
HAL Id: hal-02933792
https://hal.science/hal-02933792v2

Preprint submitted on 7 May 2021 (v2), last revised 5 Jan 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A stable Spectral Difference approach for computations
with triangular and hybrid grids up to the 6th order of

accuracy
Adèle Veilleux, Guillaume Puigt, Hugues Deniau, Guillaume Daviller

To cite this version:
Adèle Veilleux, Guillaume Puigt, Hugues Deniau, Guillaume Daviller. A stable Spectral Difference
approach for computations with triangular and hybrid grids up to the 6th order of accuracy. 2021.
�hal-02933792v2�

https://hal.science/hal-02933792v2
https://hal.archives-ouvertes.fr


A stable Spectral Difference approach for computations with

triangular and hybrid grids up to the 6th order of accuracy
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Abstract

In the present paper, a stable Spectral Difference formulation on triangles is defined using a flux
polynomial expressed in the Raviart-Thomas basis up to the sixth-order of accuracy. Compared to the
literature on the Spectral Difference approach, the present work increases the order of accuracy that
the stable formulation can deal with. The proposed scheme is based on a set of flux points defined in
the paper. The sets of points leading to a stable formulation are determined using a Fourier stability
analysis of the linear advection equation coupled with an optimization process. The proposed Spectral
Difference formulation differs from the Flux Reconstruction method on hybrid grids: the distinction
between the two approaches is highlighted through the definition of the number of interior flux points.
Validation starts from a convergence study using Euler equations and continues with the simulation of
laminar viscous flows over the NACA0012 airfoil using quadratic triangles and of the laminar flow around
a cylinder using a hybrid grid.

Keyword: high-order method, Spectral Difference method, Raviart-Thomas space, triangle, hybrid,
linear stability analysis.

1 Introduction

Many advancements in high-order discontinuous methods enable accurate and robust simulations on un-
structured grids with a good parallel efficiency. Numerical schemes using piecewise continuous polynomials
are widely used to obtain high-order accuracy. The aim is to look for a polynomial solution in each mesh
cell, but without requiring the solution to be continuous across mesh interfaces. The most popular approach,
the Discontinuous Galerkin (DG) method, was successfully implemented in many solvers and leads to very
rich research. Without being exhaustive, a partial literature review focused on Computational Fluid Dy-
namics is available in several books [1, 2, 3, 4, 5, 6, 7, 8] and many contributions in Europe also come from
projects [9, 10, 11] involving research centers and industry [12]. The DG method links the standard Finite
Element method and the Finite Volume method: unknowns defined on a polynomial basis are solution of a
weak problem as in Finite Element but discontinuities at mesh interfaces are solved using an approximated
Riemann solver as in Finite Volume. While DG methods are based on the integral form of equations, other
methods directly use the strong form, which results in a simpler formulation and implementation as well as
a lower computational cost since no integral needs to be computed [13]. For a standard hyperbolic equation,
the solution is sought under the form of a polynomial of degree p defined in any mesh cell. For consistency,
it is mandatory to define the flux density divergence as a polynomial of degree p since dealing with the
strong formulation means that the divergence of the flux polynomial is explicitly computed. Today, there
are essentially two classes of methods based on the strong formulation.
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The first class is called the Correction Procedure for Reconstruction (CPR) or the Flux Reconstruction
(FR) approach. Introduced by Huynh in 2007 [14], the method consists in defining a polynomial of degree
p for the flux, as it is done for the solution. This flux polynomial loses two mandatory properties: the flux
divergence is no longer a polynomial of degree p and since the flux is discontinuous at cell interfaces, the
scheme is not conservative. In a second step, a lifting operator defined as a polynomial of degree p + 1 is
introduced to recover these lost properties. The lifting operator plays a central role in the properties of the
schemes and enables to link the FR method, the DG formulation and other methods [15, 16]. A class of
lifting operator can be built especially for specific mathematical properties, such as energy stability [17, 18].
Huynh, Wang and Vincent published in 2014 a reference paper on the proposed techniques [19].

An alternative method named the staggered-grid Chebyshev multidomain method was initiated by Ko-
priva and Kolias [20] in 1996 and applied to structured quadrilateral grids using a tensor-product framework
by Kopriva in [21]. In 2006, Liu et al. [22] proposed an extension of Kopriva and Kolias’ work to simplex
cells and called the approach the Spectral Difference (SD) method. Wang et al. [23] adapted the procedure
to Euler equations on triangular grids. The method was then extended to Navier-Stokes equations by May
and Jameson [24] for triangular meshes and Sun et al. [25] for hexahedral grids. It is important to notice
that for grids based on tensor product cells, the SD method formulation is identical to the multidomain
spectral method introduced in [20]. For tensor product cells, the SD method principle consists in defining
two polynomials, one for the solution and one for the flux, leading to an order of accuracy of p + 1, where
p is the solution polynomial degree. This choice of polynomial degrees also ensures the consistency of the
formulation. However, contrary to the FR approach, the lifting operator is not introduced in the formulation:
two sets of points, the Solution Points (SP) and the Flux Points (FP) enable the definition of the Lagrange
interpolation polynomials. An alternative approach was derived very recently by Chen et al. [26] for tensor-
product cells. This technique and the standard one differ in the definition of the flux derivative. In the new
formulation, the flux derivative is built from the set of SP plus the interface FP. Such a formulation avoids
the need to interpolate from SP to internal FP. Here, attention is focused on the standard SD formulation
and details are provided in Sec. 2.

The SD, FR and standard DG methods were compared by Liang et al. in [27]. It was proven that the
most efficient method is the FR discretization technique and the slowest one is the DG method. The DG
method leads to the more accurate results and the FR to the less accurate ones. For both performance
and accuracy, the SD method lies in between. Recently, Cox et al. [28] compared the accuracy, stability
and performance of the standard SD method compare to the FR approach. Nonlinear stability analysis
and numerical experiments show that the SD scheme leads to better accuracy and stability. Finally, the
quadrature-free DG scheme and the SD method were proven as equivalent under given conditions (use
of a nodal Lagrange basis, the quadrature-free paradigm and the numerical flux) for nonlinear hyperbolic
conservation laws by May [29].

The stability of the SD method for tensor product cells was studied by Van den Abeele et al. [30, 31].
They showed that the SP position did not influence neither the stability nor the accuracy of the scheme.
Jameson confirmed this statement [32] and also showed that for the one-dimensional linear advection case,
the SD method is stable for all order of accuracy in a norm of Sobolev-type provided that the interior flux
collocation points are placed at the zeros of the corresponding Legendre polynomials.

When considering the standard SD method on simplex cells, stability analysis leads to different conclu-
sions. Van den Abeele et al. [31] showed that for an order of accuracy strictly greater than 2, the scheme
stability is not ensured for triangular cells. For high-order SD schemes on triangular cells, several FP posi-
tions are tested but none of them lead to a stable scheme. This explains why after several papers using the
SD approach on triangles (see [33, 34, 22, 35, 23] among the possible literature), most researchers focused on
unstructured grids composed of hexahedra only. To overcome this limitation, Liang et al. [36] proposed to
decompose any triangle or quadrilateral into quadrilaterals using cell center and mid-edges, leading to cells
of half the size of the one of the original element. Using this option, a 2D hybrid mesh is transformed into an
unstructured grid composed of quadrilaterals only but the number of mesh elements is strongly increased.

Balan et al. proposed another alternative in [37, 38]. Instead of splitting any mesh cell into sub-cells
to define the computational grid, they build an alternative SD formulation using Raviart-Thomas (RT)
elements on triangles, leading to the naming SDRT. The SDRT scheme is proven to be linearly stable up
to the 4th order under a Fourier stability analysis originally initiated by May [39] and validated on Euler
test cases. The SDRT method was then extended to simulate 2D viscous flows on unstructured hybrid grids
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up to the fourth-order by Li et al. [40] and used for the simulation of vortex-induced vibrations using a
sliding-mesh method on hybrid grids by Qiu et al. [41].

Finally, one must also mention the work of Meister et al. on the SD method on triangles based on
Proriol-Koornwinder-Dubiner (PKD) basis on the triangle for both solution and flux polynomials [42, 43].
Such approach will also differ with the present one by the set of FP: here, the authors choose the set of
Lobatto points on the triangle, as proposed by Blyth and Pozrikidis [44]. In the latter case, there are FP
at triangle vertices and since a triangle vertex is generally shared by more than two triangles, this choice is
questionable to properly define the inputs of the Riemann problem. Such a configuration will never appear
if the interface FP are located on edges, thus this constraint will be applied to the proposed formulation.

The standard staggered SD approach was chosen to be implemented in the high-order solver JAGUAR
(proJect of an Aerodynamic solver using General Unstructured grids And high-ordeR schemes) [45] because
of its accuracy [46] and its efficiency [47] for Large Eddy Simulations. The SD method was recently made
compatible with the non-reflecting boundary conditions [48], written specifically to cope with the SD al-
gorithm and then coupled with a Time Domain Impedance Boundary Condition formulation [49, 50]. In
this context, the present paper focuses on the extension of the JAGUAR solver to deal with 2D hybrid
unstructured grids composed of standard element shapes (quadrilaterals and triangles).

In Sec. 2, the SDRT scheme on triangles and its difference with the standard technique on quadrilaterals
are highlighted. The linear stability of the SDRT method based on interior FP located at known quadrature
rules points is studied using Fourier analysis in Sec. 3. The optimization procedure to find a linearly stable
formulation on triangles is then presented and sets of interior FP leading to stable SDRT schemes up to the
sixth order are given in Sec. 4. Validation test cases are presented in Sec. 5, starting from a convergence
study using the convection of an isentropic vortex test case to simulations of 2D viscous flows on quadratic
triangular and hybrid mesh.

2 Spectral Difference Scheme on 2D hybrid grids

2.1 The SD approach for first order PDE

Let us consider the following 2D scalar conservation law under its differential form:

∂u(x, t)

∂t
+∇ ⋅ f(u) = 0, in Ω × [0, tf ], (1)

where u is the state variable, f = (f, g) is the flux vector where f and g are flux densities in the x and y
directions respectively and ∇ is the differential operator in the physical domain x = (x, y). The computational
domain Ω is discretized into N non-overlapping cells (triangles or quadrilaterals) and the i-th element is
denoted Ωi:

Ω =
N

⋃
i=1

Ωi. (2)

For implementation simplicity, Eq. (1) is solved in the reference domain. Each cell Ωi of the domain Ω is trans-
formed into a reference element T ∶= {(ξ, η) ∶ 0 ≤ ξ, η ≤ 1, ξ + η ≤ 1} for a triangle or Q ∶= {(ξ, η) ∶ 0 ≤ ξ, η ≤ 1}
for a quadrilateral. The transformation can be written as:

(
x
y
) =

Np

∑
i=1
Mi(ξ, η)(

xi
yi

) , (3)

where (xi, yi) are the Cartesian coordinates of the Np vertices of the cells and Mi(ξ, η) are the shape
functions. The Jacobian matrix of the transformation given by Eq. (3) from the physical (x, y) to the
reference domain (ξ, η) takes the following form:

J =
∂(x, y)

∂(ξ, η)
= [
xξ xη
yξ yη

] . (4)

For a non-singular transformation, the inverse transformation is related to the Jacobian matrix according
to:

∂(ξ, η)

∂(x, y)
= [
ξx ξy
ηx ηy

] = J−1. (5)
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In the reference domain, Eq. (1) becomes:

∂û(ξ, t)

∂t
+ ∇̂ ⋅ f̂ = 0, (6)

where ∇̂ is the differential operator in the reference domain, ξ = (ξ, η) are the coordinates in the reference

domain and û, f̂ are the solution and the flux in the reference domain defined by:

û = ∣J ∣u, (7)

and
f̂ = ∣J ∣J−1f . (8)

2.2 SD scheme on quadrilaterals

For quadrilaterals, the standard SD method follows a tensorial rule approach and the treatment is performed
direction per direction, as in [25, 51, 31]. For a polynomial of degree p leading to an accuracy of p + 1, a
number NSP = p + 1 of SP (denoted ξj , j ∈ J1,NSP K) are defined as the Gauss-Chebyshev points in the
reference domain [0,1]:

ξj =
1

2
[1 − cos(

(2j − 1)π

2p + 2
)] , for 1 ≤ j ≤ p + 1. (9)

A number NFP of FP (denoted ξk, k ∈ J1,NFP K) are mandatory to define the flux as a polynomial of degree
p + 1. Two FP are located on the element boundary and the remaining p FP are defined as the roots of the
Legendre polynomial of degree p. The number of FP is therefore NFP = p+2. Solution and flux polynomials
are finally computed using the standard Lagrange polynomials based either on the SP or the FP. Finally, it
must be highlighted that the position of the FP on any mesh interface follows the position of the SP in the
reference element due to the tensorial formulation.

2.3 SDRT scheme on triangles

On triangles, the SD formulation is based on the Raviart-Thomas (RT) polynomial space, as in [37, 38] To
obtain a (p + 1)-th order accurate scheme, a polynomial of degree p is introduced to approximate the solution.
As for the standard SD scheme, the solution at FP is computed by a simple interpolation from the solution
polynomial. The flux polynomial is then built from the fluxes computed at FP. The main difference of the
SDRT scheme with the standard SD formulation comes from the flux approximation. Instead of projecting
the flux vector component-wise into a finite-dimensional polynomial space of degree p + 1, the flux vector
is approximated in the RT space, using vectors as basis functions and scalar flux values as coefficients. By
nature, the RT space is the smallest polynomial space such that the divergence maps it onto the space of
polynomial of order p (see A for details). This ensures that the solution and the flux divergence will both
be polynomials of degree p. Details on implementation are summarized in the following.

2.3.1 Solution polynomial

The solution û is approximated on the reference triangle T by a polynomial of degree p, ûh(ξ) ∈ Pp, through
a set of distinct SP ξj , j ∈ J1,NSP K where

NSP =
(p + 1)(p + 2)

2
, (10)

and
Pp = span{ξiηj ,0 ≤ i,0 ≤ j and i + j ≤ p}. (11)

The polynomial ûh(ξ) can be expanded using a nodal or a modal representation. When using the nodal
representation, the polynomial is represented in term of point values by way of a Lagrangian interpolant,
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which is defined as the polynomial of lowest degree that assumes at each value ξj the corresponding value
ûj so that the function coincides at each point:

ûh(ξ) =
NSP

∑
j=1

ûj lj(ξ), (12)

where lj is a Lagrange polynomial and ûj is the known solution value at point ξj . Since there is not a
closed-form expression of the Lagrange polynomials through an arbitrary set of points on the triangular
element [52], a solution is to expand the polynomial ûh using a modal representation:

ûh(ξ) =
NSP

∑
m=1

ūm Φm(ξ), (13)

where Φm(ξ) ∈ Pp is a complete polynomial basis and ūm are the modal basis coefficients, which do not
represent the value of a function at a point. Since ûh(ξ) and Φm(ξ) span the same polynomial space, any
projection form will recover the exact expansion coefficient ūm. By performing a collocation projection at
the points ξj such that

ûh(ξj) = ûj =
NSP

∑
m=1

ūm Φm(ξj), (14)

the coefficients ūm can then be determined as:

ūm =
NSP

∑
m=1

ûj (Φm(ξj))
−1
. (15)

The term Φm(ξj) corresponds to the matrix of basis change, also known as the generalized Vandermonde
matrix Vj,m = Φm(ξj). The choice of the basis Φm(ξ) is of primary importance since a matrix inversion
is involved in the polynomial expansion process. The chosen basis will dictate the conditioning of the
matrix V and thus the computational stability. The most straightforward choice would be the monomial
basis {1, x, y, x2, xy, y2, ..., yp}. However, this choice leads to a dense Vandermonde matrix whose condition
number rapidly increases with the order p. A solution is to choose a hierarchical orthogonal basis, whose
Vandermonde matrices are diagonal and thus better conditioned. An appropriated basis choice is to define
Φm(ξ) as the PKD basis, which was defined on the triangle by Proriol [53], Koornwinder [54] and Dubiner
[55]. For a polynomial approximation of degree p on the reference triangle, the 2D orthonormal PKD basis
takes the following form:

Φi,j(ξ, η) =
√

(i + 1/2)(i + j + 1) P 0,0
i (ξ) (

1 − η

2
)

i

P 2i+1,0
j (η), i + j ≤ p. (16)

Details on Jacobi polynomials and the PKD basis normalization can be found in B. For simplicity, the
subscript (i, j) can be replaced by the single index m, m ∈ J1,NSP K with any arbitrary bijection m ≡m(i, j).
From the literature [52, 56], three main assets of the PKD basis can be noted. First, it is based on Jacobi
polynomials, which can be evaluated to a high degree using simple recurrence relations. The PKD L2

orthogonality will then tend to a well-conditioned Vandermonde matrix. Finally, the PKD basis hierarchical
nature (the expansion set of order p contains the expansion set of order p − 1) simplifies the construction of
certain finite element spaces, such as the RT space, which will be used to approximate the flux function in
the SDRT formulation. The polynomial approximation ûh of the solution û is thus defined in the reference
space by:

ûh(ξ) =
NSP

∑
m=1

ûj (Φm(ξj))
−1

Φm(ξ). (17)

2.3.2 Solution computation at flux points

To compute the flux values at FP, the solution values at those points need to be determined. With the
polynomial distribution given by Eq. (17), the solution at the FP (denoted ξk) can be computed as:

ûh(ξk) =
NSP

∑
m=1

ûj (Φm(ξj))
−1

Φm(ξk) =
NSP

∑
m=1

ûj (Vj,m)
−1 Φm(ξk). (18)
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Numerically, the extrapolation step is represented by the transfer matrix Tkj = [(Vj,m)−1 Φm(ξk)].

2.3.3 Definition of the flux polynomial from the set of fluxes at flux points

Now that solution values at FP are known, the flux values f̂k at the k-th flux point are assumed to be
computed. The details will be given below. The flux function in the reference domain is approximated by
f̂h in the RT space as:

f̂h(ξ) =
NFP

∑
k=1

f̂kψk(ξ), (19)

where NFP is the number of degrees of freedom needed to represent a vector-valued function in the RTp
space:

NFP = (p + 1)(p + 3), (20)

and ψk are interpolation functions which form a basis in the RT space with the property:

ψj(ξk) ⋅ n̂k = δjk, (21)

where δ is the Kronecker symbol and n̂k are the unit normal vectors defined at FP. At this level, it must
be highlighted that some flux points will be located inside the triangle and the definition of the normal
vector needs to be described accurately. For interior FP, one physical point is associated with two degrees
of freedom through the definition of unit vectors in different directions. In 2D, the unit vectors for interior
FPs are n̂ = (1,0)⊺ and n̂ = (0,1)⊺ in the reference element.

The last step is to determine the scalar flux values f̂k at FP on which the polynomial approximation
given by Eq. (19) relies on. In the case of a first-order partial differential equation, as given by Eq. (6), the
flux is only function of the solution. For interior FP, the flux values in the reference domain are computed
directly from the approximated solution value and projected on the unit normal vector previously defined.
For FP located on edges, f̂k is computed using a standard numerical flux function given as a solution of a
Riemann problem using two extrapolated quantities, one on each side of the interface.

f̂k =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f̂k ⋅ n̂k = ∣J ∣J−1fk(uh(ξk)) ⋅ n̂k, ξk ∈ T ∖ ∂T ,

(f̂k ⋅ n̂k)
∗
= (fk ⋅ ∣J ∣(J

−1)⊺n̂k)
∗
, ξk ∈ ∂T .

(22)

where (f̂k ⋅ n̂k)
∗

is the standard numerical flux in the reference element and uh(ξk) = 1
∣J ∣ ûh(ξk) is the

approximated solution in the physical domain.

2.3.4 Differentiation of the flux polynomial in the set of solution points

Once the flux vector is approximated on the reference element by Eq. (19), it can be differentiated at SP:

∇̂ ⋅ f̂(u) = (∇̂ ⋅ f̂h) (ξj)

= f̂k (∇̂ ⋅ψk) (ξj).
(23)

The term (∇̂ ⋅ψk) (ξj) in Eq. (23) can be written as a matrix of size [NSP × NFP ] called differentiation

matrix defined as Djk = [(∇̂ ⋅ψk) (ξj)]. To properly define the differentiation matrix, the vector-valued
interpolation basis functions ψk and their derivatives need to be determined. To do so, the first step is to
express the known monomial basis in the RT space φn, n ∈ J1,NFP K as a linear combination of the basis
functions ψk:

φn(ξ) =
NFP

∑
k=1

an,kψk(ξ). (24)

To determine the coefficients an,k, Eq. (24) is multiplied by n̂k and then by enforcing the condition given by
Eq. (21), one gets:

φn(ξ) ⋅ n̂k = an,kψk(ξ) ⋅ n̂k, (25)
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and

φn(ξk) ⋅ n̂k =
NFP

∑
l=1

an,kψl(ξk) ⋅ n̂k, (26)

so
an,k = φn(ξk) ⋅ n̂k. (27)

Using Eq. (24), the derivative can be expressed as:

∇̂ ⋅φn(ξ) =
NFP

∑
k=1

an,k (∇̂ ⋅ψk) (ξ), (28)

and therefore
(∇̂ ⋅ψk) (ξ) = (an,k)

−1
∇̂ ⋅φn(ξ). (29)

The final form of the SDRT scheme can be written for each degree of freedom of the solution function in
each cell i as:

dû
(i)
j

dt
+
NFP

∑
k=1

f̂
(i)
k (∇̂ ⋅ψk) (ξj) = 0, j ∈ J1,NSP K, i ∈ J1,NK. (30)

and the solution can be time-integrated using any standard time integration scheme (Runge-Kutta scheme
for instance).

2.4 A first comment on the position of FP

Due to the strong desire to perform computations on hybrid grids composed of quadrilaterals and triangles,
the position of the FP on triangles must follow the rule for quadrilaterals: there will be (p + 1) FP per face
so (3p+ 3) FP are located and the remaining (p+ 1)× (p+ 3)− 3(p+ 1) = p(p+ 1) FP must be located in the
element. In addition, the product p(p + 1) is always even, which allows to define p(p + 1)/2 physical interior
FP points associated with two degrees of freedom through the definition of different normal vectors.

2.5 Comparison of SDRT and FR schemes

The FR/CPR technique was introduced as a way to recover SD, DG and other schemes for any linear
hyperbolic equation. However, an open question concerns the possible differences between the proposed
technique and the FR/CPR scheme. Let us consider the FR/CPR method described by Castonguay and
Williams in their respective Ph.D. thesis [57, 58]:

• FR/CPR method: The flux polynomial definition involves (p+1)(p+2)
2

SP (located inside the element)
and (p + 1) FP located on each edge.

• SDRT method: The flux polynomial relies on (p+1)(p+3) FP, including (p+1) FP on each edge. The
number of FP located inside the element is thus p(p + 1).

SDRT and FR/CPR methods will differ if:

(p + 1)(p + 2)

2
≠ p(p + 1)Ô⇒ p ≠ 2 and p ≠ −1. (31)

Remark: The present analysis to build a link between SDRT and FR flux polynomial computation is
valid for any hyperbolic equation. For the linear advection equation, the authors think that a connection
should be established due to the linear relation between the solution and the flux, as in [32]. The definition
of this link is out of the scope of the current paper.
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2.6 Extension of the SD approach for Navier-Stokes equations

Let us consider the same 2D scalar conservation law in the reference domain:

∂û(ξ, t)

∂t
+ ∇̂ ⋅ f̂ = 0, (32)

except now, the flux is defined by :
f̂ = ∣J ∣J−1f(u,∇u), (33)

leading to a second-order PDE. For the Navier-Stokes equations, the flux can be expressed as:

f = f i(u) − fv(u,∇u), (34)

where f i is the inviscid flux and fv is the viscous flux. The viscous flux depends not only on the solution
u but also on its first spatial derivative ∇u. Eq. (32) is solved following the very same procedure as for a

first-order PDE except for the determination of the flux values at FP f̂k. The scalar flux values are now
given by:

f̂k = f̂
i
k − f̂

v
k . (35)

The inviscid flux values f̂ ik are computed using Eq. (22) since the inviscid flux only depends on the solution:

f̂ ik =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f̂ i ⋅ n̂k = ∣J ∣J−1f ik(uh(ξk)) ⋅ n̂k, ξk ∈ T ∖ ∂T ,

(f̂ ik ⋅ n̂k)
∗
= (f ik ⋅ ∣J ∣(J

−1)⊺n̂k)
∗
, ξk ∈ ∂T .

(36)

To compute f̂vk , which relies on the solution and its gradient, the following procedure, based on a centered
formulation [25] is used. From the approximated solution in the reference domain, the physical approximated
solution uh(ξk) is first computed at FP:

uh(ξk) =
1

∣J ∣
ûh(ξk) =

1

∣J ∣
Tkj ûj . (37)

From those values, a polynomial interpolation of degree p+1 should be reconstructed for the solution but this
polynomial would be discontinuous at cell interfaces. For this reason, a centered scheme is used to uniquely
define the solution at each flux point by averaging the values from the left and the right cells, leading to a
continuous polynomial interpolation uch:

uch(ξk) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

uh(ξk), ξk ∈ T ∖ ∂T ,

1
2
(uLh(ξk) + u

R
h (ξk)) , ξk ∈ ∂T .

(38)

The solution gradient in the reference domain is given as [40]:

(∇̂û) (ξj) = Djk n̂k û
c
h(ξk). (39)

In the physical domain, the solution gradient can be expressed as:

∇u =
1

∣J ∣
(J−1)

⊺
∇̂û, (40)

and since
ûch = ∣J ∣uch, (41)

one gets the expression of the solution gradient (∇u) in the physical domain:

(∇u) (ξj) =
1

∣J ∣
Djk (uch(ξk) (∣J ∣J

−1)
⊺
n̂k) . (42)
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From the solution gradient at SP in the reference domain, the solution gradient in the physical domain can
be interpolated at FP:

(∇u)h (ξk) = Tkj (∇u) (ξj) . (43)

The polynomial approximation of the solution gradient (∇u)h is discontinuous at cell interfaces. As it was
done for the solution, a centered scheme is used to defined a single value at cell interface:

(∇u)
c
h (ξk) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(∇u)h (ξk) , ξk ∈ T ∖ ∂T ,

1
2
((∇u)

L
h (ξk) + (∇u)

R
h (ξk)) , ξk ∈ ∂T .

(44)

The continuous solution uch and the continuous solution gradient (∇u)
c
h in the physical domain are used to

compute the viscous flux values:
fvk = fv(uch(ξk), (∇u)

c
h (ξk)). (45)

The viscous flux values in the reference domain are finally given as:

f̂vk =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣J ∣J−1fvk ⋅ n̂k, ξk ∈ T ∖ ∂T ,

fvk ⋅ ∣J ∣(J
−1)⊺n̂k, ξk ∈ ∂T .

(46)

The flux polynomial based on the flux values f̂k = f̂ ik − f̂
v
k is then differentiated by multiplying it by the

differentiation matrix Djk and the semi-discrete equation is integrated in time.

3 Linear Stability Analysis of the SDRT Formulation

3.1 Importance of the Flux Points Location on the Stability

As presented in Sec. 2, for tensor product cells, the polynomial basis is the Lagrangian basis for both
extrapolation and differentiation whereas for simplex cells, the PKD basis and the Raviart-Thomas basis are
used for the extrapolation and the differentiation (respectively). Those polynomial bases rely on the SP and
FP sets of points and the normal vector associated with each FP. Since it was shown by Van den Abeele et
al. [31] that the SD scheme stability is independent of the SP position, the main concern is to find a set of
FP leading to a stable SDRT scheme for all advection angles.
The FP location has a direct impact on the SD scheme stability. In 1D, it was shown by Van den Abeele [31]
that if FP are chosen as the Chebyshev-Gauss-Lobatto nodes, the standard 1D SD scheme can be unstable
for p > 2. Following this work, Jameson [32] has proven that the stability of the SD scheme for all orders of
accuracy in the case of a 1D linear advection ’provided that the interior fluxes collocation points are placed
at the zeros of the corresponding Legendre polynomial’.
For triangular elements, it was observed by Balan et al. [37] that the placement of FP on edges does not
affect the linear stability properties for second- to fourth-order accurate SDRT schemes. To simplify the 2D
hybrid implementation, the position of FP located on the edge is set to the Gauss-Chebyshev points given by
Eq. (9). FP on edges for a quadrilateral and a triangle are thus located at the same coordinates. By doing
so, there is no need to apply mortar techniques as introduced by Kopriva [21]. This technique is useful when
FPs between interfaces are not matching (e.g. p or h-refinement), and consists in a solution projection from
both interfaces into an intermediate interface, called a mortar. The flux is uniquely defined on the mortar
by solving a Riemann problem and is then projected back onto each face. However, the projection steps
bring an additional cost, which can be easily avoided for hybrid grids by setting the position of FP located
on the edge to the Gauss-Chebyshev points. Since the edge FP position is chosen to be fixed, the remaining
unknown is the interior FP location. For a SDRT scheme, the number of interior FP is given by:

Ni = p (p + 1). (47)

The number of physical interior points is reduced from Ni to Ni/2 by considering one physical point as two
separate DoF with different ’normal’ vectors n̂. As mentioned in section 2.3.3, each physical interior flux
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point is associated with two normal vectors (1,0)⊺, (0,1)⊺. The number of physical interior FP, denoted Npi,
is thus given as:

Npi =
p (p + 1)

2
(48)

which correspond to the number of SP for a SDRT(p−1) scheme.

3.2 Flux Points Numbering

For clarity purposes, the FP numbering in the reference triangle needs to be settled and their normal vector
defined. On each edge, there are Ne = (p + 1) FP. Since this section only concerns triangular element, they
will simply be denoted Ne. The FP located on edges are represented with red circles and numbered as follow:

• on face 1 (η = 0), k ∈ J1,NeK, k increasing with ξ, n̂ = (0,−1)⊺,

• on face 2 (η = 1 − ξ), k ∈ JNe + 1,2NeK, k increasing with η, n̂ = (1,1)⊺,

• on face 3 (ξ = 0), k ∈ J2Ne + 1,3NeK, k increasing when η decreases, n̂ = (−1,0)⊺.

The remaining Ni = p(p+1) FP, simply denoted Ni in this section, are located in the interior and represented
with blue squares. Since one physical point is considered as two separate DoF with different normal vectors,
there are Ni/2 physical FP. FP associated with the unit vector n̂ = (1,0)⊺ in the reference element are
numbered with k ∈ J3Ne + 1,3Ne + 1 +Ni/2K whereas FP whose unit vector is n̂ = (0,1)⊺ are numbered with
k ∈ J3Ne + 1 +Ni/2,3Ne + 1 +NiK. An example of the FP numbering and their associated normal vector is
given in Fig. 1 for the case p = 2.

0.0 0.5 1.0
ξ

0.0

0.5

1.0

η

ξFP1 ξFP2 ξFP3

ξFP4

ξFP5

ξFP6

ξFP7

ξFP8

ξFP9
ξFP10 ,ξFP13 ξFP11 ,ξFP14

ξFP12 ,ξFP15

Figure 1: FP numbering in the reference triangular element - Example of FP distribution for p = 2 (edge: ,
interior: )

3.3 Fourier Stability Analysis

In this section, the Fourier analysis presented by Castonguay in his Ph.D. thesis [58] for the FR method is
adapted to the SDRT scheme and results are presented for p ∈ J4,6K.
Let us consider the linear advection equation:

∂u(x, t)

∂t
+∇ ⋅ f = 0, in Ω × [0, tf ] (49)

within a domain Ω, where u is a conserved scalar quantity and f = c ⋅ u is the flux. The velocity field c is
defined by:

c = (cx, cy) = (cos θ, sin θ) , θ ∈ [0,2π] (50)

10



Eq. (49) is solved on a square domain Ω = [0, L]2 with periodic boundary conditions. The domain Ω is
meshed as a Cartesian mesh composed of Nx × Ny quadrilateral elements of size ∆x × ∆y. The mesh is
distorted using the skew angle µ. Each quadrilateral cell is then divided into two triangles, identified as
Ti1,i2,1 and Ti1,i2,2, i1 ∈ J1,NxK, i2 ∈ J1,NyK (Fig. 2). To properly define the mesh pattern, two vectors are
introduced: B1 = (∆x,0) and B2 = ∆x(cosµ, sinµ). The mesh is made dimensionless using a scaling by the
Cartesian mesh edge length ∆x, leading to the dimensionless vectors B̂1 = (1,0) and B̂2 = (cosµ, sinµ).

Figure 2: Mesh generating pattern used for the 2D Fourier stability analysis on triangles

Defining Ûi1,i2
j = [Ûi1,i2,1

j , Ûi1,i2,2
j ]⊺ as the vector collecting the solution in the reference domain on the

two triangles Ti1,i2,1 and Ti1,i2,2 for each SP j ∈ J1,NSP K, the SDRT spatial discretization using an upwind
flux on this mesh takes the form:

dÛi1,i2
j

dt
= −

∣∣c∣∣

∆x
[M0,0Ûi1,i2

j +M−1,0Ûi1−1,i2
j +M+1,0Ûi1+1,i2

j +M0,−1Ûi1,i2−1
j +M0,+1Ûi1,i2+1

j ]. (51)

In Eq. (51), M0,0, M−1,0, M+1,0, M0,−1 and M0,+1 are matrices of size [2NSP ,2NSP ] containing the three
steps of the spatial discretization (extrapolation, flux computation and differentiation), which depend on the
advection angle θ, the grid angle µ as well as on the SP and FP locations. The exact formulation of those
matrices is given in C. The discrete numerical solution is now assumed under the form of a planar harmonic
wave:

Ûi1,i2 = Ũ exp (Ik (i1B1 + i2B2) ), (52)

where Ũ is a complex vector of dimension 2NSP , independent of i1 and i2, and k = k(cosϑ, sinϑ)⊺, k being
the wavenumber of the harmonic wave and ϑ its orientation angle.
Using the non-dimensional quantities previously introduced, the discrete numerical solution is:

Ûi1,i2 = Ũ exp (Iκ((i1 + i2 cosµ) cosϑ + i2 sinµ sinϑ)), (53)

κ = k∆x being the grid frequency. Injecting Eq. (53) into Eq. (51), one gets:

dŨ

dt
= −

∣∣c∣∣

∆x
[M0,0

+M−1,0 exp ( − Iκ cosϑ)

+M+1,0 exp (Iκ cosϑ)

+M0,−1 exp ( − Iκ(cosµ cosϑ + sinµ sinϑ))

+M0,+1 exp (Iκ(cosµ cosϑ + sinµ sinϑ))] Ũ

=
∣∣c∣∣

∆x
MzŨ.

(54)
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The complete spectrum of the SDRT spatial operator can be obtained by computing the eigenvalues of Mz,
denoted λMz . The matrix Mz depends on:

• the SP location,

• the FP location,

• the advection angle θ ∈ [0,2π],

• the grid frequency κ ∈ [−π,π],

• the harmonic plane orientation ϑ ∈ [0,2π],

• the skew angle µ ∈ [0, π/2].

Using the eigenvalue analysis, the SDRT spatial discretization is stable under a Fourier stability analysis if
the real part of all eigenvalues of the matrix Mz are non-positive, i.e. if Re(λMz) ≤ 0.

3.4 Interior Flux Points Locations Based on Quadrature Rules

The Fourier analysis was applied to the SDRT scheme for triangular [39, 38] and hybrid grids [40]. The
placement of interior FP leading to stable SDRT schemes was given for p ∈ J1,3K by May and Schöberl [39].
Their conclusions can be summarized as follow:

• For SDRT1, the interior physical FP is placed at the triangle centroid;

• For SDRT2, interior physical FP are placed according to the three-points quadrature rule of order
2. This quadrature rule was given by many authors [59, 60, 61, 62, 63, 64, 65] as the higher order
three-points rules;

• For SDRT3, interior physical FP are located at the six-point quadrature rule of order 4 given by
[66, 67, 60, 61, 62, 63, 64, 65, 68].

Efforts were made to determine stable formulations for p > 3 but results were not successful. Choosing
a quadrature rule associated with the same number of points as the interior physical FP seems to be a
promising choice. To be suitable, the quadrature rule should not include integration points located on edges
or outside the triangle. Among the available literature, several appropriate quadrature rules are found for
p > 3:

• For SDRT4, the 10-points quadrature rules of order 5 of Vioreanu-Rokhlin [64] and Williams-Shunn-
Jameson [65];

• For SDRT5, the 15-points quadrature rule of order 7 of Williams-Shunn-Jameson [65], Witherden-
Vincent [68], Xiao-Gimbutas [63], Vioreanu-Rokhlin [64], Papanicolopulos [69] and Laursen-Gellert
[60].

• For SDRT6, the 21-points quadrature rule of order 8 of Williams-Shunn-Jameson [65] and Vioreanu-
Rokhlin [64] and the 21-points quadrature rule of order 9 of Laursen-Gellert [60]

The spectrum of the spatial SDRT operator is computed for p ∈ J4,6K using Fourier analysis for different
implementations (i.e. different interior FP locations) for κ ∈ [−π,π], ϑ ∈ [0,2π], θ = 0 and µ = π/2. The
SP location is set to the Williams-Shunn-Jameson quadrature points [65]. Values of max(Re(λMz)) are
displayed in Table 1 for each SDRT implementation based on interior FP locations taken as points of
quadrature rules presented before. The first observation is that all SDRT implementations show positive
values of max(Re(λMz)), indicating that the spatial discretization is unstable. One can then note that only
two quadrature rules are appropriated for both p = 4, p = 5 and p = 6: the Williams-Shunn-Jameson and the
Vioreanu-Rokhlin. For the three polynomial degrees p, the use of the WSJ quadrature rule as the interior
FP leads to smaller values of max(Re(λMz)) compared to the Vioreanu-Rokhlin quadrature rule. For the
SDRT5 scheme, two of the quadrature rules (Laursen-Gellert and Papanicolopulos) lead to very high values
of max(Re(λMz)), whereas the smaller value is given by the Witherden-Vincent quadrature rule. For the
SDRT6 scheme, positive values of max(Re(λMz)) are obtained for each quadrature rule.
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Quadrature rule SDRT4 SDRT5 SDRT6

Williams-Shunn-Jameson [65] 1.11 ⋅ 10−5 5.85 ⋅ 10−5 2.87 ⋅ 10−3

Vioreanu-Rokhlin [64] 8.29 ⋅ 10−3 1.75 ⋅ 10−2 2.92 ⋅ 10−2

Laursen-Gellert [60] - > 1012 9.82 ⋅ 10−1

Witherden-Vincent [68] - 1.31 ⋅ 10−5 -
Xiao-Gimbutas [63] - 7.33 ⋅ 10−2 -

Papanicolopulos [69] - > 1012 -

Table 1: Values of max(Re(λMz)) for θ = 0 using different quadrature rules as the interior FP locations

Spectra of unstable discretizations are plotted in Fig. 3 for SDRT4 using Williams-Shunn-Jameson
(Fig. 3a) and Vioreanu-Rokhlin (Fig. 3b) quadrature rules and for SDRT5 using Williams-Shunn-Jameson
(Fig. 3c) and Witherden-Vincent (Fig. 3d). A closer view on each spectra allows one to clearly see the
positive eigenvalues real part of the spatial operator Mz for θ = 0.

(a) SDRT4, Williams-Shunn-Jameson rule (b) SDRT4, Vioreanu-Rokhlin rule

(c) SDRT5, Williams-Shunn-Jameson rule (d) SDRT5, Witherden-Vincent rule

Figure 3: Fourier footprint of the SDRT4 and SDRT5 spatial discretizations on triangles for θ = 0 using
different interior FP locations

13



4 Determination of Stable Formulations through an Optimization
Process

4.1 Optimization Algorithm

To determine spatially stable SDRT formulations for orders of accuracy higher than four, the Fourier analysis
is used in an optimization problem. The function to minimize is the maximum of the real part of the matrix
Mz eigenvalues and the optimization parameters are the interior FP locations. The optimization process
solves the problem of minimizing a function locally using a gradient descent method called the L-BFGS-B
method from the SciPy library [70]. The L-BFGS-B algorithm is part of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms, which are iterative methods for solving unconstrained nonlinear optimization
problems. The descent direction is determined by preconditioning the gradient with curvature information.

The full algorithm is detailed by Algorithm 1 for the SDRT4 scheme. First, the constant parameters are
settled: the polynomial degree p is set to 4, the SP location is set to the position given by the 15-points
Williams-Shunn-Jameson quadrature rule and the position of FP located on edges is set to Gauss-Chebyshev
points. The interior FP coordinates are then parametrized by a set of coefficients to ensure symmetry. The
parametrization is given in D for p ∈ J4,5K. The initial interior FP location, stored in x0, is chosen as the
10-points Williams-Shunn-Jameson quadrature rule, expressed using the optimization parameters. Bounds
are given to ensure that all interior FP are included in the triangle. The optimization is then run: the
scipy.optimize.minimize function based on the L-BFGS-B method called the function MAIN, using x0 as
the initial interior FP location and taking bounds into account.

The function MAIN returns the maximum of all eigenvalues real part of the matrix Mz. The interior FP
coordinates are first computed based on the optimization parameters, which allows to compute the transfer
matrix T and the differentiation matrix D. The matrix Mz is computed for:

• the advection angle θ ∈ [0, π],∆θ = π/8,

• the grid frequency κ ∈ [0, π]∆κ = π/32,

• the harmonic plane orientation ϑ ∈ [0, π],∆ϑ = π/8,

• the skew angle µ = π/2.

Finally, the maximum of the real part of all the eigenvalues of Mz, denoted rm, is returned and will be
minimized by the optimization algorithm.
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Algorithm 1 Fourier analysis optimization algorithm on triangles for SDRT4

Constants
p← 4
SP location: ξSP1∶15 ← WSJ 15-points rule
Edge FP location: ξFP1∶5 ← Gauss-Chebyshev points ▷ Edge 1

ξFP6∶10 ← Gauss-Chebyshev points ▷ Edge 2
ξFP11∶15 ← Gauss-Chebyshev points ▷ Edge 3

Optimization Parameters
α1 = 0.333333333333333, α2 = 0.055564052669793
β1 = 0.365789252254277, γ1 = 0.112639085608754
β2 = 0.704466288264107, γ2 = 0.281977603613669 ▷ WSJ 10-points rule
β3 = 0.929744459481616, γ3 = 0.169338518004915
β4 = 0.944435947330207, γ4 = 0.416653920995311
x0 = (α1, α2, β1, β2, β3, β4, γ1, γ2, γ3, γ4)

Bounds = (α1, α2 ∈]0,0.5[, β1, β2, β3, β4, γ1, γ2, γ3, γ4 ∈]0,1[)
Optimization Process
call scipy.optimize.minimize(MAIN, x0, Bounds, method=’L-BFGS-B’)

function main
ξ16 = (β4/2 + γ4, β4/2 − γ4), ξ17 = (β1/2 + γ1, β1/2 − γ1)

ξ18 = (β1/2 − γ1, β1/2 + γ1), ξ19 = (α2, α2)

ξ20 = (β3/2 − γ3, β3/2 + γ3), ξ21 = (β2/2 + γ2, β2/2 − γ2)

ξ22 = (β4/2 − γ4, β4/2 + γ4), ξ23 = (β3/2 + γ3, β3/2 − γ3)

ξ24 = (α1, α1), ξ25 = (β2/2 − γ2, β2/2 + γ2)

ξFP26∶35 = ξ
FP
16∶25

Compute Transfer Matrix T
Compute Differentiation Matrix D
for µ = π/2 do ▷ Skew angle

for ϑ ∈ [0, π],∆ϑ = π/8 do ▷ Harmonic plane orientation
for θ ∈ [0, π],∆θ = π/8 do ▷ Advection angle

Compute M0,0,M−1,0,M+1,0,M0,−1,M0,+1

for κ ∈ [0, π],∆κ = π/32 do ▷ Grid frequency
Compute Mz using:

Mz = −[M
0,0

+M−1,0 exp ( − Iκ cosϑ)

+M+1,0 exp (Iκ cosϑ)

+M0,−1 exp ( − Iκ(cosµ cosϑ + sinµ sinϑ))

+M0,+1 exp (Iκ(cosµ cosϑ + sinµ sinϑ))]

Compute max(Re(λMz
))

rm = max(rm,max(Re(λMz)))

end for
end for

end for
end for
return rm

end function
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4.2 Spatially Stable SDRT4 and SDRT5 Formulations

4.2.1 Sets of Interior Flux Points

The optimization process based on the L-BFGS-B algorithm was able to determined spatially stable SDRT4

and SDRT5 formulations. Parameters leading to stable formulations are given in Table 2. It should be
underlined that there is no proof of the uniqueness of the set of interior FP leading to stable SDRT for-
mulations. The interior FP coordinates leading to stable SDRT formulations are actually very close to the
coordinates given by the Williams-Shunn-Jameson quadrature rule. This was an expected result due to the
local optimization process that looks for a stable formulation close from the initial guess. Both sets of points
are compared in Fig. 4. However, as shown in the next section, stability conclusions are quite different.

SDRT4

α1 0.333662142203650535776660035481 −

α2 0.055020323277656914273681110217 −

β1, γ1 0.365059009419342217483972490299 0.108257446975053225890484043248
β2, γ2 0.708381218412728386191190566024 0.280178103202688211226245584839
β3, γ3 0.926728983000098982536485436867 0.171864737328125433135639354987
β4, γ4 0.944808774978659671184288981749 0.417031665213158209137844778525

SDRT5

α1 0.036016387170921100591147734349 −

α2 0.242883711163165288970944288849 −

α3 0.473302808618061232603935195584 −

β1, γ1 0.248653272121269142136412710897 0.075375559486304394285482999294
β2, γ2 0.526107168266496727504488717386 0.209538637206618832964366561100
β3, γ3 0.757463072390737846006913969177 0.136207500360293581875836821382
β4, γ4 0.800198118640534361567517862568 0.351271727643196640666900520955
β5, γ5 0.950995381781191140291298324883 0.275567788676654157331569194866
β6, γ6 0.963872542677753130213602617005 0.446716481619443550599157788383

Table 2: Coordinate parameters of interior FP determined using the optimization process on Fourier analysis

(a) SDRT4 (b) SDRT5

Figure 4: Sets of FP determined using the optimization process on Fourier analysis compared to Williams-
Shunn-Jameson sets
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4.2.2 Fourier Analysis of the Spatial Discretization

The Fourier analysis of the spatial SDRT discretization based on the interior FP determined by the opti-
mization process is conducted. The spectrum of Mz is first computed for:

• the advection angle θ = 0,

• the grid frequency κ ∈ [−π,π],

• the harmonic plane orientation ϑ ∈ [0,2π],

• the skew angle µ = π/2.

These conditions are exactly the same as the ones used in Sec. 3.4, where the SDRT discretization was proven
as unstable for p = 4 and p = 5. The spectrum of Mz using the interior FP determined by the optimization
process is displayed in Fig. 5a for SDRT4 and in Fig. 5b for SDRT5. For each order, the Fourier footprint
obtained using the SDRT is similar to the one obtained using interior FP located at quadrature rules points
(Fig. 3a and Fig. 3c) except that positive eigenvalues have been pushed to the negative side, leading to
stable formulations. Spectra are then computed in the general case, i.e. for θ ∈ [0, π], κ ∈ [−π,π], ϑ ∈ [0,2π]
and µ ∈ [π/2, π/3, π/4]. Corresponding Fourier footprints are shown in Fig. 5c for SDRT4 and in Fig. 5d
for SDRT5. From these spectra, the linear stability of the SDRT spatial discretization is clearly established
since the real part of all eigenvalues is negative.

(a) SDRT4, θ = 0 (b) SDRT5, θ = 0

(c) SDRT4, General Case (d) SDRT5, General Case

Figure 5: Fourier footprint of the SDRT4 (left) and SDRT5 (right) spatial discretizations on triangles
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4.2.3 Fourier Analysis of the Coupled Time-Space Discretization

To investigate the linear stability of the coupled time-space discretization, the semi-discretized form needs
to be integrated in time. Considering a differential equation:

∂u

∂t
= R(u), (55)

a general m-stage Runge-Kutta (RK) method for Eq. (55) can be written as in [71]:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

u(l) =
l−1

∑
k=0

(αlku
(k)

+∆tβlkR(u(k))) , l = 1, ...,m,

u(0) = u(n), u(m) = u(n+1),

(56)

where, in the case of Eq. (49), R(u(k)) = −∇ ⋅ f(u(k)). In this paper, the time-integration scheme used
is the SSP3s3o of Gottlieb and Shu, which is part of the family of Total Variation Diminishing (TVD)
time discretization [71], later called Strong Stability Preserving (SSP) schemes [72]. The nonlinear stability
property of these methods makes them particularly appropriated for the time-integration of hyperbolic partial
differential equations.

The semi-discretized matrix form containing the planar harmonic wave given by Eq. (54) integrated in
time using Eq. (56) is:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

G(l) = (
l−1

∑
k=0

(αlkI + νβlkMz))G(k), l = 1, ...,m,

G(0) = I, Ũ(n+1)
= G Ũ(n),

(57)

where G = G(m) and ν is the CFL number defined by:

ν =
∣∣c∣∣∆t

∆x
. (58)

The stability condition on the coupled time-space discretization is thus obtained by requiring that the
amplitude of any harmonic does not grow in time, i.e.:

∣G∣ = ∣
Ũ(n+1)

Ũ(n)
∣ ≤ 1. (59)

In other words, to ensure a stable discretization, the spectral radius of the matrix G, denoted ρG should be
lower than 1, meaning that all the eigenvalues λG should be in the unit circle of the complex plane. The
transfer matrix G between time steps n and n + 1 is the amplification factor (or the Fourier symbol) of the
full discretization.

The linear stability of the coupled time-space discretization is now analyzed through the study of the
spectral radius of the amplification factor ρG. The following parameters are considered in the study:

• θ ∈ [0,2π],∆θ = π/8,

• κ ∈ [−π,π],∆κ = π/32,

• ϑ ∈ [0,2π],∆ϑ = π/8,

• µ = (π/2, π/3, π/4).

The CFL stability limits are given for those parameters in Table 3. Note that values are associated with
the classical definition of the CFL number given by Eq. (58). To compare CFL numbers used in high-order
discontinuous methods with classical methods (like Finite Volume, Finite Element or Finite Difference), one
can introduced an equivalent CFL number ν̂ defined as ν̂ = (p+1)ν [46]. This equivalent CFL number makes
sense in the one-dimensional case since (p+ 1) is a length scale corresponding to the mean distance between
two adjacent SP. However, this definition is not necessarily the most adequate one on triangles, as shown
by Chalmers and Krivodonova [73] for the DG method. To the authors’ knowledge, there is no consensus
on the definition on an equivalent CFL number for high-order discontinuous methods on simplex cells. The
classical CFL definition is thus preferred here.
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θ = 0 θ = π/8 θ = π/4 θ ∈ [0,2π],∆θ = π/8
SDRT4 0.097 0.081 0.075 0.075
SDRT5 0.065 0.057 0.054 0.054

Table 3: CFL stability limits ν for SDRT schemes on triangles coupled with the SSP3s3o temporal schemes

5 Numerical Experiments

5.1 Convection of an isentropic vortex

A nonlinear case is now studied by considering the two-dimensional Euler equations:

∂u

∂t
+
∂f

∂x
+
∂g

∂y
= 0, in Ω × [0, tf ], (60)

where u, f and g are given by:

u =

⎛
⎜
⎜
⎜
⎝

ρ
ρU
ρV
E

⎞
⎟
⎟
⎟
⎠

, f =

⎛
⎜
⎜
⎜
⎝

ρU
ρU2 + P
ρUV

U(E + P )

⎞
⎟
⎟
⎟
⎠

, g =

⎛
⎜
⎜
⎜
⎝

ρV
ρV U

ρV 2 + P
V (E + P )

⎞
⎟
⎟
⎟
⎠

. (61)

In Eq. (61), ρ is the density, U (respectively V ) is the velocity component in the x (respectively y) direction,
E is the total energy and P is the pressure determined from the following equation of state:

P = (γ − 1) (E −
1

2
ρ(U2

+ V 2
)) , (62)

where the constant ratio of specific heats γ is equal to 1.4 for air.

To assess the SDRT scheme accuracy and capability to preserve vorticity in an unsteady inviscid flow,
the convection of an isentropic vortex (COVO) test case from the International Workshop on High-Order
CFD Methods [74] is studied. An isentropic vortex is transported by an inviscid uniform flow defined by
P∞ = 105 Pa, T∞ = 300 K, M∞ = U∞/

√
γRgasT∞ = 0.5. The fluid is assumed to be a perfect gas, with

a constant ratio of specific heats γ = 1.4. An isentropic vortex of characteristic radius R = 0.005 m and
strength β = 0.2 is added to this mean flow around the point of coordinates (Xc, Yc) = (0.05,0.05) through
perturbation in U , V and the temperature T . The computation is thus initialized by the local velocity
components U0 and V0 as well as temperature T0:

U0 = U∞ (1 − β
(y − Yc)

R
exp (−r2

/2)) , (63)

V0 = U∞β
(x −Xc)

R
exp (−r2

/2), (64)

T0 = T∞ −
U2
∞β

2

2Rgas

(γ − 1)

γ
exp (−r2

), (65)

where

r =

√
(x −Xc)

2 + (y − Yc)2

R
. (66)

Since the vortex is isentropic, the density can be computed using:

ρ0 = ρ∞ (
T0

T∞
)

1
γ−1

, (67)
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where ρ∞ = P∞
RgasT∞

. Euler equations are solved on the computational domain Ω = [0, L]2 where L =

0.1m. Translational periodic boundary conditions are imposed for the left/right and top/bottom boundaries
respectively. The SSP3s3o scheme introduced for the coupled time-space analysis is considered for the
simulations. The time step is chosen sufficiently small so that the error from the time discretization is
negligible compared to the spatial discretization error by setting the CFL number to 10−2. At interfaces,
Roe’s Riemann solver [75] was used to compute the numerical flux. Figure 6 gives the initial solution by
showing ρV contours (product of the density ρ and the y-velocity V ) on a regular mesh composed of 2N2

triangles using a SDRT5 scheme.

Figure 6: Initialization of the COVO test case using SDRT5 and N = 20 on a triangular grid

A mesh refinement study is performed using regular triangular and hybrid grids of different size after
5 periods. To generate hybrid grids, the left part of the computational domain (x ∈ [0,0.05]) is meshed
using quadrilateral elements whereas the right part (x ∈ [0.05,0.1]) is meshed with triangles. The mesh is
composed of 1

2
N2 quadrilaterals and N2 triangles. The numerical scheme used for quadrilateral cells is the

standard SD method based on the interior FP located at the zeros of the corresponding Legendre polyno-
mials. The very same polynomial degree is used for both triangular and quadrilateral elements.

To verify the order of accuracy of the SDRT scheme, the L2 error on the density can be computed at
each period on the domain as:

L2 =

¿
Á
ÁÀ∫Ω (ρh0 − ρnum)

2
dΩ

∫Ω dΩ
, (68)

where ρh0 is the polynomial approximation of the initial solution ρ0.
In Eq. (68), the integral on the top can be expressed as the following sum on each cell:

∫
Ω
(ρh0 − ρnum)

2
dΩ =

N

∑
i=1
∫

Ωi
(ρ
(i)
h0

− ρ(i)num)
2
dΩ, (69)

where N is the number of cells on the domain Ω. Integration is then performed in the reference domain
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using a quadrature rule such that:

N

∑
i=1
∫

Ωi
(ρ
(i)
h0

− ρ(i)num)
2
dΩ =

N

∑
i=1

Nq

∑
j=1

A ∣J(i,j)∣ ωj (ρ
(i)
h0

(ξj) − ρ
(i)
num(ξj)))

2
, (70)

where A is the reference element area (A = 1 for a quadrilateral element and A = 1/2 for a triangular element),
∣J(i,j)∣ is the Jacobian determinant at the j-th integration point of the i-th cell and Nq is the number of
quadrature points. The quadrature points are located at ξj and associated with the weight ωj . Since ρh0

and ρnum are polynomials of degree p, the term (ρ
(i)
h0

− ρ
(i)
num)

2
should be approximated using a quadrature

of degree 2p. On triangles, the integration is carried out using the 175-points symmetric quadrature given
by Wandzura and Xiao [76], which can be used up to degree 30. On quadrilaterals, the integration is per-
formed using the tensor product of two 1D integration at SP, with the appropriate Gauss-Chebyshev weights.

The L2 norm of the density error is plotted in Fig. 7 after 5 time-periods and compared with the expected
order slope. For both triangular and hybrid grids, the expected order of accuracy p + 1 is retrieved. The
precise overall order of accuracy, computed using a least squares polynomial fit of degree one, is given in
Table 4)

(a) Triangular Grids (b) Hybrid Grids

Figure 7: L2 error and theoretical order of accuracy slopes for the COVO test case after 5 periods

Scheme Order of accuracy
SDRT2 3.03
SDRT3 4.02
SDRT4 4.98
SDRT5 6.19

(a) Triangular Grids

Scheme Order of accuracy
SD/SDRT2 3.00
SD/SDRT3 4.02
SD/SDRT4 5.05
SD/SDRT5 6.09

(b) Hybrid Grids

Table 4: Overall accuracy orders for the COVO test case after 5 periods
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5.2 Viscous flow over an NACA0012 airfoil

This test case aims to validate the method for the computation of viscous flow with a high-order triangular
curved boundary representation. The compressible Navier-Stokes equations are solved and a laminar viscous
flow over the NACA0012 airfoil is considered. The computational setup is defined by the angle of attack α,
the Mach number M∞ and the Reynolds number Re = ρ∞U∞C/µd∞, where C is the airfoil chord. Three
different laminar flow conditions chosen from the NASA technical report [77] are considered:

• Case A: Symmetric subsonic flow, M∞ = 0.5, α = 0°, Re = 5000,

• Case B: Asymmetric subsonic flow, M∞ = 0.5, α = 2°, Re = 5000,

• Case C: Transonic flow, M∞ = 0.8, α = 10°, Re = 500.

The NACA0012 airfoil equation used is:

y = ±0.6 (0.2969
√
x − 0.1260x − 0.3516x2

+ 0.2843x3
− 0.1036x4) , (71)

so the trailing edge has a zero thickness. At the airfoil, a no-slip adiabatic wall condition is imposed. To avoid
spurious reflections on the boundary conditions, the farfield boundary is located 50 chords away from the
airfoil. On the farfield boundary, pressure and temperature are imposed at P∞ = 101325Pa and T∞ = 293.15K
and the velocity is imposed depending on the Mach number. Interface flux is then obtained by applying
the approximated Riemann solver at the interface using the prescribed state outside and the extrapolated
internal state. The computational domain is meshed with a C-type topology and has a total number of 2407
quadratic triangular elements (with 62 cells on the airfoil). A close view of the resulting mesh is shown in
Fig. 8. Solutions are time-integrated using the SSP3s3o temporal scheme and the convection flux is Roe’s
scheme. Results are presented for SDRT schemes from the third- to the sixth-order (p ∈ J2,5K). The CFL
number is chosen based on the maximum one affordable using p = 5, i.e. ν = 0.05. The visualization process
on triangular grids is done by extrapolating the solution at SP to high-order Lagrange elements nodes.

5.2.1 Thorough Analysis of Case C

Results obtained for Case C are first presented in details since the transonic flow can be considered as the
’most critical’ test case. For the subsonic flows (Case A and B), briefer results will be given in the next section.

To monitor the computation convergence, the L2 norm of the residual on the density between iteration
n and n + 1 is computed using:

∣∣Res∣∣2 =

¿
Á
ÁÀ∫Ω (ρn+1 − ρn)

2
dΩ

∫Ω dΩ
. (72)

Integration is performed using the 175-points symmetric quadrature given by Wandzura and Xiao [76]. The
decay of the residual against number of iteration for SDRTp schemes, p ∈ J2,5K, is shown for the transonic
Case C in Fig. 9. Despite the use of an explicit time-integration scheme, a very good convergence is obtained.
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Figure 9: Convergence of the residual for the tran-
sonic viscous flow over a NACA0012 airfoil

Fig. 10 shows the Mach contours obtained with SDRT schemes of 3rd to 6th order of accuracy for Case
C. The flow is accelerated at the airfoil upper surface and create a small supersonic zone (M > 1). However,
as expected for this case, there is no shock wave developing. As the degree of the polynomial reconstruction
increases, the solution becomes smoother and thus more accurate. For SDRT2 and SDRT3 schemes (Fig. 10a,
10b), discontinuous contour lines can be observed. Those discontinuities are induced by the visualization
process, which is done independently on each triangular element, leading to different solution values at cell
interfaces, and express a low resolution. The Mach contours given by the SDRT4 and SDRT5 schemes
(Fig. 10c, 10d) show continuous lines for most of the domain. The remaining discontinuities located around
the position (x/C, y/C) = (1.4,0.4) are due to the fact that the mesh used is refined for the wake given with
an angle of attack α = 0o. Apart from this region, the Mach contours obtained show that the 5th and 6th

order SDRT schemes converge to the same solution.
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Figure 10: Case C: Mach number contours using SDRTp schemes, p ∈ J2,5K

23



The surface skin-friction coefficient Cf and the surface pressure coefficient Cp distributions are plotted in
Fig. 11 and Fig. 12. For both coefficients, there is good agreement between the results obtained from SDRTp
schemes and the NASA data [77]. In Fig. 11, a closer view shows that all SDRT schemes were able to capture
the maximum value of the surface skin-friction coefficient at the leading edge. Small discontinuities between
cells are observed, resulting from the interpolation post-processing step performed independently on each
cell. The peak at the leading edge is quite accurately represented. A difference with the NASA data can be
noticed at the trailing edge, where SDRT schemes did not manage to capture the maximum values due to
low mesh refinement. A close view indicates that the SDRT Cf value gets a bit closer to the reference one
when the order of accuracy increases. The surface pressure coefficient plot (Fig. 12) shows that all SDRTp
schemes lead to excellent agreement with the NASA data, including at leading and trailing edges. As for
the first two cases, results converge when the order increases.

Figure 11: Case C: Surface skin-friction coefficient Cf Figure 12: Case C: Surface pressure coefficient Cp

5.2.2 Aerodynamic Coefficients Computation for Three Different Laminar Flow Conditions

For each case, aerodynamic coefficients are computed for each SDRT scheme and compared to NASA refer-
ence data in Table 5.

For Case A, an additional comparison is made with results obtained using a standard fifth-order SD
scheme in [78]. Values of the different coefficients converge as the order of accuracy increases and get closer
to the reference data. Results using SDRT4 are in excellent agreement with the NASA data using the refined
grid (difference of 0.1%), whereas SDRT5 matches results obtained using the fifth-order SD scheme (differ-
ence of 0.7%). All of the separation point locations predicted by SDRT schemes lies in the interval given by
the two references up to the third decimal.

For Case B, the SDRT2 scheme leads to a good prediction of CD (1% of difference), but the surface
skin-friction and pressure coefficients are not accurately determined (∼ 4.5% of difference). For higher-order
SDRT schemes, the CD value converges to the NASA reference (13% for SDRT3, 2.8% for SDRT4 and 0.8%
for SDRT5), with close values for (CD)p and (CD)f . The same behavior is observed for the separation point
location, even if it is slightly overestimated (2.8% for p = 5).

Finally, for Case C, results for the total drag coefficient are in excellent agreement with the NASA
reference, with a difference of < 2% for all schemes. For p > 2, all coefficients are converged up to the third
decimal. The location of the separation point is slightly smaller than the reference ones but remains in good
agreement.
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DoF Number CD (CD)p (CD)f xsep/C

Case A

SDRT2 14,442 0.0583644 0.0220679 0.0362965 0.809
SDRT3 24,070 0.0573619 0.0239848 0.0333771 0.808
SDRT4 36,105 0.0554990 0.0225962 0.0329028 0.810
SDRT5 50,547 0.0543702 0.0218255 0.0325447 0.814

NASA [77] 1024 × 512 (524,288) 0.0555743 0.0227887 0.0327855 0.808
Fifth-order SD [78] 360 × 120 (43,200) 0.05476 0.02225 0.03251 0.814

Case B

SDRT2 14,442 0.0574735 0.0233123 0.0341613 0.584
SDRT3 24,070 0.0644525 0.0298255 0.0346270 0.580
SDRT4 36,105 0.0584788 0.0252599 0.0332190 0.579
SDRT5 50,547 0.0573627 0.0245549 0.0328078 0.577

NASA [77] 1024 × 512 (524,288) 0.0568914 0.0243173 0.0325741 0.561

Case C

SDRT2 14,442 0.272783 0.148275 0.124508 0.357
SDRT3 24,070 0.270953 0.147087 0.123867 0.356
SDRT4 36,105 0.270255 0.146632 0.123622 0.355
SDRT5 50,547 0.270224 0.146715 0.123509 0.355

NASA [77] 1024 × 512 (524,288) 0.275155 0.147544 0.127611 0.362

Table 5: Comparison of drag coefficients and separation point location

5.3 Viscous flow around a circular cylinder

This test case aims to validate the method for the computation of viscous flow using 2D hybrid mesh. A
steady laminar viscous flow at Re = 20 around a cylinder is considered. The Mach number is M∞ = 0.1 and the
Reynolds number is defined by Re = ρ∞U∞d/µd∞, where the dynamic viscosity is µd∞ = 1.853 ⋅10−3 Pa s, and
the cylinder diameter is d = 1 m. The density ρ∞ and the velocity U∞ can be deduced from the temperature
T = 300K and the constant ratio of specific heats γ = 1.4. The cylinder is placed in a rectangular domain. The
farfield boundaries are located 10 diameters away from the cylinder in the upstream, upward and downward
directions and 30 diameters away in the downstream direction. A hybrid mesh of 3427 elements is used, with
196 quadrilateral elements near the cylinder and 3231 triangles in the rest of the domain. A close view of the
mesh is provided in Fig. 13. On the farfield boundary, the pressure, temperature and velocity are settled. At
the cylinder surface, a no-slip isothermal wall condition is imposed. On quadrilateral elements, the standard
SD method based on the interior FP located at the zeros of the corresponding Legendre polynomials is used.
The same polynomial degree is used for both triangular and quadrilateral elements. Roe’s Riemann solver is
used to compute flux at interface flux points and the CFL number is set to 0.05 (the maximum one affordable
using p = 5). The computation convergence is monitored by computing the L2 norm of the residual on the
density between iteration n and n + 1 using:

∣∣Res∣∣2 =

¿
Á
ÁÀ∫Ω (ρn+1 − ρn)

2
dΩ

∫Ω dΩ
. (73)

Integration is performed using the 175-points symmetric quadrature given by Wandzura and Xiao [76]. The
decay of the residual against number of iteration for SD/SDRTp schemes, p ∈ J2,5K, is shown in Fig. 14. As
for NACA test cases, computations are very well converged.
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Figure 14: Convergence of the residual for the viscous flow
around circular cylinder

Figure 15 shows the normalized x-velocity contours and streamlines around the cylinder obtained using
a SD/SDRT5 scheme. Streamlines show a recirculation zone within the wake of the cylinder where two
vortices are generated.

(a) Normalized x-velocity contours (b) Close view of streamlines and normalized x-velocity contours

Figure 15: Normalized x-velocity contours and streamlines around the cylinder using a SD/SDRT5 scheme

Values of the drag coefficients as well as the separation angle θsep and the normalized reattachment
length L/d obtained using SD/SDRT schemes are compared with different reference values in Table 6.
Values presented are computed after applying a Savitzky-Golay filter; however, note that the maximum
difference between values on all coefficients obtained with and without the filter is around 0.2%. Reference
results [79, 80, 81] are based on finite difference approximation and Cartesian grids. Compared to data from
Dennis and Chang, the SD/SDRT scheme overestimates drag coefficients values. This overestimation could
be due to the fact that linear quadrilateral elements were used. A mesh composed of quadratic elements
could lead to better results. Additionally, using a no-slip adiabatic wall condition at the cylinder surface
instead of an isothermal wall condition could be more appropriate. However, compared to other reference
data, SD/SDRT schemes lead to a proper estimation of drag coefficients, separation angle and reattachment
length.
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CD (CD)p (CD)f θsep L/d

SD/SDRT2 2.135 1.275 0.860 45.5° 0.915
SD/SDRT3 2.145 1.284 0.860 45.4° 0.915
SD/SDRT4 2.146 1.286 0.860 45.4° 0.916
SD/SDRT5 2.147 1.287 0.860 45.3° 0.916

Dennis and Chang [79] 2.045 1.233 0.812 43.7° 0.94
Russell and Z. Jane Wang [80] 2.13 - - 43.3° 0.94

Calhoun [81] 2.19 - - 45.5° 0.91

Table 6: Comparison of drag coefficients and separation angle for flow over a cylinder

6 Conclusion

For simulations that need a low-dissipation low-dispersion scheme such as vortex-dominated flow and un-
structured grids to cope with complex geometry, the tendency today is to consider numerical schemes using
piecewise continuous polynomials inside mesh cells, but without requiring continuity at mesh interfaces.
While the most popular approach is certainly the DG method, alternatives were proposed during the last
ten years. Among them, the SD method solves the strong form of equations, as the standard Finite Dif-
ference approach, but accounts for discontinuities of the solution at mesh interface using an approximated
Riemann solver to compute the flux, as the Finite Volume method. It is today applied routinely to segments,
quadrilaterals and hexahedra following a tensor approach. The weakness of the method lies in its inability
to deal with hybrid grids.

In this context, the goal of this paper is to propose an extension of the SD method to 2D hybrid grids
composed of triangles and quadrilaterals. Following the pioneering work of Balan et al. [37, 38], accounting
for triangles is possible by introducing the RT space to approximate the flux. Compared to the literature,
the proposed work gives new results since SDRT formulations based on new sets of interior FP were shown
as spatially stable for p = 4 and p = 5. These sets of points were determined through an optimization process
based on the Fourier analysis. Proof of the spatial stability of this formulation was given through a study
of the spatial operator spectrum and the coupled time-space discretization was then studied to determine
CFL stability limits. A theoretical analysis shows that the present formulation differs with the FR/CPR
approaches. There are then two alternative approaches to the DG formulation valid on both quadrilaterals
and simplex cells. The last effort deals with validation and it is shown that the formulation proposed in
the paper is able to perform simulations for Euler and Navier-Stokes equations. The theoretical order of
accuracy is recovered and coherent results on academic test cases are obtained.

The present work is the first effort towards the definition of the SD method for 3D simulations on
hybrid grids and many questions are still open. Future work should deal with the definition of a stable SD
formulation for tetrahedra and on spectral properties of the proposed schemes (dissipation and dispersion).
In the later case, a specific analysis is necessary due to the difficulty to treat all directions at the same time
in a regular grid with a given reference length scale in all directions.
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A Definition of the Raviart-Thomas (RT) space

The Raviart-Thomas (RT) finite element spaces were originally introduced by Raviart and Thomas [82] to
approximate the Sobolev space H(div) defined by:

H(div) = {u ∈ (L2
(K))

d
, ∇ ⋅ u ∈ L2

(K)}, (74)

where d is the dimension, K is a bounded open subset of Rd with a Lipshitz continuous boundary, L2(K) is
the Hilbert space of square integrable function defined on K. The extension to the three-dimensional case
considering K as a tetrahedron or a cube was proposed by Nedelec [83]. The space RTk spanned by the
Raviart-Thomas basis functions of degree k is the smallest polynomial space such that the divergence maps
RTk onto Pk, the space of piecewise polynomials of degree ≤ k. Considering the reference triangle T , the RT
space of order k is defined in 2D by:

RTk = (Pk)2
+ (

x
y
) P̄k, (75)

where Pk is the space of polynomials of degree at most k:

Pk(x, y) = span{xiyj , i, j ≥ 0, i + j ≤ k}, (76)

P̄k is the space of polynomials of degree k:

P̄k(x, y) = span{xiyj , i, j ≥ 0, i + j = k}, (77)

and (Pk)2 = (Pk,Pk)⊺ is the two dimensional vector space for which each component is a polynomial of

degree at most p. The dimension of each space is dim Pk = (k+1)(k+2)
2

, dim P2
k = (k + 1)(k + 2), dim P̄k = k + 1

and thus dim RTk = (k + 1)(k + 3). Let us denote φn, n ∈ J1,NFP K the monomials which form a basis in the
RTk space where

NFP = (k + 1)(k + 3). (78)

Determination of φn for RT1, NFP = 8

P1(x, y) = span{1, x, y} , (79)

P2
1(x, y) = span{(

1
0
) ,(

x
0
) ,(

y
0
) ,(

0
1
) ,(

0
x
) ,(

0
y
)} , (80)

P̄1(x, y) = span{x, y}, (81)

(
x
y
) P̄1 = span{((

x
y
)x) ,((

x
y
) y)} = {(

x2

xy
) ,(

xy
y2)} , (82)

φn = {φ1,⋯, φ8} = {(
1
0
) ,(

x
0
) ,(

y
0
) ,(

0
1
) ,(

0
x
) ,(

0
y
) ,(

x2

xy
) ,(

xy
y2)} . (83)

B Proriol-Koornwinder-Dubiner (PKD) basis

The PKD basis is obtained by forming a tensor product of one-dimensional Jacobi polynomials based on a
Cartesian coordinate system. Since the Jacobi polynomials are defined on the reference interval [−1,1], the
2D PKD basis obtained using tensor product is defined on the reference quadrilateral bounded by the same
constant limits, i.e. Q ∶= {(x, y) ∶ −1 ≤ x, y ≤ 1}. This section follows the generalised tensor product modal
expansion notations defined in [52].
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B.1 Collapsed coordinated system

To express the PKD basis on the reference triangle T ∶= {(x, y) ∶ −1 ≤ x, y ≤ 0, x + y ≤ 0}, the first step is to
map the reference triangle onto the reference quadrilateral. This transformation is defined by:

⎧⎪⎪
⎨
⎪⎪⎩

ξ = 2 (1+x)(1−y) − 1,

η = y,
or

⎧⎪⎪
⎨
⎪⎪⎩

x = (1+ξ)(1−η)
2

− 1,

y = η.
(84)

The triangular element can now be describe with the new coordinates as T ∶= {(ξ, η) ∶ −1 ≤ ξ, η ≤ 1}, bounded
by the very same constant limits. The system of coordinates (ξ, η) is referred to as the collapsed coordinate
system or Duffy coordinates.

B.2 PKD basis

Using the collapsed coordinates, the PKD basis is constructed as a family of L2-orthogonal polynomials on
T derived from a warped product of one-dimensional Jacobi polynomials:

Φi,j = P
0,0
i (ξ) (

1 − η

2
)

i

P 2i+1,0
j (η), i + j ≤ p. (85)

In Eq. (85), Pα,βi denotes the corresponding n-th order Jacobi polynomials on the interval [−1,1] which,
under the Jacobi weight (1 − x)α(1 + x)β are orthogonal polynomials, i.e.,

∫

1

−1
(1 − x)α(1 + x)βPα,βi (x)Pα,βj (x)dx =

2α+β+1

2i + α + β + 1

Γ(i + α + 1)Γ(i + β + 1)

i!Γ(i + α + β + 1)
δij , (86)

where Γ is the Gamma function
Γ(n) = (n − 1)!. (87)

In the case of β = 0, Eq. (86) can be simplify as

∫

1

−1
(1 − x)αPα,0i (x)Pα,0j (x)dx =

2α+1

2i + α + 1
δij . (88)

Remark: The 2D PKD basis functions are polynomials in both (x, y) and (ξ, η) spaces.
Remark: The ’wrapped product’ property refers to the fact that the 2D PKD basis functions can be
expressed as the product of two polynomials, one in ξ and one in η.

B.3 Demonstration of L2 orthogonality

To demonstrate the L2 orthogonality of the PKB basis functions, the following integral must be evaluated:

⟨Φi,j ∣Φk,l⟩ = ∫
1

−1
∫

−y

−1
Φi,jΦk,ldxdy, (89)

which can be written in terms of the collapse coordinate system (ξ, η):

⟨Φi,j ∣Φk,l⟩ = ∫
1

−1
∫

1

−1
P 0,0
i (ξ) (

1 − η

2
)

i

P 2i+1,0
j (η)P 0,0

k (ξ) (
1 − η

2
)

k

P 2k+1,0
l (η) ∣J ∣ dξdη, (90)

where the Jacobian determinant is

∣J ∣ = ∣
∂(x, y)

∂(ξ, η)
∣ =

1 − η

2
. (91)

Eq. (90) can be written:

⟨Φi,j ∣Φk,l⟩ = ∫
1

−1
∫

1

−1
(

1 − η

2
)

i+k+1

P 0,0
i (ξ)P 2i+1,0

j (η)P 0,0
k (ξ)P 2k+1,0

l (η)dξdη

=
1

2i+k+1 ∫

1

−1
P 0,0
i (ξ)P 0,0

k (ξ)dξ∫
1

−1
(1 − η)

i+k+1
P 2i+1,0
j (η)P 2k+1,0

l (η)dη.

(92)
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The first integral value follow from the orthogonality of Legendre polynomials, which are the special case
(α,β) = (0,0) of Jacobi polynomials:

∫

1

−1
P 0,0
i (ξ)P 0,0

k (ξ)dξ =
2δik

2i + 1
. (93)

The first integral is equal to zero if i ≠ k. When i = k, using Eq. (88), the second integral becomes:

∫

1

−1
(1 − η)

i+k+1
P 2i+1,0
j (η)P 2k+1,0

l (η)dη = ∫
1

−1
(1 − η)

2i+1
P 2i+1,0
j (η)P 2i+1,0

l (η)dη =
22i+2δjl

2j + 2i + 2
. (94)

Eq. 92 becomes:

⟨Φi,j ∣Φk,l⟩ =
δikδjl

(i + 1/2)(i + j + 1)
. (95)

From Eq. (95), if i ≠ k and j ≠ l, ⟨Φi,j ∣Φk,l⟩ is necessarily equal to zero, which shows the orthogonatily of the
PKD basis in T .

B.4 Normalized PKD basis

From Eq. (95), it comes:

∥Φi,j∥
2
T = ⟨Φi,j ∣Φi,j⟩ =

1

(i + 1/2)(i + j + 1)
, (96)

which leads to the expression of the L2 normalized 2D PKD basis:

Φi,j =
√

(i + 1/2)(i + j + 1) P 0,0
i (ξ) (

1 − η

2
)

i

P 2i+1,0
j (η), i + j ≤ p. (97)

C Matrices Formulation for the Fourier Analysis

The matrices M0,0, M−1,0, M+1,0, M0,−1 and M0,+1 involved in the SDRT spatial discretization for the
Fourier analysis on triangular elements (51) are detailed in this appendix. Those matrices are given as:

M0,0
= [

Djk ONSP ,NFP
ONSP ,NFP Djk

]C0,0
[

Tkj ONFP ,NSP
ONFP ,NSP Tkj

] , (98)

M−1,0
= [

Djk ONSP ,NFP
ONSP ,NFP Djk

]C−1,0
[

Tkj ONFP ,NSP
ONFP ,NSP Tkj

] , (99)

M+1,0
= [

Djk ONSP ,NFP
ONSP ,NFP Djk

]C+1,0
[

Tkj ONFP ,NSP
ONFP ,NSP Tkj

] , (100)

M0,−1
= [

Djk ONSP ,NFP
ONSP ,NFP Djk

]C0,−1
[

Tkj ONFP ,NSP
ONFP ,NSP Tkj

] , (101)

M0,+1
= [

Djk ONSP ,NFP
ONSP ,NFP Djk

]C0,+1
[

Tkj ONFP ,NSP
ONFP ,NSP Tkj

] , (102)

with j ∈ J1,N tri
SP K, k ∈ J1,N tri

FP K and Om,n is the zero matrix of size m × n. The transfer matrix is given by
Eq. (18):

Tkj =

NtriSP

∑
m=1

(Φm(ξj))
−1

Φm(ξk), (103)

and the differentiation matrix by Eq. (23):

Djk =

NtriFP

∑
n=1

(φn(ξk) ⋅ n̂k)
−1

∇̂ ⋅φn(ξj). (104)
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The velocity matrices C0,0,C−1,0,C+1,0,C0,−1 and C0,+1 are given by:

C0,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CL ONe,Ne ONe,Ne ONe,Ni
ONe,Ne CL ONe,Ne ONe,Ni
ONe,Ne ONe,Ne CL ONe,Ni
ONi,Ne ONi,Ne ONi,Ne CI

Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne CR ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne CR ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CL ONe,Ne ONe,Ne ONe,Ni
ONe,Ne CL ONe,Ne ONe,Ni
ONe,Ne ONe,Ne CL ONe,Ni
ONi,Ne ONi,Ne ONi,Ne CI

Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (105)

C−1,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ONFP ,NFP ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne CR ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[ONFP ,NFP ] [ONFP ,NFP ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (106)

C0,+1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ONFP ,NFP ] [ONFP ,NFP ]
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne CR ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[ONFP ,NFP ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (107)

C0,−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ONFP ,NFP ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CR ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[ONFP ,NFP ] [ONFP ,NFP ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (108)

C+1,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ONFP ,NFP ] [ONFP ,NFP ]
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CR ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[ONFP ,NFP ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (109)

where CI , CL and CR are defined by:

CI
= [diag(∣J ∣J−1

(c ⋅ n̂))]
Ni,Ni

, (110)

CL
= (c ⋅ n) [diag(

1 + sign(c ⋅ n)

2
)]
Ne,Ne

, (111)

and

CR
= (c ⋅ n)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 1−sign(c⋅n)
2

⋮ ⋱ ⋮
1−sign(c⋅n)

2
. . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦Ne,Ne

. (112)

31



D Interior Flux Points Parametrization for the Optimization Al-
gorithm

Flux Point (ξ, η)
ξ16 (β4/2 + γ4, β4/2 − γ4)

ξ17 (β1/2 + γ1, β1/2 − γ1)

ξ18 (β1/2 − γ1, β1/2 + γ1)

ξ19 (α2, α2)

ξ20 (β3/2 − γ3, β3/2 + γ3)

ξ21 (β2/2 + γ2, β2/2 − γ2)

ξ22 (β4/2 − γ4, β4/2 + γ4)

ξ23 (β3/2 + γ3, β3/2 − γ3)

ξ24 (α1, α1)

ξ25 (β2/2 − γ2, β2/2 + γ2)

ξ26∶35 ξ16∶25

Table 7: Interior FP coordinate parameters in a triangular element for SDRT4

Flux Point (ξ, η) Flux Point (ξ, η)

ξ19 (α1, α1) ξ27 (β3/2 − γ3, β3/2 + γ3)

ξ20 (β6/2 − γ6, β6/2 + γ6) ξ28 (β2/2 + γ2, β2/2 − γ2)

ξ21 (β6/2 + γ6, β6/2 − γ6) ξ29 (β3/2 + γ3, β3/2 − γ3)

ξ22 (α3, α3) ξ30 (β5/2 + γ5, β5/2 − γ5)

ξ23 (α2, α2) ξ31 (β4/2 + γ4, β4/2 − γ4)

ξ24 (β2/2 − γ2, β2/2 + γ2) ξ32 (β1/2 − γ1, β1/2 + γ1)

ξ25 (β5/2 − γ5, β5/2 + γ5) ξ33 (β4/2 − γ4, β4/2 + γ4)

ξ26 (β1/2 + γ1, β1/2 − γ1) ξ34∶48 ξ19∶33

Table 8: Interior FP coordinate parameters in a triangular element for SDRT5
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