (at least conceptually) for
approaching the non-perturbative problem of constructing very non-Gaussian fixed points
in the vicinity of approximate fixed points (possibly computed via the truncation of some
other alternative scheme, such as numerical FRG). This explains the reason why in the
main sections of this paper we decided to follow the scheme based on the contraction argu-
ment in a Banach space: it provides a benchmarch for other approaches, like the Functional

57To make an analogy with something already seen, consider the construction of the fixed point sextic
semilocal term in section 3: X, is the solution to the single step equation (3.11), and its explicit expression
in terms of A involves a sum over many “levels”, i.e., the integers n in (3.12).
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Renormalization Group (whose conceptual similarity allows for a direct comparison of re-
sults), and it displays general features which do not depend on the specific, fermionic,
nature of the problem.

J.1 On the flow of the effective couplings

A tree expansion analogous to the one described above for the construction of the fixed
point can be used to compute the whole sequence of effective potentials associated with
the Wilsonian RG flow from the ultraviolet to the infrared scales. Such a generalized
tree expansion was described in several previous reviews on the subject, see in particu-
lar [119]. Suppose that we interested in constructing the model formally defined by the
interacting Grassmann measure Z 'dup(i)ef @) at all distances (rather than being in-
terested “just” in the construction of its infrared fixed point, as done in this paper), where
dup(v) is the Grassmann Gaussian integration with the propagator P(z) in (2.1) (with
fixed ultraviolet cutoff but without any infrared one) and H®) is a local interaction like
the one in (2.7), with bare couplings vy, \g. The partition function [ dup(v)ef D) and
the closely related generating function of correlations can be computed iteratively, by first

-1 2 and

integrating out momenta in the annulus of radii v+ and 1, then in the one of radii v~
7~1, and so on. In formulae, this means rewriting the propagator P(zx) as > h<0 g (z),
with ¢(") (z) = 4Md/2=€) g(yhz) and g(z) the same as in (2.10); correspondingly, the fluc-
tuation field ¢ is decomposed as ¥ = ;g " and the Grassmann Gaussian integration
dup(¥) as [1h<o dptgm (M) (cf. with (2.11)), in terms of which we define the sequence (cf.
with (2.13)):

A _ / dji (I HE W)

with H (gf) = HO. After appropriate rescaling, we obtain the effective potentials (cf.

€

with (2.16))
H®(4) = Hig (" A1),

which satisfy the RG equation
R[H(h)] =g,

with R = R(e,7) the same renormalization map introduced after (2.16). A mild gen-
eralization of the construction of this paper allows us to prove that, for A\g positive and
sufficiently small (we are taking here ¢ positive and small, as well), there exists a choice
of 1y such that the whole sequence of effective potentials { H (h)}hgo is well defined, they
all belong to the same Banach space (the same we used to construct the fixed point) and
limp_,_oo H® = H,, where H, is the fixed point constructed above. Correspondingly,
the local part of H® is parametrized by two running coupling constants vy, Ay, which
interpolate between the bare values vy, A\g and the fixed point values v = limp_,_ vy,
A = limp, oo Ap. In particular, the sequence {vp, Ay }r<o is small, uniformly in the scale
index h.

Remarkably, the effective potentials H (h) can be expressed in terms of a convergent
tree expansion, analogous to the one described above, with the important difference that
now the endpoints carry a scale label and are, therefore, associated with couplings v or
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Ak, computed at scales h < k < 0. From the knowledge of the effective potentials, one
can reconstruct all the observables one is interested in, including the correlation functions
computed at arbitrary finite distance (before any scaling limit is taken): these will be ex-
pressed as convergent expansions in the whole sequence of running couplings {vh, An }h<o-
See, e.g., chapters 12, 13, 14 in [119]. Note that the existence of such a convergent expan-
sion does not imply convergence of the naive perturbation theory in the bare couplings:
schematically, the relation between Ap and Ag has the same features as the one between
A(t) and \g in (1.6); in particular, A is analytic in Ag non-uniformly in h, while it is Borel
summable in Ag uniformly in h. Therefore, pre-scaling-limit observables are expected to
be, at best, Borel summable in Ag. On the contrary, observables at the fixed point, such
as critical exponents, are expressed as convergent expansions in the fixed point couplings
Vi, A« only, and, therefore, recalling that v, and A, are analytic in ¢, they can be proved
to be analytic functions of €, as well.

K Rigorously constructed bosonic fixed points

In this appendix we will mention some existing rigorous constructions of non-gaussian
bosonic fixed points. Earlier works not directly focusing on such fixed points, but instru-
mental for acquiring rigorous RG control in bosonic theories, include [135-139).

In 1998, Brydges, Dimock and Hurd [22] gave the first construction of a fixed point in
a bosonic scalar field theory with a long-range interactions. In analogy to (1.1), their bare
action can be written schematically as

MFT(p) + l//ddfv ©* + )\/ddl‘ o?, (K.1)

i.e. a gaussian scale-invariant Mean Field Theory of a bosonic field ¢ in R? of dimension
[p] = d/4 — /2 with a quadratic and quartic interactions. They considered the model in
d = 4, which necessitated adding to (K.1) one more relevant local interaction [ d%z(9¢)>2.
Contrary to what the title of [22] may suggest, it does not provide a rigorous definition
of the Wilson-Fisher fixed point in d = 4 — . The two models differ already in their
perturbative critical exponents. E.g. the scaling dimension of ¢ gets corrections at O(e?)
in the Wilson-Fisher model, while such corrections are absent in the model of [22] at any
order in €.

In 2000, Mitter and Scoppola [140] studied a different model perturbing MFT by a
d-function interaction:

MFT(¢) + g / dz 6N (o)), (K.2)

where ¢ is an N-component field in R?=!. The §-function penalizes configurations when
o(x) passes through zero, which physically describes repulsion of a polymer from an impu-
rity. The scaling dimension of this interaction is —N[p]. They constructed a fixed point of
this model in the case when [¢] is negative and small while N is large so that —N[p] = 1—¢
is close to marginality.
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In 2003, Brydges, Mitter, and Scoppola [23] constructed a fixed point of exactly the
model (K.1). Following [140], they used fluctuation covariance of finite support in z-
space, simplifying the proof compared to the construction in [22].°® Although nominally
d = 3 in [23], the proof should apply also for d = 1,2 [25, 141]. See also the nice review
in [114]. Further work in this direction was done by Abdesselam [24] who constructed a full
renormalization group trajectory from MFT at short distances to the fixed point of [23]
at long distances. More recently, Slade [26] considered an analogous fixed point for an
n-component field . He also considered the case n = 0, corresponding to the self-avoiding
random walk. This formal limit is analyzed rigorously by considering a theory of two scalar
bosons and two scalar fermions whose global symmetry is OSp(2|2). Unlike in our model,
there is no quartic interactions for fermions in [26] because there are only two of them.
Such a “supersymmetric” model was also studied earlier by Mitter and Scoppola [142].

Physically, model (K.1) should describe the critical point of the long-range Ising
model [93] (see also [143]), and much is known or conjectured about it. The critical
point is expected to have conformal invariance [82]. At ¢ = e.(d) the critical point should
cross over to the local Wilson-Fisher fixed point plus a decoupled Gaussian sector [58]. See
also [78] for higher-loop perturbative computations of critical exponents.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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