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BERRY - ESSEEN BOUND AND CRAMÉR
MODERATE DEVIATION EXPANSION FOR A

SUPERCRITICAL BRANCHING RANDOM WALK

THI THUY BUI, ION GRAMA, AND QUANSHENG LIU

Abstract. We consider a supercritical branching random walk
where each particle gives birth to a random number of particles
of the next generation, which move on the real line, according to
a fixed law. Let Zn be the counting measure which counts the
number of particles of nth generation situated in a given region.
Under suitable conditions, we establish a Berry-Esseen bound and
a Cramér type moderate deviation expansion for Zn with suitable
norming.

1. Introduction

A branching random walk is a system of particles, in which each par-
ticle gives birth to new particles of the next generation, whose children
move on R. The particles behave independently; the number of chil-
dren and their displacements are governed by the same probability law
for all particles. Important research topics on the model include the
study of the asymptotic properties of the counting measure Zn which
counts the number of particles of generation n situated in a Borel set
(see e.g. [2, 3, 8, 9, 10, 17, 19, 20, 18]), the study of the fundamen-
tal martingale, the norming problem, and the properties of the limit
variable (see e.g. [7, 13, 30, 32, 31, 1, 26, 29]), and the positions of
the extreme particles (which constitute the boundary of the support of
the counting measure Zn (see e.g. [24, 23, 5, 16]), etc. The study of
this model is very interesting especially due to a large number of appli-
cations and its close relation with other important models in applied
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probability settings, such as multiplicative cascades, fractals, perpetu-
ities, branching Brownian motion, the quick sort algorithm and infinite
particle systems. For close relations to Mandelbrot’s cascades, see e.g.
[27, 31, 6, 14, 33]; for relations to other important models, see e.g. the
recent books [36, 15, 25] and many references therein. In this paper,
we consider the asymptotic properties of the counting measure Zn as
n→∞, by establishing the Berry - Esseen bound and Cramér’s mod-
erate deviation expansion for a suitable norming of Zn. The study
of asymptotic properties of Zn is interesting because it gives a good
description of the configuration of the system at time n.

The branching random walk on the real line can be defined precisely
as follows. The process begins with one initial particle denoted by
the null sequence ∅, situated at the origin S∅ = 0. It gives birth to
N children denoted by ∅i = i, with displacements Li, i = 1, · · · , N .
In general, each particle of generation n, denoted by a sequence u =
u1 · · ·un of length n, situated at Su ∈ R, gives birth to Nu particles
of the next generation, denoted by ui, which move on the real line
with displacements Lui so that their positions are Sui = Su + Lui, i =
1, · · · , Nu. All the random variables (Nu, Lu1, Lu2, · · · ), indexed by all
finite sequences u ∈ U := ∪∞n=0(N∗)n (by convention (N∗)0 = {∅}), are
independent and identically distributed, defined on some probability
space (Ω,F ,P), with values in N× R× R× · · · .

For n > 0, let Tn be the set of particles of n-th generation. Consider
the counting measure

Zn(A) =
∑
u∈Tn

1{Su∈A}, A ⊂ R,

which counts the number of particles of n-th generation situated in A.
Throughout this paper we assume that

m := EN = E[Z1(R)] ∈ (1,∞),

so that the Galton-Watson process formed by the generation sizes sur-
vives with positive probability, and

F (A) = E[Z1(A)], A ⊂ R,

is a finite measure on R with mass m. Let F be the probability mesure
on R defined by

F (A) = F (A)
m

, A ⊂ R.
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Denote its mean and variance by

m0 =
∫
xF (dx) and σ2

0 =
∫

(x−m0)2F (dx). (1.1)

We will assume that E(∑N
i=1 L

2
i ) < ∞, so that m0 and σ2

0 are finite,
with

m0 = 1
m
E
[ N∑
i=1

Li
]

and σ2
0 = 1

m
E
[ N∑
i=1

L2
i

]
−m2

0.

A central limit theorem for the special case where (Nu)u∈U and
(Lu)u∈U are two independent families of independent and identically
distributed (i.i.d.) random variables was conjectured by Harris [22].
His conjecture states that under suitable conditions we have, for any
x ∈ R,

1
mn

Zn
(
(−∞, xσ0

√
n+ nm0]

)
n→∞−→ WΦ(x) (1.2)

in probability, where Φ(x) is the normal distribution function and W
is the a.s. limit of the fundamental martingale

(
Zn(R)
mn

)
of the Galton-

Watson process (Zn(R)). This conjecture has first been solved by Stam
[37], then improved by Asmussen and Kaplan [2, 3] to L2-convergence
and almost sure (a.s.) convergence. The general case has been consid-
ered by Klebaner [28] and Biggins [10].

In this paper we will study the Berry -Esseen bound about the rate of
convergence in (1.2), and the associated Cramér’s moderate deviation
expansion.

The rate of convergence in (1.2) has been studied in several papers.
Révész [35] considered the special case where the displacements follow
the same Gaussian law and conjectured the exact convergence rate;
his conjecture was solved by Chen [17]. Gao and Liu [19] improved
and extended Chen’s result to the general non-lattice case while the
lattice case has been considered by Grübel and Kabluchko [21]. All the
above mentioned results are about the point-wise convergence without
uniformity in x. In this paper, our first objective is to find a uniform
bound for the rate of convergence in (1.2) of type Berry-Esseen: we
will prove that, under suitable conditions, a.s. for n > 1,

sup
x∈R

∣∣∣∣ 1
mn

Zn
(
(−∞, xσ0

√
n+ nm0]

)
−WΦ(x)

∣∣∣∣ 6 M√
n
, (1.3)

where M is a positive and finite random variable (see Theorem 2.1).
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The problem of large deviations for the counting measure Zn(·) has
been considered by Biggins: he established in [8] a large deviation
principle, which was subsequently improved in [9] to a Bahadur-Rao
large deviation asymptotic. Our second objective in this paper is to
establish a Cramér’s type moderate deviation expansion for Zn (see
Theorem 2.2): we will prove that a.s. for n→∞ and x ∈ [0, o(

√
n)],

Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)] = e

x3
√
n

L ( x√
n

)
[
1 +O

(x+ 1√
n

)]
, (1.4)

where t 7→ L (t) is the Cramér series (see (2.7)). Here we use the usual
notation bn = O(an) to mean that the sequence (bn/an) is bounded.
(We mention that as (1.4) holds a.s., the bound in O

(
x+1√
n

)
may be

random.)
Let us explain briefly the key ideas in the proofs. To prove the

Berry-Esseen bound (1.3), we use Esseen’s smoothing inequality ([34,
Theorem V.2.2.]). The key point in this proof is the formula of the
characteristic function of 1

mn
Zn
(
(−∞, xσ0

√
n + nm0]

)
, which can be

interpreted as Wn( it
σ0
√
n
)fn(t), t ∈ R, where (Wn(λ)) is Biggins’ mar-

tingale with complexed valued parameter λ for the branching random
walk (see [11, 12]), and fn(t) is the characteristic function of the n-
fold convolution of F . Using the results of Biggins [11, 12], Grübel and
Kabluchko [21] about the uniform convergence ofWn(λ), together with
the approach of Petrov [34] for the proof of the Berry-Esseen bound
for sums of i.i.d. random variables, we are able to establish (1.3). The
Berry-Esseen bound (1.3) is then extended to the changed measure of
type Cramér, Zθ

n(A) =
∫
A e

θtZn(dt), A ⊂ R, θ ∈ R. This is an im-
portant step in establishing the moderate deviation expansion (1.4).
Our approach in proving (1.4) is very different from the method of
Biggins [9] on the Bahadur-Rao large deviation asymptotic; instead,
it is inspired by the ideas of the proof of Cramér’s moderate devia-
tion expansion on sums of i.i.d. random variables (see [34]), and the
arguments in [12] for the proof of the local limit theorem with large
deviations for Zn.

The main results, Theorems 2.1-2.3, are presented in Section 2. The-
orems 2.1 and 2.3 about the Berry-Esseen bound are proved in Section
3, while Theorem 2.2 about the moderate deviation is established in
Section 4.
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2. Notation and results

We will use the following standard assumptions.

C1. N > 0 a.s. with m = EN ∈ (1,∞), and E
[∑N

i=1 L
2
i

]
<∞.

C2. F is non-degenerate, i.e. it is not concentrated on a single point.

The first condition in C1 implies that the underlying Galton -Watson
process is supercritical; the second condition in C1, together with con-
dition C2, implies that the mean m0 and the variance σ2

0 defined by
(1.1) are finite with σ0 > 0.

The Laplace transform of F will be denoted by

m(λ) =
∫
R
eλtF (dt) = E

[ N∑
i=1

eλLi
]
, λ ∈ C. (2.1)

Denote by int(A) the interior of the set A. Set
D = int{θ ∈ R : m(θ) <∞}. (2.2)

Throughout, we assume that

C3. D is non-empty.

Denote byRe(λ) the real part of λ ∈ C. A important role in the proof
of Berry-Esseen bound and moderate deviation expansion is played by
the martingale of Biggins with complex parameter:

Wn(λ) = 1
m(λ)n

∫
R
eλtZn(dt) =

∑
u∈Tn

eλSu

m(λ)n , n > 0, Re(λ) ∈ D.

When λ = 0, Wn := Wn(0) = Zn(R)
mn

is the fundamental martingale of
the Galton -Watson process (Zn(R)), whose a.s. limit is denoted byW .
The famous Kesten-Stigum theorem states that W is non degenerate if
and only if EN log+N <∞ (see [4]), where log+ x = max{0, log x} de-
notes the positive part of log x. By the martingale convergence theorem
for non-negative martingales, we have for all θ ∈ D,

Wn(θ) n→∞→ W (θ), a.s.
Notice that when N > 0 a.s. we have Wn(θ) > 0 a.s. for all n > 0
and θ ∈ D. Biggins [7, Theorem A] gave a necessary and sufficient
condition for the non-degeneracy of W (θ): EW (θ) > 0 if and only if

E[W1(θ) log+W1(θ)] <∞ and θ ∈ (θ−, θ+), (2.3)
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where (θ−, θ+) ⊂ D denotes by the open interval on which θm′(θ)
m(θ) <

logm(θ), i.e.

θ− = inf
{
θ ∈ D : θm

′(θ)
m(θ) < logm(θ)

}
,

θ+ = sup
{
θ ∈ D : θm

′(θ)
m(θ) < logm(θ)

}
.

Moreover, when C1 and (2.3) hold,
W (θ) > 0 a.s. and EW (θ) = 1. (2.4)

We see that 0 ∈ (θ−, θ+), so that this interval is non-empty. The
endpoints of the interval D and the quantities θ−, θ+ are allowed to be
infinite. We will need the following moment condition which is slightly
stronger than (2.3).

C4. There are γ > 1 and K0 > 0 with (−K0, K0) ⊂ (θ−, θ+) such that
EW γ

1 (θ) <∞ ∀θ ∈ (−K0, K0).

By the argument of the proof of [12, Theorem 2], we know that under
hypothesis C4, for every compact subset C of V := {λ = θ + iη : θ ∈
(−K0, K0), η ∈ R}, a.s.

sup
λ∈C
|Wn(λ)−W (λ)| n→∞−→ 0 and W (λ) is analytic in C. (2.5)

Our first result gives the Berry-Esseen bound for Zn:

Theorem 2.1. Assume conditions C1 -C4. Then, a.s. for all n > 1,

sup
x∈R

∣∣∣∣Zn
(
(−∞, xσ0

√
n+ nm0]

)
mn

−WΦ(x)
∣∣∣∣ 6 M√

n
,

where M is a positive and finite random variable.

To state the result corresponding to the Cramér type moderate devi-
ation expansion for Zn, we need more notation. Consider the measure

Fθ(dx) = eθx

m(θ)F (dx), θ ∈ D. (2.6)

We see that Fθ is a distribution function with finite mean mθ and
variance σ2

θ , given by

mθ = m′(θ)
m(θ) , σ2

θ = m′′(θ)
m(θ) −

(m′(θ)
m(θ)

)2
;
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moreover, σθ > 0 when F is non-degenerate. Consider the change of
measure of type Cramer for Zn: for θ ∈ D,

Zθ
n(dx) = eθxZn(dx),

namely,

Zθ
n(A) =

∑
u∈Tn

eθSu1{Su∈A}, A ⊂ R.

Let X be a random variable with distribution F := F
m
, and

Λ(θ) := logEeθX = logm(θ)− logm

be its cumulant generating function. Then Λ(θ) is analytic on D, with
Λ′(θ) = mθ and Λ′′(θ) = σ2

θ . Denote by γk := Λ(k)(0) the cumulant of
order k of the random variable X. We shall use the Cramér series (see
[34, Theorem VIII.2.2]):

L (t) = γ3

6γ3/2
2

+ γ4γ2 − 3γ2
3

24γ3
2

t+ γ5γ
2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + . . . (2.7)

which converges for |t| small enough.

Theorem 2.2. Assume conditions C1 -C4. Then we have, for 0 6
x = o(

√
n), as n→∞, a.s.

Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)] = e

x3
√
n

L ( x√
n

)
[
1 +O

(x+ 1√
n

)]
, (2.8)

and

Zn
(

(−∞,−xσ0
√
n+ nm0)

)
mnWΦ(−x) = e

− x3
√
n

L (− x√
n

)
[
1 +O

(x+ 1√
n

)]
. (2.9)

As a by-product in the proof of Theorem 2.2, we obtain a Berry -
Esseen bound for the changed measure Zθ

n with uniformity in θ.

Theorem 2.3. Assume conditions C1 -C4. Then, there exists a con-
stant 0 < K < K0 such that a.s. for all n > 1,

sup
θ∈[−K,K]

sup
x∈R

∣∣∣∣Zθ
n

(
(−∞, xσθ

√
n+ nmθ]

)
m(θ)n −W (θ)Φ(x)

∣∣∣∣ 6 M√
n
,

where M is a positive and finite random variable.
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3. Proof of Theorems 2.1 and 2.3

We first recall some known results in the form of two lemmas which
will be used for the proof of Theorems 2.1 and 2.3.

The first lemma concerns the Cramér change of measure (2.6), see
[34, Theorem VIII.2.2, inequalities (2.31) and (2.32)]).

Lemma 3.1. Let X be a real random variable with distribution G.
Suppose that V ar(X) > 0 and that there exist strictly positive constants
H, c such that

| logEeθX | 6 c for all θ ∈ (−H,H).
Let Xθ be a real random variable with distribution Gθ defined by

Gθ(dx) = eθxG(dx)
EeθX

, θ ∈ (−H,H).

Then there exist strictly positive constants H1, c1, c2 with H1 < H, such
that for all θ ∈ (−H1, H1),

V ar(Xθ) > c1 and E|Xθ − EXθ|3 6 c2.

We see that under C2 and C3, the distribution G = F satisfies
the conditions of this lemma. Indeed, if X is a random variable with
distribution F , then by condition C2 about the non-degeneracy of F,
we have V ar(X) > 0. By condition C3, the set D defined by (2.2) is an
open interval containing 0. Notice that logEeθX = log m(θ)

m
<∞ for all

θ ∈ D. Hence there exist constants H, c > 0 such that | logEeθX | 6 c
for all θ ∈ (−H,H).

The second lemma is about the exponential convergence rate of
Wn(θ), see [21, Lemma 3.3]. In fact in [21, Lemma 3.3] the result
is only given for the lattice case, but the proof therein remains valid
for the non-lattice case.

Lemma 3.2. Assume condition C1-C3. There exist two constants
0 < K < K0 and c ∈ (0, 1) such that a.s. for all n > 0,

sup
θ∈[−K,K]

|Wn(θ)−W (θ)| 6M1c
n,

where M1 is a positive and finite random variable.

Notice that Theorem 2.1 follows from Theorem 2.3 with θ = 0, by
the fact that m(0) = m and W (0) = W . So we only proceed to prove
Theorem 2.3.
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Proof of Theorem 2.3. From Lemma 3.2, to prove Theorem 2.3, it is
enough to show that there is a constant 0 < K < K0 such that

sup
θ∈[−K,K]

sup
x∈R

∣∣∣∣Zθ
n

(
(−∞, xσθ

√
n+ nmθ]

)
m(θ)n −Wn(θ)Φ(x)

∣∣∣∣ 6 M√
n
,

whereM is a positive and finite random variable. Consider the random
measure

νθn(A) =
Zθ
n

(
σθ
√
nA+ nmθ

)
m(θ)n , A ⊂ R,

with the usual notation aA + b = {ax + b : x ∈ A}. Its distribution
function is

νθn(x) =
Zθ
n

(
(−∞, xσθ

√
n+ nmθ]

)
m(θ)n , x ∈ R.

The characteristic function of the random measure νθn is

ψθn(t) =
∫
R
eitxνθn(dx) = 1

m(θ)n
∑
u∈Tn

exp
{(
θ + it

σθ
√
n

)
Su −

it nmθ

σθ
√
n

}

= Wn

(
θ + it

σθ
√
n

)
f θn(t), t ∈ R, (3.1)

where f θn(t) = 1
m(θ)nm

(
θ + it

σθ
√
n

)n
e
− it nmθ
σθ
√
n . Denote by F ∗nθ the n-fold

convolution of Fθ. It is not difficult to see that

f θn(t) =
∫
R
e
it(x−nmθ)
σθ
√
n F ∗nθ (dx),

which is the characteristic function of Sn−nmθ
σθ
√
n

, where Sn is the sum of
independent random variables {X i}ni=1 with the same law Fθ.

By Esseen’s smoothing inequality (see [34, Theorem V.2.2]), we get
for all T > 0, a.s.

sup
x∈R

∣∣∣νθn(x)−Wn(θ)Φ(x)
∣∣∣

6
1
π

∫ T

−T

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)−Wn(θ)e−t2/2

t

∣∣∣∣dt+Wn(θ) c
T
, (3.2)

where c is a deterministic positive constant. From Lemma 3.1, there
exist strictly positive constants K, c1, c2 with K < min{H1, K0} such
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that for all |θ| 6 K

σ2
θ > c1 and E|X −mθ|3 6 c2. (3.3)

Take T = aσθ
√
n with a = infθ∈[−K,K]

σ2
θ

4E|X−mθ|3
> c1

c2
> 0. For 0 < ε <

a, we split the integral on the right-hand side of (3.2) into two parts
|t| < εσθ

√
n and εσθ

√
n 6 |t| 6 aσθ

√
n to get

sup
θ∈[−K,K]

sup
x∈R

∣∣∣νθn(x)−Wn(θ)Φ(x)
∣∣∣ 6 1

π
(I1 + I2) + c

a
√
n

sup
θ∈[−K,K]

Wn(θ)
σθ

,

where

I1 = sup
θ∈[−K,K]

∫
|t|<εσθ

√
n

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)−Wn(θ)e−t2/2

t

∣∣∣∣dt,
I2 = sup

θ∈[−K,K]

∫
εσθ
√
n6|t|6aσθ

√
n

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)−Wn(θ)e−t2/2

t

∣∣∣∣dt.
In the following, Mi denotes a positive and finite random variable. By
Lemma 3.2 and the lower bound (3.3) of σθ, supθ∈[−K,K]

Wn(θ)
σθ
6 M2

a.s. Hence, it remains to show that a.s., I1 6 M3√
n
and I2 6 M4√

n
.

For I1, we see that

I1 6 sup
θ∈[−K,K]

sup
|t|

σθ
√
n
6ε

∣∣∣Wn

(
θ + it

σθ
√
n

)∣∣∣ ∫
|t|<εσθ

√
n

|f θn(t)− e−t2/2|
|t|

dt

+ sup
θ∈[−K,K]

∫
|t|<εσθ

√
n

∣∣∣Wn

(
θ + it

σθ
√
n

)
−Wn(θ)

∣∣∣
|t|

e−t
2/2dt. (3.4)

By the uniform convergence (2.5) of Wn(·), we have

sup
θ∈[−K,K]

sup
|t|

σθ
√
n
6ε

∣∣∣∣Wn

(
θ + it

σθ
√
n

)∣∣∣∣ 6M5. (3.5)

Recall that t 7→ f θn(t) is the characteristic function of Sn−nmθ
σθ
√
n

. Then by

[34, Lemma V.2.1], for |t| 6 σ3
θ

√
n

4E|X −mθ|3
, we have

|f θn(t)− e−t2/2|
|t|

6
E|X −mθ|3

σ3
θ

√
n

t2e−t
2/3 6

c2

c1
√
n
t2e−t

2/3. (3.6)
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Therefore (3.6) holds for |t| 6 εσθ
√
n since εσθ

√
n 6

σ3
θ

√
n

4E|X −mθ|3
.

From (3.5), (3.6) and the fact that
∫
R |t|2e−t

2/3dt <∞, we see that the
first term in (3.4) is bounded by M6√

n
.

Now we consider the second term in (3.4). Since
∫
R e
−t2/2dt =

√
2π,

we need only to show that

sup
θ∈[−K,K]

sup
|t|

σθ
√
n
6ε

1
|t|

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
−Wn(θ)

∣∣∣∣ 6 M7√
n
. (3.7)

Notice that Wn(λ) is a.s. analytic in the strip Re(λ) ∈ (−K0, K0). Let
0 < K1 < K0. By the mean value theorem, when θ ∈ [−K1, K1] and
|t|

σθ
√
n
6 ε, we have∣∣∣∣Wn

(
θ + it

σθ
√
n

)
−Wn(θ)

∣∣∣∣ 6 |t|
σθ
√
n

max
η∈[−ε,ε]

|W ′
n(θ + iη)| (3.8)

By Cauchy’s formula, when |λ| < K1,

W ′
n(λ) = 1

2πi

∫
|z|=K1

Wn(z)
(z − λ)2dz.

By (2.5), a.s. for all n > 1 and all z ∈ C with |z| 6 K1, |Wn(z)| 6M8.
When |λ| 6 K1/2 and |z| = K1, |z − λ| > K1 −K1/2 = K1/2, so that
| Wn(z)
(z−λ)2 | 6 4M8

K2
1
. Therefore for all n > 1, a.s.

max
|λ|6K1/2

|W ′
n(λ)| 6 4M8

K1
.

Therefore from (3.8) and (3.3), we see that (3.7) holds when K < K1/4
and ε < K1/4. This concludes that the second term in (3.4) is bounded
by M9√

n
. Therefore from (3.4) we get I1 6 M10√

n
.

For I2, using the constraint in the integral of I2, we have 1
|t| 6

1
εσθ
√
n
,

so that

I2 6 sup
θ∈[−K,K]

1
εσθ
√
n

∫
ε6 |t|

σθ
√
n
6a

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)

∣∣∣∣dt

+ sup
θ∈[−K,K]

Wn(θ)
εσθ
√
n

∫
ε6 |t|

σθ
√
n
6a

e−t
2/2dt.
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It is shown in the proof of [12, Lemma 5] that as n→∞,

sup
θ∈[−K,K]

√
n

∫
ε6η6a

∣∣∣∣Wn

(
θ + iη

)
f θn(σθ

√
nη)

∣∣∣∣dη → 0 a.s.,

which can be rewritten as

sup
θ∈[−K,K]

1
σθ

∫
ε6 |t|

σθ
√
n
6a

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)

∣∣∣∣dt→ 0 a.s.

Therefore,

sup
θ∈[−K,K]

1
εσθ
√
n

∫
ε6 |t|

σθ
√
n
6a

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)

∣∣∣∣dt 6 M11√
n

a.s.

This, together with supθ∈[−K,K]
Wn(θ)
σθ
6 M12, implies that I2 6

M13√
n
.

Thus the proof of Theorem 2.3 is completed. �

strictly positive constant

4. Proof of Theorem 2.2

In this section we prove Theorem 2.2, the Cramér type moderate
deviation expansion for Zn.

Proof of Theorem 2.2. We will only prove (2.8), as the proof of (2.9)
is similar.

For x ∈ [0, 1], Theorem 2.8 is a direct consequence of Theorem 2.1,
as we will see in the following. For n > 1,∣∣∣∣Zn

(
(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)]e

x3
√
n

L ( x√
n

)
− 1

∣∣∣∣
= 1

W [1− Φ(x)]e
x3
√
n

L ( x√
n

)

∣∣∣∣Zn(R)
mn

−
Zn
(

(−∞, xσ0
√
n+ nm0)

)
mn

−W (1− Φ(x))e
x3
√
n

L ( x√
n

)
∣∣∣∣. (4.1)

Since supx∈[0,1] | x
3
√
n
L ( x√

n
)| → 0, there exists n0 large enough such that

for all x ∈ [0, 1] and n > n0, e
x3
√
n

L ( x√
n

) > 1/2. Using this and the fact
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that 1 − Φ(x) > c := 1 − Φ(1) for all x ∈ [0, 1], from (4.1) we get for
all n > n0,

∣∣∣∣Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)]e

x3
√
n

L ( x√
n

)
− 1

∣∣∣∣
6

2
cW

∣∣∣∣Zn(R)
mn

−W
∣∣∣∣+ 2

cW

∣∣∣∣− Zn
(

(−∞, xσ0
√
n+ nm0)

)
mn

+WΦ(x)
∣∣∣∣

+ 2
cW

∣∣∣∣W (1− Φ(x))
(

1− e
x3
√
n

L ( x√
n

)
)∣∣∣∣. (4.2)

In the last display, by Theorem 2.1, when n→∞, the two first terms
are O

(
1√
n

)
. We will show below that the third term is also O

(
1√
n

)
.

In fact, using the inequality |1− et| 6 |t|et for t ∈ R and the fact that
supx∈[0,1] |L ( x√

n
)| is bounded for n > n0, we obtain for x ∈ [0, 1], as

n→∞,

∣∣∣∣1− e x3
√
n

L ( x√
n

)
∣∣∣∣ 6 ∣∣∣∣ x3
√
n

L ( x√
n

)
∣∣∣∣e x3
√
n

L ( x√
n

) = O
( 1√

n

)
.

This implies that the third term in (4.2) is O
(

1√
n

)
. From (4.2) and

the above estimations, we see that for x ∈ [0, 1], as n→∞,

∣∣∣∣Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)]e

x3
√
n

L ( x√
n

)
− 1

∣∣∣∣ = O
( 1√

n

)
,

which implies

Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)] = e

x3
√
n

L ( x√
n

)
[
1 +O

( 1√
n

)]
.

This ends the proof of (2.8) in the case where x ∈ [0, 1].
We now deal with the case 1 < x = o(

√
n). For u ∈ (N∗)n, set

Vu = Su − nmθ

σθ
√
n

.
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Recalling that Λ(θ) = logEeθX = log m(θ)
m

and Λ′(θ) = mθ, we have

I : = 1
mn

Zn
(
(xσ0
√
n+ nm0,+∞)

)
= 1
mn

∑
u∈Tn

1{
Su>xσ0

√
n+nm0

}
= e−n[θΛ′(θ)−Λ(θ)] ∑

u∈Tn
e−θσθ

√
nVu · e

θSu

m(θ)n1
{
Vu>

σ0x
σθ

+ (m0−mθ)
√
n

σθ

}. (4.3)

Because Λ(θ) is analytic on D with Λ(0) = 0, it has the Taylor expan-
sion

Λ(θ) =
∞∑
k=1

γk
k! θ

k, where γk = Λ(k)(0), θ ∈ D, (4.4)

which implies that

Λ′(θ)− Λ′(0) =
∞∑
k=2

γk
(k − 1)!θ

k−1. (4.5)

Consider the equation
√
n(mθ −m0) = σ0x, namely Λ′(θ)− Λ′(0) = σ0x√

n
. (4.6)

Set t = x√
n
, from (4.5) and (4.6), we get

σ0t =
∞∑
k=2

γk
(k − 1)!θ

k−1. (4.7)

Since γ2 = σ2
0 > 0, the equation (4.7) has the unique solution given by

θ = t

γ21/2 −
γ3

2γ2
2
t2 − γ4γ2 − 3γ2

3

6γ7/2
2

t3 + . . . . (4.8)

Observe that from (4.4) and (4.5), for any θ ∈ D,

θΛ′(θ)− Λ(θ) =
∞∑
k=1

γk
(k − 1)!θ

k −
∞∑
k=1

γk
k! θ

k =
∞∑
k=2

k − 1
k! γkθ

k.

Choosing θ to be the unique real root of the equation (4.7), which is
given by (4.8), we obtain (see [34, Theorem VIII.2.2] for details)

θΛ′(θ)− Λ(θ) = t2

2 − t
3L (t) = x2

2n −
x3

n3/2 L
( x√

n

)
, (4.9)
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where L (t) is the Cramér series defined in (2.7), which converges for
|t| small enough. Substituting (4.6) into (4.3) and using (4.9), we get

I = e
−x

2
2 + x3

√
n

L

(
x√
n

) ∑
u∈Tn

e−θσθ
√
nVu

eθSu

m(θ)n1{Vu>0}

= e
−x

2
2 + x3

√
n

L

(
x√
n

) ∫ ∞
0

e−θσθ
√
nyZ

θ
n(dy), (4.10)

where Zθ
n is the finite measure on R defined by

Z
θ
n(A) =

∑
u∈Tn

eθSu

m(θ)n1{Vu∈A}, A ⊂ R,

whose mass satisfies EZθ

n(R) = 1. From t = x√
n
and x = o(

√
n), it

follows that t→ 0 as n→∞. By the inverse function theorem for an-
alytic functions, the series on the right-hand side of (4.8) is absolutely
convergent for |t| small enough. Moreover, from (4.8), we have θ → 0+

as n → ∞. Hence, for sufficiently large n0 and all n > n0, we have
|θ| 6 K, where K is defined as in Theorem 2.3. Therefore, denoting

ln,θ(y) = Z
θ

n((−∞, y])−W (θ)Φ(y), y ∈ R,

from Theorem 2.3 we get for all n > n0,

sup
y∈R
|ln,θ(y)| 6 M√

n
, (4.11)

where M is a positive and finite random variable independent of n and
θ. Notice that∫ ∞

0
e−θσθ

√
nyZ

θ

n(dy) =
∫ ∞

0
e−θσθ

√
nydln,θ(y) + W (θ)√

2π

∫ ∞
0

e−θσθ
√
ny− y

2
2 dy

=: I1 +W (θ)I2. (4.12)

Estimate of I1. Using the integration by parts and the bound (4.11),
we get that for n > n0,

|I1| 6 |ln,θ(0)|+ θσθ
√
n
∫ ∞

0
e−θσθ

√
ny|ln,θ(y)|dy 6 2M√

n
. (4.13)

Estimate of I2. The integral I2 appears in the proof of Cramér’s
moderate deviation expansion theorem for sums of i.i.d. random vari-
ables (see [34, Theorem VIII.2.2]), where the following results have
been proved:
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(i) there exist some positive constants C1, C2 such that for all θ ∈
[−K,K] and all n large enough,

C1 6 θσθ
√
nI2 6 C2;

(ii) the integral I2 admits the following asymptotic expansion :

I2 = e
x2
2 [1− Φ(x)]

[
1 +O

( x√
n

)]
. (4.14)

By the definition of σθ, the mapping θ 7→ σθ is strictly positive and
continuous on [−K,K]. Hence, there exist positive constants C3, C4
such that for all θ ∈ [−K,K],

C3 6 θ
√
nI2 6 C4. (4.15)

Notice that by (2.4), for all θ ∈ [−K,K], W (θ) > 0 a.s. Moreover,
W (θ) is a.s. continuous in θ by the continuity and uniform convergence
of Wn(θ) on [−K,K]. Combining this with (4.15), we get

M3 6 θ
√
nW (θ)I2 6M4. (4.16)

We now come back to (4.12), and let θ be defined by (4.8). Recall
that for n > n0, |θ| 6 K. From (4.12), (4.16) and (4.13), we have, as
n→∞,∫ ∞

0
e−θσθ

√
nyZ

θ
n(dy) = W (θ)I2

(
1 +

√
nI1√

nW (θ)I2

)
= W (θ)I2

(
1 +O(θ)

)
.

(4.17)
According to the analyticity of W (θ) on [−K,K] and using the mean
value theorem one see that |W (θ)−W | = |W (θ)−W (0)| 6M5θ. Since
θ = O

(
x√
n

)
by (4.8), it follows from (4.17) and (4.14) that∫ ∞

0
e−θσθ

√
nyZ

θ
n(dy) = (W +O(θ))I2(1 +O(θ))

= We
x2
2 [1− Φ(x)]

[
1 +O

( x√
n

)]
. (4.18)

Combining this with (4.10) yields

I = We
x3
√
n

L

(
x√
n

)
[1− Φ(x)]

[
1 +O( x√

n
)
]
,

which concludes the proof of (2.8).
�
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