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Consensus-based formation control and obstacle avoidance for
nonholonomic multi-robot system

Daravuth Koung, Isabelle Fantoni, Olivier Kermorgant and Lamia Belouaer

Abstract— Managing multiple robots into a formation can be
beneficial, especially in logistics sectors where multiple robots
can work together to transport larger loads. This paper presents
a consensus control law for formation with navigation and
obstacle avoidance of multiple wheeled mobile robots. The for-
mation control is based on adapting a consensus algorithm from
flocking, and we propose an obstacle avoidance methodology
that ensures the formation while navigating around obstacles.
Simulations of the control law using four wheeled mobile robots
as well as experiments using actual industrial robots are shown
in order to validate the theory.

I. INTRODUCTION

The interest in integrating multi-robot system (MRS) [1]
into real-world applications is increasing more and more.
In fact, MRS performs better for complex tasks with more
efficiency and robustness compared to one single robot [2].
It can be found in a wide range of applications such as in
civilian and military sectors including tasks of patrolling [3],
exploration and mapping of unknown environments [4].
Logistics sectors can gain great benefits from using MRS
as it provides flexibility, reliability as well as extensive load-
transporting capacity in term of weight and size.

Formation control and flocking are the basis of multi-
robot system, where a team of robots must achieve common
desired tasks together. Depending on scenarios, the robot’s
team formation can be a rigid pattern or flexible. The
later behavior is usually inspired by nature, for instance,
a flocking of birds. Formation control can be seen as a
problem of driving robots to a desire geometric shape, which
is, normally, defined by the inter-distance between robots
in the network [5]. Flocking, on the other hand, control
the group of robots based on three rules [6]: collision
avoidance, velocity matching and flock centering. Generally,
only kinematic model is involved in the convergence of
formation, while dynamic model is usually considered in
flocking behavior [7].

Our global research goal is to develop an industrial
implementable cooperative load-transporting system, which
includes multi-robot task allocations and formation control,
using MRS. In this paper, we aim to revise a current
promising decentralized flocking algorithm such that it can
be used for formation of nonholonomic robots with obstacle
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avoidance capability, which is crucial for actual implemen-
tation of MRS in logistics sectors.

The contributions of this paper are threefold. Firstly,
we adapt existing consensus algorithm in [8], which was
for double integrator model, to single integrator consensus
system. Secondly, we enhance the obstacle avoidance for
flocking from [9] such that each robot takes into account
its neighbors’ obstacles as well, which is suitable for pre-
serving formation. Last but not least, we combine the two
algorithms and validate them on wheeled mobile robots in
both simulations and real experiments with industrial robots.

The rest of the paper is organized as following. Section II
and III present the existing work and the objective of our
experiments, respectively. Section IV shows the mathemat-
ical theory used in this paper. Our proposed algorithm
is introduced in section V. Section VI demonstrates the
simulation and experiment results. Finally, conclusion and
future work about this paper are given in section VII.

II. RELATED WORK

Several strategies for formation control and obstacle avoid-
ance have been proposed in recent years. Consensus al-
gorithm can be seen as one of the most popular control
approaches. Generally, consensus is based on graph theory
with an objective of reaching an agreement among robots
in the network [10]. There exist numerous studies on con-
sensus for second-order system including [11] and [12]
while the algorithm for first-order system can be found
in [13] and [14]. Leader-follower consensus control laws
were proposed by [15] and [16], in which the leader is
generally represented by a virtual robot. Despite that, little
to no researches have emphasized on validating proposed
control laws in actual experiments. In [8], the authors in-
troduced a PID-like decentralized consensus for the double
integrator system, which was validated on drones. There
are also studies on formation control based on flocking
algorithm ([17] and [18]). However, none of them take into
account the obstacle avoidance capability. The authors of [9]
has introduced an obstacle avoidance approach for flocking
by treating each obstacle as a virtual agent. Inspired by
this work, the authors of [19] have proposed a flocking
and obstacle avoidance algorithm that does not distinguish
between a robot and an obstacle, simply said, the controller
treats every neighbors as obstacles. In [20] and [21], artificial
potential field approach is used for avoiding obstacles in their
formation control. Even though there are numerous studies,
few of them actually focus on experimental validation.



III. PROBLEM STATEMENT

Let us consider four Huskys [22], (xci , yci) and (xcg , ycg )
are the initial and goal position of their barycenter, re-
spectively. Huskys, which are used for this experiment,
are industrial wheeled mobile robots designed for compact
and efficient indoor load transportation. Their mission is
to navigate cooperatively to any goal point while avoiding
obstacle, as shown in Fig. 1. This is one of use cases of
formation control in practical implementation, transportation
of huge loads in this case. Thus, the following conditions
must be satisfied:
• No inter-robot collisions.
• No collision with obstacles.
• They must be able to reach any goal point provided that

it is clear from obstacle.
• Formation has to be maintained during the navigation.

Fig. 1: Formation control and obstacle avoidance.

Furthermore, only local motion control is assumed. In-
deed, in a cluttered environment a motion planning phase is
necessary before the actual control. The proposed approach,
like any state feedback control, would be subject to local
minima in many cases if used without a motion planner.
However, it can be used as a steering function in classical
planning algorithms.

IV. BACKGROUND

The mathematical and theoretical foundations for exper-
imental work of this paper are based on graph [23] and
consensus [24] theory. We focus on the flocking control
and the obstacle avoidance algorithm for multi-robot system
proposed by [8] and [9], respectively.

A. Graph theory for multi-robot system

The multi-robot system topology is represented by an
undirected graph G = (V, E) where V = {1, 2 . . . , n} and
E ⊆ {(i, j) : i, j ∈ V, j 6= i} are a set of vertices and edges,
respectively. Each robot is denoted by a node of the vertices,
and the set of neighbors of node i is defined by:

Ni = {j ∈ V : (i, j) ∈ E} = {j ∈ V : ‖pj − pi‖ < c} (1)

where c > 0 is the interaction range between robots, and
‖.‖ denotes the Euclidean norm. pi and pj are the Cartesian
coordinates of robots i and j, respectively.

The desired formation of the system can be expressed as:

‖pj − pi‖ = d ∀j ∈ Ni(p) (2)

where d is the desired inter-distance.

B. Flocking algorithm
The authors of [8] have proposed a PID-like decentralized

control of flocking for a double integrator system whose
dynamics are defined as following:

ṗi = vi

v̇i = ui

(3)

where vi and ui are the velocity and control input vector,
respectively. In [8], control is based on the custom σ-norm
which maps Rn → R+ as:

∀z ∈ Rn, ‖z‖σ =
1

ε

[√
1 + ε‖z‖2 − 1

]
(4)

where ε > 0 and its gradient σε(z) = ∇‖z‖σ is written as:

σε(z) =
z√

1 + ε‖z‖2
=

z

1 + ε‖z‖σ
(5)

Let aij(p) be elements of a spatial adjacency matrix A(p),
defined as follows:

aij =

{
0 if i = j

ρh(‖pj − pi‖σ/‖c‖σ) if i 6= j
(6)

where ρh : R+ → [0, 1] is a bump function with h ∈ (0, 1):

ρh(s) =


1, s ∈ [0, h)

1

2

[
1 + cos

(
π

(s− h)

(1− h)

)]
, s ∈ [h, 1]

0, otherwise

(7)

The control law in [8] is then defined as follows:

ui =
∑
j∈Nαi

[
KpΦα(‖pj − pi‖σ)nij +K ′paij(p)(pj − pi)

+Kdaij(p)(vj − vi) +Ki

∫
Φα(‖pj − pi‖σ)nijdt

]
− cγ1(pi − pr)− cγ2(vi − vr)

(8)
where:
• Kp,K

′
p,Kd,Ki > 0 are consensus gains

• nij = σε(pj − pi)

• Φα(s) = 1
2
ρh(s/‖c‖σ) [(a+ b)σ1(s− ‖d‖σ + e) + (a− b)]

• σ1(s) = s/
√

1 + s2

• 0 < a < b and e = |a− b|/
√

4ab

• pr and vr are the reference position and velocity, respectively

• cγ1 , c
γ
2 > 0 are navigation gains, tuning the behavior with

regards to position and velocity error, respectively.
This control law complies with the three rules of flocking

defined in [6]. The inter-distances between robots are regu-
lated by the first three terms, while the fourth and last term
take care of velocity matching and navigation, respectively.



C. Obstacle avoidance for flocking

Since the flocking algorithm proposed by [8] does not
include any obstacle avoidance capability into the control
law, we will now detail the obstacle avoidance algorithm
from [9].

Fig. 2 shows the agent-based approach of representing
obstacles. An α-agent represents actual robots while a β-
agent indicates the obstacles. The set of neighbors of node i
can be written as:

Nα
i = j ∈ Vα : ‖pj − pi‖ < c

Nβ
i = k ∈ Vβ : ‖p̂i,k − pi‖ < c′

(9)

The desired formation of the system, eq. (2), thus includes
the agent-to-obstacle constraint as follows:{

‖pj − pi‖ = d ∀j ∈ Nα
i

‖p̂i,k − pi‖ = d′ ∀k ∈ Nβ
i

(10)

Fig. 2: Obstacles denoted by agent-based approach: (a) wall
(b) spherical obstacles [9].

where c′ and d′ are the interaction range and inter-distance
between α-agent i and β-agent k, respectively. p̂i,k is an
estimated position, and v̂i,k and estimated velocity of the
closest point from robot i to obstacle k. Since obstacles are
treated as virtual robots, the avoidance control law is similar
to flocking control law based on a potential function, which
is defined as following:

uβ
i = cβ1

∑
k∈Nβi

Φβ(‖p̂i,k − pi‖σ)n̂i,k

+ cβ2
∑
k∈Nβi

bi,k(p)(v̂i,k − vi)
(11)

where cβ1 , c
β
2 > 0 are gains, n̂i,k = σε(p̂i,k−pi), and bi,k(p),

which is the heterogeneous adjacency between an α-agent i
and its neighboring obstacle k at p̂i,k, is defined as:

bi,k(p) = ρh (‖p̂i,k − pi‖σ/dβ) (12)

with dβ = ‖d′‖σ and the function defining the repulsive
action can be expressed as follows:

Φβ(s) = ρh(s/dβ)(σ1(s− dβ)− 1) (13)

Combining the control law (8) with the obstacle avoidance
algorithm (11), the overall control law can be written as:

ui = uα
i + uβ

i + uγ
i

uα
i =

∑
j∈Nαi

[KpΦα(‖pj − pi‖σ)nij +K ′paij(p)(pj − pi)

+Kdaij(p)(vj − vi) +Ki

∫
Φα(‖pj − pi‖σ)nijdt]

uβ
i = cβ1

∑
k∈Nβi

Φβ(‖p̂i,k − pi‖σ)n̂i,k

+ cβ2
∑
k∈Nβi

bi,k(p)(v̂i,k − vi)

uγ
i = −cγ1(pi − pr)− cγ2(vi − vr)

(14)
Equation (14) represents a complete control law for dy-

namic flocking. Each robot in the team will keep a certain
distance from its neighbors, try to match each others’ veloc-
ities, and avoids obstacles while navigating to a goal point.

V. FORMATION CONTROL WITH OBSTACLE AVOIDANCE

In this section, the model of a unicycle robot, and the use
of static state feedback in order that the consensus approach
can be applied on such robot is discussed. The proposed
control algorithm for formation and obstacle avoidance is
also introduced in this section.

A. System model

Consider a multi-robots system with n unicycle robots,
(xi, yi)

T ∈ R2 is the center of the i-th robot and θi, vi and
ωi are its heading angle, linear velocity and angular velocity,
respectively. The nonholonomic constraints of the wheeled
mobile robot can be expressed as following:ẋiẏi

θ̇i

 =

cos θi 0
sin θi 0

0 1

(vi
ωi

)
(15)

Fig. 3: A nonholonomic wheeled mobile robot.

We use a static feedback linearization method by defining
an offset position from the robot center, as shown in Fig. 3.
The relation of position between the offset point and the
robot center can be written as follows [25]:(

hx
hy

)
=

(
xi
yi

)
+ l

(
cos θi
sin θi

)
(16)



Differentiating (16) with respect to time, the robot velocity
can be found using following equation:(

vi
wi

)
=

(
cos θi sin θi
− 1
l sin θi

1
l cos θi

)(
ḣx
ḣy

)
(17)

Thus, the consensus control law can be applied directly
to the offset position (hx, hy) before using (17) to find the
robot velocity with l > 0.

B. Control algorithm

Our goal is to apply the control law in (14) to a single
integrator system. Thus, the equation is modified to:

ui = uα
i + uβ

i + uγ
i

uα
i =

∑
j∈Nαi

[KpΦα(‖pj − pi‖σ)nij

+Ki

∫
Φα(‖pj − pi‖σ)nijdt]

uβ
i = cβ1

∑
k∈Nβi

Φβ(‖p̂i,k − pi‖σ)n̂i,k

uγ
i = −sat(cγ1(pi − pr))

(18)

where sat(.) is a saturation function defined as:

sat(x) =


xmin, x ≤ xmin
x, xmin < x < xmax

xmax, x ≥ xmax
(19)

The value of xmin and xmax are chosen explicitly in order
to ensure that the navigation term will not dominate over
other control terms when the goal point is too far away. In
most scenarios where the robots actually perform trajectory
tracking, the goal point is in the vicinity of the robots and
the saturation function may be eluded.

A simulation of (18) is shown in Fig. 4. It can be seen in
Fig. 4b that robot 0 (red) breaks formation in order to avoid
the obstacle. More precisely, this robot avoids the obstacle
from the left side while the other robots avoid it from the
right side. This behavior is not desirable considering the
conditions we have proposed in Section III, with formation
keeping as a criterion.

In order to ensure the formation while navigating around
the obstacle, we propose a new consensus obstacle avoidance
scheme. In this approach, each robot will take into account
its neighbors’ obstacles as well. By doing so, it can anticipate
incoming obstacles even they are not yet in its own detection
range. Hence, the velocity of each robot will be synchronized
while avoiding the obstacle. The obstacle avoidance term
of (18), uβ

i , now takes into account all potential obstacles
for all robots:

uβ
i = cβ1

 ∑
k∈Nβi

Φβ(‖p̂i,k − pi‖σ)n̂i,k

+
∑
j∈Nαi

∑
k∈Nβj

Φβ(‖p̂j,k − pj‖σ)n̂j,k


(20)

By defining as such, the fleet will react to the obstacles
with the same motion preserving its shape. The simulation
and experimental results can be found in the next section.

VI. RESULTS

In this section, we validate the proposed control law in
simulation as well as real experiment. In both simulation and
experiment, ROS [26] is used as the middleware. In the case
of simulation, Gazebo [27] is used to simulate four robots
under one ROS master, and we simulate the control laws
from (18) and (20). For experiment, we utilize four Huskys.
The control law (20) is run in each Husky independently, only
obstacle and its own positions, which are estimated using
on-board sensors, in a known map are shared within a local
network.

The value of parameters used in the simulation and ex-
periment are shown in table I. The interaction range, c, for
control law (18) is chosen according to the remark of authors
in [9], while for (20), it is defined such that each robot
becomes neighbor of all others in the team. The minimum
and maximum values of the saturation function are −0.3 and
0.3, respectively. A video of simulation and experimental
result is available at this link 1.

TABLE I: Value of parameters.

Parameter Value Parameter value [m]

a 1.0 xcg 8.0
b 1.0 ycg -3.0
h 0.2 d 2.0
ε 0.1 d′ 1.5
Kp 0.2 c for (18) 2.5
Ki 0.05 c for (20) 5.0

cβ1 0.3 l 0.2
cγ1 0.25

A. Simulation

The result of proposed control law (20) is shown in Fig. 5.
In Fig. 5a, dij represents the inter-distance between robots i
and j, where i, j ∈ {0, 1, 2, 3} and i 6= j. The inter-distances
between each robot quickly converge and is stable over time.
Moreover, the formation of the team is preserved even during
obstacle avoidance motion. As shown in Fig. 5b, the shape is
fixed throughout the navigation. This behavior is desirable,
and we will see the actual implementation of this control
algorithm in the next section.

The behavior is much better than in the naive approach
shown in Fig. 4, using law (18). Indeed, In Fig. 4a it was
clear that the inter-distances took a huge amount of time to
stabilize. As already stated, it is clearly visible in Fig. 4b
that one of the robots breaks off from the formation to avoid
the obstacle. The formation shape is totally distorted, and
restored only after the obstacle is passed through. This is,
indeed, a common behavior as shown in [9].

1https://youtu.be/kS7HrOHnbho
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Fig. 4: Simulation of formation and obstacle avoidance using flocking / avoidance law (18).
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reached, it is kept while avoiding the obstacle.

Fig. 5: Simulation of formation and obstacle avoidance using proposed control law (20).
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Fig. 6: Real experiment of formation and obstacle avoidance using proposed control law (20).

Fig. 7: Snapshots of the experiment. The fleet navigation from one point to another, and its formation is kept while avoiding
the obstacle that is not already known in the map.



B. Experiment

The proposed control law is now applied on four real
Husky platforms for experimental validation, and the result
is shown in Fig. 6. From Fig. 6a, we can notice the con-
vergence of the inter-distances between robot even though
the oscillation is a bit higher than in simulation, which
is due to the current low-level control of Husky. Fig. 6b
shows the trajectories of the four Huskys. As in simulation,
the formation does not break while the team maneuvers
away from the obstacle. Thus, all conditions we defined in
section III are achieved by using the proposed control law.

Fig. 7 shows a sequence of snapshots of this experiment,
where the fleet has to move from one point to another. An
obstacle (carton box) was placed in between the two points.
This obstacle is not already known in the map, hence no
initial path planning can try to avoid it: it has to be detected
and avoided by the whole fleet during the navigation.

VII. CONCLUSIONS

In this paper, we have revised existing flocking algorithms
such that it can be applied in nonholonomic robot system.
A combined consensus control for formation and obstacle
avoidance is proposed, and it is able to do formation and
navigation of the fleet’s barycenter to a goal point without
any collision with the obstacles. The validation of this control
law shows its effectiveness in simulations as well as real
experiment using actual industrial robots, Huskys.

Future work will focus on the main limitations of the
proposed approach, Our future work will focus on improving
the existing algorithm such that the inter-distances of all
side neighbors converge to the desired value when robots in
diagonal are neighbors, which is not the case for current al-
gorithm. Moreover, since wireless communication is always
more preferable in large industrial environment, transmission
delay between robots is inevitable. This problem will be also
addressed in the future study.
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