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1 Introduction

The standard model (SM) of particle physics has to be extended at least to accommodate
the mass of the left-handed neutrinos [1–4]. Simple extensions involve adding three right-
handed neutrinos, a SU(2) triplet scalar or triplet fermions (or a combination of them).
These new fields give rise to the tiny mass of left-handed neutrinos by means of the so-called
seesaw mechanism, respectively referred to as type I, II and III (e.g. see refs. [5, 6] for a
review and references therein). In this work, we will be interested in the high scale seesaw
type I+II [7–9] with masses & 108GeV. Despite being inaccessible at particle colliders, a
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high scale seesaw has very interesting applications in particle physics and cosmology. For
instance, it could account for the baryon asymmetry of the universe through leptogene-
sis [10–12] (for a review see refs. [13, 14]), constitute a dark matter candidate [15–18] and
play a role for inflation [19–21] or dark energy [22].

There is also the issue of the SM vacuum stability [23, 24] which may require beyond SM
physics (see ref. [25] for a recent review). The running of the SM couplings is perturbatively
valid up to the Planck scale, where most likely quantum gravity effects start to become
relevant. However, the discovery of the Higgs boson [26, 27] placed the electroweak (EW)
vacuum in a (or close to) a metastable region [28, 29]. In other words, given previous
measurements of the Higgs and top quark mass, with mean values respectively around
MH ∼ 125 GeV and Mt ∼ 173 GeV [30, 31], the Higgs quartic coupling becomes negative
before reaching the Planck scale, roughly around a critical scale of 1010 GeV [32–44]. If there
is no new physics before the critical scale, the SM is in a potential conflict with inflation [45–
48], where vacuum fluctuations are of the order of the horizon scale during inflation and the
probability of ending at the SM vacuum would be very low. Furthermore, even if the scale
of inflation is low enough to circumvent this issue, the presence of a primordial black hole
would catalyze the decay to the stable vacuum [49–52]. One possible interesting solution is
that the vacuum can be stabilised by the inclusion of a non-minimal coupling of the Higgs
field to gravity [53–66] (for a review within Higgs inflation see refs. [67, 68]), well motivated
by quantum corrections of the SM in curved backgrounds [69].

The above discussion points already to an important role of quantum gravity for the
stability of the SM vacuum. Still, there remains the question of the UV completion of grav-
ity. In this respect, an interesting possibility is that gravity might be asymptotically safe
non-perturbatively [70–72]. In other words, the non-perturbative renormalisation group
equations (RGEs) including gravity might present an interacting fixed point beyond the
Planck scale. While not demonstrated in general,1 there is mounting evidence for the
presence of such an interacting fixed point [72, 79–85], derived using the functional renor-
malisation group approach [86, 87] (for reviews see refs. [73–78] and references therein). A
direct consequence of a fixed point is quantum scale invariance, which can explain the near
scale invariance of the primordial fluctuations spectrum generated during inflation [74] (e.g.
see refs. [88–90] for implementations of scale symmetry to inflation).

A rather robust prediction of asymptotic safe gravity is that all quartic couplings are
almost zero at the fixed point. This is the basis of the asymptotic safety prediction [91]
of the mass of the Higgs boson to be 126 GeV with a few GeV uncertainty, in agreement
with later observations. More generally, irrelevant parameters at the quantum gravity fixed
point translate into predictions for renormalisable parameters near the Planck scale. For a
given particle physics model below the Planck scale the perturbative renormalisation group
running translates this to observable quantities at low energy scales [91–94]. The asymp-
totic safety scenario predicts that the Higgs boson is found at the limit where metastability

1One usually needs to truncate the expansion of the effective action in terms of curvature invariants.
The presence of a fixed point might depend on the matter content. Consequences of using a regulator
in the averaged effective action that breaks diffeomorphism invariance as well as analytic continuation to
Minkowski space and the shape of a consistent graviton propagator remain debated [73–78].
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of the vacuum sets in. There is therefore no problem of “vacuum stability” in this scenario.
This is in line with new measurements of the top quark mass. With a precise measurement
of the mass of the Higgs boson [4, 95, 96] to be

MH = 125.18± 0.16 GeV , (1.1)

the result of ref. [91] turns into a prediction of the top quark mass aroundMt ∼ 171 GeV [74].
This result is in very good agreement with the latest measurements of the top pole
mass [97, 98], where we respectively have that

Mt = 170.5± 0.8 GeV and Mt = 171.1+2.0
−1.6 GeV . (1.2)

An essential ingredient of asymptotic safety predictions for observable parameters of
the standard model is the “great desert”. This assumes that the running of couplings for
scales sufficiently below the Planck scale follows the perturbative running with the particle
content of the Standard Model. There may exist, however, some “oasis in the desert”
— some intermediate scale above which particles beyond the standard model play a role.
These particles influence the running of the couplings between the Planck scale and the
intermediate scale, and therefore modify the predictions at the Fermi scale. The size of such
modifications is the topic of this paper. We focus on the “neutrino oasis”. The generation
of neutrino masses indeed suggests an intermediate scale where the symmetry of baryon-
lepton number (B-L) conservation is broken [99]. Early estimates within a SO(10) GUT
situate this scale around 1012 GeV.

In this work, we use the prediction from asymptotically safe quantum gravity that
all quartic scalar couplings vanish near the Planck scale as a boundary condition for the
perturbative RGE’s below the Planck scale. This is a central ingredient for our results
since it constrains not only the quartic coupling of the Higgs doublet, but also all quartic
couplings of the Higgs triplet in the seesaw II mechanism. The contribution of the gravita-
tional fluctuations to the flow equations for quartic couplings λ is an universal anomalous
dimension,

∂tλ = Aλ+ (. . .) . (1.3)

The anomalous dimension A does not depend on properties of scalar fields, it only involves
couplings in the gravitational sector, as the effective dimensionless Planck mass or cosmo-
logical constant. For A > 0 and A not too small, every quartic coupling is driven towards
a fixed point at a small value, λ∗ ≈ 0. This holds provided that the contributions from
other couplings, that are denoted by the dots in eq. (1.3), are small enough. This is indeed
the case for the contributions of gauge and Yukawa couplings. A possible non-minimal
coupling, say ξ, of scalars to the curvature tensor, e.g. ξϕ2R, yields a contribution pro-
portional to ξ2 which is also small for small ξ [74]. For the Higgs doublet a first estimate
yields for ξ a few times 10−3 or smaller [100]. We assume here that similar bounds on ξ

hold for all scalar fields.
All investigations find indeed a substantial positive value of A for the momentum

region above the Planck scale where the gravitational fluctuations matter. For recent
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investigations see refs. [74, 100, 101] and references therein. On this basis we assume in
this paper that all quartic scalar couplings at the Planck scale are very small and can be
approximated by zero. The quartic couplings will flow away from the fixed point only for
momenta below the Planck scale where the gravitational fluctuations decouple effectively.
For the flow below the Planck scale we can take for all quartic scalar couplings the fixed
point value λ∗ = 0 as a good approximation for an “initial value” at the (reduced) Planck
mass Mpl.

Given this asymptotic safety prediction for the “initial values” of quartic couplings we
investigate seesaw, and whether asymptotic safety is compatible with vacuum stability. At
first glance and only focusing on the sign of the contribution to the flow of the Higgs quartic
coupling, the answer to the latter is most likely positive. Indeed, the presence of an extra
scalar, the SU(2) triplet, gives a positive contribution to the β-function of the Higgs quartic
coupling and stabilises the vacuum if the triplet mass is close to or below the SM critical
scale [11, 12, 20, 102–105]. However, the question becomes non-trivial when we add the
input from asymptotic safety. The joint doublet-triplet potential has 5 quartic couplings,
1 cubic coupling and 2 mass parameters. It is not obvious that the requirement that all 5
quartic couplings vanish at the Planck scale yields a stable potential. In fact, we find that
the condition of vacuum stability requires the presence of the right-handed neutrinos and
places lower and upper bounds on the value of the neutrino Yukawa couplings.

Our main results are summarised in figure 1. First, we find that the values of the
Yukawa couplings of the light left-handed neutrinos to the scalar triplet are bounded by
requiring vacuum stability of the doublet-triplet potential. Using these bounds, we obtain
that the effect of the SU(2) triplet is to raise the prediction from asymptotic safe gravity
up to 1% compared to the SM. This means that the top mass predicted in the SM, which
corresponds to Mt ∼ 171 GeV and the limiting case M∆ = Mpl in figure 1, can be as large
as Mt ∼ 172.5 GeV for M∆ ∼ 108 GeV assuming a negligible cubic interaction with the
Higgs. Furthermore, if we require that the mass of the light neutrinos is solely due to a
type-II seesaw mechanism, we find that the top mass prediction is within 172.5 GeV &Mt &
171.3 GeV and the triplet mass is bounded from above as M∆ < 5 × 1013 GeV. Including
right-handed neutrinos and allowing for the maximum value of the cubic coupling the
uncertainty in the prediction is O(10 GeV). In that case, experimental data constrains the
right-handed neutrino sector. Further theoretical input on the size of the cubic coupling
and the Yukawa coupling, for example from left-right symmetry at the intermediate scale,
can narrow down the allowed range for the top quark mass.

A rather likely value for the cubic coupling at the Planck scale is γ(Mpl) = 0. This
obtains in case of left-right symmetry where γ arises from a quartic coupling multiplied
with the expectation value breaking this symmetry. Also in the general case a large enough
gravity induced anomalous dimension will imply a fixed point value of γ close to zero. We
show in figure 1 two curves obtained with the boundary value γ(Mpl) = 0, one for a doublet-
neutrino coupling YΦ equal to the top Yukawa coupling yt, the other for the minimal value
of YΦ which ensures vacuum stability. The boundary value γ(Mpl) = 0 narrows down the
uncertainty considerably. The two curves are obtained for right-handed neutrino masses
Mν equal to the triplet mass M∆. The predicted range narrows down further if Mν is
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Figure 1. Predicted range in the top quark mass from asymptotically safe quantum gravity
assuming a Higgs mass of MH = 125.15 GeV. The predicted value of the top quark mass in the
SM, Mt ∼ 171 GeV, corresponds to the limiting case M∆ = Mpl. Left: in red we see the predicted
bounds derived considering the SU(2) triplet alone and vanishing cubic coupling. In purple we
present the bounds with the requirement that the mass of the light neutrinos mainly comes from
the type II seesaw. The latter case implies bounds Mt & 171.3 GeV and M∆ . 5 × 1013 GeV. In
blue we show the maximum value for the top mass using the maximum value of the cubic coupling
allowed by vacuum stability. Right: the vacuum stability of the full Higgs double-triplet potential
requires the presence of right-handed singlet neutrinos. In red we show again the bounds using
the triplet alone and vanishing cubic coupling. In blue we illustrate how the bounds change if the
neutrino-Higgs Yukawa coupling YΦ is equal to the top-Higgs Yukawa coupling at the intermediate
scale. The blue lower bound corresponds to a vanishing cubic coupling at the triplet scale. This
bound depends on the value of YΦ, with smaller YΦ pushing the bound upwards. A shift of the
bound in the same direction occurs if the right-handed neutrino masses are larger than the triplet
mass. The blue upper bound corresponds to the maximum value that the cubic coupling can attain,
for a vanishing quartic doublet coupling at the triplet scale M∆. The solid green curves obtain for
a vanishing cubic coupling at the Planck scale, for two values of the doublet-neutrino coupling YΦ
and right handed neutrino mass Mν = M∆. For larger Mν the allowed interval in between the
curves shrinks.

larger than M∆, which seems rather likely.
This paper is organised as follows. In section 2 we review the type I+II seesaw mecha-

nism. In section 3 we derive upper and lower bounds on the neutrino Yukawa couplings by
requiring vacuum stability within asymptotic safety. In section 4 we study the quantum
gravity predictions for the top quark mass in terms of the triplet mass. We conclude our
work in section 5. We also derive the general two loop RGEs for the type I+II seesaw.
They are presented in appendix B which generalises the results of ref. [106].

2 Neutrino masses and the SU(2) Triplet scalar

Let us start by reviewing the type I+II seesaw mechanism, which in addition to the SM
fields includes a SU(2) triplet scalar with hypercharge Y=1 and a Yukawa interaction with
two left-handed doublet leptons, as well as three (right-handed) neutrino singlets of SU(2)
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with Majorana mass. The Lagrangian may be written2 as [7, 106]

L = LSM + L∆ + LνR + LYukawa , (2.1)

where LSM is the SM part including the top quark and the standard potential for Higgs
doublet, explicitly given by

LSM = − (DµΦ)†DµΦ− VSM − yttRΦtL + h.c., VSM(Φ) = −m2Φ†Φ + λ3
2
(
Φ†Φ

)2
,

(2.2)

and L∆, Lν and LYukawa contain the new physics of the type I+II seesaw model. The
Lagrangian describing the triplet, represented by a traceless 2× 2 complex matrix, and its
interaction with the doublet is given by

L∆ = −Tr
[
(Dµ∆)†Dµ∆

]
− V (Φ,∆) . (2.3)

Her Dµ is the covariant derivative,3 namely

Dµ∆ = ∂µ∆− ig2
[
σaW a

µ ,∆
]
− i
√

3
5g1Bµ∆ , (2.4)

and we use the GUT normalisation for g1 for easier comparison with the literature. The
potential is given by

V (Φ,∆) = M2
∆Tr

(
∆†∆

)
+ λ1

2 Tr2
(
∆†∆

)
+ λ2

2
{

Tr2
(
∆†∆

)
− Tr

(
∆†∆∆†∆

)}
+ λ4Φ†ΦTr

(
∆†∆

)
+ λ5Φ†

[
∆†,∆

]
Φ + γΦ̃†∆†Φ + h.c. ,

(2.5)

where [, ] refers to the commutator and h.c. to the hermitian conjugate. The part for the
right-handed neutrino consists of the kinetic term and a majorana mass Mν ,

LνR = −i νR /∂νR −
1
2MννRCνR . (2.6)

In this work we will assume that the mass of the heavy neutrinos Mν is either of the order
of the Planck mass (pure seesaw II), or close to M∆, reflecting a single intermediate scale
of B − L violation. The Yukawa interactions between the doublet, triplet and neutrinos
are described by

LYukawa = −YΦL̄LΦ̃νR −
Y∆
2 LcL∆LL + h.c. , (2.7)

2We follow the notation of ref. [106] except for slight changes: λ→ 2λ3, Λ6 →
√

2γ, Y∆ → Y∆/
√

2 and
Λi → λi with i = {1, 2, 4, 5}.

3One could also work in the adjoint representation of SU(2) where the triplet is a three component
complex vector transforming according to the generators of SO(3). In that case Tr[(Dµ∆)† Dµ∆] =
2δij

(
Dµ∆i

)†
Dµ∆j , where we have used that ∆ ≡ ∆iσi and Tr [σiσj ] = 2δij . In the adjoint represen-

tation we have that Dµ ≡ ∂µ − i g2 t
aW a

µ − i g
′

2 Bµ, where t
a are the generators of SO(3).
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where LL is the lepton doublet and LcL = iσ2CL̄
T
L and Φ̃ = iσ2Φ∗ are respectively the

charge conjugates of LL and Φ. Note that C = iγ0γ2 is the charge conjugation operator of
the Lorentz group and iσ2 is the charge conjugation operator of the SU(2) gauge group. To
be more precise, there should be a sum over the three lepton generations and the Yukawa
couplings would be a 3× 3 matrix. For simplicity, we consider in the main text only three
generations of singlet neutrinos with equal mass and assume that only one has a non-
vanishing Yukawa coupling. Nevertheless, the RGEs given in appendix B are completely
general. The derived bounds for the top quark mass are indicative for the general case,
but the detailed quantitative values will be influenced by assumptions on the generation
structure.

After a SU(2) spontaneous symmetry breaking (SSB), where the neutral components
of both the doublet and the triplet develop a non-zero vacuum expectation value (vev),
the light neutrinos acquire a mass. In the unitary gauge we express the doublet and triplet
expectation values as

Φ0 =
(

0
v

)
and ∆0 =

(
0 0
v∆ 0

)
. (2.8)

A strong constraint on the vev of the triplet comes from the contribution to the mass of
the W± and Z bosons which breaks custodial symmetry and leads to

ρ = M2
W

M2
Z cos2 θW

= 1 + 2v2
∆/v

2

1 + 4v2
∆/v

2 , (2.9)

where θW is the Weinberg angle. The latest constraint on ρ reads [4]

ρ = 1.00039± 0.00019 , (2.10)

which essentially requires v∆ � v, more precisely v∆/v < 10−2. For v∆ � v we can take
v ≈ 174.08 GeV as in the SM. Corrections due to the triplet are tiny.

Now we turn to the mass of the neutrinos and the seesaw mechanism. While the triplet
vev yields a direct Majorana mass for the left-handed neutrinos (seesaw type II), the right-
handed neutrinos mix with the left-handed ones through the Higgs vev and contribute a
Dirac mass term (seesaw type I). These two contributions can be summarised in a mass
matrix for neutrinos given by [99]

mν =
(
Y∆v∆ YΦv

YΦv Mν

)
, (2.11)

where each entry is a 3 × 3 matrix. From now on we use the approximation of a single
leading neutrino, where we assume that there is a neutrino with mν ∼ 0.06 eV and the
two others can be regarded almost massless. In similar lines we employ the approximation
where only one entry in the Yukawa coupling matrix is non-vanishing and the right-handed
neutrinos have equal mass. After diagonalisation of the neutrino mass matrix, the mass
eigenvalues read

mν,light/heavy = 1
2

{
Y∆v∆ +Mν ∓

√
4Y 2

Φv
2 + (Mν − Y∆v∆)2

}
. (2.12)
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Using the constraint on the departure of custodial symmetry, i.e. v∆ � v, and that we
are dealing with a high scale seesaw, that is Mν ∼ M∆ � v, we see that: (i) the heavy
neutrinos have a mass mν,heavy ≈Mν and (ii) the light neutrinos develop a non-zero mass
proportional to the Yukawa couplings and suppressed by the mass of the heavy fields,
explicitly

mν,light ≈
∣∣∣∣∣Y∆v∆ −

Y 2
Φv

2

Mν

∣∣∣∣∣ . (2.13)

Furthermore, in the approximation where M∆ � v (with λ4 and λ5 not excessively large)
there is a simple relation between the vev of the doublet and the triplet and the parameters
in the potential (2.5). The joint potential (2.2) and (2.5) after the SSB reads

V = VSM (Φ) + V (Φ,∆) = −m2v2 +M2
∆v

2
∆ + λ3

2 v
4 + λ1

2 v
4
∆ + v∆v

2 (v∆(λ4 − λ5)− 2γ) .

(2.14)

The approximation M2
∆ � v2(λ4 − λ5) yields the minimum at

v∆
v
≈ γ

M∆

v

M∆
and v ≈ MH√

2λ
. (2.15)

Here we have defined the effective Higgs quartic coupling below the intermediate scale when
the triplet decouples,

λ ≡ λ3 − 2 γ2

M2
∆
. (2.16)

Indeed, we may evaluate the potential at the relative minimum in the triplet direction, i.e.
∂V/∂v∆ = 0,

V ≈ −m2v2 + 1
2v

4
(
λ3 − 2 γ2

M2
∆

)
= −m2v2 + λ

2 v
4 . (2.17)

The value of λ from (2.16) is the one that should be used when running the SM couplings
from M∆ down to the Fermi scale. In this respect, we readily have an upper bound on
γ2 by requiring vacuum stability below the intermediate scale. Imposing that λ(M∆) > 0
in eq. 2.16 and assuming that there is vacuum stability above M∆, i.e. λ3(M∆) > 0 (we
explore all the conditions in section 3.3) we find

|γ| < γmax ≡M∆

√
λ3
2 . (2.18)

Before proceeding to the embedding of this model into asymptotic safety, let us have a
rough idea of the quantitative values needed for light neutrino masses. Neglecting possible
cancellations between the type I and type II seesaw contributions we have two different
limiting cases: (i) the triplet dominates the seesaw or (ii) the heavy neutrinos dominate
the seesaw. On one hand, using that mν,light ≈ 6× 10−2 eV, we see that (i) leads us to

γ

M∆
≈ 2× 10−3 Y −1

∆

(
M∆

1012 GeV

)
, (2.19)
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which implies that for Y∆ ∼ O(1) we need γ/M∆ ∼ 10−3 for M∆ ∼ 1012GeV, and we
saturate γ/M∆ ∼ 1 for M∆ ∼ 5× 1014GeV. We can also turn eq. (2.19) into a constraint
on the value ofM∆. For instance, using the constraints on Y∆ and γ from vacuum stability
to be derived in section 3, roughly given by Y∆ < 3 and |γ| < 0.2, we conclude that
M∆ < 3× 1015 GeV. On the other hand, we find that (ii) requires

YΦ ≈ 4× 10−2
(

Mν

1012 GeV

)1/2
. (2.20)

In this case, we need YΦ ∼ O(1) for Mν ∼ 1016 GeV. These order of magnitude estimates
will prove useful at the end of the section 4 when we study the predictions from asymptotic
safety.

3 Vacuum stability

Vacuum stability for the Standard Model means that the expectation value of the Higgs
doublet given by the Fermi scale corresponds to the absolute minimum of the quantum
effective potential (for metastability it is a local minimum). We will discuss this here in
a rather simple quartic polynomial approximation to the effective potential with running
quartic couplings. In this approximation particular combinations of quartic couplings have
to remain positive, such that there is no direction in the field space for which the potential
can reach negative large values for large values of the fields. Concerning only the Higgs
doublet, the quartic coupling has to be positive. In the spirit of a Coleman-Weinberg
potential [107] we require this to hold for every value of the renormalisation scale in the
range of interest.

Negative directions in the quartic approximation are those for which the potential
becomes negative for large fields. In general, a negative direction at scales in the vicinity
of the Planck mass does not imply that vacuum stability is lost. For scales close to the
Planck scale the effective potential is no longer well approximated by a polynomial [101] —
it typically approaches a constant for large field values. Only for scales sufficiently below the
Planck scale, where the graviton fluctuations have already decoupled, a polynomial form
becomes a reasonable approximation. Keeping this limitation in mind, we will nevertheless
concentrate here on the quartic approximation and investigate the stability issue in terms
of the flowing quartic couplings.

3.1 Flow of couplings

In this section, we study the 2-loop RGEs with the boundary condition that all quartic
couplings vanish at the Planck scale, inspired by asymptotic safety. We derived the 2-loop
RGEs for the type I+II seesaw with PyR@TE 34 [108–110] and cross-checked our results
using SARAH5 [111–115]. Our results agree with the 1-loop calculations of ref. [106] except
for an additional term to λ4 and λ5 proportional to Tr(Y †e YeY

†
∆Y∆) arising from a loop with

a right-handed charged lepton and a difference in sign in front of λ4 and λ5 in the running
4https://github.com/LSartore/pyrate.
5https://sarah.hepforge.org.
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of the cubic coupling γ. The 2-loop RGEs are a new result of this work and are presented
in detail in appendix B. We also use the 2-loop RGEs for the standard model derived with
PyR@TE which coincide with the results in the literature, e.g. in ref. [33]. One may use the
3-loop RGEs, e.g. from ref. [37], but that would only provide a small improvement [42]
which will not change significantly our results. We stress again that for simplicity we only
consider in the main text the gauge bosons, the top quark, the Higgs doublet, the SU(2)
triplet and three singlet neutrinos with equal mass and one dominant neutrino yukawa
coupling to the doublet and triplet.

As a starting point for the flow from the Planck to the electroweak scale we need the
values of gauge and Yukawa couplings at the Planck scale. For this purpose we first run
the couplings from Mt up to the triplet scale M∆, which we take as a free parameter with
values up to the (reduced) Planck scale Mpl = 1/

√
8πG ≈ 2.4 × 1018GeV. To do so, we

use the 2-loop RGEs of the SM with boundary conditions at Mt extracted from ref. [37],
explicitly

g1 = 0.4626, g2 = 0.6478, g3 = 1.1666, yt = 0.9369 and λ = 0.2521 , (3.1)

which correspond to

Mt = 170.97 GeV, MH = 125.15 GeV, α3(MZ) = 0.1184 and MW = 80.384 GeV .

(3.2)

In the above equations yt is the top Yukawa coupling with the Higgs and the QCD-fine
structure constant α3(MZ) = g2

3/(4π) is evaluated at the scale corresponding to the pole
mass of the Z boson. Small changes in MH , α3 and MW will not change our main conclu-
sion, which will be a prediction for the ratio Mt/MH . In practice, we compute the relative
change of the ratio Mt/MH due to an intermediate scale M∆ < Mpl. This relative change
can be read from the figures by comparing with the limit M∆ = Mpl. The relative change
is independent of many details of the precise computation of Mt/MH . It is dominated by
the one loop contribution. For a given set of particles and couplings at the Planck scale the
relative change is a rather robust result. Let us emphasise that the choice of Mt ≈ 171 GeV
is the one that yields a λ(Mpl) ≈ 0 at 2-loop. If we used the 3-loop results we would
have found Mt ≈ 171.1 GeV [37]. It should be noted that requiring λ(Mpl) = 0 does not
completely solve the issue of vacuum stability, see figure 2. However, any tiny shift of the
boundary conditions at the Planck scale, e.g. due to not being exactly at the fixed point
or imposing the conditions not exactly at the reduced Planck scale, easily stabilises the
vacuum.

Second, we run the couplings from a given M∆ to Mpl with all new parameters equal
to zero, except for the right-handed neutrino Yukawa coupling, as boundary conditions at
M∆. The reason for this choice is that we are only interested in extrapolating the values
of SM-couplings up to the Planck scale. Taking into account the extra triplet scalar only
modifies the beta functions of the gauge couplings at 1-loop to

βg1 = 47g3
1

10 , βg2 = −5g3
2

2 and βg3 = −7g3
3 , (3.3)
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Figure 2. Running of the Higgs quartic coupling with the logarithm of the renormalisation scale µ
in the SM using the 2-loop RGEs. We used the values given in eq. (3.1) for Mt = 170.97 GeV (solid
blue line) and Mt = 170.96 GeV (dotted green line). The difference between requiring λ(Mpl) = 0
or λ ≥ 0, respectively the solid blue and dotted green lines, only yields a tiny correction to λ or Mt.

where the running of a parameter, say X, is defined as

dX

d lnµ = 1
16π2βX . (3.4)

The right handed neutrinos are singlets with respect to the SM-gauge group and do not
modify the flow of the gauge couplings. The beta function for the top Yukawa coupling is
left almost unchanged with respect to the SM and it is given by

βyt = yt

(
−17g2

1
20 −

9g2
2

4 − 8g2
3 + Y 2

Φ + 9
2y

2
t

)
, (3.5)

where the only difference is an additional interaction with right-handed neutrinos through
the Higgs. For investigations of the pure seesaw II mechanism we set YΦ = 0. This
procedure yields the initial values for g1, g2, g3 and yt at µ = Mpl. The neutrino Yukawa
couplings have a beta function given by

βY∆ =Y∆

(
− 9

10g
2
1−

9
2g

2
2 +Y 2

Φ +8Y 2
∆

)
and βYΦ =YΦ

(
− 9

20g
2
1−

9
4g

2
2 +3Y 2

∆+3y2
t + 5

2Y
2

Φ

)
.

(3.6)

When YΦ & 0.1 we perform a few iterations to find the values of YΦ(M∆) and the corre-
sponding values of YΦ(Mpl) that maintain the value of the top Yukawa coupling yt(M∆).
This procedure will ensure that the asymptotic safety predictions agree with the well mea-
sured values of the gauge couplings and the top Yukawa coupling at the EW scale.

Now, let us take a closer look at the beta functions for the remaining couplings. We
show here only the 1-loop results but we use the 2-loop RGEs for the numerical studies.
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Figure 3. Running of the Higgs quartic coupling with the logarithm of the scale in the type
II seesaw using the 2-loop RGEs. We used the values given in eq. (3.1) for Mt = 170.97 GeV
as well as the extrapolation to Mpl described in the beginning of section 3. We required that
λi(Mpl) = γ(Mpl) = 0 with i = 1, 2, 3, 4, 5 and used M∆ = 109 GeV and Y∆(Mpl) = 1, which yields
a stable triplet potential. The negative value of λ between µ ∼ 1015 − 1018GeV makes the stability
issue a bit worse than in the SM. Right-handed neutrinos help stabilise the vacuum.

The quartic couplings run according to

βλ3 = 27
100g

4
1 + 9

10g
2
1g

2
2 + 9

4g
4
2 +λ3

(
−9

5g
2
1−9g2

2 +12y2
t +4Y 2

Φ +12λ3

)
+6λ2

4+4λ2
5−12y4

t −4Y 4
Φ ,

(3.7)

βλ1 = 108
25 g

4
1 + 72

5 g
2
1g

2
2 +18g4

2 +λ1

(
−36

5 g
2
1−24g2

2 +4λ2+14λ1+8Y 2
∆

)
+2λ2

2+4λ2
4+4λ2

5−16Y 4
∆ ,

(3.8)

βλ2 = 12g4
2−

144
5 g2

1g
2
2 +λ2

(
−36g2

1
5 −24g2

2 +12λ1+8Y 2
∆

)
+3λ2

2−8λ2
5+16Y 4

∆ , (3.9)

βλ4 = 27
25g

4
1 +6g4

2 +λ4

(
−9

2g
2
1−

33
2 g

2
2 +6λ3+8λ1+2λ2+4λ4+4Y 2

∆+6y2
t +2Y 2

Φ

)
+8λ2

5−8Y 2
∆Y

2
Φ ,

(3.10)

βλ5 =−18
5 g

2
1g

2
2 +λ5

(
−9

2g
2
1−

33
2 g

2
2 +2λ3+2λ1−2λ2+8λ4+4Y 2

∆+6y2
t +2Y 2

Φ

)
+8Y 2

∆Y
2

Φ .

(3.11)

Note that the running of the Higgs quartic coupling eq. (3.7) is only modified with respect
to the SM by the couplings YΦ, λ4 and λ5. However, we will find that under the asymptotic
safety condition, λ4 and λ5 always remain smaller than or of the order O(0.1). Thus, the
correction to the running of λ with respect to the SM will mainly be due to the change in
running of the gauge couplings and the neutrino Yukawa coupling. Actually, see in figure 3
how the change in the gauge couplings, only considering the effects of the triplet scalar and
no right-handed neutrinos, makes the vacuum stability problem slightly worse. This is one
of the reasons why we include right-handed neutrinos.
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Lastly, the cubic coupling evolves according to

βγ = γ

(
−27

10g
2
1 −

21
2 g

2
2 + 2λ3 + 4λ4 − 8λ5 + 2Y 2

∆ + 6y2
t + 2Y 2

Φ

)
− 4
√

2MνY∆Y
2

Φ , (3.12)

together with the running of the right-handed neutrino majorana mass

βMν = 2MνY
2

Φ . (3.13)

Although γ does not appear at 1-loop in any other beta function (3.3)–(3.6), it plays a
very important role. This is due to the shift between λ3 and the Higgs quartic coupling
λ below the triplet scale, which is directly proportional to γ2/M2

∆, as given by eq. (2.16).
Furthermore, since it is a cubic coupling with dimensions of mass, we do not have a direct
reason to impose the vanishing of γ at Mpl. Its proper treatment will require functional
renormalisation which we leave for future work. For a pure type II seesaw, γ/M∆ should
ultimately be determined from the masses of the light neutrinos.

Before we proceed, it should be noted that perturbative radiative corrections to the
Higgs boson mass are in general proportional to the triplet mass and the couplings λ4
and γ with coefficients depending on the renormalisation procedure [106]. A necessary
counterterm of the order of the triplet mass seems to be in conflict with the perturbative
notion of “naturalness” [105, 116–118]. In this paper, we will not address naturalness, as
we do not attempt to explain the gauge hierarchy. We refer the reader to ref. [74] for a
discussion in the context of quantum gravity.

3.2 Predictions from asymptotic safety

With values of the gauge and top Yukawa couplings at the Planck scale that recover the
SM values at the EW scale, we are ready to investigate the predictions from asymptotic
safe gravity. We use the extrapolations of the gauge and top Yukawa coupling, which
depend on the mass of the triplet, as boundary conditions at Mpl. We impose as well that
all quartic couplings vanish, i.e.

λ1(Mpl) = λ2(Mpl) = λ3(Mpl) = λ4(Mpl) = λ5(Mpl) = 0 . (3.14)

At this point, we do not have any condition on the neutrino Yukawa couplings Y∆ and YΦ
nor on the cubic coupling γ. Regarding the cubic coupling, it does not significantly affect
the running of the other couplings and it only modifies λ through eq. (2.16). Thus, we shall
treat γ as a free parameter with a maximum value γmax (2.18) given by the requirement of
vacuum stability below the triplet scale and a minimum value of γ(M∆) = 0. Regarding
the neutrino Yukawa couplings, we note that even though the quartic couplings vanish at
the Planck scale, it does not imply that the doublet-triplet potential will be stable below
Mpl. Some of the couplings may run to a range for which a quartic approximation to the
potential develops a negative direction. If this happens at some scale µ̄, one may suspect
spontaneous breaking of SU(2)-symmetry by a triplet expectation value ∆ ≈ µ̄. This is
incompatible with observation. The neutrino Yukawa couplings will play a crucial role in
stabilising the potential. Therefore, as a further condition we will require the stability of
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the joint doublet-triplet quartic potential. This in turn will place bounds on the values of
Y∆ and YΦ. The study of the full quantum effective potential is left for future work.

After imposing the boundary conditions at the Planck scale, as explained above, we
run the couplings down to the triplet mass scale M∆ while checking the vacuum stability.
AtM∆ we integrate out the triplet and run the SM couplings down to the EW scale. Below
we present the conditions for the vacuum stability within asymptotically safe gravity and
SM plus type I+II seesaw. To understand the different contributions of the triplet and
right-handed neutrinos, we will first study the type II seesaw and later turn to type I+II
seesaw.

3.3 Vacuum stability

The conditions for the (classical) vacuum stability were first studied in ref. [119] and then
further improved in ref. [120]. Condition number zero, already present in the SM, comes
from the quartic interactions of the doublet only and it reads

C0 ≡ λ3 > 0 . (3.15)

The next two conditions are clearer if we consider for the moment the triplet potential
neglecting the doublet. Then we shall use the SU(2)×U(1) gauge freedom to fix the form
of the triplet to

∆ =
(

0 δ1
δ0 0

)
, (3.16)

where δ0, δ1 are real. In this case we find that the quartic terms in the potential are
given by

V (∆) = λ1
2
(
δ2

0 − δ2
1

)2
+ (2λ1 + λ2) δ2

0δ
2
1 . (3.17)

The stability of the triplet potential requires λ1 > 0 and 2λ1 + λ2 > 0. For the joint
doublet-triplet potential one infers two further conditions [119, 120]

C1 ≡ λ1 > 0 & C2 ≡ 2λ1 + λ2 > 0 . (3.18)

A typical triplet potential V (δ0, δ1) is shown in figure 4.
Second, if we take into account the interaction between the doublet and triplet there

appear three more conditions. On one hand, we have that6 [119, 120]

C3,4 ≡ λ4 ± λ5 +
√
λ3λ1 > 0 , (3.19)

which stops making sense if some of the previous conditions is violated, i.e. λ3 < 0 or λ1 < 0.
On the other hand, a detailed analysis of the potential yields that the last condition is given
by [120]

C5 ≡
√
λ3λ2 + 2

√
λ1|λ5| > 0 or C6 ≡ λ4 +

√
2λ1 + λ2

λ2

(1
2λ3λ2 + λ2

5

)
> 0 , (3.20)

6To translate the results of [120] to our notation we note that λH = λ3, λH∆ = λ4 + λ5, λ′
H∆ = −2λ5,

λ∆ = λ1 + λ2 and λ′
∆ = −λ2.
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Figure 4. Triplet quartic potential with a classically stable vacuum in arbitrary units. We used
the values for λ1 and λ2 at M∆ = 109 GeV in the case of Y∆ = 1. Close to the minimum the mass
term dominates and a non-zero expectation value occurs when the interaction with the doublet is
taken into account.

where either positive C5 or C6 has to be satisfied. We next proceed to study if the pre-
dictions from asymptotic safety are compatible with vacuum stability. The issue of this
investigation may be phrased differently as the question if asymptotic safety for gravity
with a light triplet mass is compatible with SU(2)× U(1)-SSB at the Fermi scale.

In figure 5 we display the flow of the various quartic couplings, together with the
corresponding constraints Ci. This plot does not include effects from the fluctuations of
right handed neutrinos, i.e. we take here Mν = Mpl. The conditions for vacuum stability
of the doublet-triplet potential are violated since C3 and C4 get negative. Since both |C3|
and |C4| are rather small, they are sensitive to small changes around the Planck scale.
Nevertheless, small values of M∆/Mpl are unlikely to be consistent with vacuum stability
if the fluctuation effects of the right handed neutrinos are omitted.

In figure 6 we include the effects of the fluctuations of the right handed neutrinos,
taking Mν = M∆, and assuming a substantial Yukawa coupling YΦ between the Higgs
doublet and the right- and left-handed neutrinos. In this case vacuum stability of the
triplet-doublet potential is realised for the whole range of scales shown. Comparison with
figure 5 demonstrates that the doublet-neutrino Yukawa coupling can play an important
role for stabilising the scalar potential. Asymptotic safety for gravity does not favor a pure
seesaw II scenario. Even though the triplet may give the dominant contribution to the
light neutrino masses, fluctuation effects of the right handed neutrinos below the Planck
scale may be needed to guarantee vacuum stability for M∆ sufficiently below Mpl.

3.4 Bounds on the triplet-neutrino Yukawa coupling

Let us for the moment focus on the vacuum stability of the triplet potential alone, i.e.
conditions C1 and C2 (3.18) which involve λ1 and λ2 only. This implies that we can safely
neglect the effects of right-handed neutrinos since they do not enter in the 1-loop RGEs of
λ1 and λ2, that is eqs. (3.8) and (3.9). Numerically the critical value Y∆(Mpl) = 0 leads
in general to a violation of the condition C2. Vacuum stability imposes therefore a lower
bound on Y∆. We also numerically find that if Y∆ is large enough then again C2(M∆) < 0.
Thus, there is also an upper bound on Y∆.
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Figure 5. Running of the quartic couplings (left figure) and the conditions for the classical stability
of the potential (right figure) for M∆ = 109GeV and Y∆(Mpl) = 1, without right-handed neutrinos.
Left: all quartic couplings vanish at the Planck scale. The running of λ1 and λ2 has opposite
trends, and similar for λ4 and λ5. This is due to the different sign of the contribution of the gauge
and neutrino Yukawa couplings in eq. (3.8)–(3.11). Right: we display the values of the constraints
Ci discussed in section 3.3, with a stable potential for positive Ci. The interaction of the triplet
with left-handed leptons, Y∆, stabilises the potential of the triplet alone, that is C1, C2 > 0, even
though λ2 < 0. The other conditions are in general not met. In particular, we have that C5, C6 < 0
evaluated at M∆. Also we find that λ3 < 0 for µ & 1015 GeV (see figure 3). This is the reason why
the lines corresponding to Ci with i = 3, 4, 5, 6 change at µ & 1015 GeV. For these contributions we
employ the real part of the square root of λ3 in eqs. (3.19) and (3.20).
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Figure 6. Running of the triplet quartic couplings (left figure) and the conditions for the classical
stability of the potential (right figure) for M∆ = 109GeV and Y∆ = 1.3 considering right-handed
neutrinos with YΦ = 0.37. Left: all quartic couplings vanish at the Planck scale. Also, note how λ1
and λ2 have opposite trends. The same occurs for λ4 and λ5. This is due to the difference the sign
contribution of the gauge and neutrino Yukawa couplings in eq. (3.8)–(3.11). Right: see how the
Yukawa interaction of the neutrinos with the Higgs, YΦ, stabilises the joint doublet-triplet potential
with C1, C2, C3, C4, C6 > 0 in all the range of scales. Note that C5 is not positive throughout all
the scales.
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Figure 7. Constraints for Yukawa couplings of neutrinos. Left: allowed parameter space for the
triplet Yukawa coupling Y∆ by vacuum stability of the triplet potential. The lower bound is roughly
at Y∆,min ∼ 0.6. The effect of right-handed neutrinos has been neglected. Right: allowed parameter
region for the doublet Yukawa coupling YΦ by requiring vacuum stability of the doublet-triplet
potential, with fixed Y∆(Mpl) = 1. The blue and green shaded regions respectively correspond to
the case where C5 and C6 are satisfied. The two regions overlap for large enough M∆. In black we
show the value of the top yukawa coupling.

We find the bounds on Y∆ with a numerical search by imposing that C1, C2 ≥ 0
evaluated at M∆. Due to the running of C1 and C2 which first increase and then decrease,
see figure 5, the condition that C1, C2 ≥ 0 at M∆ is a necessary and sufficient condition
for vacuum stability above the triplet scale. We also see that the lower and upper bounds,
respectively referred to as Y∆,min and Y∆,max, both come from requiring C2(M∆) = 0. We
show the results in the left plot in figure 7. Interestingly, we find that in this context the
neutrino Yukawa coupling should be roughly greater or similar than 0.6, i.e. Y∆ & 0.6.
Furthermore, we find that the lower and upper bounds meet roughly at M∆ ∼ 5×107 GeV.
This implies that there is no vacuum stability for M∆ < 5 × 107 GeV within asymptotic
safe gravity in the type II seesaw. We also note that the value of Y∆(Mpl) = 1 satisfies
C1, C2 > 0 for all values of triplet masses M∆ > 5 × 107 GeV. For this reason, we use
Y∆(Mpl) = 1 in our example shown in figure 3 and when considering right-handed neutrinos.
We numerically find that the conditions Ci > 0 with i = {0, 3, 4, 5, 6} are not satisfied in
general and, therefore, we consider next the effects of right-handed neutrinos.

3.5 Bounds on the doublet-neutrino Yukawa coupling

Now that we found non-trivial bounds on the triplet neutrino Yukawa coupling Y∆ by
requiring stability of the triplet potential, let us explore whether a non-zero value of the
doublet-neutrino Yukawa coupling YΦ stabilises the full doublet-triplet potential. It is
plausible that a non-zero YΦ renders Ci > 0 for i = {0, 3, 4, 5, 6} since it enters directly
to the RGEs of λ3, λ4, λ5 (see eqs. (3.7)–(3.11)). This is because right-handed neutrinos
couple directly to the Higgs field through the Yukawa coupling YΦ. On one hand, looking at
the beta functions of λ4 (3.10) and λ5 (3.11), relevant for the conditions C3 and C4 (3.19),
we see that a non-zero value of YΦ might lead to C3, C4 > 0, in analogy to Y∆ 6= 0 yielding
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C1, C2 > 0. On the other hand, whether a value of YΦ satisfies either the condition C5
or C6 is not directly apparent from the beta functions and, therefore, we have to check it
numerically.

As a proof of principle and to simplify the analysis we choose Y∆(Mpl) = 1 in what
follows, since such a value has C1, C2 > 0 for all triplet scales of interest. Thus, we study
the bounds on YΦ by requiring vacuum stability given a fixed value of Y∆. We numerically
find the bounds on YΦ by requiring that Ci(M∆) ≥ 0 with i = [0 − 6]. Contrary to the
analysis of Y∆ in section 3.4, we find that the condition Ci(M∆) ≥ 0 is a necessary condition
but not sufficient in general. By construction, one has Ci(Mpl) = 0 for all i. Even, if we
find Y∆ and YΦ such that Ci(M∆) ≥ 0, it is possible that one condition, say Cj , decreases
enough with increasing scale µ and becomes negative Cj(µ) < 0 at some point. However,
as it must reach Cj(Mpl) = 0 the maximum negative value for Cj cannot be too large. In
fact, one can easily find a small shift in YΦ that has Cj > 0 for all scales. This means that
the lower and upper bounds derived by requiring stability at all scales would be slightly
stricter. Nevertheless, the derived values give a good order of magnitude estimate.

We find that the requirement that C5(M∆) ≥ 0 or C6(M∆) ≥ 0 yields two different
parameter regions with a smooth overlap, see right figure 7. The lower bounds, called
YΦ,min, have either C5(M∆) = 0 or C6(M∆) = 0. The upper bounds, called YΦ,max, are
mainly due to C5(M∆) = 0, C6(M∆) = 0 or C3(M∆) = 0 for YΦ > YΦ,min. Interestingly, we
find that for Y∆(M∆) = 1, the Higgs neutrino yukawa coupling YΦ is in general YΦ & 0.2.
We also note that the value of YΦ(M∆) = yt(M∆) is within the allowed parameter range
for YΦ.

3.6 Bounds on the cubic coupling

Before ending this section, let us explore possible bounds on the cubic coupling γ. We recall
that γ only plays an important role in the shift of the effective Higgs quartic coupling
eq. 2.1. In other words, it does not modify any of the beta functions for the quartic
couplings eqs. (3.7)–(3.11). Therefore, γ does not change the constraints from vacuum
stability above the triplet scale in our approximation of the effective potential. However,
it may change the vacuum stability below M∆, as discussed near eq. (2.18). It can also
modify predictions for the top mass substantially by lowering the value of λ/y2

t at the
Fermi scale.

From the effective Higgs quartic coupling below the triplet scale in eq. 2.1, and the
requirement of vacuum stability above and below M∆, we derived an upper bound γmax in
eq. (2.18), given by γmax(M∆) = M∆

√
λ3(M∆)/2 . Since we use the boundary condition

λ3(Mpl) = 0, the value λ3(M∆) is not large unless YΦ is large. In this way, the bound on γ
depends on the value of YΦ. For example, for Y∆(Mpl) = 1 and YΦ(M∆) = yt(M∆) ∼ 0.55
atM∆ ∼ 109 GeV we have that |γ/M∆| < 0.22. In figure 8 we show the dependence of γmax
on M∆ for different values of YΦ. The value YΦ,min corresponds to the constraint C6 > 0.
We see that the lower the M∆ the higher γmax. Also, the larger YΦ, the larger the γmax,
as expected. We use such upper bounds on γ to get an impression for uncertainties in the
predictions of the top mass. In appendix A, we study the bounds on γ due to unitarity
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Figure 8. Maximum bound on the cubic coupling |γ| by requiring vacuum stability below M∆, i.e.
λ(M∆) > 0, as a function of the triplet mass. In blue, red and green we respectively show the cases
of YΦ(M∆) = {0, YΦ,min, yt}. The larger the Yukawa coupling YΦ, the larger the maximum bound
of |γ|. This is due to the fact that λ3 grows faster with decreasing scale for larger YΦ, see eq. (3.7).

and obtain that in general |γ| < 1.6M∆. The bound from unitarity is compatible with the
cases studied in this paper.

4 Predictions for the top quark mass

Let us now turn to the predictions for the top mass from asymptotic safety. As explained
in section 3, we impose boundary conditions at the Planck scale inspired by asymptotic
safety, i.e. λi(Mpl) = 0 for all i. We employ initial values of the gauge and top yukawa
couplings at Mpl that recover the SM predictions at the EW scale. Then we run the
couplings from Mpl down to M∆, integrate out the triplet and flow to the Fermi scale.
By construction, this procedure gives very similar values of the gauge and top Yukawa
couplings to those of the SM. However, it changes the prediction from asymptotic safety
for the Higgs quartic coupling compared to the case of the SM alone. It should be noted
that this prediction is sensitive to small shifts in the boundary conditions set by a full
study in functional renormalisation. Thus, in order to simplify the analysis, we can give a
fair estimate on the predictions for the mass ratio Mt/MH by studying the ratio between
the top Yukawa and the Higgs quartic coupling and compare it with the predictions of
asymptotic safe gravity and SM. In other words, we expect that the relative change in the
ratio of couplings given by

(yt
/√

2λ)SM & type I+II

(yt
/√

2λ)SM

∣∣∣∣
Mt

≈
(Mt/MH)SM & type I+II

(Mt/MH)SM

∣∣∣∣
Mt

, (4.1)

gives a good estimate in the relative change of the prediction for the mass ratio.
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4.1 Influence of the cubic scalar coupling

Before going to the predictions for the top mass, let us discuss the relevant values of the
cubic coupling. We note from the RGE of γ eq. (3.12) that γ only runs if both Y∆ and YΦ are
non-zero. When we study the effects of the triplet alone and we set YΦ = 0, γ is constant.
Contrariwise, when we include the right-handed neutrinos with non-vanishing YΦ, γ runs
with the scale. The influence of γ on the prediction of the top quark mass arises from the
shift (2.16) between λ and λ3. This effect can be substantial, and the lack of knowledge
for γ constitutes one of the main uncertainties for the prediction of Mt. Treating γ as
a free parameter, we will study three cases of interest: (i) when there is no effect of γ
for the effective theory below the triplet scale, i.e. γ(M∆) = 0 or λ(M∆) = λ3(M∆), (ii)
when γ attains the maximum value allowed by vacuum stability below the triplet scale
γmax from eq. (2.18) which corresponds to λ(M∆) = 0 and (iii) when γ(Mpl) = 0. Case
(iii) is inspired by a left-right symmetric generalisation, to be discussed later in section 5,
where γ arises from a quartic coupling. Then, treated as a quartic coupling we may
impose γ(Mpl) = 0. Note that cases (i) and (ii) comprise the possible uncertainties in the
prediction of the top mass from eq. (4.1) due to the cubic coupling. More concretely, since λ
is in the denominator in eq. (4.1), γ(M∆) = 0 corresponds to the lower bound on the ration
eq. (4.1) and γmax to the upper bound. It should be noted that while λ(M∆) = λ3(M∆)
depends on the value of YΦ through the running of λ3, the upper bound on the ratio given
by λ(M∆) = 0 is independent of Y∆ and YΦ. Thus, the upper bound on the top quark
mass shown in figure 1 is robust. We display in figure 9 the running of λ and λ3 (left part),
as well as the running of γ (right part). The two curves correspond to the maximal and
minimal values of |γ|. They are shown for given values of Y∆ and YΦ that are consistent
with vacuum stability.

4.2 Quantitative predictions for the top quark mass

The predictions for the ratio of top Yukawa and Higgs quartic coupling evaluated at the
EW scale in terms of the triplet mass are shown in figure 10. On the left of figure 10,
we show the changes in the prediction of the top yukawa and Higgs quartic coupling due
to the triplet alone. We find that the ratio increases with respect to the limiting value
M∆ = Mpl, which corresponds to asymptotic safe gravity and SM, up to roughly 1% at
M∆ = 5×107 GeV. We also note that the lower and upper bounds of the neutrino Yukawa
coupling Y∆ have a mild impact to the coupling ratio, as Y∆ does not affect λ3 directly, see
eq. (3.7). We conclude that including a SU(2) triplet scalar may increase the prediction of
asymptotic safe gravity on the ratio up to 1%. For instance, this means that given a Higgs
mass ofMH ∼ 125 GeV the top quark mass is betweenMt ∼ 171 GeV andMt ∼ 172.6 GeV,
respectively for no triplet and for a triplet withM∆ = 5×107 GeV. At this stage, we may say
that better measurements of the top quark mass will determine the mass scale of the triplet
scalar, assuming quantum gravity is asymptotically safe. The current constraint given by
refs. [97, 98] tells us that the triplet cannot be much smaller than M∆ & 3 × 1011 GeV, if
we use that the upper 1σ bound of ref. [97] is around Mt ∼ 171.3 GeV.
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Figure 9. Left: running of the Higgs quartic coupling with the logarithm of the renormalisation
scale in the type I+II seesaw using the 2-loop RGEs. We used the values given in eq. (3.1) for
Mt = 170.97 GeV as well as the extrapolation to Mpl described in the beginning of section 3.
We required that λi(Mpl) = 0 with i = 1, 2, 3, 4, 5 and used M∆ = 109 GeV, Y∆(Mpl) = 1 and
YΦ(M∆) = yt(M∆) which yields a stable doublet-triplet potential. The solid blue line corresponds
to γ(M∆) = 0 and the solid green line to γ(Mpl) = 0. One finds λ, λ3 > 0 for all µ, leading to
a stable vacuum. For γ(Mpl) = 0 (solid blue) there is a step between λ3 and the effective Higgs
quartic coupling λ at M∆ due to eq. (2.16). Right: running of the cubic coupling γ for the same
example as in the left figure. The green and blue lines respectively corresponds to γ(Mpl) = 0 and
γ(M∆) = 0.

In the presence of right-handed neutrinos at the intermediate scale the prediction from
asymptotic safety derived may vary substantially depending on the magnitude of YΦ and the
value of γ(M∆). Since YΦ directly enters the beta function of λ3 (3.7), a larger YΦ implies
a larger λ at the EW scale, assuming γ(M∆) = 0, and the prediction on the ratio (4.1) is
lowered. Second, a larger value of γ leads to a smaller value of λ at the EW scale. In that
case, the ratio (4.1) increases. Thus, we have two competing effects from YΦ and γ. The
numerical results for the ratio of the top Yukawa and the Higgs quartic coupling including
right-handed neutrinos are shown on the right of figure 10. We plot the results for the
lower bound of YΦ,min according to the constraint C6 and the value of YΦ(M∆) = yt(M∆),
also consistent with vacuum stability for the values of M∆ of interest, e.g. see figure 7. For
YΦ = yt both γ(M∆) = 0 or γ(Mpl) = 0 substantially lower the prediction as compared to
asymptotic safety with the triplet only. This effect is much smaller for YΦ = YΦ,min. This
case may lead to a small increase with respect to the prediction of the SM. In particular,
for the case where γ(Mpl) = 0 and YΦ = YΦ,min the predicted ratio increases up to 0.3% at
M∆ ∼ 109GeV. The upper bound on the ratio (4.1) corresponds to the maximum value of
γ (2.18). This effect is able to compensate the effects of YΦ.

The upper and lower bounds for yt/
√

2λ in figure 10 are rather conservative. They
assume Mν = M∆, while the allowed interval shrinks for Mν/M∆ increasing. For the
boundary Mν = Mpl one recovers the result for the pure seesaw II scenario shown in the
left panel of figure 10. A rather likely boundary value for the cubic coupling is γ(Mpl) = 0.
The corresponding allowed interval for yt/

√
2λ lies in between the red and green solid lines

in figure 10. This interval also shrinks if Mν/M∆ is larger than one.
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Figure 10. Predictions on the top Yukawa-Higgs quartic coupling ratio as a function of the
intermediate scale M∆. The relative change with M∆ can be directly translated to a prediction for
the top-Higgs mass ratio if compared with the ratio for M∆ = Mpl, which is given by yt

/√
2λ ∼

1.3004. Left: change in the predictions due to the triplet only. The solid blue line refers to the
value Y∆(Mpl) = 1 and the dotted lines are the predictions corresponding to the lower and upper
bounds on Y∆ derived from vacuum stability in section 3.4. The blue shaded region is the range
of predictions allowed by vacuum stability with vanishing cubic coupling γ. The purple shadded
region shows the prediction when γ is given by eq. (2.19) and the masses of the light neutrinos are
due to a seesaw type II. The dotted green line correspond to |γ| = γmax. Right: change in the
predictions when right-handed neutrinos are taken into account. We fixed Y∆(Mpl) = 1. The red
lines are the predictions corresponding to the lowest bound on YΦ,min derived from vacuum stability
respectively in section 3.5. For the solid red line we use γ(Mpl) = 0 and for the dashed red line
we set γ(M∆) = 0. The green lines are the predictions corresponding to YΦ(M∆) = yt(M∆). The
solid green line obtains for γ(Mpl) = 0, the dashed blue line uses γ(M∆) = 0 and the dotted green
line corresponds to the maximum bound γmax in eq. (2.18). The latter would be exactly the same
for the lowest bound YΦ,min since it corresponds to the choice λ(M∆) = 0 independent of YΦ. The
blue solid line corresponds to the case without right-handed neutrinos, as in the left figure.

At the present stage the experimental bounds on Mt rule out a certain range in the
space of neutrino Yukawa couplings and cubic scalar coupling. With further information
on the values of the couplings at the Planck scale the uncertainty of the prediction for Mt

will get smaller. Certain scenarios can then be falsified by future precision measurements
of the top quark mass.

4.3 Implications from neutrino masses

After studying the general predictions for the top-Higgs mass ratio in the type I+II seesaw
within asymptotic safe gravity, let us look more specifically to the implications from the
value of light neutrino masses. First, it is interesting to focus on the case of the SU(2)
triplet with no right-handed neutrinos. In this case, γ is fixed by eq. (2.19) to explain the
light neutrino masses. The results are shown on the left of figure 10 with a purple shaded
region. We see that as M∆ grows so does γ and, therefore, the prediction for the ratio
eq. (4.1) increases. We also see that this time, the prediction is bounded from below leading
to a prediction for the top mass 171.25 GeV . Mt . 172.6 GeV which can be falsified by
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experiment. The mass of the triplet is also bounded by 5×107 GeV .M∆ . 5×1013 GeV.
This shows how precise measurements of the mass of the neutrinos and the top mass might
tell us about the intermediate scale, assuming that the vacuum can be stabilised by other
means without the need for right-handed neutrinos or taking right-handed neutrinos to be
heavier than the triplet.

Let us now consider that the vacuum is stabilised by the Yukawa coupling of right-
handed neutrinos. We found in section 3.5 a lower bound on the neutrino-Higgs Yukawa
coupling given by YΦ > 0.2. This implies that if the masses of the light neutrinos come from
a type I seesaw, the Majorana mass of the right-handed neutrinos should beMν & 1012 GeV
from eq. (2.20). In our simplistic set up, it implies that M∆ & 1012 GeV and also narrows
the predictions for the top mass. It also tells us that, in the present case, it is unlikely
to find a case where the type II seesaw completely dominates since it requires M∆ <

5×1013 GeV. A detailed numerical inspection shows that one example could be YΦ(M∆) =
0.13, Y∆(M∆) = 0.71, γ(Mpl) = 0 and M∆ = 6× 1012 GeV. In this particular example, the
prediction for the top quark mass would be around 171.1 GeV. Another example would be
YΦ(M∆) = yt(M∆) = 0.45, Y∆(M∆) = 0.74, γ(M∆) = γmax and M∆ = 7 × 1013 GeV. In
this case, the prediction for the top quark mass would be around 171.9 GeV. In both cases
the heaviest of the light neutrinos has a mass mν ∼ 0.06 eV. However, in the first case the
mass of the light neutrinos is mainly coming from the type I seesaw contribution while in
the second example it is a combination of both type I+II seesaw.

5 Discussion and conclusions

The proposal of asymptotic safety for quantum gravity is rather predictive. This concerns,
in particular, the shape of the effective potential for scalar fields. Due to an anomalous
dimension induced by fluctuations of the metric, all quartic couplings are predicted to
be (almost) zero for momentum scales beyond the Planck mass Mpl. They start flowing
away from these fixed point values only once the momentum drops sufficiently below Mpl
such that the fluctuations of the metric decouple effectively. Below Mpl the running of the
couplings is induced by the fluctuations of fields for the particles in the effective theory
below Mpl.

With given initial conditions near Mpl, the flow towards the Fermi scale yields a pre-
diction for the ratio between the quartic coupling of the Higgs doublet and the squared
Yukawa coupling of the top quark. This turns to a prediction for the ratio between the
Higgs boson mass and the top quark mass [91]. If the effective theory below Mpl is the
Standard Model, with no further particles, the predicted value of MH was around 126 GeV
with a few GeV uncertainty, as indeed found later at the LHC. With the present rather
precise measurement of the mass of the Higgs boson, the prediction of the mass ratio turns
now to a prediction of the top quark mass, which can possibly be falsified by experiment.
In view of the large efforts to measure the pole mass of the top quark precisely it be-
comes important to investigate the precision of the asymptotic safety prediction for the
top quark mass.
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There are theoretical uncertainties from three sources. The first concerns the physics
at and beyond the Planck scale. This concerns the precise value of the fixed point and the
threshold value for the decoupling of gravity. Initial investigations [74, 101] suggest that
the resulting uncertainty is rather small. The second concerns the particle content of the
effective theory below Mpl. Additional particles will modify the flow between Mpl and the
Fermi scale, modifying the asymptotic safety prediction for Mt. This has been the topic
of the present paper. Finally, a third uncertainty arises from the translation between the
values of the running couplings at the Fermi scale and the measurable quantities. This
concerns physics at the Fermi scale and a precise understanding of experimental setups.

In the present paper we have investigated the impact of an intermediate scale which
is relevant for the understanding of the masses of neutrinos. The new particles beyond
the standard model are a complex triplet of scalar fields, as well as three generations of
right-handed (singlet) neutrinos. They play a role for the flow of couplings between Mpl
and the intermediate scale, which we identify here with the mass of the scalar triplet. In
turn, this modifies the prediction of Mt/MH .

The new particles come along with new couplings, as quartic couplings for the triplet
or a cubic coupling γ between the triplet and the Higgs doublet, as well as a Yukawa
coupling Y∆ between the triplet and the leptons, or a Yukawa coupling YΦ involving the
Higgs doublet and the right-and left-handed neutrinos. While the initial values of the
quartic couplings near the Planck scale are fixed to be almost zero by asymptotic safety,
the unknown values of Y∆, YΦ and γ induce new sources of uncertainties.

We find that the possible values of the new couplings are restricted by vacuum stability
for the combined triplet-doublet potential. Not only should the absolute minimum of the
combined effective potential occur for a doublet expectation value at the Fermi scale, but
also for a much smaller expectation value of the triplet. For a large mass of the triplet this
is guaranteed by the seesaw II mechanism, provided that suitable combinations of quartic
couplings involving the triplet remain positive. In turn, this restricts the allowed range of
values for the new Yukawa couplings. For the allowed range the problem of vacuum stability
is not only solved for the Higgs doublet, but also for the full doublet-triplet system with
an intermediate scale.

Our main findings for the prediction of the mass of the top quark are the following: if
the right-handed neutrinos are heavy and the cubic coupling γ is small, the scalar triplet
has only a mild influence, increasing the predicted value of the top quark from 171 GeV for
M∆ = Mpl to 171.3 GeV for M∆ ∼ 1012 GeV and 172.6 GeV for M∆ ∼ 5 × 107 GeV. For
right-handed neutrino mass around M∆ and sizable Yukawa couplings the prediction for
Mt is lowered. It could be as low as 154 GeV, which is excluded by observations. On the
other hand, the presence of a cubic coupling γ enhances the predicted value of Mt and can
compensate for the decrease due to the Yukawa couplings of right-handed neutrinos. As
long as all these couplings are taken as free parameters the resulting uncertainty exceeds
the presently allowed experimental range. In this case experiment can be used to restrict
the neutrino sector at the intermediate scale.

This situation may change if we embed the triplet into an enlarged gauge symmetry,
such as the left-right symmetric subgroups SU(2)L×SU(2)R×U(1)×SU(3)C or SU(2)L×
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SU(2)R×SU(4)C of a SO(10) grand unification. In this context the cubic coupling γ arises
from a quartic coupling multiplied with the expectation value breaking left-right symmetry.
This quartic coupling is again predicted to vanish at Mpl by asymptotic safety, such that γ
is no longer a free parameter. Furthermore, for SU(4)C the coupling YΦ equals the Yukawa
coupling of the top quark. It is a very interesting question as to whether an intermediate
scale is compatible with vacuum stability for such theories, and what would be the precise
prediction for Mt.

Throughout we have used the two-loop RGEs to derive precise predictions for the top-
quark mass. At the electroweak scale, we took the values for the SM-parameters extracted
at two loops, but at our intermediate scale we have been limited to leading-order matching,
when formally we should include one-loop corrections for consistency. Since the quartic
couplings at the matching scale are small, we expect the loop corrections to also be very
modest, unless the parameter γ or the neutrino Yukawa couplings are large. It would
be interesting to explore the impact of improved precision at the matching scale, and to
thereby obtain accurate estimates of the uncertainties, in future work.
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A Bounds on the cubic coupling from unitarity

In this appendix, we explore possible bounds on the cubic coupling γ, in addition to the
constraint in the theory below M∆ coming from the redefinition of the effective Higgs
quartic coupling eq. 2.18. Above M∆, γ does not modify any of the beta functions for
the quartic couplings eqs. (3.7)–(3.11), and hence does not change the constraints from
vacuum stability (at least in our approximation) through running. However, it can affect
the stability conditions regarding the presence of additional charge-breaking minima; and
a large γ can also violate the constraints from perturbative unitarity. While we leave an
investigation of the former to future work, here we shall investigate the latter.

In the regime M∆ � v we can only constrain the ratio γ/M∆ rather than the absolute
value due to the absence of other physical scales. We therefore investigated the upper
bound on γ/M∆ from unitarity using the inbuilt routines in SARAH described in [115].
These routines scan over the centre of mass energy in 2 → 2 scalar scattering processes,
and find the largest value of the largest eigenvalue of the scattering matrix. They are
currently restricted to states with trivial SU(2) gauge structure, and so the calculation is
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Figure 11. Unitarity bounds on the ratio γ/M∆ against λ4 and λ5, including finite scattering
energy.

performed in the broken electroweak phase: this means that we define

γ ≡yM∆, v∆ ≡
v2y

M∆
, λ3 ≡ λ+ y2, (A.1)

and scan over scattering energies from well below to well above M∆. We verified that the
constraints are independent to a high degree of the value of λ ∈ [0,m2

h/2v2] and independent
of the actual value of M∆ � v chosen, and find |y| . 1.6 i.e.

|γ| . 1.6M∆. (A.2)

Note that there are two contributing factors here: the “conventional” scattering involving
only the quartic couplings (since we must include a large λ3 when y is large), and also
the scattering involving s-, t- and u-channel processes and the genuine cubic couplings.
However, if we consider only the conventional constraints, the bound becomes much weaker;
we have λ3 . 8.4, showing that we have a genuine constraint on the cubic coupling. While
the constraint on y is almost independent of λ1 and λ2, there is a non-trivial dependence
on λ4 and λ5, which we show in figure 11.

B 2-loop Renormalisation group equations of Y=1 triplet and right
handed neutrinos.

In this appendix we present the RGEs for the type I+II seesaw up to 2-loop extending the
results of ref. [106]. Our definitions of the beta functions are given by

β (X) ≡ µdX
dµ
≡ 1

(4π)2β
(1)(X) + 1

(4π)4β
(2)(X) , (B.1)

where X would be either a gauge, Yukawa, cubic, quartic or mass coupling.
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B.1 Gauge couplings
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∗
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B.6 Fermion mass couplings
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