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Abstract

The Virtual Image Correlation method applies for the measure-
ment of silhouettes boundaries with sub-pixel precision. It consists in
a correlation between the image of interest and a virtual image based
on a parametrized curve. Thanks to a new formulation, it is shown
that the method is exact in 1D, insensitive to local curvature and to
contrast variation, and that the bias induced by luminance variation
can be easily corrected. Optimal value of the virtual image width,
the sole parameter of the method, and optimal numerical settings are
established. An estimator is proposed to assess the relevance of the
user-chosen curve to describe the contour with a sub-pixel precision.
Analytical formulas are given for the measurement uncertainty in both
cases of noiseless and noisy images and their prediction is successfully
compared to numerical tests.

Keywords: Virtual Image Correlation; Digital Image Corre-
lation

The software ” Funambule” associated with this publication is available at
https://zenodo.org/record/3862248, DOI : 10.5281/zenodo.3862248
or, for latest version,
https://github.com/marc-1-m-francois/Funambule/releases

1 Introduction

The Virtual Image Correlation (VIC) originates from the global form of the
Digital Image Correlation (DIC) method [8, 9]. However, in the VIC, the
second image is an elementary and unitary virtual one which mimics the
white to black gradient of the boundary and whose shape is defined from a
parametrized curve. At convergence, when virtual and physical images are
close as possible, the curve shape represents a measurement of the contour.
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de Nantes — Ecole Centrale Nantes, 2, rue de la Houssiniere BP 92208, 44322 Nantes
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The very first version of the VIC was dedicated to open contour mea-
surement [7]. Its extension to silhouette measurement followed [16, 13] then
a numerically efficient version benefitting of close DIC developments [14].
Further work concerned various application of the method for the mechani-
cal testings [6, 3, 5] or in medicine [10]. The major interest of the VIC is its
precision, in some case better than 1073 pixels [16]. However, the present
article was motivated by a need for more objective evaluation of the uncer-
tainty, with predictive formulas.

In Sec. 2 is shown a slightly modified version of the method, in which
the mean square distance between virtual and physical images is calculated
in the frame of the virtual image. This gives both a slightly better precision
and much simpler equations.

Section 3 is dedicated to the quantification of uncertainties. It begins
by establishing a set of simplified equations, which are used at first to prove
that the method is theoretically exact in 1D. The VIC requires the cho-
sen curve family to be able to fit the contour of interest. Aiming sub-pixel
precision, the simple observation of the obtained curve superposed to the
silhouette is not sufficient to check this point. A signed distance is proposed,
which consists in a local measurement of the silhouette in the virtual image
frame. Its graph emphasis the local accuracy of the identification and its
spectral analysis informs about the relevance of the chosen curve to depict
the contour. The image discretization is an inevitable cause of uncertainty
that leads to the ultimate accuracy of the method. An empirical law, de-
ducted from statistics on numerical tests, is proposed to assess it. Effect
of imperfect brightness and contrast are studied analytically. It is shown
that contrast has no effect on the precision but that brightness induces a
bias which can be suppressed by a linear correction of the image. Then,
the measurement uncertainty due to image noise is quantified by a simple
analytical formula. A simple graph summarizes the expected accuracy as a
function of the image noise and the number of parameters of the curve.

Section 4 validates the proposed expressions of uncertainties, through
statistics on old [16] and new synthetic tests. In addition to the compar-
isons already made (in [16]) with the Fast Marching Algorithm [17] and
the Steger’s method [18], new comparisons are made here with the active
contour method [11] and the recent method of Trujilo-Pino [22] which are
both known for their sub-pixel precision. Tests on noisy images also empha-
size the robustness of the VIC. For all synthetic images used in this article,
the grey levels of the transition pixels (through which the edge passes) are
calculated from the ratio of the white (background) and black (silhouette)
surfaces seen by the pixel.



2 The VIC method

et

Figure 1: Sketch of the VIC method

The silhouette of interest in image F is measured by finding the best
coincidence between F and a virtual image G based on a parametrized curve
C (see Fig. 1). Image F has grey levels F ()_f ) where X is the position vector
of components ()(_"1, Xo) associated to the pixel frame. The virtual image G

of gray levels G(X) is a deformation of an elementary image g of grey levels
g(Z) such as:

GX) = ¢@ (1)
o@) = 12 2)

where the position vector ¥ has components x; € [0,1] and =3 € [—1,1].
The linear evolution of the gray level g(Z) is chosen in order G to be roughly
similar to the gray level evolution across the boundary in F. A current point
X of G is defined from the user-chosen parametric curve C of current point
X¢ (see Fig. 2):

— —

X (21,22, Ap) = X(21,Ap) + Rag €, (x1, \p), (3)

where z1 is used as the curve parameter, the A\, are the (researched) shape
parameters and (€s,€,) are respectively the unitary tangent and normal
vectors to the curve:

axe|loxe||”
_,s _ 4
€ 8.7}1 8$1 ( )
& = @ xé (5)

where x denotes the cross product and €, is the unitary vector normal to
the plane. Above definition guarantees that €. points uniformly outside any
closed curve orientated positively.

The goal of the method is to find the shape parameters A, of C for which
F and G are in best coincidence. As for some DIC methods [8], the mean



Figure 2: Virtual image geometry (left) and grey levels (right)

square difference between the two images is minimized:

[ J(F(X) - G(X))2dXdX
v J [ dX1dX, — (6)

This expression was used in the very first version of the VIC [7, 16] in
which the surface area 2RL (the denominator) was constant. Neglecting the
surface variation allows the use of numerically efficient DIC algorithms [14]
but with a loss of accuracy. Strictly speaking, the length L of the curve,
so the area, is not constant. Furthermore, the differential surface element
dX1dX5 depends, by Eq. (38), upon the curvature and neglecting it creates a
slight but unwanted line tension effect. The proposed minimization function
is expressed in the frame of the virtual image:

Z) — g())?dz 1 dz
b - LU o Py .

in which f(&) = F(X). The denominator represents the constant surface
area of g (of value 2) and the differential surface element dzidzy is indepen-
dent of the curvature. The minimization of ¥ with respect to ), is achieved
by using a Newton scheme, solving iteratively the N x N linear system:

9>y £

27 AN, = —
NN, 1T oA,

(8)

where A), is the corrector of the current values of the N curve parameters
Aq and where:

2(\,) = [ 11 /0 1 (F(X(21,22.7,)) — g(a2))” dordry 9)
Y Lt (9F 80X
n, /_1/0 (8)? : 8)\p> (f — g)dz1dzs (10)
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Annex A shows that it is possible, under some reasonable assumptions, to
take into account only the last term (as done in DIC [8]) thus:

0% LtfoF oX\ (oF oX

in which, from Eq. (3):

oxe
8131

0X 0Xxe
= — — Raxy

-1 .
o?2xXe )\ .
Ny N (8)\p8$1 'e’“> o (13)

The derivatives of the curve points X°¢ are supposed either analytically or
numerically known. Curvilinear abscissa s and curvature p are:

o | 9xXe
— d 14
s /0 5| (14)
2xe \ |oxe|?
) - _<ax% ) H o (15)

and L = s(1) is the overall curve length. If the non-overlapping condition:
PR <1 (16)

is not fulfilled, the center of the osculating circle of C of radius 1/|p| is
inside the virtual image G, thus some points in the vicinity of this center
are defined at least twice. However, in a practical point of view, experience
shows that it is possible to overcome this second condition as soon as the
sharp corners of C do not exceed the right angle because sharper angles put
in coincidence inner black points of G with outer white points of F. At last,
from Eq. (13) the curve must not have any stationary points:

Xe
||8 >0 (17)

8.1‘1

3 Uncertainty of the VIC measurement

3.1 Set of simplified equations in ideal cases

In order to study the precision of the method, the above set of equation is
simplified hereafter. At first we suppose that, close to the solution, F/(X) ~



f(x2) (as it is the case for g, see Egs. (1, 2)) thus:

oF .
- = L
0X R

(18)

Together with Eq. (13), this allows the separation of variables in Eq. (10):

o 1 [roaxe | L
_ e _ 1
o\, RJo 0N day /,1 F(f = g)dw (19)

The current term of the first integral is null if 8)20/8)\1) is everywhere
collinear to €, corresponding to a tangential motion which lets the curve

unchanged: such case has to be avoided when choosing a curve equation.
Thus, at convergence of the Newton scheme, when 9v/0\, = 0:

| 11 F'(f = g)dws = 0 (20)

At last, if the virtual image borders lie one in the white background and one
in the black silhouette: f(—1) = 0 and f(1) = 1, an integration by parts

gives:
;/11 (f(m) - ;) dzs = 0 (21)

which shows that, at convergence, the mean value of f is 1/2.

3.2 Exact 1D discrete measurement

F
1 ~ = » ©
] F /
0.5 ]
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0 (L 0 T . w =X
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Figure 3: 1D VIC. Luminance F (red), digital image and its linear interpo-
lation F' (blue), virtual image G at best correlation (green)

Let F(X) = H(X — Xg), where H is the Heavyside distribution, be the
physical luminance of a 1D silhouette (Fig. 3). Supposing ideal sensor (linear

and homogenous) and optics, the i*" pixel returns the value fiijll//f FdX
(blue dots). In 1D, the curve C is degenerated into a point (1 is meaningless)

whose parameterized equation is simply chosen as X¢ = X\ and the mapping



(Eq. 3) reduces to X = A4Rx2. Due to the absence of curvature, expressions
U (Eq. 6) and ¢ (Eq. 7) are equivalent thus Eq. (21) corresponds to:

1 MR

o ) (F(X) - ;) X =0, (22)

if f(=1)=F(\—R)=0and f(1) = F(A+ R) = 1, i.e. if the support of
G is wide enough: A — R < —1 and A + R > 1. Because —0.5 < A < 0.5,
this leads to impose R > 1.5. Solving this integral with the analytical
expression F'(X) of the linear interpolation (thick blue segments in Fig. 3)
gives straightforwardly A = Xg. This shows that the VIC measurement X°¢
corresponds exactly to the prescribed edge location Xy, whatever Xy and
R >1.5.

3.3 Uncertainty due to curve mismatch and local correlation
indicator

The VIC method requires the user-chosen curve C to be able to fit the
contour of interest. Fig. 4 shows that, if the curve matches, f appears as
invariant along x; (very similar to g) but shows waviness in the opposite case.
However, a more objective indicator is necessary to quantify the quality of
the identification. A straightforward idea consists in using 9v¢/dz1 as local
correlation function but, g being not physical and R being user chosen, this
function only brings a qualitative information and does dot distinguish if
the curve is inside or outside the contour.

Figure 4: Images F (left) and f (right) of a small disc identified by a square
(top) and a circle (bottom). Pixel edges (blue), computational points (red)
and correlation indicator p (green)



From Eq. (21), we define the signed distance:

p(z1) = /11 (; - f(~’61,$2)> dxy (23)

This one is defined in the frame ¥ and corresponds to puR in the pixel frame
X. Fig. 4 shows that u(z1) represents a local identification of the boundary.
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Figure 5: FFT of Ru for a 100 pixel radius disc with (a) oo = 0 and 10
points B-Spline, (b) o9 = 0.1 and 10 points B-Spline, (¢) og = 0 and circle,
(d) o9 = 0.1 and circle.

Fig. 5 is related to the well-know impossibility for a B-Spline to depict
a circle [12]. When using a 10 points B-Spline, a peak of magnitude ~ 0.05
pixel at wavelength 63 pixels (~ L/10 pixel) is visible in the FFT of Ru. It
reveals a periodic oscillation of the curve from inside to outside of the exact
circle in between the ten (regularly spaced) control points, which would be
hard to see on a representation such has Fig. 4. Cases with noisy images
lead to an additional noise spectrum whose mean amplitude is close to the
estimation of Eq. (32) of 21x 1073 for the B-Spline and 8 x 1073 for the circle.

Curve mismatching induces long wave oscillations of Ryp which are re-
vealed by a spectral analysis as long as they are not hidden by image noise.
The acceptable precision, i.e. the magnitude of the maximum peak, remains
the the user’s decision.



3.4 Uncertainty associated to discretization

If the VIC has been shown in Sec. 3.2 to be theoretically exact in 1D, things
are more complicated in 2D. The pixel grid is used as computational frame
in most of image analysis methods, including DIC and some versions of VIC
using ¥ [14]. However, many tests showed that computing on a regular dis-
cretization of (z1,x2) (see Fig. 4) provides better precision, as soon as the
distance between two corresponding points (X7, X2) is less than 1/3 pixel
[16].

The values of F, required for Eq. (7) at these non integer values are ob-
tained by interpolation. Another series of tests showed that the simplest and
fastest linear interpolation gives equivalent or even better precision than cu-
bic or B-spline interpolation. This is different from DIC, but in accordance
with the analytical analysis in Sec. 3.2.

Figure 6: Line segment test with small angle of inclination

In Sec. 3.2 we showed that R should be greater than 1.5 pixel. In order
to set the optimal value of R for 2D images, we proceed to tests on synthetic
images of linear edges identified with a line segment (Fig. 6). To address any
cases, the angle 6 from X to the edge is varied from 0 to 7/4, the ordinate
of its midpoint is varied of AXgy € [0, 1] pixel and the length L = 100 of the
segment is varied of AL € [0, 1] pixel. Ten levels are used for each variation.
The mean my and the standard deviation o4 of the distance d(x1) between
identified and exact segments are computed. In average, setting R = 1.5
gives mg = —4.09 x 107° and oq = 3.76 x 10~* and setting R = 2 gives
mg = —5.99 x 1075, o4 = 7.92 x 1074

However Fig. 7 shows that choosing R = 2 eliminates pathologic cases
of small angles (such as shown by Fig. 6). Setting other (especially larger)
values for R did not provide any advantage. As a consequence, R = 2
appears to be the optimal value for the VIC.

In order to get an estimator of the uncertainty associated to the sole
effect of discretization, similar line segment tests have been realized, varying
the length L over two decades. Fig. 8 shows that the mean distance mg is
weak for all L and that the standard deviation oy is very close to its linear
regression o4 = 0.0885/L (blue line on Fig. 8). The proposed empirical
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Figure 7: Statistics on the line segment test at small angles for R = 1.5
(top) and R = 2 (bottom)
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Figure 8: Statistics of the line segment test with variable length

rule:

N
20L
corresponds to the red line. The role of the number of curve parameters N
in this equation, of two in these tests (ordinate and angle), is supposed to
be equivalent to the one it has in Eq. (32).
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3.5 Uncertainty associated to brightness and contrast de-
fects

At ideal, the silhouette is black and the background is white. However, real
images may have contrast and luminance deviations. From Sec. 3.2, the aver-
age of F'(X) over all possible Xo € [-0.5,0.5] is linear: < F' >= (X +1)/2.
Thus, for this analytical study, we suppose f to be the continuous linear
piecewise function (see Fig. 9):

6—1 1—a
0—1 o+1 Rxo — 6 1
< - - e 7 )
R < T2 R — f(l’Q) a 5 +b+2
0+1 1+4+a

(25)

where a is the amplitude (contrast), b the bias (luminance), 6/ R the location
of the researched edge. The origin of the virtual image at xo = 0 defines the
VIC measurement thus §/R (in the frame Z) or § (in the pixel frame X) is
the measurement error. Used together with Eq. (20), which is fulfilled at

A

1

Figure 9: Study of amplitude a and bias b effects

convergence, above expressions give:
0 =2Rb (26)

As a consequence, the contrast a¢ has no influence on the precision but a
luminance variation b induces a bias § in the measurement. In a practical
point of view, this is easily annulated during computation by a linear cor-
rection of the gray levels of F. Similar calculus shows that non linear image
corrections should be avoided because they induce a bias. In particular, best
results will be obtained with CCD sensors with good linearity.
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3.6 Uncertainty associated to image noise

Inevitable image noise leads to uncertainty in the VIC measurement. We
suppose now that each pixel of integer coordinates (i, j) is the sum of an
exact value F;; and a gaussian noise N;;, spatially uncorrelated, of zero mean
and of standard deviation o(N;j) = 0g. With the hypothesis of Sec. 3.1, we
show in Annex B that:

> 2
oY 00 / L f9Xce .
ol — | @ — — & | dx 27
(mp) R\/zRLJ 0 \ O\, ' 27)
From the Newton scheme (Eq. 8), this term is associated to the standard
deviation of each shape parameter by:

2 2
o (5;1) - ( 8;1(;”&) 2(\) (28)

The average o, of the standard deviation of the distance X¢. & from the
measurement to the noiseless solution is:

1 —
02 = / o? (XC : é}) dzq (29)
0
From dX¢ = (8X¢/0)\,) d\, we deduce:

2. 2
o (Xeea) =3 (Zf - ) o*(Ag) (30)

q

Gathering previous expressions gives U%. However this complex expression
has to be computed in each cases. A simpler approximation is obtained
by supposing at first a perfectly contrasted image with ¢ = 1 and b = 0.
Eq. (25) and Eq. (12) give:

0% 1 1 [oXe oxe
- e || =—-¢& | d 31
DApON, 23/0 (aAp e)(axq 6) o (31
At second we retain only the diagonal terms of this matrix, which corre-

sponds to consider that each shape variable acts on a separate part of the
curve. This gives a simple approximation of the VIC standard deviation due

to the image noise:
2N
n = — 32
on = 001 37 (32)

The proportionality between o,, and the image noise gg is common with DIC
uncertainty analysis [15, 20, 19, 4]. Doubling the image resolution doubles L
thus divides o, by v/2. The uncertainty o, is proportional to v/ N: this weak

12



dependance allows the user to retain complex curve families. This formula
erroneously suggest the use of large R but the calculus is valid for the active
part of the virtual image thus one may consider R < 2. The quantification
noise, of classical expression oo, = (2"°y/12)~! where nb is the bit depth,
can also be taken into account as an additional image noise.

3.7 Summary

10°

an(cro=100%)7

Un(UOZlO%) ]

10 : :
10° 10t 10? 10°
L/N

Figure 10: Uncertainty of the VIC method, for R = 2

Fig. 10 shows the uncertainty of the method, according to expressions
of o4 (Eq. 24) and o, (Eq. 32). It shows in particular that the irreducible
uncertainty o4, associated to discretization, can only be attained with low
image noise oy and large curve support L/N. Of course this graph is valid
only in absence of curve fitting error.

4 Validation and comparison of the VIC uncer-
tainty

4.1 Validation of the proposed expressions

In table 1 we compare predicted and measured uncertainties on various
tests. Cases C; to C4 correspond to numerical tests onto a 401 x 401 pixels
image of a spiral [16]. Cases D; to D3 refer to synthetic images of discs
of average radii respectively of 3 (Fig. 4), 10, 100 pixels whose center and
radius are randomly varied over 1 pixel, over 100 trials. Cases D} to Df
are similar, but with an additive gaussian image noise og. All images are
in 8 bits. The standard deviation associated to discretization o4 is obtain

13



by Eq. (24) and the one associated to image noise o, by Eq. (32). The
quantification noise o4 is took into account in ¢,. One observes that the

Table 1: Predicted (o4, 0,,) and measured (o) standard deviations. Mesured
mean (m)

case | R L| N oo || 04 x10° | 0, x 103 || 0 x 103 | m x 103
Cy || 111236 |20 | 0% 0.809 0.20 9
Co || 1]1236 |20 | 30% 0.809 54.2 54
Cs || 1]1236 |20 | 50% 0.809 90.1 85
Cq | 111236 |20 | 90% 0.809 163 180
Dy || 2| 188 3| 0% 7.96 8.41 4 —-1.71
Dy | 2| 188 | 3| 10% 7.96 48.3 56 2.12
Dy || 2] 628 | 3| 0% 2.39 2.63 0.96 —0.21
50 2] 628 3| 10% 2.39 24.5 30 0.26
Ds || 2] 628 3| 0% 0.24 0.32 0.24 0.00
50 2] 628 3| 10% 0.24 7.23 8 0.86

predicted values of max(cg4, 0,,) are in good agreement with measured ones
o. The sole exception is the case C; for which a curve fitting error is present,
the 10 control points of the B-Spline being not enough to describe the spiral
at this level of precision.

4.2 Comparison between the VIC and other methods uncer-
tainties

The VIC method has been already successfully compared to Fast Marching
Algorithm [17] and Steger’s method [18] in earlier publication [16]. Since
this article, new methods also claimed for sub-pixel precision. Among them
we retained the work of Trujilo-Pino (TP) [22, 21] which, based on an area
estimate, is in some way close to the estimator u (Eq. 29). For reference, we
retained the well known Active Contours (AC) method [11]. Table 2 shows
the results obtained for the circular disc statistical study. With respect to
TP method, the VIC (table 1) offers a gain in ¢ which increases with L/N.
In the realistic case D3, with L/N =~ 200 pixels per curve parameter, the
VIC is approximatively 6 times more precise than the TP method. The AC
method gives worse results but still identifies a continuous contour in noisy
images, on the contrary of TP method which required to remove aberrants
points (farther than 0.5 pixel). Both TP and AC methods, like the majority
of the existing contour detection methods, are local ones. On the contrary,
the VIC benefits of the regularization associated to the curve C, whose effect
on the precision, from Eqs. (24, 32), increases with the curve length.

14



Table 2: Measured uncertainty for active contours (AC) and Trujilo-Pino’s
(TP) methods

AC TP

case | 0 x 10° | m x 10 || o x 10® | m x 103
D, 44 —-93 6 3.94
1 75 —110 227 7.08
Do 30 -31 2.04 —0.12
5 71 —35 231 —2.18
D3 27 —4.52 1.95 0.01
Dj 69 —4.59 236 1.55

5 Conclusions

With a reliable expression of the uncertainty and a tool to estimate the rele-
vance of the chosen curve family, the Virtual Image Correlation method has
now reached maturity. This article gives it a clarified theoretical framework
and the sole parameter of the method, the virtual image width, is now fixed.

Relative interests between local and global methods are subjects of end-
less debates in the DIC community [1]. As expected, the VIC has the same
advantages as the global DIC: accuracy and robustness to noise, but also
shares its disadvantages: the necessity to choose an a priori field (DIC) or
curve (VIC). Furthermore the given measure does not consist in a set of
pixels but in a continuous curve defined from a reduced set of shape pa-
rameters. The initialization step required for the VIC can be helped by
temporarily setting a wide virtual image width R or by using one of the
many existing detection method, for example the robust Active Contours
method. Remaining possible ameliorations of the VIC may consist in faster
computational strategies and some work remain to be done in 3D.

The field of applications is wide, especially in experimental mechanics.
The VIC can be used to measure object boundaries [6, 10], the shape of
elongated objects (beam, trusses...) [3] and possibly compare these curves
between free and strained states. The line of interest can also be a 2D [5] or
3D [14] crack or a physical front (chemical, thermal, hydric...) [7]. Recent
developments concern the use of the VIC to improve the DIC’s precision
close to the object borders [2].
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A Relative magnitude of major terms

The relative magnitude of the terms in Eq. (11) are compared together in
order to justify the use of the simplified Eq. (12). We suppose that, close to
solution, F(X) ~ f(z2). If p < R, Eq. (18) can be expressed as:

O*F N f”(JCQ)
ox: R

& ® e, (33)

where ® denotes the dyadic (tensor) product. Then, the terms of interest
in Egs. (10, 11) can be rewritten in a separate form:

Lt (9X 9?F 90X
Iy = /_1/0 ((9)\;,, ﬁ B\ )(f g)dxidzy
1 [tfoXe | oxe L

1 1 oOF 82)2
I = [1/0 (8)?‘ DX\ )(f g)dxidzs

1 82)20 QXC ) 1 /

/o <8)\p8x1 . ) (8)\ 0x1 e”) 1 /_1 zof (f — g) dza(35)

L - /1 /1 oF 90X\ (oF 0X
R 0 \oX o\p X " oM

1 rfaxXe |\ [oXc . 1 1o
= ﬁ% <a>\p . €7=> <a>\q . 61”) dﬂf]_ /_l(f ) dﬂf? (36)

Integrals over xs (i2,43,14), in correspondance with (Is, I3, I4), depend upon

12
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Figure 11: Ratio |i4 /i3]

g(x2) (Eq. 2) and f(z2). According to Eq. (25), in an ideal casea =1, b =0
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and 6 = 0, f(z2) = (1 + Rx)/2 thus: iy =0, i3 = (R —1)/6R*>if R > 1
orig = R(R—1)/6if R < 1andiqs = 1/2if R > 1 or iy = R?/2 else.
Fig. 11 shows that i3 < i4 as soon as R > 1, i.e as soon as the virtual image
width is wide enough to cover the black to white transition in F. This result
justifies the simplification from Egs. (11, 12), as soon as the integrals over
x1 have comparable magnitudes.

B Intermediate calculations on the effet of image
noise

Hypotheses of Sec. 3.1, Egs. (19) and (21) lead to:

L gxXe | 1
— 2R/ /1 , er( (:Ug)—2> dxidry =0 (37)

Eqs. (3 to 15) give the differential surface element in the frame X:

oxe
81‘1

_ [0Xc
dX = ( + pRmz
8951

€S> dx1 + Rdxs €, (38)

Supposing a weak curvature |p|R < 1 we obtain:
XmdXQ ~ RLdl’lde (39)

which gives the correspondance between the virtual image surfaces S = 2RL
in the frame X and s = 2 in the frame Z. In the pixel frame, Eq. (37)
corresponds to:

o 1 0Xxe 1
— = = '_'7" Fz N’i'_* 4
M, Rn%; (0)\p 2 )ij ( j T Nig 2) (40)

where n is the number of pixels involved in the virtual image calculus thus
n ~ 2RL (the virtual image surface). From elementary statistics, we obtain
the standard deviation:

= 2
oY 00 oxe
)~ e 41
U(axp> 2LR? %(axp e>,, )

L)

and Eq. (27) is deduced from this equation and the following correspondance
between continuous and discrete expressions:

SN2 SN2
oxe 10X
~2RL 42
Z(mp) BEJ, <aAp> o, 42)

¥
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