
HAL Id: hal-02933815
https://hal.science/hal-02933815v2

Submitted on 19 Dec 2022 (v2), last revised 20 Mar 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Image Correlation uncertainty
M.L.M. François

To cite this version:
M.L.M. François. Virtual Image Correlation uncertainty. International Journal for Numerical Methods
in Engineering, 2022, 123 (18), �10.1002/nme.7037�. �hal-02933815v2�

https://hal.science/hal-02933815v2
https://hal.archives-ouvertes.fr


Uncertainty of the Virtual Image Correlation

method

M. L. M. François

December 19, 2022

Correspondance
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Summary
The Virtual Image Correlation method applies for the measurement of sil-
houettes boundaries with sub-pixel uncertainty. It consists in a correlation
between an image of interest and a virtual image based on a parametrized
curve. It is shown that the method is exact in 1D, insensitive to contrast
variation, and that the bias induced by brightness variation can be easily
corrected. Optimal value of the virtual image width, the sole parameter of
the method, and optimal numerical settings are established. An estimator is
proposed to assess the relevance of the user-chosen parametrized curve fam-
ily to match the contour. An analytical formula and a diagram are given for
the measurement uncertainty in both cases of noiseless and noisy images.
The results obtained are validated by tests carried out on synthetic images
and on real images.

This work was granted by the french Agence Nationale de la Recherche
within the MoMaP program.
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1 Introduction

The Virtual Image Correlation (VIC) method originates from the global
form of the Digital Image Correlation (DIC) method [1, 2]. However, in
the VIC, the second image is an elementary and unitary virtual one which
simply mimics the white to black gradient of the boundary and whose shape
is defined from a parametrized curve. At convergence, when virtual and
physical images are close as possible, the optimal shape parameters are ob-
tained and the corresponding curve represents a measurement of the contour.

The most direct application of the VIC is the shape measurement. Its
sub-pixel accuracy makes it applicable to metrology. In the field of mechan-
ical measurement, DIC has established itself for the full-field measurement
of displacement and deformation. However, it does not apply when the sur-
face is too small, such as for slender objects (beams, lattices) or when the
surface cannot be provided with any texture. By measuring the silhouette
or contour in the initial and final states, the VIC can complement the DIC
in these cases.

The very first version of the VIC was dedicated to the measurement of
open contours [3]. A highly flexible fiber was measured using a curve repre-
sented by a Lagrangian series. A cantilever beam was also measured, using
a beam mechanical equation, which led to an identification of its Young’s
modulus. The accuracy of the VIC was then successfully compared, by nu-
merical tests, to existing ridge detection methods [4]. Another application
was the tracking of a cylinder in motion in a fluid flow [5]. In this case,
the curve was a circle, whose small number of shape parameters (3) allowed
a high accuracy measurement (this will be demonstrated in this article).
Possible applications in metrology, including comparison with caliper mea-
surement, were presented [6]. A numerically efficient version of the VIC has
been proposed, in which levelsets are used within a finite element framework
[7, 8]. At this occasion, NURBS were used for the measurement of silhou-
ettes. This was then extended in 3D for the measurement of organ shapes
in medical imaging [9]. Recently, the VIC has also been used to improve the
accuracy of the DIC near object boundaries [10].

The field of mechanical measurement with the VIC and analytical equa-
tions of beams, already addressed in [3], was pursued for glued beams [11],
then for inflatable beams which have specific behavior laws [12]. The first
use of a finite element description in the VIC was also linked to the mea-
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surement of the deformation of inflatable beams in a wind tunnel [13, 14].
On this occasion, special finite elements were used which include the ap-
pearance of folds. The mechanical properties of the coated fabric, as well as
the folded areas not visible to the naked eye, were obtained by this analysis.

In a recent publication [15], the authors propose a mechanical shape cor-
relation (MSC) method that has similarities with the VIC. The correlation
is done between a physical image and a virtual image obtained by FEM
simulation and the correlation parameters are also the parameters of the
mechanical model. However, in the MSC, contrary to the VIC, the physical
image is not directly used for the correlation, but is replaced by an image
of the distance to the object contour, obtained after binarization. This pro-
cedure certainly helps to capture large displacements but it is possible that
this initial processing induces a loss of accuracy. On the contrary, the VIC
uses the raw, unfiltered image. A future comparison of the performances of
the two methods, in terms of accuracy, detection capacity and computation
time, will be interesting in order to specify the fields of application of each
method.

For the sake of brevity, no new applications of the VIC will be pre-
sented in this article, which focuses on its accuracy. Specifically, the effect
of parametrization, digital adjustments and classical image defects on ac-
curacy are analyzed. However, optical distortions, local variations in lumi-
nance, optical effects such as diffraction at the borders, reflections. . . , are
not studied here from a theoretical point of view. Like any global method,
the quality of the identification depends on a choice: the kinematic field for
the DIC and the nature of the curve for the VIC. In this article, we propose
an estimator of the capacity of the chosen curve to represent the contour of
interest.

In Sec. 2 the main equations of the VIC are presented. Compared to
previous versions of the VIC, the correlation is now calculated in the virtual
image frame instead of the pixel frame, which provides simpler equations
and slightly better accuracy. Sec. 3 is devoted to an analysis that shows the
theoretical exactness of the 1D VIC and gives consequences on the influence
of image brightness and contrast. In Sec. 4 the link between image noise and
measurement uncertainty is studied. In Sec. 5 the uncertainties associated
with the gray level discretization and with the spatial (pixel) discretization
are studied. The effect of physical image blur on uncertainty is the subject
of Sec. 6. In Sec. 7, the above results are merged into a single uncertainty
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formula and a usable chart. A procedure for analysing the ability of the
curve equation to fit the contour of interest, based on the frequency analysis
of a local (unconstrained) identification, is presented in Sec. 8. The pro-
posed uncertainty expressions are validated on both synthetic and real tests
in Sec. 9. This uncertainty, already compared [4] with that of Fast Marching
Algorithm [16] and Steger’s method [17] is compared in this article to two
recent methods reputed for their accuracy [18, 19].

All the works presented in this article are related to the Funambule
software [20], developed by the author and freely available.

2 The VIC method

2.1 General expressions

The image F, which contains the silhouette of interest, represents the input
data of the VIC method. Let X(X1, X2) be the position of any point in F
and F (X) ∈ [0, 1] the normalised value of the gray level at this point. The
silhouette is measured by looking for the best fit between F and a virtual
image G that consists of a linear evolution of the gray level around a curve
C (see Fig. 1). This curve is of general equation Xc(x1, λ1, . . . , λN ), where
x1 ∈ [0, 1] is the curve parameter which define the curvilinear abscissa and
the λp are the researched shape parameters.

fF g

C
G

C

0 1-1

1

0 1-1

1

Figure 1: Sketch of the VIC method.

Any point X in the vicinity of C can be located with respect to the curve:

X(x1, x2, λ1, . . . , λN ) = Xc(x1, λ1, . . . , λN ) +Rx2 er(x1, λ1, . . . , λN ), (1)

where er is the local normal to the curve, Xc is the point closest to X that
belongs to C and Rx2 is the distance (in pixels) from Xc to X (see Fig. 2).
The virtual image is only defined for x2 ∈ [−1, 1], thus in a band of width 2R
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Figure 2: Virtual image G geometry (left) and gray levels (right).

around C. The gray levels of G evolve linearly with respect to the distance
to the curve:

G(X) = g(x) (2)

g(x) =
1 + x2

2
. (3)

In the frame x(x1, x2) the image g is a simple gradient of gray along x2
(Fig. 1). If the method succeeded, the physical image in this frame:

f(x) = F (X) (4)

is quite similar but is stricto sensu only defined at the pixel centers. Fig. 1
shows such image f in which the red lines correspond to the pixel edges of
the image F.

The goal of the method is to find the shape parameters λp of C for
which the physical and virtual images are in best coincidence. As for many
DIC methods [1], the mean square difference between the two images is
minimised. In the very first versions of the VIC [3, 4, 8], this difference
was computed between F and G, in the pixel frame X. But this involves the
minimisation of the overall surface of the virtual image (2RL) thus induces a
slight but unwanted line tension effect. In the present version, the difference
is expressed between f and g thus in the frame (x1, x2):

ψ =

∫∫
(f(x)− g(x))2dx1dx2∫∫

dx1dx2
, (5)

where the denominator represents the area of g which is of value 2. The
minimization of Ψ with respect to λp is achieved by using a Newton scheme,
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solving iteratively the N ×N linear system:

∂2ψ

∂λp∂λq
∆λq = − ∂ψ

∂λp
(6)

where ∆λq is the corrector of the current values of the curve parameters λq
and where:

2ψ(λ1, . . . , λN ) =

∫ 1

−1

∫ 1

0
(F (X(x1, x2, λ1, . . . , λN ))− g(x2))

2 dx1dx2, (7)

∂ψ

∂λp
=

∫ 1

−1

∫ 1

0

(
∂F

∂X
· ∂X
∂λp

)
(f − g)dx1dx2, (8)

∂2ψ

∂λp∂λq
=

∫ 1

−1

∫ 1

0

[(
∂X

∂λp
· ∂

2F

∂X2
· ∂X
∂λq

+
∂F

∂X
· ∂2X

∂λp∂λq

)
(f − g) +(

∂F

∂X
· ∂X
∂λp

)(
∂F

∂X
· ∂X
∂λq

)]
dx1dx2. (9)

Close to the solution f ' g thus it is possible to take into account only
the last term, as done in DIC [1]. In Annex B is detailed a study of their
magnitude. Thus:

∂2ψ

∂λp∂λq
'

∫ 1

−1

∫ 1

0

(
∂F

∂X
· ∂X
∂λp

)(
∂F

∂X
· ∂X
∂λq

)
dx1dx2 (10)

in which, from Eq. (1): The derivatives of the curve points Xc are either
analytically or numerically known (see Annex B for useful expressions). The
tangential vector es and the normal vector er to the curve are defined as:

es =
∂Xc

∂x1

∥∥∥∥∂Xc

∂x1

∥∥∥∥−1 (11)

er = es × ez (12)

where × denotes the cross product and ez is the unitary vector normal to
the plane. Above definition guarantees that er points uniformly outside
any closed curve orientated positively. The curvilinear abscissa s and the
curvature ρ are:

s =

∫ x1

0

∥∥∥∥∂Xc

∂ξ1

∥∥∥∥ dξ1 (13)

ρ = −
(
∂2Xc

∂x21
· er
)∥∥∥∥∂Xc

∂x1

∥∥∥∥−2 (14)
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and L = s(1) is the overall curve length. If the non-overlapping condition:

|ρ|R < 1 (15)

is not fulfilled, the center of the osculating circle of C of radius 1/|ρ| is
inside the virtual image G, thus some points in the vicinity of this center
are defined at least twice. However, in a practical point of view, experience
shows that it is possible to overcome this second condition as soon as the
sharp corners of C do not exceed the right angle because sharper angles put
in coincidence inner (black) points of G with outer (white) points of F. From
Eq. (54) the curve must not have any stationary points:∥∥∥∥∂Xc

∂x1

∥∥∥∥ > 0. (16)

Differentiating Eq. (1) and using Eq. (11, 12, 14) gives the differential surface
element in the frame X:

dX =

(
∂Xc

∂x1
+ ρRx2

∥∥∥∥∂Xc

∂x1

∥∥∥∥ es) dx1 +Rerdx2. (17)

2.2 Set of simplified equations in ideal cases

Close to the solution, as is the case for g (Eq. 3), the gray levels of f depend
mainly on x2. Assuming f(x2) leads to:

∂F

∂X
=

f ′

R
er. (18)

Together with Eq. (54), this allows the separation of variables in Eq. (8):

∂ψ

∂λp
=

1

R

∫ 1

0

∂Xc

∂λp
· er dx1

∫ 1

−1
f ′(f − g)dx2. (19)

The current term of the first integral is null if ∂Xc/∂λp is everywhere
collinear to es, corresponding to a tangential motion which lets the curve
unchanged: such case has to be avoided when choosing a curve equation.
Thus, at convergence of the Newton scheme, when ∂ψ/∂λp = 0:∫ 1

−1
f ′(f − g)dx2 = 0. (20)

An integration by parts gives:∫ 1

−1

(
f(x2)−

1

2

)
dx2 = f2(−1)− (1− f(1))2. (21)
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Consequently, if the virtual image borders lie one in a white background and
one in a black silhouette: f(−1) = 0 and f(1) = 1, the mean value of f is
1/2.

2.3 The VIC numerical settings

The virtual image half width R is the sole analytical setting of the VIC.
However, the VIC uses computation points defined from a discretization of
(x1, x2) which does not correspond to the pixel grid but are spaced respec-
tively of ∆x1 and ∆x2 such as:

∆x1 =
1

ceil(nrL)

∆x2 =
1

ceil(nrR)
, (22)

where nr is the refinement coefficient. In this way, the distance between the
calculation points in the pixel grid is of the order of 1/nr. Such computation
points are shown in blue in Fig. 14. As a consequence, the gray levels of
F need to be interpolated at intermediate points between the pixel centers.
The type of interpolation is also a numerical setting. The influences of R,
of nr and of the interpolation method are discussed in Sec. 5.

3 Preliminary 1D analysis

3.1 Accuracy of the 1D VIC with discrete images

In this part we consider the unidimensional VIC, taking into account the
discrete nature of F and its interpolation. An ideal continuous image of a
silhouette corresponds, in 1D, to a brightness F̄ of equation:

F̄ (X2) = (FM − Fm)H(X2 −X0
2 ) + Fm, (23)

where H is the Heavyside distribution, X0
2 the abscissa of the edge to be

identified, Fm the gray level of the (dark) silhouette and FM the gray level
of the (light) background. Such an image F̄ is shown by red lines in Fig. 3,
4 and 5 for X0

2 = 0.25.

The corresponding discrete image F is obtained by assuming an ideal
sensor, with a gray level proportional to the average light flux it receives
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Figure 3: 1D VIC with perfect image.
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Figure 4: 1D VIC with reduced contrast but no brightness bias.
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Figure 5: 1D VIC with brightness bias and reduced contrast.

and an infinite number of gray levels:

F (i) =

∫ i+1/2

i−1/2
F̄ (X2)dX2, (24)

where i ∈ N is the pixel number. The edge of the silhouette is supposed
passing by the pixel of number i = 0 i.e. X0

2 ∈]− 1/2, 1/2] thus:

F (i 6 −1) = Fm,

F (0) =

(
1

2
+X0

2

)
Fm +

(
1

2
−X0

2

)
FM ,

F (i > 1) = FM . (25)

The gray levels of these pixels are shown by blue squares in Fig. 3, 4 and 5.
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The VIC requires the calculation of the distance between the physical
and virtual images (Eq. 5). In this section, we calculate it analytically, i.e. in
the space of real numbers, which implies to interpolate F (X2) at non-integer
values of X2. This corresponds to a degree of refinement nr →∞ in Eq. (22).
Using a simple linear interpolation, the brightness of the interpolated image
is:

F (X2 < −1) = Fm,

F (X2 ∈ [−1, 0[) =

(
1

2
−X0

2

)
(FM − Fm)X2 +

FM + Fm
2

−X0
2 (FM − Fm),

F (X2 ∈ [0, 1[) =

(
1

2
+X0

2

)
(FM − Fm)X2 +

FM + Fm
2

−X0
2 (FM − Fm),

F (X2 > 1) = FM . (26)

They are represented by blue segments in Fig. 3, 4 and 5.

The curve C (Eq. 1) is reduced in 1D to a point of abscissa λ, its sole
shape parameter:

X2 = λ+Rx2. (27)

When ψ is minimum with respect to λ, Eq. (21) is satisfied. If the borders
of the virtual image are outside the transition pixel, its expression in the
frame X2 is:

1

R

∫ λ+R

λ−R

(
F (X2)−

1

2

)
dX2 = F 2

m − (1− FM )2. (28)

The condition
R > 1.5 (29)

guarantees that the borders of the virtual image are outside the transition
pixel whatever X0

2 . Using Eq. (26, 28) gives:

λ = X0
2 +R

FM (1− FM )− Fm(1− Fm)

FM − Fm
. (30)

This expression is much simpler once expressed with the measurement bias
δ (pixel) with respect to the contrast c and the brightness bias b:

δ = λ−X0
2 , (31)

c = FM − Fm, (32)

b =
FM + Fm − 1

2
, (33)

δ = −2Rb. (34)

10



This important result shows that the VIC is not affected by a variation of
contrast but that a bias of brightness, i.e. when Fm 6= 1 − FM , induces a
measurement bias. Fig. 5 shows such case, for R = 1.5, Fm = 0.8, Fm = 0.1,
so c = 0.7 and b = −0.05, leading to a measurement bias of δ = 0.15 pixel.

Fortunately, the knowledge of the gray level of the silhouette Fm =
f(−1) and of that of the background FM = f(1) allow one to easily correct
such brightness bias. For this, a linear correction must be used because a
calculation similar to this one shows that it leads to the exact solution. In
fact, the cases of Fig. 3 and Fig. 4 can be seen as the case of Fig. 5 with a
corrected brightness. Even if the brightness is corrected, from Eq. (34), it is
wise to choose as small an R as possible (R = 1.5 in this 1D case) to limit
the effect of a possible residual bias.

3.2 Consequences on the 2D VIC

The previous study allows conclusions to be drawn for the actual VIC mea-
surement, in 2D. The width of the virtual image should be as small as
possible, but large enough to cover the transition zone (from background to
silhouette) in all cases. As the maximum length of a square pixel is

√
2, the

previous relationship (R > 1.5 in 1D) becomes in 2D R > 3
√

2/2. A lin-
ear grayscale correction, so that the background is white and the silhouette
is black, provides good accuracy. For this purpose, the evaluation of the
current gray levels of the silhouette and the background can be done by an
average:

FM =

∫ 1

0
f(x1, 1)dx1, Fm =

∫ 1

0
f(x1,−1)dx1. (35)

In the previous analysis, the exact identification was obtained by making a
linear interpolation of the physical pixel image. In Sec. 5, it will be shown
that, in 2D, linear interpolation is the best among classical interpolations.
Moreover, the previous results show that it is important to have a CCD
sensor with good linearity.

The 2D aspects make it necessary to relativise the validity of the For-
mula 34, in particular because of the crucial problem of the angle between
the edge and the directions of the pixel grid. This will be studied in Sec-
tion 5. At last, with regards to the 2D complete problem, this 1D study
corresponds to a local (thus less precise) version of the VIC in which the
continuity of the curve is not exploited.
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4 Uncertainty due to image noise

Inevitable image noise leads to uncertainty in the measurement of the VIC.
We now consider that we apply the VIC on a noisy image F+E, where F is
the ideal image without noise and E is an image of spatially uncorrelated
Gaussian noise, with zero mean and of standard deviation σ0. This induces
a shift ∆Xc(x1) from the identified curve to the measurement without noise.
Since a tangential displacement has no influence on the curve C, the uncer-
tainty due to image noise is defined as the standard deviation of this shift
along the normal of the curve:

σ2n =

∫ 1

0
σ2 (∆Xc · er) dx1. (36)

At the first order, this deviation is associated with the variations of the
parameters ∆λq by:

σ2n = σ2(∆λq)

∫ 1

0

(
∂Xc

∂λq
· er
)2

dx1. (37)

From the Newton’s scheme (Eq. 6):

σ2
(
∂ψ

∂λp

)
=

(
∂2ψ

∂λp∂λq

)2

σ2(∆λq). (38)

In the case without noise case, ∂Ψ/∂λp = 0 at convergence. As a conse-
quence, in the case with noise, from Eq. (8):

∂ψ

∂λp
=

∫ 1

−1

∫ 1

0

(
∂F

∂X
· ∂X
∂λp

)
ε dx1dx2. (39)

where ε(x1, x2) = E(X1, X2) is the added image noise. In order to obtain a
simple formula, we now assume that, when the identification is achieved, F
and G are locally similar. From Eq. (3,18):

∂F

∂X
=

1

2R
er. (40)

Supposing a weak curvature |ρ|R � 1 and, approximating from Eq. (13)
‖∂Xc/∂x1‖ = ds/dξ1 ' L gives:

dX1dX2 ' RLdx1dx2, (41)
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which shows the correspondance between the virtual image surfaces S =
2RL in the frame X and s = 2 in the frame x. From this and Eq. (54):

∂ψ

∂λp
=

1

2R

∫ 1

−1

∫ 1

0

(
∂Xc

∂λp
· er
)
ε dx1dx2, (42)

∂2ψ

∂λp∂λq
=

1

2R2

∫ 1

0

(
∂Xc

∂λp
· er
)(

∂Xc

∂λq
· er
)
dx1. (43)

In order to take into account the finite number of pixels, Eq. (42) is tran-
scribed in the pixel frame, thanks to Eq. (41) and by considering dX1 =
dX2 = 1 pixel:

∂ψ

∂λp
=

1

2LR2

∑(
∂Xc

∂λp
· er
)
E (44)

where the sum is performed on the pixels located in the band of width 2R
of the virtual image. Consequently:

σ2
(
∂ψ

∂λp

)
=

σ20
4L2R4

∑(
∂Xc

∂λp
· er
)2

, (45)

where σ0 = σ(E). Returning to the continuous virtual image frame (x1, x2),
we obtain:

σ2
(
∂ψ

∂λp

)
=

σ20
2LR3

∫ 1

0

(
∂Xc

∂λp
· er
)2

dx1. (46)

Gathering previous results gives the researched value of σn. However, in
order to obtain a simpler expression of the uncertainty, we will assume that
∂2ψ/∂λp∂λq is a diagonal matrix:

∂2ψ

∂λp∂λq
' δpq

2R2

∫ 1

0

(
∂Xc

∂λp
· er
)2

dx1. (47)

This provides a very useful and simple expression of the measurement un-
certainty associated with image noise:

σn = σ0

√
2NR

L
, (48)

where N is the number of shape parameters λp. The last hypothesis of a
diagonal form of is exact if the shape parameters act on distinct segments
of the x1 abscissa. This is of course generally not true but, in many cases
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(such as B-Spline curves) the shape parameters act on relatively separated
domains, leading to band matrixes with strong values on the diagonal.

The proportionality between the uncertainty σn and the image noise σ0 is
common with DIC uncertainty analysis [21][22][23][24]. Doubling the image
resolution doubles L thus divides σn by

√
2. The uncertainty is proportional

to
√
N : this weak dependence allows the choice of relatively complex fam-

ilies of curves. The smaller R is, the smaller the uncertainty is, provided
that the edges of the virtual image are one in the background and the other
in the silhouette. Consequently, R = 3

√
2/2 (see Section 3), appears to be

optimal.

5 Uncertainty due to discretisation

5.1 Grayscale discretization

In real images the gray levels are transcribed into a finite number of 2nb

levels, where nb is the bit depth. This loss of information is classically
associated with a quantization noise [25]:

σ0q =
1

2nb
√

12
, (49)

which can be taken into account in addition to the image noise σ0. However,
for real images, it is generally negligible compared to the latter.

5.2 Spatial discretization

In Sec. 3.1 it was shown that the VIC is exact in the 1D discrete (pixel)
space, whatever the position of the edge in the transition pixel. However, in
2D, the silhouette intersects the pixel grid with some angle. In particular,
for small angles, staircase artifacts are a common problem in image process-
ing.

The line segment test consists in measuring a straight edge, whose center
is located at ∆X02 ∈ [0, 1[ at the vertical of the image center (X01, X02) and
whose angle is θ0 ∈ [0, π/4] (See Fig. 6). It mimics, at least locally, any
case of VIC identification, when the curvature is negligible. The gray level
of the transition pixels (those containing the edge) is calculated from the
analytical ratio between the area occupied by the silhouette and the area
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Figure 6: A line segment test.

occupied by the background.

The retained curve is a line segment whose shape parameters ∆X2 and
θ, are defined in the same way as the reference parameters above. Its length
L+ ∆L/ cos(θ0), which has no meaning in the physical image and thus not
measurable by the VIC, is imposed. The variation of length ∆L ∈ [−0.5, 0.5]
pixel allows to test all possible locations of the beam ends with respect to
the pixel grid.

For the statistics, ∆X02, θ0 and ∆L are varied over 20 levels. Each
computation is initialised at ∆X2 = αR and θ = θ0 + αR/L, where α ∈
[−0.5, 0.5] is a random number. For each test, the RMS error of the dis-
tances between the reference line and the measured segment is calculated.
Due to the low dependency observed on ∆L, the results are presented (at
least) averaged over it.

At first we check the influence of the virtual image half-width R, setting
nr = 3, L = 100 (a typical value) and a linear interpolation. We observe on
Fig. 7 that the error grows globally with R. However, the error is often larger
when θ0 = 0 (up to 0.01 pixel). This case seems to be similar to the 1D case
(Sec. 3) whose analytical result is exact, but here the interpolation is done at
a finite number of points whose positions influence the result. For non-zero
angles an averaging effect compensates this. This problem disappears for
R = 2 and further integer values. Consequently, with a uniform error below
0.0032 pixels, close to the previously suggested value 3

√
2/2 ' 2.1, R = 2 is

the optimal value.

At second we check the influence of the interpolation method, setting
R = 2, nr = 3 and L = 100. Fig. 8 shows that the simple and fast linear
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a) b) c)

d) e) f)

Figure 7: RMS deviation (pixel) for the line segment test with a) R = 1, b)
R =

√
2, c) R = 2, d) R = 3

√
2/2, e) R = 3, f) R = 4, in average over ∆L.

a) b)

c) d)

Figure 8: RMS deviation (pixel) for the line segment test with interpolation
method a) nearest, b) linear, c) cubic, d) B-Spline.

interpolation is the best choice. This is consistent with the analytical anal-
ysis of Sec. 3, but different from DIC where richer interpolations are known
to give better results [26, 24, 27].

At third we check the influence of the refinement nr, setting R = 2,
L = 100 and a linear interpolation. Because the computation time is pro-
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Figure 9: RMS deviation (pixel) as a function of the refinement parameter
nr, in average over θ0,X02,∆L.

portional to n2r , Fig. 9 shows that nr ' 3 is clearly the best value.

Finally, the influence of the length L is tested on more than two orders
of magnitude for R = 2, nr = 3 and linear interpolation (Fig. 10). The

100 101 102 103

L

10-4

10-3

10-2

Figure 10: RMS deviation (pixel) as a function of the beam length L, in
average over θ0,X02,∆L.

empirical rule:

σd '
N

20L
, (50)

shown by the red line, is in good agreement with the tests. It supposes that
the governing term is the length par number of parameters L/N (N = 2
in these tests) because the analytical analysis of Sec. 4 exhibits such role of
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L/N in Eq. (48). The validity of this rule will be confirmed in Section 9.

6 uncertainty due to image blur

In order to study the influence of image blur on the accuracy, the line seg-
ment test is used by applying a Gaussian blur of standard deviation σb
to the image. The parameters of the VIC are fixed with a typical length
L = 100, a refinement nr = 3 and a linear interpolation but R is varied. Two
of the tests are shown: one with R = 2 and the other with R = 2 + σb/2,
enlarged so that the virtual image better matches the blurred edge (Fig. 11).

Figure 11: A test with a blur of 6 pixels and R = 4.5 pixel.

0 1 2 3 4 5 6

b

10-4

10-3

10-2

Figure 12: RMS deviation (pixel) as a function of the standard deviation
of the Gaussian filter, in average over θ0,X02,∆L. Black: R = 2, red:
R = 2 + σb/2.

Fig. 12 shows the results in average on all tests. Surprisingly enough, a
moderate blur (up to σb = 2) improves the accuracy. We can not conclude
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that the application of a (optic or digital) blur to a real image would sys-
tematically be of benefit but it still highlights a relative insensitivity of the
VIC to a moderate blur. Moreover, we observe that the enlargement of R
does not improve the accuracy. The fact that the virtual image is then closer
to the real image seems to be compensated by the increase in uncertainty
according to Eq. 48.

7 Uncertainty formula and chart

Assuming that (i) the chosen curve is capable of representing the contour
of interest, (ii) the uncertainty associated with the noise is independent of
the uncertainty associated with the discretization, and (iii) neglecting (from
Sec. 6) the effect of (moderate) blurring, we derive the following expression
for the uncertainty VIC from Eq. (48, 50) :

σ2 = 2Rσ20
N

L
+

1

400

(
N

L

)2

. (51)

The corresponding chart shown in Fig. 13 gives the uncertainty of the VIC
measurement. Sub-pixel accuracy is possible even with high image noise
and only a few tenths of pixels per parameter. However, accuracies better
than 10−3 pixels require a few hundred pixels per parameter and low noise
images. Curvature effect has been neglected in this approach but the tests
in Sec. 9 confirm its validity in general cases. The quantization noise σ0q
(Eq. 49) can be taken into account within σ0 if it is not negligible compared
to the image noise.

8 Uncertainty due to curve mismatch and local
correlation indicator

The remaining problem is to check whether the family of curves chosen by
the user is capable of describing the contour of interest. This question is
specific to global methods and also arises for DIC [28, 29]. The proposed
idea is to compare the result of the global VIC measurement with a lo-
cal, less precise but unconstrained measurement. If the difference between
these two measurements is everywhere smaller than the local measurement
uncertainty, then the chosen C curve family is suitable for describing the
silhouette. If not, we will show that the analysis of this difference reveals
the nature of the lack of flexibility of the curve family.
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Figure 13: Uncertainty of the VIC, for R = 2 and various image noise levels.

The local measure µ is constructed from Eq. (21):

µ(x1) =

∫ 1

−1

(
1

2
− f(x1, x2)

)
dx2 + f2(−1)− (1− f(1))2, (52)

which is fulfilled in case of 1D measurement thus in the present case of
2D unconstrained measurement. Since the origin of x1 is the (global) VIC
measurement, µ(x1) represents the distance between the VIC measurement
and this local unconstrained measurement in the (x1, x2) frame. In the pixel
frame, from Eq. (1), this distance is Rµ(x1). The uncertainty of this local
measure is given by Eq. (51) with N = 1 (one parameter) and L = 1 (one
pixel):

σµ =

√
1

400
+ 2Rσ20. (53)

The local and global measurements are in agreement as long as Rµ is less
than this uncertainty. Note that the uncertainty of the VIC is negligible
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compared to this one because typically N/L ' 100 in Eq. (51). However,
the fact that the local and global measurements do not agree at a single
point is not evidence that the chosen curve cannot describe the contour:
this is only the case if many adjacent points are in this case. The frequency
analysis of Rµ gives access to this information.

a) b)

 P1 P2

 P3  P4

c)

Figure 14: Images F of the small disc and its VIC measure with: a) square,
b) 4-points B-spline of degree 2, c) circle.

We will take at first an example of this analysis on the measurement of
a very small disk of radius 3.333, centred at X = 7.2345 and Y = 7.6789
(pixels), in a 14 × 14 pixels, 16 bits image whose synthesis is described in
Annex C (see Fig. 14). It is known that B-Splines are not able to theoret-
ically describe a circle [30]. If, at first sight of Fig. 14, all identifications
seem to fit, the same result seen in the image f frame in Fig. 15 shows that
the local identification Rµ is in good agreement with the VIC measurement
(corresponding to Rx2 = 0) only for the circle. On the frequency analysis of
Rµ (Fig. 16), we observe that all peaks are under σµ for the circle, showing
the adequacy of this curve for this measurement. In the case of the square,
the main peak of wavelength L/4 (the square has N = 4 parameters, 3 of
position and its base) largely exceeds σµ, showing that this curve is not
adapted. Harmonics at higher frequencies are also visible. In the case of
the B-Spline, the peak at L/4 is the only one which exceeds, by a little, σµ.
This identification is therefore imperfect but better than the one with the
square.

In actual VIC use cases, the L/N ratios are of the order of 100. For
this reason, the second example consists of a synthetic image (not shown) of
a disk of radius 100.333 and of center (110.2345,110.6789) (See Annex C).
Fig. 17 shows FFT(Rµ) in different cases. With a peak greater than the
tolerance given by Eq. (53), it is clearly indicated that the 40-sides polygon
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Figure 15: Images f of the small disc and its VIC measure with: a) square, b)
4-points B-spline of degree 2, c) circle. Circular marks: local identification
Rµ, cyan if < σµ, magenta if > σµ. Green dotted lines: deformed pixel grid.

(4-parameter: 2 for the center, 1 for the radius and 1 for the angle) is not
suitable for this measurement. The peak at ' 15 pixels is corresponding
to the length of the curve divided by the number of sides of the polygon
(631/40). Not surprisingly, for the B-Spline, the larger the number of control
points, the better the identification (up to L/N is not too small). For the
circle, the longest wavelengths have peaks near or below 10−4 pixels, showing
the perfect relevance of the chosen curve. In any cases, peaks of magnitude
of some pixels are only representative of the uncertainty of Rµ.
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Figure 16: FFT(Rµ) for the small disc measured by: a) square, b) 4-points
B-Spline of order 2, c) circle.

9 Validation and comparison of the VIC uncer-
tainty

9.1 Validation of the proposed expressions on synthetic im-
ages

In table 1 we compare predicted and measured uncertainties on various test
cases. Cases C1 to C4, shown in [4], consist in an identification of a spiral
by a 10-points B-Spline of order 2 in a synthetic 401 × 401 pixel image.
Cases D1 to D3 refer to synthetic images of discs (see Annex C) of average
radii respectively of 3, 10, 100 pixels whose center and radius are randomly
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Figure 17: FFT(Rµ) for the large disc measured by: a) 40-sides regular
polygon, b) 10-points B-Spline of order 2, c) 12-points B-Spline of order 2,
d) circle.

varied over 1 pixel, for 100 trials. Cases D′1 to D′3 are similar to them, but
with an additive gaussian image noise σ0. All images are in 8 bits. The

24



Table 1: Predicted σ and measured σ̄ uncertainties on various tests.
test case R L N σ0(‰) σd(‰) σn(‰) σ(‰) σ̄(‰)

C1 1 1236 20 1.1 0.81 0.20 0.83 9
C2 1 1236 20 300 0.81 54.0 54.0 54
C3 1 1236 20 500 0.81 89.9 89.9 85
C4 1 1236 20 900 0.81 162 161.9 180

D1 2 18.8 3 1.1 7.96 0.90 8.01 4
D′1 2 18.8 3 100 7.96 79.8 80.2 56
D2 2 62.8 3 1.1 2.39 0.49 2.44 0.96
D′2 2 62.8 3 100 2.39 43.7 43.8 30
D3 2 628 3 1.1 0.24 0.16 0.29 0.24
D′3 2 628 3 100 0.24 13.8 13.8 8

predicted uncertainty σ (Eq. 51) takes into account both image noise and
quantization noise. The measured uncertainty σ̄ consists in the standard
deviation between the points measured by the VIC and the exact analytical
curve which was used for the image synthesis.

One observes that the predicted uncertainties are in good agreement, al-
though generally a bit pessimistic, with measured ones. The sole exception
is the case C1 for which a curve fitting error is present, the 10 control points
of the B-Spline being not enough to describe the spiral at this level of pre-
cision (at the time of the publication [4] no tool such as Rµ was available
to detect it). The C cases are related to curve measurements and not to
silhouette measurements. However a curve can be seen as two silhouettes
joined together and we note that the proposed estimator works in this case
too.

9.2 Comparison of uncertainties between VIC and local meth-
ods

The VIC has been already successfully compared to Fast Marching Algo-
rithm [16] and Steger’s method [17] in earlier publication [4]. Since this
article, new methods also claimed for sub-pixel precision. Among them we
retained the work of Trujilo-Pino (TP) [18, 31] which, based on an area
estimate, is in some way close to the estimator Rµ (Eq. 52). For reference,
we retained the well known Active Contours (AC) method [19].
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Table 2: Measured uncertainties σ̄ (‰) for active contours (AC), Trujilo-
Pino’s (TP) and present VIC methods.

test case AC TP VIC

D1 44 6 4
D′1 75 227 56
D2 30 2.04 0.96
D′2 71 231 30
D3 27 1.95 0.24
D′3 69 236 8

Table 2 shows the results obtained for the circular disc tests. The VIC
offers better accuracy than these local methods, with an increasing gain
according to the ratio L/N . With L/N = 209, tests D3 and D′3 are the
most representative of realistic use cases. For these, the VIC was found to
be 8 times more accurate than the best of the two local methods tested.
For information, in the cases of the TP method with noisy images, some
erroneous measurements at distance > 0.5 pixel were ignored.

9.3 Validation on real images

The uncertainties analysed in this article, related to luminance and con-
trast defects, image noise, image discretization and curve incompatibility,
are tested below in a real case. Close to the previous tests D1 to D′3, they
consist in measuring the inner diameter of the assumed perfect circle of a
camera spacer ring on which caliper measurements gave a diameter of 53.5
mm and no circularity defects. Images are taken under correct but not per-
fect conditions (Fig. 18). In particular, time-dependent image noise was not
reduced by averaging images over time, and no attention was paid to the
presence of heat waves. In order to avoid problems with paint thickness
and droplets, the ring has not been painted but carefully cleaned, its re-
flectance resulting in a white colour, but also in a probable diffusion at its
sharp edge. The black background is spray-painted. All equipment rests on
an anti-vibration table. The camera is a 29 megapixel monochrome Imperx
giving 16 bit TIFF images, the lens is a Schneider Kreuznach 50mm Xenon
Emerald chosen for its low distortion, and the lighting is a coaxial LED
ring. In order to simulate an ordinary resolution image, the ring occupies
only about a quarter of the image. The balance effect between image res-
olution and image noise suggested by Eq. 51 is tested by different levels of
bining. As before, the VIC measurement is performed using two mathemat-
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Table 3: Results of the steel ring test
curve bin. scale gray lvl. im. noise avg. rad. mea. unc. theo. unc. meas. unc.

µm/p (%) σ0 (%) (pixel) σ̄ (pixel) σ (pixel) σ̄ (µm)

E1 ellipse ×1 49.5 [0, 100] 3.57 540.41 0.039 0.003 1.9
E2 ellipse ×1 49.5 [25, 100] 3.52 540.88 0.035 0.003 1.7
E3 ellipse ×2 99 [10, 100] 3.45 270.22 0.018 0.004 1.8
E4 ellipse ×4 198 [25, 100] 3.73 135.07 0.007 0.006 1.4

E5 BS 8 ×2 99 [10, 100] 7.57 270.22 0.302 0.015 29.8
E6 BS 12 ×2 99 [10, 100] 3.76 270.22 0.088 0.009 8.7
E7 BS 20 ×2 99 [10, 100] 3.45 270.22 0.067 0.011 6.6
E8 BS 32 ×2 99 [10, 100] 3.20 270.22 0.059 0.013 5.8
E9 BS 48 ×2 99 [10, 100] 3.17 270.22 0.063 0.015 6.2

ical curves: the ellipse which can describe a circle exactly but with excess
degrees of freedom and the B-Spline which cannot do so exactly (an un-
dermatching morphing description) [30]. The measurement uncertainty σ̄ is
calculated as the RMS deviation of the distance between the identified curve
and the nearest theoretical circle. Table 3 shows the different measurements
results and Fig. 19 shows a case of B-Spline identification.

Figure 18: Steel ring measurement assembly

The measure E1 is realised on the full definition image with no prelim-
inary treatment. The measured uncertainty σ̄ is one order of magnitude
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Figure 19: Steel ring measure with a B-Spline (case E6). Left: initial esti-
mate. Right: final measurement

larger than the theoretical one σ. The histogram of this image (Fig. 20)

Figure 20: histogram of the image in case E1

presents a peak at 1, which indicates that the white of the ring is burned,
and a peak close to 0.125, which corresponds to the background and leads
to an imperfect contrast and brightness. The peak at 0.45 corresponds to
the central disc which is not in the definition domaine of the virtual image.
In order to correct this lack of contrast, the image E2 was obtained from the
previous image by cutting-off the grey levels below 25% and then linearly
expanding them (according to the results of Sec. 3.1) to recover the full
dynamic range. The measurement uncertainty is slightly reduced and the
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difference in average radii between cases E1 and E2 is −0.47 pixel. Setting
FM = 1, Fm = 0.25 and R = 2, Formula 34 predicts a bias of −0.50 pixel
which is in good agreement.

In order to test the influence of image noise and resolution, the image
E3 was taken with a ×2 pixel bining. At first, despite the averaging effect of
the bining, the image noise is not so reduced. This suggests that the black
background is not uniform, even at this scale, which can be seen in Fig. 19.
The experimental uncertainty is only 4.5 times larger than the theoretical
uncertainty. In physical space, this leads to a measurement uncertainty (in
µm) equivalent to that of the E2 case, despite the half-resolution. This ten-
dency is confirmed by an image of bining ×4 (case E4) for which σ̄ is (in
µm) is even smaller, and very close to the theoretical uncertainty σ.

The following tests cases E5 to E9 are done with B-Spline curves to test
the local correlation indicator proposed in Sec. 8. The retained image is
the one of the intermediate case E3 and various number of control points
are tested. The ratio between the measured uncertainty and the theoretical
uncertainty decreases from 20 for case E5 to 4.2 for case E9. Only the latter
value is close to the one obtained for the ellipse (case E3), which suggests
that the curve mismatches for cases E5 to E8. Furthermore, the fact that the
image noise, which is calculated on f , is larger in the E5 case also suggests a
fit error due to a curve mismatch. The result of the curve matching analysis
method proposed in Sec. 8 is shown in Fig. 21. For the case E5, the peak
near wavelength 2L/N exceeds the allowable value so clearly indicates that
this 8-point B-Spline cannot identify the circle at this level of precision.
For cases E6 to E8, this analysis indicates an acceptable identification but
not ideal since the peak near 2L/N is still clearly visible. This peak only
disappears completely for the 48-points B-Spline which is necessary for this
level of precision (case E9). This study shows that the curve mismatch is
revealed by the analysis of Rµ as clearly as for the synthetic images (Sec. 8).

10 Conclusions

The VIC is now provided with an a priori value of its measurement error,
with respect to the length per number of parameters and the image noise,
and with an estimator of the ability of the chosen curve to represent the
contour of interest. The method was shown to be insensitive to contrast
variations. The measurement bias introduced by a luminance bias can be
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easily corrected by a linear correction. It has also been verified that a mod-
erate blur does not affect the measurement. The optimal parameters of the
method: the half-width R of the virtual image, the degree of refinement nr
and the type of interpolation, are specified. However, it could be interesting
to test even more sophisticated interpolation methods and more elaborate
minimization functions.

The measure provided by the VIC is more accurate than the one pro-
vided by all the local methods tested. Nevertheless, the VIC still requires an
initialization, i.e. to start from a set of shape parameters λp for which the
majority of the curve points are at distance < R from the boundary. This
can be done by hand, or by one of the many existing contour identification
methods, such as those recalled in this article.

The applications of the VIC are possible in metrology and mechanical
measurement, alone or in combination with the DIC [10]. Now that other
authors are doing research around the VIC [9, 15], it will be time to study
the advantages and disadvantages of the different proposals.

In this article the VIC is presented for 2D grayscale synthetic images.
In case of use with colour images, it will be necessary to check the influence
of the Bayer filter and demosaicing on the uncertainty. The defects of the
lenses (distortion, luminance inhomogeneity) have not been taken into ac-
count in this study. However, many existing tools are available to correct
them. At the pixel level, the CCD sensitivity was assumed to be homoge-
neous and the noise Gaussian: further research is still possible in this area.
The photographic technique to take a picture of a silhouette remains deli-
cate, because of possible effects of reflection and diffraction on the edges of
the physical object, of non zero thickness. As for the DIC, the VIC will have
to be equipped with adapted procedures, in particular for the preparation
of surfaces and backgrounds. Further analysis of the sources of uncertainty
will need to be carried out in the same way as the recent work on DIC [29].

The 3D extension of the method [7, 9] is continued, as part of the MoMaP
research project, for the reconstruction of 3D images from the 2D projections
of an X-ray tomography [32]. As the objects of interest are fabricated (3D
lattice materials), virtual images are obtained from their CAD representa-
tion. Similar to the use of a curve for 2D VIC, this constraint improves the
accuracy of the reconstruction compared to classical unconstrained meth-
ods. The work presented in this paper will need to be continued to estimate
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the accuracy of the 3D VIC.

A Useful derivatives

The following derivatives of interest for the VIC are obtained from Sec. 2:

∂X

∂λp
=

∂Xc

∂λp
+Rx2

∂er
∂λp

, (54)

∂2X

∂λp∂λq
=

∂2Xc

∂λp∂λq
+Rx2

∂2er
∂λp∂λq

, (55)

∂

∂λp

(∥∥∥∥∂Xc

∂x1

∥∥∥∥) =
∂2Xc

∂λp∂x1
· es, (56)

∂es
∂x1

= −ρ
∥∥∥∥∂Xc

∂x1

∥∥∥∥ er, (57)

∂es
∂λp

=

∥∥∥∥∂Xc

∂x1

∥∥∥∥−1( ∂2Xc

∂λp∂x1
· er
)
er. (58)

B Relative magnitude of the different terms in the
matrix of Newton’s scheme

The relative magnitude of the terms in Eq. (9) are compared together in
order to justify the use of the simplified Eq. (10). We suppose that, close to
solution, the gray levels of F evolve, similarly to those of G, only along er,
thus F (X) ' f(x2). From Annex. A and Eq. 17 we have:

∂F

∂X
=

f ′

R
er, (59)

∂2F

∂X2
=

f ′′

R2
er ⊗ er +

ρf ′

R(1 + ρRx2)
es ⊗ es, (60)

where ⊗ denotes the dyadic (tensor) product. For the first integral in Eq. 9,
supposing that the curvature radius is much larger than the virtual image
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width: |ρ|R� 1, gives:
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∫ 1

−1

∫ 1
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' 1
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∂λq
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dx1

∫ 1

−1
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1
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∫ 1

0

(
∂Xc

∂λp
· er
)(

∂Xc

∂λq
· er
)
dx1

∫ 1

−1
f ′′(f − g)dx2. (61)

Assuming further that f , as well as g, is (in average) an odd function, the
integrals of f ′(f−g) and x22f

′(f−g) are zero. The function f being piecewise
linear (because of linear interpolation), the integral at f ′′(f − g) is zero too.
The integral in x2f

′(f − g) requires moreover that f ' g to be small, which
is reasonably true at convergence.

I2 =

∫ 1

−1

∫ 1

0
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(f − g)dx1dx2,
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1
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∫ 1

0
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∫ 1

−1
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∂λp
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∂es
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∫ 1

−1
x2f

′(f − g)dx2. (62)

Again the integral of f ′(f−g) is null if f and g are odd (or from Eq. 20) but
the integral of x2f

′(f − g) requires more strictly f ' g to be small. Anyway
the last integral:

I3 =

∫ 1

−1

∫ 1

0

(
∂F

∂X
· ∂X
∂λp

)(
∂F

∂X
· ∂X
∂λq

)
dx1dx2,

' 1
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∫ 1

0

(
∂Xc

∂λp
· er
)(

∂Xc

∂λq
· er
)
dx1

∫ 1

−1
f ′2dx2, (63)

remains not null even when, at convergence, f ' g. It is therefore the only
one kept in the expression of the second derivative of Ψ in Eq. (10).
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C The disc tests

The images are those of a black circular disk on a white background. The
gray levels of the transition pixels are obtained using a binary image (see
Fig. 22) of much larger definition than the desired image. A sub-pixel is
black if it is inside the circle, it is white if not. The gray level of the pixel
is equal to the ratio of the number of white sub-pixels to the total number
of sub-pixels. The test images were calculated using a refinement factor of
1000, above which the final grayscale does not vary much more than 10−6,
a precision sufficient for both 8- or 16-bit discretisation and with respect to
the VIC accuracy.

References
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Figure 21: FFT(Rµ) for the steel ring image.37



Figure 22: Synthetic image computation principle.
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