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Abstract

New Experiments with Spheres-Gas (NEWS-G) is a dark matter direct detection experiment that will
operate at SNOLAB (Canada). Similar to other rare-event searches, the materials used in the detector
construction are subject to stringent radiopurity requirements. The detector features a 140-cm diameter
proportional counter comprised of two hemispheres made from commercially sourced 99.99% pure copper.
Such copper is widely used in rare-event searches because it is readily available, there are no long-lived Cu
radioisotopes, and levels of non-Cu radiocontaminants are generally low. However, measurements performed
with a dedicated 210Po alpha counting method using an XIA detector confirmed a problematic concentration
of 210Pb in bulk of the copper. To shield the proportional counter’s active volume, a low-background elec-
troforming method was adapted to the hemispherical shape to grow a 500-µm thick layer of ultra-radiopure
copper to the detector’s inner surface. In this paper the process is described, which was prototyped at Pacific
Northwest National Laboratory (PNNL), USA, and then conducted at full scale in the Laboratoire Souter-
rain de Modane in France. The radiopurity of the electroplated copper was assessed through inductively
coupled plasma mass spectrometry (ICP-MS). Measurements of samples from the first (second) hemisphere
give 68% confidence upper limits of <0.58 µBq/kg (<0.24 µBq/kg) and <0.26 µBq/kg (<0.11 µBq/kg) on
the 232Th and 238U contamination levels, respectively. These results are comparable to previously reported
measurements of electroformed copper produced for other rare-event searches, which were also found to have
low concentration of 210Pb consistent with the background goals of the NEWS-G experiment.
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1. Introduction

Direct searches for dark matter (DM) and neu-
trinoless double-beta decay [1, 2, 3, 4] have strict
requirements on the experimental background to
achieve their targeted sensitivities. While such ex-5

periments are generally carried out in underground
laboratories and in specifically designed shielding
to suppress backgrounds from external sources, one
of the main remaining sources arises from radioac-
tive decays in the detector’s construction materials,10

including the gaseous target. The effort to procure
materials with the lowest possible radioactivity has
driven significant improvements in the techniques
and facilities used to assay and prepare radiopure
materials [5, 6, 7, 8].15

A common choice for a high-purity material is
commercially sourced copper [9, 10, 11], because it
is readily available and there are no long-lived Cu
radioisotopes—with a half-life of 61.8 hours [12],
67Cu is the longest-lived. For this reason, the20

NEWS-G collaboration [13] chose C10100 (99.99%
pure) copper2 to construct a ∅140 cm spherical pro-
portional counter [14], which will be housed in the
compact shielding shown in Fig. 1, to perform a di-
rect DM search at SNOLAB, Canada. Along with25

this outer spherical shell, which is grounded, the
detector is composed of a central electrode set at
high voltage. To first approximation, this produces
a radial 1/r2 electric field in the detector. The in-
teractions of a particle with the gas, such as a DM30

particle elastically interacting and resulting in a nu-
clear recoil, may cause ionisation. The resulting pri-
mary electrons drifting under the electric field until
within approximately 1 mm of the central electrode,
where the electric field becomes large enough that35

the primary electrons gain sufficient energy to cause
secondary ionisation. This results in a Townsend
avalanche, thus providing signal amplification. Due
to it’s proximity to the active medium and it’s size,
the radiopurity of the spherical shell is of critical40

importance.

Even without long-lived Cu radioisotopes, a cop-
per sample will have some (non-Cu) radiogenic
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Figure 1: Schematic diagram of the NEWS-G detector and
shielding. The ∅140 cm spherical proportional counter is
shown at the centre, surrounded by 3 cm of archaelogical
lead, followed by 22 cm of low radioactivity lead in a stainless
steel skin. The outer-most part of the shielding comprises
40 cm of high-density polyethylene (HDPE).

contamination resulting from cosmogenic activa-
tion and industrial production processes. For ex-45

ample, cosmic-ray neutrons interacting with cop-
per through the (n,α) reaction can produce 60Co.
The half-life of the produced 60Co is approximately
5.3 years, making it a long-lived background rel-
ative to the typical time scale of direct DM de-50

tection experiments. At the surface of the Earth,
the added activity due to 60Co is approximately
0.4 µBq/kg/day [15]. Other cosmogenic contami-
nants with shorter half-lives are also produced, e.g.
59Fe. These contributions can be suppressed by55

minimising the copper’s exposure to cosmic rays.
Other radiocontaminants primarily originate from
the 238U and 232Th decay chains. The 238U de-
cay chain is shown in Fig. 2. This contamina-
tion is inherent to the raw material and a result60

of the manufacturing and handling processes. An
established technique is to directly measure the ura-
nium and thorium levels with inductively coupled
plasma mass spectrometry (ICP-MS), which has
been demonstrated to have sensitivity better than65

30 fg/g to these contaminants [6, 16, 17]. The
progeny activities can also be inferred and used to
estimate background contributions to experiments,
under the assumption of secular equilibrium.

However, 222Rn, which is part of the 238U de-70

cay chain, is a gaseous isotope. As a result, 222Rn
may deposit its decay products on the copper sur-
face or into the copper bulk at the raw-ore stage
or during manufacturing. This contribution adds
to the contamination and may break the secular-75

equilibrium assumption. The longest-lived isotope
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Figure 2: 238U decay chain. All daughters are solid at room
temperature and pressure except 222Rn, which is a gas. Only
decays with a branching fraction greater than 0.05% are
shown [12].

in the 222Rn decay chain is 210Pb with a half-life of
22.2 years [18]. Accumulation of 210Pb from 222Rn
deposits can result in experiment backgrounds that
cannot be inferred by ICP-MS measurements of the80

238U progenitor. One method to assess this contam-
ination is by directly measuring the 5.3 MeV α par-
ticles from the 210Po decays [19, 20, 8], using a high-
sensitivity XIA UltraLo-1800 spectrometer, which
has a sensitivity of 0.0001 α/cm2/hour [21]. The85

XMASS collaboration has established a method to
estimate very low 210Pb contamination in copper
bulk, having demonstrated the ability to distin-
guishing the contamination in bulk from that on
the surface [20]. For oxygen-free copper (at least90

99.96% pure by weight3) the 210Pb contamination
in the bulk is estimated to be in the range of 17–
40 mBq/kg [20]. The corresponding value for the
C10100 copper procured by the NEWS-G collabo-
ration is 29+8+9

−8−3 mBq kg−1, the estimation of which95

is discussed in Section 2.
The measured level of 210Pb in the C10100 cop-

per bulk and the corresponding contamination of
its progeny in the bulk of the NEWS-G detector’s
copper sphere would represent approximately 72%100

of the experimental background [15] below 1 keV

3Japanese Industrial Standard, JIS:C1020

as estimated by means of a Geant4 [22] simulation.
The second largest contribution to the experimen-
tal background is cosmogenic activation of the cop-
per resulting from a 93-day exposure of the copper105

to surface-level cosmic muon fluxes, which is antic-
ipated for manufacturing the detector and trans-
porting it from France to Canada, followed by 1
year of being in an underground laboratory. This
contribution accounts for approximately 11% of the110

anticipated background below 1 keV. An additional
contribution from the copper, of 2.7%, comes from
trace amounts of 238U, 232Th and 40K contamina-
tion. Finally, the remaining approximately 13.9%
of the expected background below 1 keV originates115

from the following sources, listed from largest to
smallest contribution: 238U, 232Th and 40K con-
tamination of the lead shielding; 3H and 222Rn con-
tamination of the gas mixtures used; γ rays and
neutrons from the cavern; and cosmic muons.120

An approach to suppress the background from
210Pb contamination is to grow a layer of ultra-
radiopure copper onto the inner surface of the de-
tector sphere. This layer acts as an internal shield
to suppress backgrounds, e.g. from β-decays of125

210Pb and accompanying X-rays and Auger elec-
trons, and its progeny 210Bi, originating from the
bulk of the commercially sourced C10100 copper.
It is estimated that a 500 µm-thick layer of ultra-
radiopure copper will suppress this background con-130

tribution below 1 keV by a factor of 2.6which con-
stitutes 49.5% of the total background in that re-
gion [15].

A method to deposit ultra-radiopure copper is
potentiostatic electroforming [20, 23]. This method135

takes advantage of electrochemical properties to
produce copper with reduced impurities. The pro-
cess is discribed in Section 3. This method was
previously used to produce a variety of detector
components, including those requiring extreme ra-140

diopurity such as for the Majorana Demonstra-
tor [24]. Internal fittings were fabricated from elec-
troformed copper with 238U and 232Th levels less
than 0.099 and 0.119 µBq/kg4 at 68% confidence,
respectively—limited by the ICP-MS assay preci-145

sion [17]. In order to apply this process to a hemi-
spherical surface, a scale model was produced and
used to determine the operating conditions. This
is described in Section 4. The electroplating proce-
dure used on the NEWS-G detector and the results150

4For 238U, 1 µBq/kg ≈ 0.081 pg/g. For 232Th,
1 µBq/kg ≈ 0.244 pg/g
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of a subsequent radioisotope assay of the produced
copper are detailed in Section 5 and Section 6, re-
spectively.

2. Assessment of the 210Pb Contamination
in NEWS-G Copper155

To assess the level of 210Pb contamination in the
C10100 copper used to produce the detector, sam-
ples were taken from the same batch of copper after
casting. The α particles from 210Po decays were
measured using an XIA UltraLo-1800 [21] ionisa-160

tion chamber, which uses an active veto to obtain
a second complementary signal arising from cases
where the α particle does not originate from the
sample under test. This is used to suppress back-
ground coming from the detector’s own construc-165

tion materials. The sample is placed in the detec-
tor which is flushed with argon gas to minimise
222Rn contamination. In this measurement, the
210Po content of the bulk of the copper sample is of
interest. The observable energy of 5.30 MeV α par-170

ticles emerging from the bulk of the copper sample
was estimated with a Geant4 simulation. An en-
ergy window of 2.5 MeV to 4.8 MeV was used to
primarily select α particle originating from a depth
of approximately 2 µm to 8 µm. This improves175

the signal-to-noise ratio for selecting bulk α par-
ticle events. The conversion factor for measured
counts to bulk activity was estimated from Geant4
to be 2.7 × 102 (Bq/kg)/(α/cm2/hour) [20].

210Po has a half-life of approximately 138 days,180

which is significant shorter than the approximately
22 years of the progenitor 210Pb. As a result, the
activities of 210Po and 210Pb may be different due
to different contamination amounts at the produc-
tion phase. Therefore, the activities of the two iso-185

topes may be out of secular equilibrium; however,
the 210Po activity in a sample will evolve over time
until it matches that of 210Pb. Therefore, multiple
measurements of the 210Po activity over time are
required to accurately infer the activity of 210Pb190

in the copper. Four measurements of the α par-
ticles from the sample were made over the course
of approximately one year, each lasting between 12
and 23 days. Table 1 shows the results of the four
measurements.195

A joint likelihood fit of all measurements was per-
formed and is shown in Figure 3 along with the mea-
surements. From this fit, it was estimated that the
210Pb activity in the sample is 29+8+9

−8−3 mBq kg−1,
where the statistical and systematic uncertainties200

Table 1: Measurements of the α particles in a 2.5 MeV to
4.8 MeV energy window originating from 210Po decays in a
C10100 copper sample.

Date Measurement
[10−4 α/cm2/hour]

Jul. 2 - 25, 2018 2.3 ± 0.4
Oct. 5 - 17, 2018 2.2 ± 0.4
Dec. 28, 2018 - Jan. 9, 2019 1.4 ± 0.3
Apr. 19 - May 7, 2019 1.4 ± 0.3

are given separately. This is consistent with other
copper samples with similar purity [20].
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Figure 3: Measurements of the α particles from the decay of
210Po in a sample of C10100 copper used in the production of
the NEWS-G detector. Time is measured from the estimated
production date of the copper. The purple (green) line shows
the fitted 210Po (210Pb) activity over time, with the bands
showing the ±1σ region.

3. Electroplating

Electroplating is carried out through the use of
an electrolytic cell, which consists of an anode and
a cathode separated by an electrolyte, as illustrated
in Fig. 4. A current is used to supply electrons to
the cathode where an ion undergoes a reduction re-
action (gain of electrons) to form an atom deposited
on the surface, while oxidation reactions (loss of
electrons) occur at the anode. The reactions occur-
ring at each of the electrodes will be of the general
form:

A(y+z)+ + ze− � Ay+ , (1)

where A is the molecular species, y is its ionic
charge and z is the number of electrons required205

for the reduction reaction (reading left-to-right) or
the number of electrons released in the oxidation

4



Electrolyte
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Figure 4: Schematic diagram of a simple electrolytic cell.
Arrows indicate the motion of ions, which are released into
the electrolyte by oxidation reactions at the anode and then
deposited on the cathode in reduction reactions.

reaction (reading right-to-left). Reading this equa-
tion in one direction gives the “half-cell reaction”,
where the anode and cathode half-cell reactions are210

not necessarily the same; e.g., in the case where
one species is oxidized at the cathode but a differ-
ent species is reduced at the anode.

A current I flows through the circuit and elec-
trolyte. As the reduction reactions require elec-
trons, the number of moles of reduced atoms during
electroplating is proportional to the total supplied
charge: Q(t) =

∫
Idt. The number of moles n of

ions reduced in time t is given by

n(t) =
Q(t)

zF
, (2)

where F = eNA is the Faraday constant, and e
and NA are the elementary charge and the Avo-
gadro constant, respectively. The resulting de-
posited mass as a function of time is

M(t) = mrn(t) , (3)

where mr is the molecular mass of the deposited
species. When the current is reversed the process215

is called electropolishing, which is a technique used
to remove material from a surface.

There will be several species of ions in the elec-
trolyte available to electroplate to the cathode. The
tendency of an ion species to be reduced is quan-
tified by the reduction potential E0. Examples are
shown in Table 2 for copper and radioisotope con-
taminants. A greater value of E0 indicates a species
that is more easily reduced. Each half-cell reaction

will have its own reduction potential. The standard
cell potential E0

cell of the electrolytic cell is defined
as the difference between the reduction potentials of
the half-cell reactions at the anode EA and cathode
EC:

E0
cell = E0

C − E0
A . (4)

For E0
cell < 0, additional energy will be required for

the reaction to proceed [25]. For E0
cell ≥ 0, the re-

action is spontaneous (or in chemical equilibrium in220

the case of equality). For a given species being ox-
idized at the anode, the reaction will only proceed
when the cathode half-cell reaction has a higher re-
duction potential. In the case of a copper anode be-
ing oxidized, only ion species in the electrolyte with225

a reduction potential greater than that of copper
will reduce. The relatively high reduction potential
of copper compared to many radioisotopes means
that it is purified during electroplating. However,
other factors, such as mass transport of contami-230

nant ions, can cause species with lower reduction
potentials to be deposited with the copper in small
amounts [23].

Table 2: Reduction potential for copper and possible radio-
contaminants.

Reductants Oxidants E0 (V)

Cu2+ + 2e− � Cu +0.34 [26]

Pb2+ + 2e− � Pb −0.13 [27]
U3+ + 3e− � U −1.80 [28]

Th4+ + 4e− � Th −1.90 [28]
K+ + e− � K −2.93 [29]

In this work, a copper anode is used to provide
Cu2+ ions to the electrolyte. For Cu2+ ions reduc-235

ing at the cathode, the system will have E0
cell = 0 V.

Thus, to drive the reaction and overcome energy
loss mechanisms in the system, the electrodes are
kept at a potential difference of 0.3 V [30].

It has been shown that applying a time-varying240

potential difference between the electrodes can have
several benefits compared to a constant potential
difference [31]. During electroplating, the region
of the electrolyte at the surface of the cathode be-
comes depleted of Cu2+ relative to the bulk elec-245

trolyte. This slows down the rate of electroplat-
ing and affects the properties of the deposited cop-
per [31]. The waveform of the time-varying poten-
tial difference allows this region to be replenished by
allowing diffusion from the bulk electrolyte when no250

voltage is applied and by reintroducing more ions
from the surface during the reverse-voltage part of

5



the waveform. Also, differences in current den-
sity can arise due to differences in the distance be-
tween the anode and cathode surfaces (e.g. a surface255

rough point). High current density regions of the
electrolyte are more depleted of Cu2+ than lower
density regions. When no voltage is applied, ions
can diffuse between two such regions and thus lead
to a more uniform overall current density, while260

the reverse-voltage part of the waveform prevents
a thick layer forming in the high current density
regions [31]; both effects promote more uniform
growth of the electroplated copper layer. The re-
versing of polarity also allows for release of contam-265

inant ions that may have been entrapped during the
high mass transport portion of the forward plating.
The waveform used for the electroplating is shown
in Fig, 5. Note that while the potential is applied
it is potentiostatic at a level that favors the oxida-270

tion/reduction of copper.

Potential
Difference

Figure 5: Waveform used in the electroplating. The negative
terminal was attached to the cathode.

4. Scale Model

The copper electroplating procedure described
in the previous section is a well-established and
successful method that has existed for over a275

decade [23]. However, this method must meet fairly
rigid operational conditions to produce optimal ma-
terial. Failure to meet these conditions can not only
produce copper of poor radiopurity but often results
in deposits with poor physical properties as well.280

For NEWS-G the initial loading of copper into so-
lution would need to be generated from an initial
electropolishing step, because commercially avail-
able copper sulfate is not sufficiently pure. How-
ever, for traditional electroforming, the amount of285

copper required in the electrolyte is too great to
achieve through electropolishing. As a result, the

plating conditions for the NEWS-G hemispheres re-
quired a major deviation in the concentration of
copper sulfate (CuSO4) in the electrolyte.290

Not all parameters have a well-studied effect
on growth, especially when multiple parameters
are outside of their established optimal operat-
ing ranges. Prior experience has shown that elec-
trolyte with a low copper-ion concentration can pro-295

duce dendritic copper deposition. In the absence
of accurate deposition models it was necessary to
run a scaled experiment prior to plating the full-
sized ∅140 cm sphere underground in Laboratoire
Souterrain de Modane (LSM). Key growth parame-300

ters were identified and an experiment was designed
based on those that could be adjusted in situ at
LSM and projected onto a scale model.

The key independent and adjustable variables
were determined to be the concentration of copper305

and overall conductivity of the electrolyte, and the
current based on the limiting set of voltage condi-
tions. Control of the CuSO4 concentration is lim-
ited by the amount of copper that can be dissolved
during an initial electropolishing step, which serves310

two purposes: a) expose the underlying bulk crystal
structure to prepare the copper surface for electro-
plating; and b) load the electrolyte with copper.
During this step, the ∅140 cm hemisphere will act
as the anode and careful control of the potential315

is not as important, whereas subsequently copper
will be plated to the ∅140 cm hemisphere which
will then be serving as the cathode. During the
latter step, the voltage control and deposition rate
are critical. As a result,establishing how the plat-320

ing responds to small changes in CuSO4 is crucial.
As such, three variations of CuSO4 concentration,
three conductivities, and three voltage settings were
identified for experimentation on the scale model.

A stainless steel spherical float with a diameter325

of 30 cm was cut in half and used as a stand-in
for the full-scale ∅140 cm copper hemisphere. A
smaller hemisphere was machined from aluminum
and plated with copper to serve as the anode after
the initial electropolishing step. Figure 6 shows the330

experimental setup of the scale model. Although
the transport dynamics involved are not fully un-
derstood, previous experience has shown that the
electrode gap (path length) has an effect on plat-
ing, regardless of CuSO4 concentration and con-335

ductivity. So, while the spacing between the two
electrodes was scaled, the impedance needed to be
matched to that of the full-scale setup. This re-
quired the electrolyte conductivity to be reduced

6



(a) (b)

(c) (d)

Figure 6: (a) CAD model of the small-scale setup; (b) the
assembled scale-model experiment; (c) copper plated onto
the scale model’s stainless steel hemisphere; and (d) the final
scale-model growth of copper.

to compensate for the reduced electrode spacing in340

the model.
A bath, shown in Fig. 6(a) and Fig. 6(b), was

designed to hold and stabilize the stainless steel
hemisphere, and several iterations of plating were
performed to cycle through the plating variations345

and determine the optimal electroplating condi-
tions. Based on these trials, the parameters chosen
for plating copper onto the full-scale hemispheres
are a CuSO4 concentration of 0.03 mol L−1, a con-
ductivity of 91.9 mS cm−1 (corresponding to a full-350

scale conductivity of 300 mS cm−1), and a potential
of 0.35 V. Using these parameters, the estimated
time to electroplate each full-scale hemisphere is ∼8
days to attain a thickness of 500 µm. The result-
ing growth for the small-scale model is shown in355

Fig. 6(c) and Fig. 6(d).

5. Electroplating NEWS-G Detector

The electroplating was conducted at LSM at a
depth of 4800 m water equivalent to reduce cosmo-
genic activation. The detector outer shell is com-360

prised of two ∅140 cm hemispheres, produced by
a spinning technique using C10100 copper. The

(a) (b)

Figure 7: A detector hemisphere following (a) initial cleaning
with detergent and (b) chemical etching with an acidified
hydrogen peroxide solution.

result after cleaning with commercial detergent is
shown in Figure 7(a). The hemispheres were then
sanded to produce a smooth surface and subse-365

quently chemically etched using an acidified hydro-
gen peroxide solution [32, 8]. The result of this
preparation is shown in Figure 7(b).

A smaller C10100 copper hemisphere was pro-
duced to act as the anode for electroplating and370

was cleaned in the same way as the detector hemi-
spheres. It was suspended inside the detector, sep-
arated by an electrolyte comprised of deionized
water (18 Mohm), Optima® grade sulphuric acid
(Fisher Scientific), and copper sulphate produced375

by a previous electroplating. A pump provided
mechanical mixing with a filter removing partic-
ulates greater than 1 µm in size from the elec-
trolyte. The anode and cathode were connected to
a pulse-reverse power supply (Dynatronix, Amery,380

WI, USA), which could supply up to 80 A. The
whole set-up was contained in a temporary purpose-
constructed cleanroom to prevent particulates en-
tering the electrolyte and subsequently providing
nucleation sites for nodule-like copper growth [33].385

The setup is shown in Fig. 8.

Prior to electroplating, each hemisphere was elec-
tropolished to remove a layer of material from the
surface. This exposes the underlying crystalline
structure and provides an ultraclean surface prior390

to deposition. Furthermore, this process enhances
the amount of Cu2+ in the electrolyte. A higher
voltage was used for this process to extract all
species from the surface. During electropolishing,
(21.2 ± 0.1) µm and (28.2 ± 0.1) µm were removed395

from the first and second detector hemispheres,
respectively. This was estimated from the inte-
grated current and Eq. 3, assuming uniform pol-
ishing. Following this process, the electrolyte cir-
culated through the filter for several days prior to400
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electroplating to remove particulates released from
the copper surface.

The electroplating procedure used the reverse-
pulse plating waveform shown in Fig. 4. The cur-
rent and voltage were monitored throughout, and405

the conductivity and temperature were recorded us-
ing a HACH inductive conductivity sensor. Elec-
troplating continued for a total of 19.8 days and
21.0 days for the first and second hemispheres, re-
spectively. The process took longer than estimated410

based on the small-scale experiments due to power
supply current limitations, plating at slightly lower
potential and a slightly lower electrolyte conduc-
tivity. The process was only interrupted for short
periods to perform checks or due to power outages.415

The thickness of the deposited layer, which is shown
as a function of time in Fig. 9, was estimated from
the integrated current assuming a uniform deposi-
tion. Total copper thicknesses of (502.1 ± 0.2) µm

(a)

Detector Hemisphere

Inner Hemisphere

Electrolyte

Stainless
Steel Ring

To Power Supply

To Power Supply

To Pump and Filter

Conductivity Probe

(b)

Figure 8: (a) Electroplating setup showing the detec-
tor hemisphere, anode, support structures, and fixtures.
(b) Schematic diagram of the setup.

and (539.5 ± 0.2) µm were plated onto the first420

and second detector hemispheres, respectively. The
achieved plating rate corresponds to approximately
1.3 cm/year. A photo of the finished plating is
shown in Fig. 10.

After removing the hemispheres from the setup,425

they were rinsed with deionized water and the sur-
face passivated with a 1% citric-acid solution to pre-
vent surface oxidation [32]. Following the welding
of the hemispheres together, a final stage of surface
etching using an acidified-peroxide solution will be430

undertaken in order to mitigate the surface contam-
ination caused by contact with the air. This etching
technique has been shown to reduce the surface con-
tamination of 210Pb on electroformed copper to the
background level of the XIA UltraLo-1800, which is435

used in these assays [8]. This process will be con-
ducted under a nitrogen cover gas to mitigate pos-
sible surface recontamination following the etching.
Following this stage, the inner detector surface will
not be exposed to air again.440
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Figure 9: Estimated thickness of the electroplated copper
for both detector hemispheres.

6. Radioisotope Assay Results

Samples of the electroplated copper were used to
assess its 238U and 232Th concentrations. Samples
were taken from copper plated on the stainless steel
ring, shown in Fig. 8, to avoid damaging the detec-445

tor cladding. These samples originate from near the
electrolyte-air interface and from the stainless steel
surface; thus, they represent a worst case scenario
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(a) (b)

Figure 10: (a) The inner surface of the second hemisphere
after electroplating and (b) a close-up of the surface.

with respect to contamination. The samples col-
lected from each hemisphere are shown in Fig. 11.450

Figure 11: Samples of electroplated copper, taken from the
stainless steel ring shown in Fig. 8.

The samples were shipped to Pacific Northwest
National Laboratory and analysed using ICP-MS
following the methods described in Refs. [6, 16].
The results are summarized in Table 3, along with
representative examples of electroformed and com-455

mercially sourced (machined) copper. A substantial
improvement over the latter is observed, with ra-
diopurity levels comparable to previously measured
electroformed copper. The measurement sensitiv-
ity for the two hemispheres is limited by the mass460

of the available samples. Previous samples of elec-
troformed copper have exhibited a bulk contami-
nation of 210Pb compatible with the background of
the XIA UltraLo-1800, and are often used for blank
measurements or for the construction of the sample465

tray inside the device [20, 8].

7. Summary

The NEWS-G collaboration has utilized recent
advances in high-purity copper electroforming to

Table 3: ICP-MS results for 238U and 232Th contamina-
tion in samples of the electroplated copper layer, along with
representative examples of electroformed and commercially
sourced copper [17]. These are quoted as 68% upper confi-
dence limits, where the measurement sensitivity was limited
by the available sample mass.

Weight 232Th 238U
Sample [g] [µBq/kg] [µBq/kg]
C10100 Cu

- 8.7 ± 1.6 27.9 ± 1.9
(Machined)
Cu

- < 0.119 < 0.099
Electroformed
Hemisphere 1 0.256 < 0.58 < 0.26
Hemisphere 2 0.614 < 0.24 < 0.11

produce a layer of copper on the inner surface of the470

∅140 cm detector. This layer will act as a shield
to mitigate background from 210Pb in the bulk of
the detector’s commercially sourced C10100 cop-
per. This is the largest surface to be plated with
ultra-radiopure copper in an underground labora-475

tory. This operation has demonstrated the feasibil-
ity of plating onto the surface of a large hemisphere.
The radiopurity of the plated copper was assessed
using ICP-MS and found to be comparable to other
electroformed copper. A copper deposition rate of480

approximately 1.3 cm/year was achieved, which is
promising for fabrication of a fully electroformed
copper sphere in the future.
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