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Abstract

In the present paper, a stable Spectral Difference formulation on triangles is defined using a
flux polynomial expressed in the Raviart-Thomas basis. Compared to the literature on the Spectral
Difference approach, the present work outperforms published results in the order of accuracy that
the stable formulation can deal with (p = 4 and p = 5). Moreover, the present approach differs with
today reference approach called Flux Reconstruction method on hybrid grids. The proposed scheme
is based on a set of flux points that are defined in the paper. The sets of point leading to a stable
formulation are determined using a linear stability analysis. Two techniques are introduced, based
on an optimization process or using published cubature points. For each order of accuracy, different
sets of points lead to stable Spectral Difference schemes using Raviart-Thomas elements. Validation
starts from the linear advection equation and ends with the laminar subsonic and transonic Navier-
Stokes solutions over the NACAQ0012 airfoil using high order triangles and the laminar flow around a
cylinder using a hybrid grid.

Keywords: high-order method, Spectral Difference method, triangle, quadrangle, linear stability
analysis.

1 Introduction

Many advancements in high-order discontinuous methods enable accurate and robust simulations on
unstructured grids with a good parallel efficiency. Numerical schemes using piecewise continuous poly-
nomials are widely used to obtain high-order accuracy. The aim is to look for a polynomial solution in
any mesh cell, but without requiring the solution to be continuous across mesh interfaces. The most
popular approach, the Discontinuous Galerkin (DG) method, has been successfully implemented in many
solvers and leads to a very rich research. Without being exhaustive, a partial literature review focused
on Computational Fluid Dynamics is available in several books [T}, [2, B] [, 5] [6, [7, 8] and many contri-
butions in Europe also come from projects [9, [I0, 11] involving research centers and industry [12]. The
DG method links the standard finite element method and the finite volume method: unknowns defined
on a polynomial basis are solution of a weak problem, as in finite element but discontinuities at mesh
interfaces are solved using an approximated Riemann solver as in finite volume. While DG methods are
based on the integral form of equations, other methods directly use the strong form, which results in a
simpler formulation and implementation as well as a lower computational cost since no integral needs
to be computed [13]. For a standard hyperbolic equation, the solution is sought under the form of a
polynomial of degree p defined in any mesh cell. For consistency, it is mandatory to define the flux
density divergence as a polynomial of degree p. Indeed, dealing with the strong formulation means that
the divergence of the flux polynomial is explicitly computed. Today, there are essentially two classes of
methods based on the strong formulation.

The first class is called the Correction Procedure for Reconstruction (CPR) or the Flux Reconstruction
(FR) approach. Introduced by Huynh in 2007 [14], the method consists in defining a polynomial of degree
p for the flux, as it is done for the solution. This flux polynomial looses two mandatory properties: the
flux divergence is no longer a polynomial of degree p and since the flux is discontinuous at cell interfaces,
the scheme is not conservative. In a second step, a lifting operator defined as a polynomial of degree p+ 1
is introduced with the aim to recover these lost properties. The lifting operator plays a central role in the
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properties of the schemes and enables to link the FR method, the DG formulation and other methods
[15, 16]. A class of lifting operator can be built especially for specific mathematical properties, such as
energy stability [I7, [18]. Huynh, Wang and Vincent published in 2014 a reference paper on the proposed
techniques [19].

An alternative method named the staggered-grid Chebyshev multidomain method was initiated by
Kopriva and Kolias [20] in 1996 and applied to structured quadrilateral grids using a tensor-product
framework by Kopriva in [2T]. In 2006, Liu et al. [22] proposed an extension of Kopriva and Kolias’ work
to simplex cells and called the approach the Spectral Difference (SD) method. Wang et al. [23] adapted
the procedure to Euler equations on triangular grids. Then, the method was extended to Navier-Stokes
equations by May and Jameson [24] for triangular meshes and Sun et al. [25] for hexahedral grids. It is
important to notice that for grids based on tensor product cells, the SD method formulation is identical
to the multidomain spectral method introduced in [20]. For tensor product cells, the SD method principle
consists in defining two polynomials, one for the solution and one for the flux, leading to an order of
accuracy of p + 1, where p is the solution polynomial degree. This choice of polynomial degrees also
ensures the consistency of the formulation. However, contrary to the FR approach, the lifting operator is
not introduced in the formulation: two sets of points, the Solution Points (SP) and the Flux Points (FP)
enable the definition of the Lagrange interpolation polynomials. An alternative approach was derived
very recently by Chen et al. [20] for tensor-product cells. This technique and the standard one differ in
the definition of the flux derivative. In the new formulation, the flux derivative is built from the set of
SP plus the interface FP. Such a formulation avoids the need to interpolate from SP to internal FP. Here,
attention is focused on the standard SD formulation and details are provided in Sec. [2}

The stability of the SD method for tensor product cells was studied by Van den Abeele et al. [27, 28].
They showed that the SP position did not influence neither the stability nor the accuracy of the scheme.
Jameson confirmed this statement [29] and also showed that for the one-dimensional linear advection
case, the SD method is stable for all order of accuracy in a norm of Sobolev-type provided that the
interior flux collocation points are placed at the zeros of the corresponding Legendre polynomials.

When considering the standard SD method on simplex cells, stability analysis leads to different
conclusions. Van den Abeele et al. [28] showed that for an order of accuracy strictly greater than 2, the
scheme stability is not ensured for triangular cells. For high-order SD schemes on triangular cells, several
FP positions are tested but none of them lead to a stable scheme. This explains why after several papers
using the SD approach on triangles (see [30, B1 22} 32] 23] among the possible literature), most researchers
focused on unstructured grids composed of hexahedra only. To overcome this limitation, Liang et al. [33]
proposed to decompose any triangular or quadrangular cell into quadrangles using cell center and mid-
edges, leading to quadrangle cells of half the size of the one of the original element. Using this option, a
2D hybrid mesh is transformed into an unstructured grid composed of quadrangles only but the number
of mesh elements is strongly increased. Balan et al. proposed another alternative in [34, B5]. Instead
of splitting any mesh cell in sub-cells to define the computational grid, they build an alternative SD
formulation using Raviart-Thomas (RT) elements on triangles, leading to the naming SDRT. The SDRT
scheme is proven to be linearly stable up to the 4" order under a Fourier stability analysis originally
initiated by May [30] and validated on Euler test cases. The SDRT method was then extended to simulate
2D viscous flows on unstructured hybrid grids up to the 4*" order in [37]. Finally, one must also mention
the work of Meister et al. on the SD method on triangles based on Proriol-Koornwinder-Dubiner (PKD)
basis on the triangle for both solution and flux polynomials [38], [39]. Such approach will also differ with
ours by the set of FP: here, the authors choose the set of Lobatto points on the triangle, as proposed by
Blyth and Pozrikidis [40]. In the later case, there are FP at triangle vertices and since a triangle vertex
is generally shared by more than two triangles, this choice is questionable to properly define the inputs
of the Riemann problem. Such a configuration will never appear if the interface FP are located on edges,
thus this constraint will be applied to our formulation.

The standard staggered SD approach was chosen to be implemented in the high-order solver JAGUAR
(proJect of an Aerodynamic solver using General Unstructured grids And high-ordeR schemes) [41]
because of its accuracy [42] and its efficiency [43] for Large Eddy Simulations. The SD method was
recently made compatible with the non reflecting boundary conditions [44], written specifically to cope
with the SD algorithm and then coupled with a Time Domain Impedance Boundary Condition formulation
[45] [46]. In this context, the present paper focuses on the extension of the JAGUAR solver to deal with
2D hybrid unstructured grids composed of standard element shapes (quadrangles and triangles). In
Sec. 2| the SDRT scheme on triangles and its difference with the standard technique on quadrangles
are highlighted. Then, our procedure to find a linearly stable formulation on triangles is introduced in
Sec. [3] Validation test cases are presented in Sec. [] starting from the linear advection to simulations of
2D viscous flows on high-order-triangular and hybrid mesh.



2 Spectral Difference Scheme on 2D hybrid grids

2.1 The SD approach for first order PDE

Let us consider the following 2D scalar conservation law under its differential form:

Ou(x,1)

U6l vty =0, max[0.4], 0

where u is the state variable, f = (f,g) is the flux vector where f and ¢ are flux densities in the x
and y directions respectively and V is the differential operator in the physical domain x = (x,y). The
computational domain ) is discretized into N non-overlapping cells (triangles or quadrangles) and the
i-th element is denoted €;:

C=

Q=)0 (2)
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For implementation simplicity, Eq. is solved in the reference domain. Each cell £2; of the do-
main ) is transformed into a reference element 7 := {(£,1):0<¢,n<1,€+n<1} for a triangle or
Q:={(&,n):0<¢& n<1} for a quadrangle. The transformation can be written as:

AN T;
(1)-2amcen(r) ®)

where (z;,y;) are the Cartesian coordinates of the IV, vertices of the cells and M;(§,n) are the shape
functions.

The Jacobian matrix of the transformation given by Eq. from the physical (x,y) to the reference
domain (£,7) takes the following form:

g o(z,y) |:a:£ JCn:|. )

CaEm)  (ve Yn
For a non-singular transformation, the inverse transformation is related to the Jacobian according to:
a(¢, -
(5 77) — fac fy =J 1. (5)
6(.13, y) Nz Ty

In the reference domain, Eq. becomes:

8’&(5,t) SN
T+V~f—0 (6)

where V is the differential operator in the reference domain and @, f are the solution and the flux in the
reference domain defined by:
a=|Jlu (7)

and R
f=|J]Jf. (8)

2.2 SD scheme on quadrangles

For quadrangles, the standard SD method follows a tensorial rule approach and the treatment is performed
direction per direction, as in [25] 47, 28]. For a polynomial of degree p leading to an accuracy of p + 1,
a number Ngp =p+ 1 of SP (denoted &, j € [1, Nsp]) are defined as the Gauss-Chebyshev points in the

reference domain [0, 1]:
1 27-1
57:2[1—008((;1)_‘r2)7r)],forlsj§p+1. (9)

A number of Npp =p+2 FP (denoted &, k € [1, Npp]) are mandatory to define the flux as a polynomial
of degree p+1. Two FP are located on the element boundary and the remaining p FP are defined as the
roots of the Legendre polynomial of degree p. Solution and flux polynomials are finally computed using
the standard Lagrange polynomials based either on the SP or on the FP.

Finally, it must be highlighted that the position of the FP on any mesh interface follows the position
of the SP in the reference element due to the tensorial formulation.



2.3 SDRT scheme on triangles

On triangles, the SD formulation is based on the RT polynomial space, as in [34, 5] In order to obtain a
(p + 1)-th order accurate scheme, a polynomial of degree p is introduced to approximate the solution. As
for the standard SD scheme, the solution at FP is computed by a simple interpolation from the solution
polynomial. The flux polynomial is then built from the fluxes computed at FP. The main difference
of the SDRT scheme with the standard SD formulation comes from the flux approximation. Instead of
projecting the flux vector component-wise into a finite dimensional polynomial space of degree p + 1, the
flux vector is approximated in the RT space, using vectors as basis functions and scalar flux values as
coefficients. By nature, the RT space is the smallest polynomial space such that the divergence maps
it onto the space of polynomial of order p (see |A| for details). This ensures that the solution and the
flux divergence will both be polynomials of degree p. Details on implementation are summarized in the
following.

2.3.1 Solution polynomial

The solution 4 is approximated on the reference triangle 7" by a polynomial of degree p, @y (£) € Pp,
through a set of distinct SP &;,j € [1, Ngp] where

+1)(p+2
Nap = % (10)
and o
P, =span{&'n’,0<4,0<j and i +j < p} (11)

The polynomial @, (€) can be expanded using a nodal or a modal representation. When using the nodal
representation, the polynomial is represented in term of point values by way of a Lagrangian interpolant,
which is defined as the polynomial of lowest degree that assumes at each value &; the corresponding value
U; so that the function coincides at each point:

Nsp

in(§) = 3 ;1;(€) (12)

J=1

where [; is a Lagrange polynomial and #; are the known solution values at point ;. Since there is not a
closed-form expression of the Lagrange polynomials through an arbitrary set of points on the triangular
element [48], a solution is to expand the polynomial 4y, using a modal representation:

Nsp

(€)= 3 T Pn(8) (13)

where ®,,(§) € P, is a complete polynomial basis and @,, are the modal basis coefficients, which do not
represent the value of a function at a point. Since @, (€) and ®,,,(€) span the same polynomial space,
any projection form will recover the exact expansion coefficient ,,. Then, by performing a collocation
projection at the points &; such that

A A NSP o~
uh(&j) =Uj = Z Um (I)m(éj)v (14)
m=1
the coefficients w,,, can be determined as:
_ Nsp 1
T = 3 iy (2(€))7 (15)
m=1

The term ®,,(&;) corresponds to the matrix of basis change, also known as the generalized Vandermonde
matrix V; ., = ®,,,(€;). The choice of the basis ®,,(£) is of primary importance since a matrix inversion is
involved in the polynomial expansion process. The chosen basis will dictate the conditioning of the matrix
V and thus the computational stability. The most straightforward choice would be the monomial basis
{1,z,y,2% xy,v?, ...,yP}. However, this choice leads to a dense Vandermonde matrix whose condition
number rapidly increases with the order p. A solution is to choose a hierarchical orthogonal basis, whose
Vandermonde matrices are diagonal and thus better conditionned. An appropriated basis choice is to
define ®,,(&€) as the PKD basis, which has been defined on the triangle by Proriol [49], Koornwinder
[50] and Dubiner [5I]. For a polynomial approximation of degree p on the reference triangle, the 2D
orthonormal PKD basis takes the following form:

Bis(6m) =G 21 PR (50) PG, i< (16)



Details on Jacobi polynomials and the PKD basis normalization can be found in

For simplicity, the subscript (i,5) can be replaced by the single index m, m € [1, Ngp] with any
arbitrary bijection m = m(4, 7).

From the literature [48, [52], three main assets of the PKD basis can be noted. First, it is based
on Jacobi polynomials, which can be evaluated to high degree using simple recurrence relations. Then,
the PKD L? orthogonality will tend to a well-conditioned Vandermonde matrix. Finally, the PKD basis
hierarchical nature (the expansion set of order p contains the expansion set of order p — 1) simplifies the
construction of certain finite element spaces, such as the RT space, which will be used to approximate
the flux function in the SDRT formulation. The polynomial approximation 4 of the solution @ is thus
defined in the reference space by:

Nsp

ﬁh(ﬁ) = Z ’&j (q)m(gj))71 (I)m(ﬁ) (17)

m=1

2.3.2 Solution computation at flux points

To compute the flux values at FP, we first have to determine the solution values at those points. With
the polynomial distribution given by Eq. , the solution at the FP (denoted &) can be computed as:

Nsp Nsp

(€)= Y by (Pm(€)) " ®m(&r) = Y iy (Vim) ™" ®n(&r) (18)

m=1 m=1

Numerically, the extrapolation step is represented by the transfer matrix Ty; = [(Vj,m)_1 D, (£k)]

2.3.3 Definition of the flux polynomial from the set of fluxes at flux points

Now that solution values at FP are known, the flux values fk at the k-th flux point are assumed to be
computed. The details will be given below. The flux function in the reference domain is approximated

by f;, in the RT space as:
Nrp

£.(€) = kz Fetpi(€) (19)
-1

where Npp is the number of degrees of freedom needed to represent a vector-valued function in the RT),
space:

Npp=(p+1)(p+3) (20)
and 1, are interpolation functions which form a basis in the RT space with the property:
¥ (&k) Dk = 0k (21)

where ¢ is the Kronecker symbol and nj are the unit normal vectors defined at FP. At this level, it must
be highlighted that some flux points will be located inside the triangle and the definition of the normal
vector needs to be described accurately. For interior FP, one physical point is associated to two degrees of
freedom through the definition of unit vectors in different directions. In 2D, the unit vectors for interior
FPs are i = (1,0)" and nn = (0,1)" in the reference element.

The last step is to determine the scalar flux values fk at FP on which the polynomial approximation
given by Eq. relies on. In the case of a first-order partial differential equation as given by Eq. (@, the
flux is only function of the solution. For interior FP, the flux values in the reference domain are computed
directly from the approximated solution value and projected on the unit normal vector previously defined.
For FP located on edges, fk is computed using a standard numerical flux function given as a solution of
a Riemann problem using two extrapolated quantities, one on each side of the interface.

. fk-ﬁk=|J|J71fk(uh(£k))-flk, kaT\ oT
Aol * (22)
(fc-fg) = (£ [J|(J)Thy) , € edT.
1

where (fk . ﬁk)* is the standard numerical flux in the reference element and wy (&) = mﬂh (&) is the

approximated solution in the physical domain.

2.3.4 Differentiation of the flux polynomial in the set of solution points

Once the flux vector is approximated on the reference element by Eq. , it can be differentiated at SP:

(V) (&)

P 23
Fe (Vi) (&) 2

(W21



The term (@ . ¢k) (&) in Eq. can be written as a matrix of size [Ngpx Npp] called differentiation
matrix. To properly define the differentiation matrix, the vector-valued interpolation basis functions )y
and their derivatives need to be determined. To do so, the first step is to express the known monomial
basis in the RT space ¢y, n € [1, Npp] as a linear combination of the basis functions y:

Nrp
én(€) = Y. anwtpr(€) (24)
k=1
For instance, in the case of p = 1, the monomial basis takes the form:

<(o) G)- () ()-()-6)- () C2) &

To determine the coefficients a,, &, Eq. is multiplied by f;, and then by enforcing the condition given
by Eq. , we get:

Nrp
Gn(€) Ny = Y anptpi(€) - Ny (26)
k=1
and
Nrp
Dn(&r) e = Y anpp;(&r) - Dy (27)
k=1
SO
ank = On(&x) - Dy (28)
Using Eq. , the derivative can be expressed as:
Nrp
@ ’ ¢n(€) = Z Qn K (ﬁ ’ "pk) (5) (29)
k=1
and therefore R X
(V1) (&) = (ani) " V-, (8). (30)
Eventually, the differentiation matrix at SP is computed as:
Dy = [(V-4r) (&)] = [(n(&r) -0x) " V- $n(§))]. (31)

2.3.5 Time increment

The final form of the SDRT scheme can be written for each degree of freedom of the solution function in

each cell ¢ as: 4
dﬁy) N 200 (o ; ;
7““ Z I (V'¢k)(€j):0a Je[l,Nsp], ie[l,N] (32)
k=1

and the solution can be time-integrated using any standard time integration scheme (Runge-Kutta scheme
for instance).

2.4 A first comment on the position of FP

Due to the strong desire to perform computations on hybrid grids composed of quadrangles and triangles,
the position of the FP on triangles must follow the rule for quadrangles: there will be (p+1) FP per face
so (3p+3) FP are located and the remaining (p+1) x (p+3) —=3(p+1) = p(p+1) FP must be located in
the element. In addition, the product p(p + 1) is always even, which allows to define p(p + 1)/2 physical
interior FP points associated to two degrees of freedom through the definition of differents normal vectors.

2.5 Comparison of SDRT and FR schemes

The FR/CPR technique was introduced as a way to recover SD, DG and other schemes for any linear
hyperbolic equation. But an open question concerns the possible differences between the proposed tech-
nique and the FR/CPR scheme. In order to ease the explanations, we consider the FR/CPR method
described in [53]:

e For p = 2: three FP per face are introduced for the lifting operator and the very same number of FP
is introduced for the SDRT. Moreover, the full flux polynomial definition for the FR/CPR, involves
the flux computed in 6 SP located inside the element and the 9 fluxes on the boundary. Here, we
have 9 fluxes on the boundary and p(p + 1) = 6 fluxes from internal FP.



e For p = 1: two FP per face are introduced for the lifting operator, as for the SDRT method.
Moreover, the flux polynomial before correction needs the flux computed at the three SP inside the
element. With the SDRT method, only p(p + 1) = 2 internal FP are needed.

e More generally, SDRT and FR/CPR methods will differ once the number of SP inside the element
is not equal to p(p + 1), so:

(p+1)(p+2) .

5 p(p+1l)=—=p+2and p+-1.

Remark: The present analysis to build a link between SDRT and FR flux polynomial computation is
valid for any hyperbolic equation. For the linear advection equation, the authors think that a connection
should be established due to the linear relation between the solution and the flux, as in [29]. The definition
of this link is out of the scope of the current paper.

2.6 Extension of the SD approach for Navier-Stokes equations

Let us consider the same 2D scalar conservation law in the reference domain:

du(&,t)
ot

except that now, the flux is defined by :
f=|J|J (u, Vu), (34)
leading to a second-order PDE. For the Navier-Stokes equations, the flux can be expressed as:
£ =f'(u) - £ (u, Vu) (35)

where f? is the inviscid flux and f? is the viscous flux. The viscous flux depends not only on the solution
u but also on its first spatial derivative Vu. Eq. is solved following the very same procedure as for a
first order PDE except for the determination of the flux values at FP fk. The scalar flux values are now
given by: o
fo=fi- 1t (36)
The inviscid flux values fi are computed using Eq. since the inviscid flux only depends on the
solution: .
fi-fy = [T (un (€k)) -0, Ex €T NOT
A=l (37)
(B -me) = (61717 ™)", &edT.

In order to compute f,g, which relies on the solution and its gradient, the following procedure, based on
a centered formulation [25] is used.

From the approximated solution in the reference domain, the physical approximated solution uy (&)
is first computed at FP:

up(&r) = uh(Ek) |1| kj Uj (38)

/]
From those values, a polynomial of degree p + 1 can be reconstructed for the solution. However, this
polynomial is discontinuous at cell interfaces. A centered scheme is used to define a single values at each
flux point by averaging the values from the left and the right cells, leading to a continuous polynomial
approximation uj .

un (&), §eeT~OT

uj, (&) = (39)
3 (un (&) +uif (&), €x €T,

Eq. is then differentiated to compute the solution gradient (Vu) at SP.

(Vu) (&) = = Dye (s (&x) (111771) ) (40)

7] |
From the solution gradient at SP in the reference domain, the solution gradient in the physical domain
can be interpolated at FP:

(Vu)p, (&) = Trj (Vu) (&) (41)



The polynomial approximation of the solution gradient (Vu), is discontinuous at cell interfaces. As it
was done for the solution, a center scheme is used to defined a single value at cell interface:

(Vu), (&) &L eTNOT

(Vu); (&) = (2
' L((V0)f (60 + (Vo) (€)). € eoT.

The continuous solution u§ and the continuous solution gradient (Vu); in the physical domain are used
to compute the viscous flux values:

£ = £ (uj, (&), (Vu)y, (6r)) (43)

The viscous flux values in the reference domain are finally given as:

Yy, e TNOT

(44)
£ -1y, & € OT.

The flux polynomial based on the flux values fk = f,i - f,f is then differentiated by multiplying it by the
differentiation matrix D, and the semi-discrete equation is integrated in time.

3 Linear Stability Analysis

The stability analysis presented in this section follows the eigenvalue analysis provided in [54] [48] [42]:
in order to study the scheme stability, the (coupled) space and time discretizations are written under
a matrix form. The eigenvalue analysis is performed using a coarse grid taking into account the block-
diagonal structure identified in [54] [4§].

3.1 Matrix form of the SDRT scheme

We consider the linear advection equation

Ou(x,1)

ot V=0, mQx[0.1] (45)

within a domain 2, where u is a conserved scalar quantity and f = c¢-u is the flux. The velocity field c is
defined by:
c=(cg,cy) = (cosb,sinf), 6¢€[0,27] (46)

The domain 2 is a regular mesh composed of two triangles T and T (Fig. |1)) with periodic boundary
conditions. Using symmetry properties, the choice of the advection angle can be reduced to 6 € [0, 7/4].
For clarity purposes, the FP numbering in the reference triangle needs to be settled and their normal
vector defined. On each edge, there are N, = (p + 1) FP, which are represented with red circles and
numbered as follow:

e On face 1 (n=0), k€ [1, N.], k increasing with £, n = (0,-1)7
e Onface 2 (n=1-¢), ke[N.+1,2N,], k increasing with n, n = (1,1)7
e On face 3 (£=0), k€ [2N, +1,3N,], k increasing when 7 decreases, nn = (-1,0)"

The remaining N; = p (p+ 1) flux nodes are located in the interior and represented with blue squares. As
mentionned in Sec. [2] one physical point is considered as two seperate degrees of freedom with different
normal vectors, thus there are N;/2 physical FP. Flux nodes associated with the unit vector in = (1,0)"
in the reference element are numbered with k € [3N, + 1,3N, + 1 + N;/2] whereas flux nodes whose unit
vector is i = (0,1)7 are numbered with k € [3N.+1+N;/2,3N.+1+N;]. An example of the FP numbering
and their associated normal vector is given on Fig. [2| for the case p = 2.

3.2 Linear stability analysis for the spatial discretization
3.2.1 Matrix form of the SDRT scheme
Each element is transformed into a standard element and Eq. becomes:

a’LAL(E,t) SN
T+V-f—0, (47)
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with @ = |Jju and f = |J|J £,
We introduce U7, the column vector of size Ngp whose components are the solution values in the reference
element at SP in the i-th cell:

ﬁ; = [ﬁi(gj)]lﬁjSNsp : (48)

The solution values at FP are obtained by multiplying fJ; by the transfer matrix T};, which represents
the extrapolation step and is given as:

Nsp

Txj = Z_:l (m (€))7 P (&r), (49)

leading to the column vector \A/'}C of size Ngp:

Vi = [ (&) ]1epen,p = Th; U (50)

From the solution values at FP, the flux values are then computed. At edges, two different solution values
are available at the same point. An upwind Godunov scheme is used as the numerical flux to ensure the
flux continuity. The flux scalar values read:

177 (e ) wi(€r), €k e QN 09

fr = (51)

(c-mj) (otogenblu(g) + Botoglenidy, (1)), e eom,

where e (€x) is the solution value coming from the neighboring cell. Given that the flux is linear, the
flux computation can be expressed as a matrix product vector between a velocity matrix denoted C and
the vector containing the solution values at FP V7 :

. = C-Vj, (52)

The velocity matrix C should verify Eq. while taking into account the mesh connectivity and the
periodic boundary conditions. Following the FP numbering previously settled, it can be expressed as:

ct Qs C*  Osw.n
_|Onisn.  Cn,  On;sn. Ongn,
C- ch Osn. N, ct Osn, N, (53)

On,3n. On;,N,  On,3n. Cfv,i
where C!, CL and C® are defined by:

C’ = [diag(|J]7 7" (c-0))] y, y,

1+ sign(c-n)

C* = (c-n) | diag( 5

) (55)

3N.,3N,



and

0 1-sign(cn)
e Ty
C” = (c-n) | bdiag( : : ) (56)
1-sign(cn) 0
— s .. NeNe g

where, when applied to an arbitrary square matrix A, the operator bdiag() gives a block diagonal matrix
such that the main-diagonal blocks are the square matrix A and all off-diagonal blocks are zeros matrices.
Eventually, the flux values at FP are differenciated at SP by multiplying by the differentiation matrix
given as:

N
Dji= ), (¢a(&) 0u)" V- du(€)) (57)
n=1
On the computational domain Q = (T,T3), Eq. takes the following matrix form:
auTL (1) o~
P D, 0 T, 0 |[U;:*(%) , . A
n __ 7k kj = tri tri
ot

where ﬂ;fl and Ij;‘r2 are the vectors collecting the solution values at SP for the triangle 77 and 75.
Now that all matrices are defined on the computational domain, the stability of the scheme can be
studied through the matrix M = —diag(D) C diag(T). Using Eq. (58), the linear stability of the
spatial discretization can be investigated. The spatial discretization is fully expressed through the square
matrix M, which contains the different steps of the SDRT scheme: extrapolation, flux computation and
derivation. This matrix can thus be seen as the amplification factor of the spatial discretization. It must
be highlighted here that the matrix M does not depend on the initial solution. Consequently, if the real
part of all M’s eigenvalues are negatives, the linear stability of the SDRT scheme is ensured regardless of
the initial solution. According to Eq. , the matrix M depends on the transfer matrix T, the velocity
matrix C and the differentiation matrix D:

e The transfer matrix is expressed from the polynomial basis (PKD basis for simplex cells) at SP
and FP locations.

e The velocity matrix relies on the velocity vector ¢ and the normal vector defined at each flux
point.

e The differentiation matrix involves the polynomial basis in which the flux is differentiated (RT
basis for simplex cells) at SP and FP locations as well as on the normal vector defined at each flux
point.

The velocity vector components values are set through the definition of the advection angle 8. The linear
stability will be studied for several values of the advection angle. As explained in Sec. 2] the PKD basis
and the RT basis are used respectively for the extrapolation and the differentiation. Those polynomial
basis rely on the SP and FP sets of points and on the normal vector associated to FP. Since it has been
shown by Van den Abeele et al. [28] that the SD scheme stability is independent of the SP position, our
main concern is to find a set of FP leading to a stable SDRT scheme for all advection angles.

The FP location has a direct impact on the SD scheme stability. In 1D, it has been shown by Van
den Abeele [55] that if the FP are chosen as the Chebyshev-Gauss-Lobatto nodes, the standard 1D SD
scheme can be unstable. Following this work, Jameson [29] has proven that the stability of the SD scheme
for all orders of accuracy in the case of a 1D linear advection ’provided that the interior fluzes collocation
points are placed at the zeros of the corresponding Legendre polynomial’.

For triangular elements, it has been observed in [34] that the placement of FP on edges does not affect
the linear stability properties for second to fourth order accurate SDRT schemes. In order to simplify
the 2D hybrid implementation, we decide to settle the position of FP located on the edge to the Gauss-
Chebyshev points given by Eq. @ By doing so, the FP on edges for a quadrangle and a triangle are
located at the exact same coordinates, avoiding the need to apply mortar techniques. Since the edge FP
position is chosen to be fixed, the interior FP location is the parameter that we will study here in order
to establish stable SDRT discretization for all advection angles.

3.3 Establishment of stable SDRT discretizations

In order to determine a set of interior FP leading to a stable SDRT,, formulation for each degree p, the
interior FP position inside the element first needs to be set up. Then, a differential evolution algorithm
is used to minimize the real part of M’s eigenvalues. To set up the interior FP position, a symmetry
along y = x is imposed in the triangle. The position of the interior FP located on this line is defined
by a parameter «; € [0,0.5]. To set up the position of the remaining interior FP, two parameters
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(Bi,vi) €[0,1] x [0, 3;/2] per points are needed. The parameter f3; is used to browse the triangle from 0
toy=-x+1 using y = —x + B;. The parameter ; is used to adjust the position of the point on the line
y = —x + ;. Because of the symmetry rule, one set (5;,7;) gives two FP located at (8;/2 + i, 8:/2 — V:)
and (8;/2 — 74, 8i/2 +7;), thus the number of parameters in the optimization problem is equal to N;/2.
An example of the set up for p =4 is given on Fig. 3]

1.0k Flux Point (&,m)
&0 (041701)
&14 (az,a2)
3% (B2 +71,B1/2-m)
(:0.5_ €13 (B1/2=71,B1/2+m)
&12 (B2/2 + 2, B2/2 = 72)
&5 (B2/2 =2, B2/2 +72)
0.0r
y=—z+p y=-x+pB
0.0 0.5 1.0
§

Figure 3: Interior FP set up in the reference element - Example for SDRT,

The differential evolution algorithm is run for SDRT schemes up to the sixth order. For each scheme,
several sets of interior FP lead to stable formulations. This result shows that the definition of a stable
SDRT formulation is not unique. One of the possible sets of coefficients to built the position of the
interior FP is given in Tab. [I] for the new SDRT4 and SDRT; stable formulations. They are plotted in
the reference domain on Fig. [l

SDRT}4 1.0
ar | 0.2049431286797799 -
as | 0.0685150418264187 -
B, | 0.4720289928855974 | 0.2003096571609239 <00
Ba,72 | 0.8340689076462250 | 0.2954293172666666
B3,v3 | 0.9296725246067598 | 0.3496263405633941
Ba,va | 0.9340656356895457 | 0.2448926406908226 00
SDRT;
a1 | 0.3822665100426330 -
as | 0.4550603088554616 - H
as | 0.0400736317911791 -
B1,71 | 0.9270536098373276 | 0.3116771986988879 ]
Ba,72 | 0.1982183938046974 | 0.0339405048273691 =0
B3,vs | 0.6939139683747306 | 0.0819761640225505
Ba,va | 0.9573143940984170 | 0.4534034282622463
Bs,vs | 0.8424456505829385 | 0.3345523352287995 0
Be,76 | 0.6305741301837382 | 0.2523643148948984 0.0 50.5 1.0
Table 1: Coordinates of stable interior FP for Figure 4: Complete stable set of FP for SDRT,

SDRT,4 and SDRT} and SDRT}

The parametrization process leads to stable formulations but the time for analysis is quite long. While
the process was running, stability using the position of control points for several cubature rules was also
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analyzed. For p = 3, we tested several existing cubatures rules for interior FP location and those from
[56, 57, 58, 59, [60, [61 [62] were found stable.

For p = 4, the Williams-Shunn-Jameson [60] and the Vioreanu-Rokhlin [59] cubature rules are found
to be stable while for p = 5, stable formulations are obtained using the position from Williams-Shunn-
Jameson [60] and the Witherden-Vincent [61] cubature rules. This underlines once again the plurality
of the possible stable SDRT formulations. The matrix M spectrum of stable formulations from the
cubatures rules and the parametrization process are given on Fig.[5l For the SDRT3 and SDRT3 schemes,
considering the important number of stable cubatures, results are only presented for set of interior FP
taken as the Williams-Shunn-Jameson cubature rule [60]. For each SDRT, scheme, a closer view shows
that all the real part of M eigenvalues are negatives, thus ensuring the spatial discretization stability.

10 15
\ \
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N— \ I E‘. e i \ .
\ - .
= 7 i = I3 I
2 - | R -
»s—g: 2 B é 3 \ \ B
[ I B 3 /
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—6F : —9r /
/ -1 0 ~/ -1 0
I\
UE 29 3 3 9 15 "B -6 -7 2 11 20
Re(Ay) Re(Ay)
(a) SDRT2: Williams-Shunn-Jameson (+) (b) SDRT3: Williams-Shunn-Jameson (+)
20 30
r/
12+ 18} ) L
N
—~ A4f —~  6f -
= = r& ~—
= = i
g g
— 74 L — 76 L -
—12¢F —18} _//
2 0
%1072
553 -1 1 13 2 050 =35 -0 -5 10 2
Re()\M) Re()\M)
(c) SDRT4: Williams-Shunn-Jameson (+), (d) SDRT5: Williams-Shunn-Jameson (+),
Vioreanu-Rokhlin (x), Parametrization (e) Witherden-Vincent (x), Parametrization (o)

Figure 5: Spectrum of matrix M for stable sets of FP for 3¢ to 6" order SDRT schemes

In this paper, we chose to define the interior FP location as following the Williams-
Shunn-Jameson cubatures rule. This choice is motivated by the fact that compared to
other cubature rules, this one led to stable schemes for each scheme from p = 2 to p =
5. The Williams-Shunn-Jameson cubature rules is prefered to the location given by the
parametrization process because of their better distribution in the triangle.

For a polynomial degree equal to 6 or higher, none of the tested cubature rules led to a stable SDRT
scheme. When using the optimization process for p = 6, given the large number of interior FP, the
parametrization becomes too expensive in time and did not manage to detect a stable formulation before
the final time of the computation. This does not state the fact that stable formulations could not be
obtained in the future.
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3.4 CFL condition

Now that a stable SDRT spatial discretization has been established through the definition of a set of
FP, the system of linear differential equations given by Eq. can be time-integrated. Two temporal
schemes are studied: the low-storage second-order six-stage Runge-Kutta scheme of Bogey and Bailly
(RK6-1d1d) [63] and the Total Variation Diminishing Runge-Kutta scheme of Gottlieb and Shu (RK3-GS)
[64]. Using a RK6-1dld scheme, Eq. becomes:

Ut = (I + 26:71 (At)lMl) U (59)
=1

-GU". (60)

With the RK3-GS scheme, the temporal discretization reads:

U'=(I+AtM)U" (61)
U2 = ZU” + i (I+AtM) U! (62)
Ut = éfj” + ; (I+AtM) U2, (63)

and injecting Eq. |61]in Eq.|62|and then in Eq. one obtains easily U™ = GU™. So, the transfer matrix
between time steps n and n + 1, denoted G, accounts for both space and time integration and depends
on the CFL number v since v = ||c|At/Ax as well as on the spatial discretization matrix M. To ensure
a stable discretization, the spectral radius of the matrix G should be lower than 1. The stability limits
are summarized in Tab. [2] for several advection angles. Note that in order to compare the CFL numbers
given in Tab. [2| with those from the Finite Volume or Finite Difference methods, the given values should
be multiplied by an appropriated constant. Indeed, the maximum CFL values strongly depends on the
reference length for a triangle and many options are possible (radius of the inscribed circle, minimum
distance between triangle center and edge centers...).

RK6-1d1d RK3-GS
SDRT, | =0 0-=x/8 O=n/4| 0=0 6O-=-n/8 O=x/4
SDRT, | 0380 0.308 0286 | 0.221 0.186  0.173
SDRT; | 0280 0.220  0.200 | 0.165 0.127  0.116
SDRT, | 0.162 0.137  0.128 | 0.098 0.082  0.077
SDRT; | 0.132 0.101  0.089 | 0.076 0.061  0.054

Table 2: Maximum CFL number v for SDRT), schemes (p € [2,5]) with a reference scale Az = 1.

Several spectrum of G obtained using the RK6-1dld scheme are presented on Fig. [f] for the advection
angle 6 € [0,7/4]. Fig. and Fig. |6c| show the spectrum using the stable CFL number numerically
determined for SDRT4 and SDRT5 schemes (respectively). A closer view shows that all the real part of
G eigenvalues are negatives, thus ensuring the scheme stability. Unstable spectrum can be obtained by
slightly raising the CFL number and are presented on Fig. [6D] and Fig. [6dl On the closer view, it is clear
that positive real part of G eigenvalues appear, showing the scheme instability. The same analysis can
be found in [C] for SDRTy and SDRT3 schemes.

4 Numerical Experiments

4.1 Linear Advection

Experiments on the 2D linear advection equation given by Eq. are performed to assess numerically
the order of accuracy of the SDRT scheme up to p = 5. The advection equation is solved on a square
domain Q = [-1,1] x [-1,1] and periodic boundary conditions are used in both z and y directions.
The initial solution is u(z,y,0) = sin(7(x +y)) and the advection velocity is ¢ = (cos(g),sin(g)). At
interfaces, an upwind flux is used as the numerical flux. Eq. is integrated in time using the low-
storage second-order six-stage Runge-Kutta scheme previously introduced for the linear stability analysis
and the simulation is carried out until ¢ = 1 sec. The time step is chosen sufficiently small so that the
error from the time discretization is negligible compared to the spatial discretization error by setting
the CFL number to 1073. The convergence study was conducted on three types of grids: two different
triangular meshes (regular and irregular) and a regular hybrid one (Fig(7]). To perform the convergence
study, each mesh is refined several times. In order to verify the order of accuracy of the SDRT scheme,
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(a) SDRT4, CFL = 0.128
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(c) SDRT5, CFL = 0.089 (d) SDRT5, CFL = 0.090

Figure 6: Spectrum of matrix G using RK6-1dld scheme for 5% and 6" order SDRT schemes

the Ly error is computed on the domain as:

L- \J Jo o~ )

Jq dz

In Eq. , the integral on the top can be expressed as the following sum on each cell:

e = ) d = > [ =) d, (65)
i=1

where N is the number of cells on the domain 2. Integration is then performed in the reference domain
using a quadrature rule such that:

% [ P2 3 5, AW (€)1l (€)' (66)

where A is the reference element area (A =1 and A = 1/2 for a quadrilateral and a triangular element,
respectively), |J(»7)] is the Jacobian determinant at the j-th integration point of the i-th cell and N, is
the number of quadrature points. The quadrature points are located at &; and associated to the weight

wj. Since v, and Upyum are polynomials of degree p, the term ( Ef) - u%m) should be approximated
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Figure 7: Regular (a), irregular (b) and hybrid (c) grids used for the convergence study of SDRT schemes

using a quadrature of order 2p. On triangles, the integration is carried out using the 175-points symmetric
quadrature given in [65], which can be used up to order 30. On quadrilaterals, the integration is performed
using the tensor product of two 1D integration at SP, with the appropriate Gauss-Chebyshev weights.
For SDRT,, schemes (p € [2,5]), Table [3| and Figure [§| show the Ly errors and orders of accuracy for the
three different type of grids. For any SDRT), scheme, the order of accuracy tends to p+1 for each family
of meshes.

Regular mesh Irregular mesh Hybrif mesh
P DoF Lo error | Order of DoF Lo error | Order of DoF Lo error | Order of
number accuracy | number accuracy | number accuracy
300 7.725E-03 - 624 1.029E-02 - 432 6.253E-03 -
1200 9.735E-04 2.99 2256 1.492E-03 3.01 1512 1.023E-03 2.89
2 2700 2.874E-04 3.00 5232 4.364E-04 2.97 3564 2.695E-04 2.98
4800 1.210E-04 3.00 9348 1.933E-04 2.94 6048 1.273E-04 2.95
500 5.762E-04 - 1040 9.979E-04 - 744 4.032E-04 -
2000 3.788E-05 3.93 3760 7.155E-05 4.10 2592 3.383E-05 3.97
3 4500 7.502E-06 3.95 8720 1.270E-05 4.10 6120 5.905E-06 4.01
8000 2.372E-06 3.96 15580 | 4.399E-06 4.01 10368 | 2.148E-06 3.97
750 3.975E-05 - 1560 7.835E-05 - 1140 2.183E-05 -
3000 1.339E-06 4.89 5640 2.822E-06 5.17 3960 9.165E-07 5.09
4 6750 1.767TE-07 4.93 13080 | 3.264E-07 5.16 9360 1.050E-07 5.07

12000 | 4.087E-08 4.96 23370 | 9.315E-08 4.98 15840 | 2.933E-08 5.03

1050 2.296E-06 - 2184 6.057E-06 - 1620 9.961E-07 -
4200 3.675E-08 5.97 7896 1.033E-07 6.34 5616 2.047E-08 6.25
) 9450 3.221E-09 5.98 18312 | 7.297E-09 6.32 13284 | 1.517E-09 6.17
16800 | 5.677E-10 5.99 32718 | 1.640E-09 6.07 22464 | 3.213E-10 6.11

Table 3: Lo error and order of accuracy values for regular, irregular and hybrid grids

4.2 Convection of an isentropic vortex

In order to assess the SDRT scheme capability to preserve vorticity in an unsteady inviscid flow, the
isentropic vortex test case proposed by Shu [66] is studied. An isentropic vortex is transported by an
inviscid uniform flow defined by normalized quantities (oo, Usos Voo Poo) = (1,1,1,1). The fluid is assumed
to be a perfect gas, with a specific heat v = 1.4. The isentropic vortex is added to this mean flow through
perturbation in u, v and the temperature T given as:

Au = —% exp (0.5(1-7%)) (67)
Av = 6(x;5) exp (0.5(1 - 7%)) (68)
AT = _(78_7726 exp (1-77) (69)

where r = \/(z-5)2+ (y—5)2 and the vortex strength is ¢ = 5. Euler equations are solved on the
computational domain Q = [0,10] x [0,10]. Translational periodic boundary conditions are imposed for
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Figure 8: Ly error and theoretical order of accuracy slopes for regular (a), irregular
grids used for the convergence study of SDRT schemes

(b) and hybrid (c)

the left /right and top/bottom boundaries respectively. The computation is initialized by the local velocity
components u and v as well as temperature 7"

U = Ueo + Au, (70)
V= Voo + AV, (71)
T =T + AT, (72)
Since the vortex is isentropic, the density can be computed using;:
T \ 71
= oo | — , 73
p=r (Tm ) “3)

where pe = 1. The RK6-1dld scheme introduced for the space/time analysis is considered for the simula-
tions. The CFL number is 0.1/(p+1) and the final time ¢; corresponds to 10 periods. At interfaces, Roe’s
Riemann solver [67] was used to compute the numerical flux. The simulation is initialized and computed
on a fully regular symmetric mesh. In order to make a fair comparaison between the different SDRT),
schemes, computations are performed on different mesh refinements so that the number of degrees of
freedom (DoF) between orders is as equivalent as possible. Two set of grids are studied: a coarse one,
to highlight the improvement in accuracy when the order increases, and a refined one, to show mesh
convergence towards the analytical solution. The associated number of DoF are given on Table ] for
each SDRT,, scheme. Fig. |§| gives an example of the initial solution on the coarse mesh used for the
SDRT5 scheme.

10
0.9
0.8
SDRT,, | Coarse Mesh | Refined Mesh
SDRT, 4800 9408 > 5
SDRT3 3920 9680 0.7
SDRTy 3000 9720
SDRT}5 2688 8232 0.6
0.5
0 5 10

Table 4: Number of DoF for the coarse and the
refined set of grids for 3" to 6! order SDRT mesh used for SDRT5

schemes

Figure 9: Initialization of the density on the coarse
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Figure 10: Density p at cut = = 5 after 10 periods for 3" to 6" order SDRT schemes

The computation is run on this first set of grids until a final time ¢y = 100s, corresponding to 10
periods. Fig. shows a cut on the density at « = 5 after 10 periods on the interval « = [3,7] in order
to have a clear view of the impact of the SDRT scheme order on the accuracy of the solution. For the
same (or smaller) number of DoF, the solution improves when the degree p increases. The exact same
test case is run on a second set of refined grids (~ 9000 DoF) and presented on Fig. As expected,
the SDRT formulation can recover the analytic solution provided that the mesh is refined enough or that
the polynomial degree p is sufficiently high. These solutions enable the validation of the proposed SDRT
formulation for the non linear Euler equations.

4.3 Viscous flow over an NACAO0012 airfoil

This test case aims to validate the method for the computation of viscous flow with a high-order triangular
curved boundary representation. We solve the compressible Navier-Stokes equations and consider a
laminar viscous flow over the NACAOQ012 airfoil. The computational setup is defined by the angle of
attack o, the Mach number M., and the Reynolds number Re = peoUso C/ 100, where C is the airfoil chord.
Three different laminar flow conditions chosen from the NASA technical report [68] are considered:

e Case A: Subsonic flow, M., = 0.5, a = 0°, Re = 5000

e Case B: Subsonic flow, M, = 0.5, a = 2°, Re = 5000

e Case C: Transonic flow, M., = 0.8, o = 10°, Re = 500
The NACA 0012 airfoil equation used is:

y = 0.6 (0.2969+/z — 0.1260z — 0.35162> + 0.28432° - 0.10362") (74)

so the trailing edge has a zero thickness. At the airfoil, a no-slip adiabatic wall condition is imposed. In
order to avoid spurious reflections on the boundary conditions, the farfield boundary is located 50 chords
away from the airfoil. On the farfield boundary, pressure and temperature are imposed at P,, = 101325Pa
and Ts = 293.15K and the velocity is imposed depending on the Mach number. Interface flux is then
obtained by applying the approximated Riemann solver at the interface using the prescribed state outside
and the extrapolated internal state. The computational domain is meshed with a C-type topology and
has a total number of 2407 second order triangular elements (with 62 cells on the airfoil). The resulting
mesh is shown on Fig. Solutions are time-integrated using the RK3-GS Runge-Kutta method and as
before the convection flux is Roe’s scheme. The CFL number is set to 0.3/(p+ 1). Results are presented
for SDRT schemes from the third to the sixth order at the time ¢ = 10 sec. Fig.[12| shows the convergence
histories for the three cases. The Ls error between the initial and the current solution versus time is
plotted. Since the reference state is the initial density field the Lo error first increases before reaching a
bound values, indicating that the computation has converged. Solutions can be considered as converged
at a time ¢ ~ 3 sec. Steady solutions are obtained for each case and each order of accuracy.

In the following, results obtained for the Case C will be presented in details since the transonic flow can
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Figure 11: Unstructured mesh around a NACA 0012 airfoil - 2407 second order triangular elements

10~ 10~ 1074
-———- SDRTy -—-——- SDRT, ---- SDRT,
........ SDRT; v SDRTy v SDRTy
——- SDRT} —.—- SDRT, —-—- SDRT,
—— SDRT; —— SDRT; —— SDRT;
14 14 8
W10 4107 w10
S 5 )

Time (sec) Time (sec) Time (sec)

(a) Case A (b) Case B (c) Case C

Figure 12: Convergence histories

be considered as the 'most critical’ test case. For the subsonic flows (Case A and B), briefer results will
be given.

Fig. [L3|shows the Mach contours obtained with SDRT schemes of 37 to 6" order of accuracy for the
Case C. The flow is accelerated at the airfoil upper surface and create a small supersonic zone (M > 1).
However, as expected for this case, there is no shock wave developing. As the degree of the polynomial
reconstruction increases, the solution becomes smoother and thus more accurate. For SDRT5 and SDRT3
schemes (Fig. [13b), discontinuous contour lines can be observed. Those discontinuities are induced
by the visualization process, which is done independently on each triangular element, leading to different
solution values at cell interfaces, and express a low resolution. The Mach contours given by the SDRT,
and SDRTj5 schemes (Fig. show continuous lines for most of the domain. The remaining
discontinuities located around the position (z/C,y/C) = (1.4,0.4) are due to the fact that the mesh used
is refined for the wake given with an angle of attack a = 0°. Apart from this region, the Mach contours
obtained show that the 5" and 6! order SDRT schemes converge to the same solution.

The surface skin-friction coefficient C'¢ and the surface pressure coefficient C), distributions are plotted
on Fig. [14] and Fig. [15| respectively and compared to results from [68] (finite volume solver RK/Implicit
scheme with matrix dissipation on structured grid) on the most refined mesh (1024 x 512 elements). For
both coefficients, there is good agreement between the results obtained from SDRT, schemes and the
NASA data. On Fig. a closer view shows that all of the SDRT schemes were able to capture the
maximum value of the surface skin-friction coefficient at the leading edge. As for the Mach contours,
discontinuities between cells are observed for SDRT3 and SDRTj3, resulting from the interpolation post-
processing step performed independently on each cell. A difference with the NASA data can be noticed
at the trailing edge, where the SDRT, did not manage to capture the maximum values due to low
mesh refinement. The surface pressure coefficient plot (Fig. shows that all SDRT, schemes lead to
excellent agreement with the NASA data, including at leading and trailing edges. A closer view shows
the convergence of the results when the order increases. In addition to Case C, the surface skin-friction
coefficient Cy distribution is computed for Case A and Case B. The values of the skin-friction drag
coefficients (viscous component of the drag coefficient) (Cp) ¢ are obtained by a surface integration using
the trapezoidal rule with more than 100 control points per edge. For each case, the (Cp) ¥ values are
presented for SDRT,, schemes and compared to the NASA values using structured grid RK/Implicit

18



Mach number
cocooooooor
OFENWHREUIOI~I00O O —

Mach number
cocooooooor
OFENWHRUIOII00O O —

11 1
10 1.
oo _Froo
£l to7 E0
2| fos g 06
21 tos 2105
S04 S04
=1 1 = o3
0.1 0.1
0.0 0.0
z/C
(c) SDRT (d) SDRT;
Figure 13: Mach number contours using 3"¢ to 6! order SDRT schemes for Case C
0.6
--- SDRT,
...... SDRT;
0.5
—.— SDRT, s
—— SDRT;
0.41 & ® NASA data
0.0
6\0.3' &
0.2 " 0.51
. -—- SDRT,
...... SDRT;
0.11 Lol —.— SDRT,
i y SDRT;
0.0 J L m NASA data
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 04 0.6 0.8 10
z/C z/C
Figure 14: Surface skin-friction coefficient C'y Figure 15: Surface pressure coefficient C,

scheme with matrix dissipation on the coarser and the most refined mesh (Table[5). For Case B and Case
C, all of the (Cp), values obtained with the SDRT,, schemes lies in the interval given by the coarse and
the refined grid from NASA data. For Case A, the SDRT} is the only one to lie in the interval. However,
other SDRT schemes lead to very close values: the SDRT5, which led to the furthest value, only show a
2.2% difference with the NASA value obtained on the refined mesh.

DoF number Case A Case B Case C
SDRT, 2407 x 6 (14,442) 0.0320594 | 0.0323926 | 0.123839
SDRT3 2407 x 10 (24,070) 0.0322138 | 0.0325189 | 0.123106
SDRT, 2407 x 15 (36,105) 0.0323401 | 0.0324839 | 0.123628
SDRT5 2407 x 21 (50,547) 0.0324200 | 0.0324823 | 0.123478

NASA [68] 128 x 64 (8,192) 0.0323651 | 0.0321277 | 0.121894

NASA [68] | 1024 x 512 (524,288) | 0.0327855 | 0.0325741 | 0.127611

Table 5: Comparison of the surface skin-friction drag coefficient (Cp),

19



4.4 Viscous flow around a circular cylinder

The last test case aims to validate the method for the computation of viscous flow using hybrid mesh. We
consider a steady laminar viscous flow at Re = 20 around a cylinder. The Mach number is M., = 0.1 and
the Reynolds number is defined by Re = pooUsod/j10o, Where the dynamic viscosity is pieo = 1.853-1072 Pa-s
and the cylinder diameter is d = 1m. The density p. and the velocity Us can be deduced from the
temperature 7' = 300K and the constant ratio of specific heats v = 1.4. The cylinder is placed in
a rectangular domain. The farfield boundaries are located 10 diameters away from the cylinder in the
upstream, upward and downward directions and 30 diameters away in the downstream direction. A hybrid
mesh of 3427 elements is used, with 196 quadrilateral elements near the cylinder and 3231 triangles in
the rest of the domain. A close view of the mesh is provided in Fig. On the farfield boundary, the
pressure, temperature and velocity are settled. At the cylinder surface, a no-slip isothermal wall condition
is imposed. Solutions are time-integrated using the RK3-GS scheme and Roe’s Riemann solver is used
to compute flux at interface flux points. The CFL number is set to 0.3/(p + 1). The computation is
performed using a SDRT, scheme until a time ¢ = 3 sec. Fig. [I7]shows the normalized z-velocity contours
and streamlines around the cylinder. The streamlines show a recirculation zone within the wake of the
cylinder where two vortices were generated. The computed total drag coefficient (non-viscous and viscous
effects) is 2.018 and the reattachment length L/D is equal to 0.916. These values are in good agreement
with those from [69] obtained using a body-fitted grid (total drag coefficient of 1.98 and normalized
reattachment length of 0.92).
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Figure 16: Close view of the hybrid mesh Figure 17: Normalized z-velocity contours and stream-
lines around the cylinder using a SDRT,4 scheme

5 Conclusion

For simulations that need a low-dissipation low-dispersion scheme such as vortex-dominated flow and
unstructured grids to cope with complex geometry, the tendency today is to consider numerical schemes
using piecewise continuous polynomials inside mesh cells, but without requiring continuity at mesh inter-
faces. While the most popular approach is certainly the DG method, alternatives were proposed during
the last ten years.

Among them, the SD method solves the strong form of equations, as the standard finite difference
approach, but accounts for discontinuities of the solution at mesh interface using an approximated Rie-
mann solver to compute the flux. It is today applied routinely to segments, quadrangles and hexahedrons
following a tensor approach. The weakness of the method lies in its inability to deal with hybrid grids.

In this context, the goal of the paper is to propose an extension of the SD method to 2D hybrid grids
composed of triangles and quadrangles. Following the pioneering work of Balan et al. [34} [35], accounting
for triangles is possible by introducing the RT space to compute the flux. Compared to the literature, the
proposed work gives new results. First, the linear stability analysis of the SDRT method is performed in
a framework that differs with the one of the original paper, based now on an eigenvalues analysis, as in
[42]. Moreover, the definition of the flux point positions is extended from the papers of Balan et al. in
two directions. First of all, SDRT schemes were proved stable for a degree of accuracy greater than four,
which outperforms results published in the literature. Secondly, the uniqueness of the set of flux points is
never obtained and several sets of points lead to a stable formulation. Among them, we also considered
several sets of point from recent papers. For all computations at polynomial degree p with 2 < p < 5,
the internal flux points are located at the position of the control points for Williams-Shunn-Jameson
[60] cubature rule and the ones on the edges are the Gauss-Chebyshev points. A theoretical analysis
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shows that the present formulation differs with the FR/CPR approaches. There are now two alternative
approaches to the DG formulation working on both simplices and quadrangles.

The last effort deals with validation and it is shown that the formulation proposed in the paper is
able to perform simulations for linear advection, Euler and Navier-Stokes equations. Order of accuracy
is recovered.

The present work is our first effort towards the definition of the SD method for 3D simulations on
hybrid grids and many questions are still open. Our next papers will deal with the definition of a stable
SD formulation for tetrahedrons and on spectral properties of the proposed schemes (dissipation and
dispersion). In the later case, a specific analysis is necessary due to the difficulty to treat all directions
at the same time in a regular grid with a given reference length scale in all directions.
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A Definition of the Raviart-Thomas (RT) space

The RT space was originally introduced by [70] to approximate the Sobolev space H(div). Considering
the reference triangle 7, the RT space of order k is defined in 2D by:

RTy, = (Py)* + (5) Py, (75)

where P}, is the space of polynomials of degree at most k:

Pr(z,y) = Span{z'y’, i,j > 0,i+j <k}, (76)
PP, is the space of polynomials of degree k:

Py(x,y) = Span{z'y’, i,j > 0,i+j = k} (77)

and (Py)? = (Py,Px) is the two dimensional vector space for which each component is a polynomial of
degree at most p. The dimension of each space is dim P}, = %;mz)’ dim P? = (k+1)(k+2), dim Py = k+1

and thus dim RT} = (k+1)(k +3) We denote ¢,,,n =1, ..., Npp the monomials which form a basis in the
RTj, space where
NFp:(k+1)(k+3) (78)

Determination of (Z)n for RT\, Npp =38

P1(z,y) = Span{1, z,y} (79)
st = (0)-6)-2)-6)-6)-0) L
Pi(z,y) = Span{z,y} (81)

()= (C)C))- () G4 ®
s OO0 L))
B Proriol-Koornwinder-Dubiner (PKD) basis

The PKD basis is obtained by forming a tensor product of one-dimensional Jacobi polynomials based on
a Cartesian coordinate system. Since the Jacobi polynomials are defined on the reference interval [-1,1],
the 2D PKD basis obtained using tensor product is defined on the reference quadrangle bounded by the
same constant limits, i.e. Q:={(x,y):-1<z,y < 1}. This section follows the generalised tensor product
modal expansion notations defined in [4§].
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B.1 Collapsed coordinated system

In order to express the PKD basis on the reference triangle T := {(z,y) : -1 < z,y < 0,2 + y < 0}, the first
step is to map the reference triangle onto the reference quadrangle. This transformation is defined by:

= o(+x) — (1+9=n)
{ $=%ay ~h or { v 2 b (84)

=, y=1.

The triangular element can now be describe with the new coordinates as T := {(£,n):-1<&,n< 1},
bounded by the very same constant limits. The system of coordinates (£,7) is referred to as the collapsed
coordinate system or Duffy coordinates.

B.2 PKD basis

Using the collapsed coordinates, the PKD basis is constructed as a family of L2-orthogonal polynomials
on T derived from a warped product of one-dimensional Jacobi polynomials:

1-1\" o
@iy = PO (S52) PR, ivi<p (85)

In Eq. , P denotes the corresponding n-th order Jacobi polynomials on the interval [-1, 1] which,

1
under the Jacobi weight (1-2)®(1 +z)? are orthogonal polynomials, i.e.,

1 a+B+1 : :
[1 (1=2)7(1+2) P (@) P (w)do = 2 +2a +8+1 F(ziw!LFO(éz'ilc)yl;(;iBl; 1)6” (86)
where I' is the Gamma function
I'(n)=(n-1)! (87)
In the case of 5 =0, Eq. can be simplify as
fl(l )P0 () PO () = — 2 (88)
-1 ‘ I 2i+a+1

Remark: The 2D PKD basis functions are polynomials in both (z,y) and (&,7) spaces.
Remark: The 'wrapped product’ property refers to the fact that the 2D PKD basis functions can be
expressed as the product of two polynomials, one in ¢ and one in 7.

B.3 Demonstration of L? orthogonality

To demonstrate the L? orthogonality of the PKB basis functions, the following integral must be evaluated:

1 r-y
<q)i,j|q)k,l>:'[1 [1 @i,j¢k7ldxdy (89)

which can be written in terms of the collapse coordinate system (£,n):

! ! 1- ‘ i+ 1- F +
@ o= [ [ PO Pt mr© () B g (90)

where the Jacobian determinant is

— (91)

_|9G,y)| _1-n
"’"’a(s,m 2

Eq. can be written:

Lrlfl-n ik 0,0 2i+1,0 0,0 2k+1,0
i+ +
@ o) - [ [ (51 PO@P RO P gy

1 ! ! i+k+ i
st L PPOOPPO©de [ -y PO O

The first integral value follow from the orthogonality of Legendre polynomials, which are the special case
(e, 8) = (0,0) of Jacobi polynomials:

(92)

201,

[ reepe e = 2k (98)
The first integral is equal to zero if i #+ k. When ¢ = k, using Eq. 7 the second integral becomes:
! i+k+1 52i+1,0 2k+1,0 ! 2i+1 52i+1,0 2i+1,0 2224
S, e RO R i = [ () PO Py = s (90
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Then Eq. 02 becomes:

dirdj1

(@i j|Pr) =

S (i+1/2)(i+j+1)

(95)

From Eq. , it can be seen that if i # k and j # I, (®; j|Px,) is necessarily equal to zero, which shows
the orthogonatily of the PKD basis in 7T .

B.4 Normalized PKD basis

We use the L? normalized PKD basis. From Eq. , it comes:
1

2
|i, 17 = (Pij|Pi,5)

T (i+1/2)(i+j+ 1)

Which leads to the expression of the normalized 2D PKD basis:

by =G o) PO (L0) P, s

(97)
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