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Introduction

A branching random walk is a system of particles, in which each particle gives birth to new particles of the next generation, whose children move on R. The particles behave independently; the number of children and their displacements are governed by the same probability law for all particles. Important research topics on the model include the study of the asymptotic properties of the counting measure Z n which counts the number of particles of generation n situated in a Borel set (see e.g. [START_REF] Asmussen | Branching random walks. I-II[END_REF][START_REF] Asmussen | Branching random walks[END_REF][START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF][START_REF] Biggins | Growth rates in the branching random walk[END_REF][START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF][START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF][START_REF] Chen | On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements[END_REF]), the study of the fundamental martingale, the norming problem, and the properties of the limit variable (see e.g. [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF][START_REF] Biggins | Seneta-Heyde norming in the branching random walk[END_REF][START_REF] Liu | Sur une équation fonctionnelle et ses applications: une extension du théorème de Kesten -Stigum concernant des processus de branchement[END_REF][START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF][START_REF] Liu | On generalized multiplicative cascades[END_REF][START_REF] Aidekon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Iksanova | Stable-like fluctuations of Biggins' martingales[END_REF][START_REF] Liang | Regular variation of fixed points of the smoothing transform[END_REF]), and the positions of the extreme particles (which constitute the boundary of the support of the counting measure Z n (see e.g. [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF][START_REF] Hu | How big is the minimum of a branching random walk?[END_REF][START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF][START_REF] Buraczewski | Large deviation estimates for branching random walks[END_REF]), etc. The study of this model is very interesting especially due to a large number of applications and its close relation with other important models in applied probability settings, such as multiplicative cascades, fractals, perpetuities, branching Brownian motion, the quick sort algorithm and infinite particle systems. For close relations to Mandelbrot's cascades, see e.g. [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF][START_REF] Liu | On generalized multiplicative cascades[END_REF][START_REF] Barral | On exact scaling log-infinitely divisible cascades[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF]; for relations to other important models, see e.g. the recent books [START_REF] Shi | Branching random walks[END_REF][START_REF] Buraczewski | Stochastic models with power-law tails: The equation X = AX + B[END_REF][START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes[END_REF] and many references therein. In this paper, we consider the asymptotic properties of the counting measure Z n as n → ∞, by establishing the Berry -Esseen bound and Cramér's moderate deviation expansion for a suitable norming of Z n . The study of asymptotic properties of Z n is interesting because it gives a good description of the configuration of the system at time n.

The branching random walk on the real line can be defined precisely as follows. The process begins with one initial particle denoted by the null sequence ∅, situated at the origin S ∅ = 0. It gives birth to N children denoted by ∅i = i, with displacements L i , i = 1, • • • , N . In general, each particle of generation n, denoted by a sequence u = u 1 • • • u n of length n, situated at S u ∈ R, gives birth to N u particles of the next generation, denoted by ui, which move on the real line with displacements L ui so that their positions are

S ui = S u + L ui , i = 1, • • • , N u . All the random variables (N u , L u1 , L u2 , • • • ), indexed by all finite sequences u ∈ U := ∪ ∞ n=0 (N *
) n (by convention (N * ) 0 = {∅}), are independent and identically distributed, defined on some probability space (Ω, F , P), with values in

N × R × R × • • • .
For n 0, let T n be the set of particles of n-th generation. Consider the counting measure

Z n (A) = u∈Tn 1 {Su∈A} , A ⊂ R,
which counts the number of particles of n-th generation situated in A.

Throughout this paper we assume that

m := EN = E[Z 1 (R)] ∈ (1, ∞),
so that the Galton-Watson process formed by the generation sizes survives with positive probability, and

F (A) = E[Z 1 (A)], A ⊂ R,
is a finite measure on R with mass m. Let F be the probability mesure on R defined by

F (A) = F (A) m , A ⊂ R.

Denote its mean and variance by

m 0 = xF (dx) and σ 2 0 = (x -m 0 ) 2 F (dx). (1.1)
We will assume that E( N i=1 L 2 i ) < ∞, so that m 0 and σ 2 0 are finite, with

m 0 = 1 m E N i=1 L i and σ 2 0 = 1 m E N i=1 L 2 i -m 2 0 .
A central limit theorem for the special case where (N u ) u∈U and (L u ) u∈U are two independent families of independent and identically distributed (i.i.d.) random variables was conjectured by Harris [START_REF] Harris | The theory of branching processes[END_REF]. His conjecture states that under suitable conditions we have, for any

x ∈ R, 1 m n Z n (-∞, xσ 0 √ n + nm 0 ] n→∞ -→ W Φ(x) (1.2)
in probability, where Φ(x) is the normal distribution function and W is the a.s. limit of the fundamental martingale Zn(R) m n of the Galton-Watson process (Z n (R)). This conjecture has first been solved by Stam [START_REF] Stam | On a conjecture by Harris[END_REF], then improved by Asmussen and Kaplan [START_REF] Asmussen | Branching random walks. I-II[END_REF][START_REF] Asmussen | Branching random walks[END_REF] to L 2 -convergence and almost sure (a.s.) convergence. The general case has been considered by Klebaner [START_REF] Klebaner | Branching random walk in varying environments[END_REF] and Biggins [START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF].

In this paper we will study the Berry -Esseen bound about the rate of convergence in (1.2), and the associated Cramér's moderate deviation expansion.

The rate of convergence in (1.2) has been studied in several papers. Révész [START_REF] Révész | Random walks of infinitely many particles[END_REF] considered the special case where the displacements follow the same Gaussian law and conjectured the exact convergence rate; his conjecture was solved by Chen [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF]. Gao and Liu [START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF] improved and extended Chen's result to the general non-lattice case while the lattice case has been considered by Grübel and Kabluchko [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF]. All the above mentioned results are about the point-wise convergence without uniformity in x. In this paper, our first objective is to find a uniform bound for the rate of convergence in (1.2) of type Berry-Esseen: we will prove that, under suitable conditions, a.s. for n 1,

sup x∈R 1 m n Z n (-∞, xσ 0 √ n + nm 0 ] -W Φ(x) M √ n , (1.3)
where M is a positive and finite random variable (see Theorem 2.1).

The problem of large deviations for the counting measure Z n (•) has been considered by Biggins: he established in [START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF] a large deviation principle, which was subsequently improved in [START_REF] Biggins | Growth rates in the branching random walk[END_REF] to a Bahadur-Rao large deviation asymptotic. Our second objective in this paper is to establish a Cramér's type moderate deviation expansion for Z n (see Theorem 2.2): we will prove that a.s. for n → ∞ and x ∈ [0, o( 

√ n)], Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)] = e x 3 √ n L ( x √ n ) 1 + O x + 1 √ n , ( 1 
Z n (-∞, xσ 0 √ n + nm 0 ] , which can be interpreted as W n ( it σ 0 √ n )f n (t), t ∈ R, where (W n (λ)
) is Biggins' martingale with complexed valued parameter λ for the branching random walk (see [START_REF] Biggins | Uniform convergence of martingales in the one-dimensional branching random walk[END_REF][START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]), and f n (t) is the characteristic function of the nfold convolution of F . Using the results of Biggins [START_REF] Biggins | Uniform convergence of martingales in the one-dimensional branching random walk[END_REF][START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], Grübel and Kabluchko [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF] about the uniform convergence of W n (λ), together with the approach of Petrov [START_REF] Petrov | Sums of independent random variables[END_REF] for the proof of the Berry-Esseen bound for sums of i.i.d. random variables, we are able to establish (1.3). The Berry-Esseen bound (1.3) is then extended to the changed measure of type Cramér,

Z θ n (A) = A e θt Z n (dt), A ⊂ R, θ ∈ R.
This is an important step in establishing the moderate deviation expansion (1.4). Our approach in proving (1.4) is very different from the method of Biggins [START_REF] Biggins | Growth rates in the branching random walk[END_REF] on the Bahadur-Rao large deviation asymptotic; instead, it is inspired by the ideas of the proof of Cramér's moderate deviation expansion on sums of i.i.d. random variables (see [START_REF] Petrov | Sums of independent random variables[END_REF]), and the arguments in [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] for the proof of the local limit theorem with large deviations for Z n .

The main results, Theorems 2.1-2.3, are presented in Section 2. Theorems 2.1 and 2.3 about the Berry-Esseen bound are proved in Section 3, while Theorem 2.2 about the moderate deviation is established in Section 4.

Notation and results

We will use the following standard assumptions.

C1. N > 0 a.s. with m = EN ∈ (1, ∞), and E N i=1 L 2 i < ∞. C2. F is non-degenerate, i.e. it is not concentrated on a single point.
The first condition in C1 implies that the underlying Galton -Watson process is supercritical; the second condition in C1, together with condition C2, implies that the mean m 0 and the variance σ 2 0 defined by (1.1) are finite with σ 0 > 0.

The Laplace transform of F will be denoted by

m(λ) = R e λt F (dt) = E N i=1 e λL i , λ ∈ C. (2.1)
Denote by int(A) the interior of the set A. Set

D = int{θ ∈ R : m(θ) < ∞}. (2.2)
Throughout, we assume that

C3. D is non-empty.
Denote by Re(λ) the real part of λ ∈ C. A important role in the proof of Berry-Esseen bound and moderate deviation expansion is played by the martingale of Biggins with complex parameter:

W n (λ) = 1 m(λ) n R e λt Z n (dt) = u∈Tn e λSu m(λ) n , n 0, Re(λ) ∈ D. When λ = 0, W n := W n (0) = Zn(R)
m n is the fundamental martingale of the Galton -Watson process (Z n (R)), whose a.s. limit is denoted by W . The famous Kesten-Stigum theorem states that W is non degenerate if and only if EN log + N < ∞ (see [START_REF] Athreya | Branching processes[END_REF]), where log + x = max{0, log x} denotes the positive part of log x. By the martingale convergence theorem for non-negative martingales, we have for all θ ∈ D,

W n (θ) n→∞ → W (θ), a.s.
Notice that when N > 0 a.s. we have W n (θ) > 0 a.s. for all n 0 and θ ∈ D. Biggins [7, Theorem A] gave a necessary and sufficient condition for the non-degeneracy of W (θ): EW (θ) > 0 if and only if

E[W 1 (θ) log + W 1 (θ)] < ∞ and θ ∈ (θ -, θ + ), (2.3) 
where (θ -, θ + ) ⊂ D denotes by the open interval on which θm (θ) m(θ) < log m(θ), i.e.

θ -= inf θ ∈ D : θm (θ) m(θ) < log m(θ) , θ + = sup θ ∈ D : θm (θ) m(θ) < log m(θ) .
Moreover, when C1 and (2.3) hold,

W (θ) > 0 a.s. and EW (θ) = 1. (2.4)
We see that 0 ∈ (θ -, θ + ), so that this interval is non-empty. The endpoints of the interval D and the quantities θ -, θ + are allowed to be infinite. We will need the following moment condition which is slightly stronger than (2.3).

C4.

There are γ > 1 and

K 0 > 0 with (-K 0 , K 0 ) ⊂ (θ -, θ + ) such that EW γ 1 (θ) < ∞ ∀θ ∈ (-K 0 , K 0 )
. By the argument of the proof of [12, Theorem 2], we know that under hypothesis C4, for every compact subset

C of V := {λ = θ + iη : θ ∈ (-K 0 , K 0 ), η ∈ R}, a.s. sup λ∈C |W n (λ) -W (λ)| n→∞ -→ 0 and W (λ) is analytic in C.
(

Our first result gives the Berry-Esseen bound for Z n :

Theorem 2.1. Assume conditions C1 -C4. Then, a.s. for all n 1,

sup x∈R Z n (-∞, xσ 0 √ n + nm 0 ] m n -W Φ(x) M √ n ,
where M is a positive and finite random variable.

To state the result corresponding to the Cramér type moderate deviation expansion for Z n , we need more notation. Consider the measure

F θ (dx) = e θx m(θ) F (dx), θ ∈ D. (2.6)
We see that F θ is a distribution function with finite mean m θ and variance σ 2 θ , given by

m θ = m (θ) m(θ) , σ 2 θ = m (θ) m(θ) - m (θ) m(θ) 2 ;
moreover, σ θ > 0 when F is non-degenerate. Consider the change of measure of type Cramer for Z n : for θ ∈ D,

Z θ n (dx) = e θx Z n (dx), namely, Z θ n (A) = u∈Tn e θSu 1 {Su∈A} , A ⊂ R.
Let X be a random variable with distribution F := F m , and Λ(θ) := log Ee θX = log m(θ) -log m be its cumulant generating function. Then Λ(θ) is analytic on D, with Λ (θ) = m θ and Λ (θ) = σ 2 θ . Denote by γ k := Λ (k) (0) the cumulant of order k of the random variable X. We shall use the Cramér series (see [34, Theorem VIII.2.2]): 

L (t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ
m n W [1 -Φ(x)] = e x 3 √ n L ( x √ n ) 1 + O x + 1 √ n , ( 2.8) 
and

Z n (-∞, -xσ 0 √ n + nm 0 ) m n W Φ(-x) = e -x 3 √ n L (-x √ n ) 1 + O x + 1 √ n . (2.9)
As a by-product in the proof of Theorem 2.2, we obtain a Berry -Esseen bound for the changed measure Z θ n with uniformity in θ. Theorem 2.3. Assume conditions C1 -C4. Then, there exists a constant 0 < K < K 0 such that a.s. for all n 1, sup

θ∈[-K,K] sup x∈R Z θ n (-∞, xσ θ √ n + nm θ ] m(θ) n -W (θ)Φ(x) M √ n ,
where M is a positive and finite random variable.

Proof of Theorems 2.1 and 2.3

We first recall some known results in the form of two lemmas which will be used for the proof of Theorems 2.1 and 2.3.

The first lemma concerns the Cramér change of measure (2.6), see [34, Theorem VIII.2.2, inequalities (2.31) and (2.32)]). Lemma 3.1. Let X be a real random variable with distribution G. Suppose that V ar(X) > 0 and that there exist strictly positive constants H, c such that

| log Ee θX | c for all θ ∈ (-H, H).
Let X θ be a real random variable with distribution G θ defined by

G θ (dx) = e θx G(dx)
Ee θX , θ ∈ (-H, H). Then there exist strictly positive constants

H 1 , c 1 , c 2 with H 1 < H, such that for all θ ∈ (-H 1 , H 1 ), V ar(X θ ) c 1 and E|X θ -EX θ | 3 c 2 .
We see that under C2 and C3, the distribution G = F satisfies the conditions of this lemma. Indeed, if X is a random variable with distribution F , then by condition C2 about the non-degeneracy of F, we have V ar(X) > 0. By condition C3, the set D defined by (2.2) is an open interval containing 0. Notice that log Ee θX = log m(θ) m < ∞ for all θ ∈ D. Hence there exist constants H, c > 0 such that | log Ee θX | c for all θ ∈ (-H, H).

The second lemma is about the exponential convergence rate of W n (θ), see [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF]Lemma 3.3]. In fact in [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF]Lemma 3.3] the result is only given for the lattice case, but the proof therein remains valid for the non-lattice case.

Lemma 3.2. Assume condition C1-C3.

There exist two constants 0 < K < K 0 and c ∈ (0, 1) such that a.s. for all n 0, sup

θ∈[-K,K] |W n (θ) -W (θ)| M 1 c n ,
where M 1 is a positive and finite random variable.

Notice that Theorem 2.1 follows from Theorem 2.3 with θ = 0, by the fact that m(0) = m and W (0) = W . So we only proceed to prove Theorem 2.3.

Proof of Theorem 2.3. From Lemma 3.2, to prove Theorem 2.3, it is enough to show that there is a constant 0

< K < K 0 such that sup θ∈[-K,K] sup x∈R Z θ n (-∞, xσ θ √ n + nm θ ] m(θ) n -W n (θ)Φ(x) M √ n ,
where M is a positive and finite random variable. Consider the random measure

ν θ n (A) = Z θ n σ θ √ nA + nm θ m(θ) n , A ⊂ R,
with the usual notation aA

+ b = {ax + b : x ∈ A}. Its distribution function is ν θ n (x) = Z θ n (-∞, xσ θ √ n + nm θ ] m(θ) n , x ∈ R.
The characteristic function of the random measure ν θ n is

ψ θ n (t) = R e itx ν θ n (dx) = 1 m(θ) n u∈Tn exp θ + it σ θ √ n S u - it nm θ σ θ √ n = W n θ + it σ θ √ n f θ n (t), t ∈ R, (3.1) 
where

f θ n (t) = 1 m(θ) n m θ + it σ θ √ n n e - it nm θ σ θ √ n . Denote by F * n θ the n-fold convolution of F θ . It is not difficult to see that f θ n (t) = R e it(x-nm θ ) σ θ √ n F * n θ (dx),
which is the characteristic function of Sn-nm θ σ θ √ n , where S n is the sum of independent random variables {X i } n i=1 with the same law F θ . By Esseen's smoothing inequality (see [34, Theorem V.2.2]), we get for all T > 0, a.s.

sup x∈R ν θ n (x) -W n (θ)Φ(x) 1 π T -T W n θ + it σ θ √ n f θ n (t) -W n (θ)e -t 2 /2 t dt + W n (θ) c T , (3.2)
where c is a deterministic positive constant. From Lemma 3.1, there exist strictly positive constants

K, c 1 , c 2 with K < min{H 1 , K 0 } such that for all |θ| K σ 2 θ c 1 and E|X -m θ | 3 c 2 . (3.3) Take T = aσ θ √ n with a = inf θ∈[-K,K] σ 2 θ 4E|X-m θ | 3 c 1 c 2 > 0.
For 0 < ε < a, we split the integral on the right-hand side of (3.2) into two parts

|t| < εσ θ √ n and εσ θ √ n |t| aσ θ √ n to get sup θ∈[-K,K] sup x∈R ν θ n (x) -W n (θ)Φ(x) 1 π (I 1 + I 2 ) + c a √ n sup θ∈[-K,K] W n (θ) σ θ ,
where

I 1 = sup θ∈[-K,K] |t|<εσ θ √ n W n θ + it σ θ √ n f θ n (t) -W n (θ)e -t 2 /2 t dt, I 2 = sup θ∈[-K,K] εσ θ √ n |t| aσ θ √ n W n θ + it σ θ √ n f θ n (t) -W n (θ)e -t 2 /2 t dt.
In the following, M i denotes a positive and finite random variable. By Lemma 3.2 and the lower bound

(3.3) of σ θ , sup θ∈[-K,K] Wn(θ) σ θ
M 2 a.s. Hence, it remains to show that a.s., I 1

M 3 √ n and I 2 M 4 √ n .
For I 1 , we see that

I 1 sup θ∈[-K,K] sup |t| σ θ √ n ε W n θ + it σ θ √ n |t|<εσ θ √ n |f θ n (t) -e -t 2 /2 | |t| dt + sup θ∈[-K,K] |t|<εσ θ √ n W n θ + it σ θ √ n -W n (θ) |t| e -t 2 /2 dt. (3.4)
By the uniform convergence (2.5) of W n (•), we have

sup θ∈[-K,K] sup |t| σ θ √ n ε W n θ + it σ θ √ n M 5 . (3.5) Recall that t → f θ n (t) is the characteristic function of Sn-nm θ σ θ √ n . Then by [34, Lemma V.2.1], for |t| σ 3 θ √ n 4E|X -m θ | 3 , we have |f θ n (t) -e -t 2 /2 | |t| E|X -m θ | 3 σ 3 θ √ n t 2 e -t 2 /3 c 2 c 1 √ n t 2 e -t 2 /3 . (3.6) Therefore (3.6) holds for |t| εσ θ √ n since εσ θ √ n σ 3 θ √ n 4E|X -m θ | 3 .
From (3.5), (3.6) and the fact that R |t| 2 e -t 2 /3 dt < ∞, we see that the first term in (3.4) is bounded by M 6 √ n . Now we consider the second term in (3.4). Since R e -t 2 /2 dt = √ 2π, we need only to show that sup

θ∈[-K,K] sup |t| σ θ √ n ε 1 |t| W n θ + it σ θ √ n -W n (θ) M 7 √ n . (3.7) Notice that W n (λ) is a.s. analytic in the strip Re(λ) ∈ (-K 0 , K 0 ). Let 0 < K 1 < K 0 . By the mean value theorem, when θ ∈ [-K 1 , K 1 ] and |t| σ θ √ n ε, we have W n θ + it σ θ √ n -W n (θ) |t| σ θ √ n max η∈[-ε,ε] |W n (θ + iη)| (3.8) By Cauchy's formula, when |λ| < K 1 , W n (λ) = 1 2πi |z|=K 1 W n (z) (z -λ) 2 dz.
By (2.5), a.s. for all n 1 and all

z ∈ C with |z| K 1 , |W n (z)| M 8 . When |λ| K 1 /2 and |z| = K 1 , |z -λ| K 1 -K 1 /2 = K 1 /2, so that | Wn(z) (z-λ) 2 | 4M 8 K 2 1
. Therefore for all n 1, a.s.

max |λ| K 1 /2 |W n (λ)| 4M 8 K 1 .
Therefore from (3.8) and (3.3), we see that (3.7) holds when K < K 1 /4 and ε < K 1 /4. This concludes that the second term in (3.4) is bounded by M 9 √ n . Therefore from (3.4) we get I 1 M 10 √ n . For I 2 , using the constraint in the integral of I 2 , we have

1 |t| 1 εσ θ √ n , so that I 2 sup θ∈[-K,K] 1 εσ θ √ n ε |t| σ θ √ n a W n θ + it σ θ √ n f θ n (t) dt + sup θ∈[-K,K] W n (θ) εσ θ √ n ε |t| σ θ √ n a e -t 2 /2 dt.
It is shown in the proof of [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]Lemma 5] that as n → ∞,

sup θ∈[-K,K] √ n ε η a W n θ + iη f θ n (σ θ √ nη) dη → 0 a.s.,
which can be rewritten as

sup θ∈[-K,K] 1 σ θ ε |t| σ θ √ n a W n θ + it σ θ √ n f θ n (t) dt → 0 a.s. Therefore, sup θ∈[-K,K] 1 εσ θ √ n ε |t| σ θ √ n a W n θ + it σ θ √ n f θ n (t) dt M 11 √ n a.s.
This, together with sup θ∈[-K,K]

Wn(θ) σ θ M 12 , implies that I 2 M 13 √ n .
Thus the proof of Theorem 2.3 is completed.

strictly positive constant 4. Proof of Theorem 2.2

In this section we prove Theorem 2.2, the Cramér type moderate deviation expansion for Z n .

Proof of Theorem 2.2. We will only prove (2.8), as the proof of (2.9) is similar.

For x ∈ [0, 1], Theorem 2.8 is a direct consequence of Theorem 2.1, as we will see in the following. For n 1,

Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)]e x 3 √ n L ( x √ n ) -1 = 1 W [1 -Φ(x)]e x 3 √ n L ( x √ n ) Z n (R) m n - Z n (-∞, xσ 0 √ n + nm 0 ) m n -W (1 -Φ(x))e x 3 √ n L ( x √ n ) . (4.1) Since sup x∈[0,1] | x 3 √ n L ( x √ n )| → 0,
there exists n 0 large enough such that for all x ∈ [0, 1] and n n 0 , e

x 3 √ n L ( x √ n )
1/2. Using this and the fact that 1 -Φ(x) c := 1 -Φ(1) for all x ∈ [0, 1], from (4.1) we get for all n n 0 ,

Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)]e x 3 √ n L ( x √ n ) -1 2 cW Z n (R) m n -W + 2 cW - Z n (-∞, xσ 0 √ n + nm 0 ) m n + W Φ(x) + 2 cW W (1 -Φ(x)) 1 -e x 3 √ n L ( x √ n ) . (4.2)
In the last display, by Theorem 2.1, when n → ∞, the two first terms are O 1 √ n . We will show below that the third term is also O 1 √ n . In fact, using the inequality |1 -e t | |t|e t for t ∈ R and the fact that

sup x∈[0,1] |L ( x √ n )| is bounded for n n 0 , we obtain for x ∈ [0, 1], as n → ∞, 1 -e x 3 √ n L ( x √ n ) x 3 √ n L ( x √ n ) e x 3 √ n L ( x √ n ) = O 1 √ n .
This implies that the third term in (4.2) is O 1 √ n . From (4.2) and the above estimations, we see that for x ∈ [0, 1], as n → ∞,

Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)]e x 3 √ n L ( x √ n ) -1 = O 1 √ n , which implies Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)] = e x 3 √ n L ( x √ n ) 1 + O 1 √ n .
This ends the proof of (2.8) in the case where x ∈ [0, 1]. We now deal with the case 1

< x = o( √ n). For u ∈ (N * ) n , set V u = S u -nm θ σ θ √ n .
Recalling that Λ(θ) = log Ee θX = log m(θ) m and Λ (θ) = m θ , we have

I : = 1 m n Z n (xσ 0 √ n + nm 0 , +∞) = 1 m n u∈Tn 1 Su>xσ 0 √ n+nm 0 = e -n[θΛ (θ)-Λ(θ)] u∈Tn e -θσ θ √ nVu • e θSu m(θ) n 1 Vu> σ 0 x σ θ + (m 0 -m θ ) √ n σ θ . (4.3)
Because Λ(θ) is analytic on D with Λ(0) = 0, it has the Taylor expansion

Λ(θ) = ∞ k=1 γ k k! θ k , where γ k = Λ (k) (0), θ ∈ D, (4.4) 
which implies that

Λ (θ) -Λ (0) = ∞ k=2 γ k (k -1)! θ k-1 . (4.5) Consider the equation √ n(m θ -m 0 ) = σ 0 x, namely Λ (θ) -Λ (0) = σ 0 x √ n . ( 4.6) 
Set t = x √ n , from (4.5) and (4.6), we get

σ 0 t = ∞ k=2 γ k (k -1)! θ k-1 . (4.7)
Since γ 2 = σ 2 0 > 0, the equation (4.7) has the unique solution given by

θ = t γ 2 1/2 - γ 3 2γ 2 2 t 2 - γ 4 γ 2 -3γ 2 3 6γ 7/2 2 t 3 + . . . . ( 4.8) 
Observe that from (4.4) and (4.5), for any θ ∈ D,

θΛ (θ) -Λ(θ) = ∞ k=1 γ k (k -1)! θ k - ∞ k=1 γ k k! θ k = ∞ k=2 k -1 k! γ k θ k .
Choosing θ to be the unique real root of the equation (4.7), which is given by (4.8), we obtain (see [34, Theorem VIII.2.2] for details)

θΛ (θ) -Λ(θ) = t 2 2 -t 3 L (t) = x 2 2n - x 3 n 3/2 L x √ n , ( 4.9) 
where L (t) is the Cramér series defined in (2.7), which converges for |t| small enough. Substituting (4.6) into (4.3) and using (4.9), we get

I = e -x 2 2 + x 3 √ n L x √ n u∈Tn e -θσ θ √ nVu e θSu m(θ) n 1 {Vu>0} = e -x 2 2 + x 3 √ n L x √ n ∞ 0 e -θσ θ √ ny Z θ n (dy), (4.10) 
where Z θ n is the finite measure on R defined by

Z θ n (A) = u∈Tn e θSu m(θ) n 1 {Vu∈A} , A ⊂ R, whose mass satisfies EZ θ n (R) = 1. From t = x √ n and x = o( √ n)
, it follows that t → 0 as n → ∞. By the inverse function theorem for analytic functions, the series on the right-hand side of (4.8) is absolutely convergent for |t| small enough. Moreover, from (4.8), we have θ → 0 + as n → ∞. Hence, for sufficiently large n 0 and all n n 0 , we have |θ| K, where K is defined as in Theorem 2.3. Therefore, denoting Estimate of I 2 . The integral I 2 appears in the proof of Cramér's moderate deviation expansion theorem for sums of i.i.d. random variables (see [START_REF] Petrov | Sums of independent random variables[END_REF]Theorem VIII.2.2]), where the following results have been proved:

l n,θ (y) = Z θ n ((-∞, y]) -W (θ)Φ(y), y ∈ R, from Theorem 2.
(i) there exist some positive constants C 1 , C 2 such that for all θ ∈ [-K, K] and all n large enough,

C 1 θσ θ √ nI 2 C 2 ;
(ii) the integral I 2 admits the following asymptotic expansion : We now come back to (4.12), and let θ be defined by (4.8). Recall that for n n 0 , |θ| K. From (4.12), (4.16) and (4. Combining this with (4.10) yields

I 2 = e
I = W e x 3 √ n L x √ n [1 -Φ(x)] 1 + O( x √ n ) ,
which concludes the proof of (2.8).

I 1 +

 1 3 we get for all n n 0 , sup y∈R |l n,θ (y)| M √ n , (4.11) where M is a positive and finite random variable independent of n and θ. W (θ)I 2 . (4.12) Estimate of I 1 . Using the integration by parts and the bound (4.11), we get that for n n 0 , |I 1 | |l n,θ (0)| + θσ θ √ n

  of σ θ , the mapping θ → σ θ is strictly positive and continuous on [-K, K]. Hence, there exist positive constantsC 3 , C 4 such that for all θ ∈ [-K, K], C 3 θ √ nI 2 C 4 . (4.15) Notice that by (2.4), for all θ ∈ [-K, K], W (θ) > 0 a.s. Moreover, W (θ) is a.s. continuous in θ by the continuity and uniform convergence of W n (θ) on [-K, K]. Combining this with (4.15), we get M 3 θ √ nW (θ)I 2 M 4 . (4.16)

2 =

 2 [START_REF] Biggins | Seneta-Heyde norming in the branching random walk[END_REF], we have, as n → ∞, W (θ)I 2 1 + O(θ) .

(4. 17 )

 17 According to the analyticity of W (θ) on [-K, K] and using the mean value theorem one see that|W (θ) -W | = |W (θ) -W (0)| M 5 θ. Since θ = O x √ n by(4.8), it follows from (4.17) and (4.14) that ∞ 0 e -θσ θ √ ny Z θ n (dy) = (W + O(θ))I 2 (1 + O(θ))